JP5001120B2 - Charge / discharge test equipment - Google Patents

Charge / discharge test equipment Download PDF

Info

Publication number
JP5001120B2
JP5001120B2 JP2007305445A JP2007305445A JP5001120B2 JP 5001120 B2 JP5001120 B2 JP 5001120B2 JP 2007305445 A JP2007305445 A JP 2007305445A JP 2007305445 A JP2007305445 A JP 2007305445A JP 5001120 B2 JP5001120 B2 JP 5001120B2
Authority
JP
Japan
Prior art keywords
current
circuit
charge
ripple
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007305445A
Other languages
Japanese (ja)
Other versions
JP2009128274A (en
Inventor
則之 伊藤
文明 伊原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Telecom Networks Ltd
Original Assignee
Fujitsu Telecom Networks Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Telecom Networks Ltd filed Critical Fujitsu Telecom Networks Ltd
Priority to JP2007305445A priority Critical patent/JP5001120B2/en
Publication of JP2009128274A publication Critical patent/JP2009128274A/en
Application granted granted Critical
Publication of JP5001120B2 publication Critical patent/JP5001120B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Electric Properties And Detecting Electric Faults (AREA)
  • Tests Of Electric Status Of Batteries (AREA)

Description

本発明は、コンデンサやバッテリーを被試験試料として、直流電流にリップル電流を重畳して充放電試験を行う充放電試験装置に関する。   The present invention relates to a charge / discharge test apparatus that performs a charge / discharge test by superimposing a ripple current on a direct current using a capacitor or a battery as a test sample.

コンデンサやバッテリーを被試験試料として、直流定電流で充電と放電とを繰り返すことにより試験を行う充放電試験装置で、各種の使用条件に即した試験及び加速試験の必要性から、直流定電流に対して、数Hz〜数10kHzの周波数のリップル電流を重畳して充放電試験を行う充放電試験装置が知られている。例えば、図3に示すように、充放電試験装置11の充放電回路13から被試験試料としてバッテリー(BATT)12に対して定電流で充放電を行い、リップル重畳回路14からのリップル電流を被試験試料のバッテリー12に供給するもので、リップル重畳回路14は、電子負荷回路15と、リップル電流の周波数の交流信号を電子負荷回路15に入力する交流信号発生部16と、バイアス電源17とを含む構成を備えている。   This is a charge / discharge tester that performs tests by repeatedly charging and discharging with a constant DC current using a capacitor or battery as a sample to be tested. On the other hand, a charge / discharge test apparatus that performs a charge / discharge test by superimposing a ripple current having a frequency of several Hz to several tens of kHz is known. For example, as shown in FIG. 3, the battery (BATT) 12 is charged and discharged from the charge / discharge circuit 13 of the charge / discharge test apparatus 11 as a sample to be tested with a constant current, and the ripple current from the ripple superimposing circuit 14 is measured. The ripple superimposing circuit 14 is supplied to the test sample battery 12. The ripple superimposing circuit 14 includes an electronic load circuit 15, an AC signal generating unit 16 for inputting an AC signal having a ripple current frequency to the electronic load circuit 15, and a bias power source 17. It has a configuration that includes.

リップル重畳回路14の電子負荷回路15は、例えば、図4に示す構成とすることができる。即ち、制御回路21と、オペアンプ(演算増幅器)22と、バイアス電源23と、トランジスタQ1と、抵抗R1,R2とを含む構成を有するもので、バイアス電源23は、図3に於けるバイアス電源17と同一の作用を行うものである。従って、図3に於ける電子負荷回路15を、図4に示す構成とした場合、図3に於けるバイアス電源17と図4に於けるバイアス電源23とは同一の作用を行うことになるから、その何れか一方を省略することができる。或は図3に於けるバイアス電源17及び図4に於けるバイアス電源23を何れも省略した構成を適用することもできる。又図4に於ける制御回路21は、交流信号発生部16からの交流信号に対応した周期で且つ所定のレベルとなる信号をオペアンプ(演算増幅器)22の一方の入力とし、他方の入力は、トランジスタQ1を介して流れる電流に対応した抵抗Rの両端の電圧Vとする。それにより、バッテリー12の放電電流を、交流信号発生部16からの交流信号の周波数で、制御回路21に設定した最大値に対応して、0〜最大値の電流をバッテリー12から電子負荷回路15に流すことができる。 For example, the electronic load circuit 15 of the ripple superimposing circuit 14 can be configured as shown in FIG. That is, it has a configuration including a control circuit 21, an operational amplifier (operational amplifier) 22, a bias power source 23, a transistor Q1, and resistors R1 and R2. The bias power source 23 is the bias power source 17 in FIG. Performs the same action . Therefore, when the electronic load circuit 15 in FIG. 3 is configured as shown in FIG. 4, the bias power source 17 in FIG. 3 and the bias power source 23 in FIG. 4 perform the same operation. , it is possible to omit the one that either. Alternatively , a configuration in which both the bias power supply 17 in FIG. 3 and the bias power supply 23 in FIG. 4 are omitted can be applied . Also in the control circuit 21 in FIG. 4, a signal and a predetermined level in a cycle corresponding to an AC signal from the AC signal generator 16 to one input of an operational amplifier (operational amplifier) 22, the other input, the voltage V R across the resistor R 1 corresponding to the current flowing through the transistor Q1. As a result, the discharge current of the battery 12 corresponds to the maximum value set in the control circuit 21 at the frequency of the AC signal from the AC signal generator 16, and the current of 0 to the maximum value is transferred from the battery 12 to the electronic load circuit 15. Can be shed.

又図3に於いて、充放電回路13からバッテリー12を充電している場合、電子負荷回路14には、交流信号発生部16からの交流信号に従った電流が、バッテリー12に対してはバイパスされることになり、従って、バッテリー12に対しては、交流信号の周波数に従った放電が繰り返し行われることになり、直流の充放電電流に対して、交流信号発生部16からの交流信号の周波数に従ったリップル電流が重畳されることになる。そして、被試験試料のバッテリー12の端子電圧を、図示を省略した電圧測定部により測定し、流れる電流を、図示を省略した電流測定部により測定し、リップル電流に対応したピーク・トー・ピークの電圧及び電流を基に、被試験試料のバッテリー12のインピーダンスを求め、予め求めておいた寿命等との関連情報を基に、被試験試料のバッテリー12の劣化状況及び寿命判定も可能となる。   In FIG. 3, when the battery 12 is charged from the charging / discharging circuit 13, a current according to the AC signal from the AC signal generating unit 16 is bypassed to the battery 12 in the electronic load circuit 14. Therefore, the battery 12 is repeatedly discharged in accordance with the frequency of the AC signal, and the AC signal from the AC signal generator 16 is applied to the DC charge / discharge current. The ripple current according to the frequency is superimposed. Then, the terminal voltage of the battery 12 to be tested is measured by a voltage measuring unit (not shown), the flowing current is measured by a current measuring unit (not shown), and the peak-to-peak corresponding to the ripple current is measured. Based on the voltage and current, the impedance of the battery 12 of the sample to be tested is obtained, and the deterioration status and life of the battery 12 of the sample to be tested can be determined based on the information related to the life and the like obtained in advance.

又定電流充電回路と定電流放電回路とに、それぞれ交流信号を入力する構成とし、被試験試料のバッテリーに対して、交流信号の周期で充放電を行う構成が提案されている(例えば、特許文献1参照)。又複数周波数の交流信号に従った電流を、ハイパスフィルタを介して被試験試料のバッテリーに入力し、そのバッテリーの端子電圧を、ハイパスフィルタを介して検出し、バッテリーの内部インピーダンス測定を行って、バッテリーの寿命判定を行う手段も提案されている(例えば、特許文献2参照)。又直流の充放電回路と、100Hz〜200kHzの交流電圧の出力部とにより、被試験試料のバッテリーの充放電試験を行う構成も提案されている(例えば、特許文献3参照)。
特開平7−128418号公報 特開平8−273705号公報 特開2006−258424号公報
In addition, a configuration has been proposed in which an AC signal is input to each of the constant current charging circuit and the constant current discharging circuit, and the battery of the sample to be tested is charged and discharged at the cycle of the AC signal (for example, a patent). Reference 1). Also, the current according to the AC signal of multiple frequencies is input to the battery of the sample to be tested through the high pass filter, the terminal voltage of the battery is detected through the high pass filter, and the internal impedance of the battery is measured. Means for determining battery life have also been proposed (see, for example, Patent Document 2). There has also been proposed a configuration in which a charge / discharge test of a battery to be tested is performed by a DC charge / discharge circuit and an output portion of an AC voltage of 100 Hz to 200 kHz (for example, see Patent Document 3).
JP-A-7-128418 JP-A-8-273705 JP 2006-258424 A

従来の例えば図3に示す充放電装置に於いて、電子負荷回路15は、被試験資料のバッテリー12に対しては、電流を減少させる方向の制御を行うものであり、図5の(A)に示すように、交流信号発生部17からの交流信号に従った周期で、最小の0Aから最大の電流までのリップル電流Ip−pが流れるように制御することになる。それにより、被試験試料のバッテリー12には、図5の(B)に示すように、最大電流Iのリップル電流Ip−pが流れることになる。しかし、被試験試料のバッテリー12に対してのリップル電流は、直流充電による充電電力量又は直流放電による放電電力量の増加や減少が生じないようにすることが必要である。その為、図3に示す充放電装置の充放電回路13にオフセットを入力し、例えば、図5の(C)に示すように、I+1/2・Ip−p=I’としてリップル電流による充電電力量又は放電電力量の変化が生じないように制御する。しかし、オフセット調整が正確でないと、リップル電流による充電電力量又は放電電力量の変化が発生することになる。例えば、図5の(D)に示すように、最大電流I’が(1/2・Ip−p)以下の値となった場合、(1/2・Ip−p)−I’=Iaの電流による放電が継続することになる。反対に、I’>(1/2・Ip−p)の関係の場合は、Iaの電流による充電が継続することになる。従って、充放電回路13のオフセット調整は簡単ではない問題がある。 In the conventional charging / discharging device shown in FIG. 3, for example, the electronic load circuit 15 controls the battery 12 as the material to be tested in the direction in which the current is reduced, as shown in FIG. As shown, the ripple current I pp from the minimum 0 A to the maximum current is controlled to flow in a cycle according to the AC signal from the AC signal generator 17. As a result, as shown in FIG. 5B, a ripple current I p-p having a maximum current I 0 flows through the battery 12 of the sample to be tested. However, it is necessary for the ripple current to the battery 12 of the sample to be tested not to increase or decrease the charging power amount due to DC charging or the discharging power amount due to DC discharge. Therefore, an offset is input to the charging / discharging circuit 13 of the charging / discharging device shown in FIG. 3, and for example, as shown in FIG. 5C, the ripple is set as I 0 + 1/2 · I pp = I 0 ′. Control is performed so that the amount of charging power or discharging power due to current does not change. However, if the offset adjustment is not accurate, a change in charge energy or discharge energy due to ripple current occurs. For example, as shown in (D) in FIG. 5, when the maximum current I 0 'is equal to or less than the value (1/2 · I p-p) , (1/2 · I p-p) -I 0 Discharging due to the current of '= Ia continues. On the contrary, in the case of the relationship of I 0 ′> (1/2 · I p−p ), charging by the current of Ia is continued. Therefore, there is a problem that the offset adjustment of the charge / discharge circuit 13 is not easy.

又前述の特許文献1に示す従来例の構成に於いては、定電流充電回路と定電流放電回路とを別個に設けるものであるから、充放電試験装置の構成が複雑となると共にコストアップとなる問題がある。又前述の特許文献2に示す従来例の構成に於いては、交流複合波信号をコンデンサを介して被試験試料のバッテリーに供給してインピーダンス測定を行うものであり、直流による充電及び放電の試験を含まない構成を示し、又前述の特許文献3に示す従来例の構成に於いては、バッテリーのインピーダンス測定を目的としたもので、直流による充電又は放電の試験については明記されていない。   Further, in the configuration of the conventional example shown in Patent Document 1 described above, the constant current charging circuit and the constant current discharging circuit are provided separately, so that the configuration of the charge / discharge test apparatus becomes complicated and the cost increases. There is a problem. Further, in the configuration of the conventional example shown in the above-mentioned Patent Document 2, an AC composite wave signal is supplied to a battery of a sample to be tested through a capacitor to measure impedance, and a DC charge and discharge test is performed. In the configuration of the conventional example shown in Patent Document 3 described above, the purpose is to measure the impedance of the battery, and the DC charging or discharging test is not specified.

本発明は、前述の従来例の問題点を解決するもので、比較的簡単な構成により、被試験試料に対する直流の充電及び放電の試験時に、直流成分に影響しないように、バランスのとれたリップル電流を供給可能とすることを目的とする。   The present invention solves the above-mentioned problems of the conventional example, and with a relatively simple configuration, balanced ripples are provided so as not to affect the DC component during the DC charge and discharge tests on the sample to be tested. The purpose is to make it possible to supply current.

本発明の充放電試験装置は、コンデンサ又はバッテリーを被試験試料とし、該被試験試料にリップル電流を重畳した充放電電流を供給する充放電試験装置であって、前記被試験試料に対する直流の充電又は放電を行う充放電回路と、該充放電回路と並列に接続して前記リップル電流を重畳して前記被試験試料に供給するリップル重畳回路とを含む構成を有し、前記リップル重畳回路は、前記リップル電流の周期に従って内部インピーダンスを制御する電子負荷回路と、該電子負荷回路に直接又は直流の電源を介して接続したコイルと、該コイルと両端の前記リップル電流の周期に従った電圧を前記被試験試料に印加するように、該コイルの一端と前記被試験試料の一端と間を接続したコンデンサとを含む構成を備えている。 The charge / discharge test apparatus of the present invention is a charge / discharge test apparatus that uses a capacitor or battery as a sample to be tested, and supplies a charge / discharge current in which a ripple current is superimposed on the sample to be tested. or a charge-discharge circuit to discharge, and connected in parallel with said charging and discharging circuit by superimposing the ripple current has the including configuration and ripple superimposition circuit supplies said under test sample, the ripple superimposition circuit An electronic load circuit for controlling the internal impedance according to the period of the ripple current, a coil connected to the electronic load circuit directly or via a DC power source, and a voltage according to the period of the ripple current at both ends of the coil. A configuration is provided that includes a capacitor connected between one end of the coil and one end of the test sample so as to be applied to the test sample .

又リップル重畳回路のコンデンサを、単一又は複数並列接続の電解コンデンサにより構成し、比較的低い周期のリップル電流をローコストで重畳可能とする。   Further, the capacitor of the ripple superimposing circuit is constituted by a single or a plurality of parallel-connected electrolytic capacitors, so that a ripple current having a relatively low period can be superimposed at a low cost.

電子負荷回路は、リップル電流の周期に従って内部インピーダンスを制御し、リップル電流の直流分をコイルに流し、交流分をコンデンサを介して流すことにより、被試験試料に対する充放電回路による充電又は放電を行う場合に、正負のバランスがとれたリップル電流を流すことが可能となり、オフセット調整等を行うことなく、被試験試料に対する充電又は放電の試験を行う場合のリップル電流を重畳して試験を行うことができる。   The electronic load circuit controls the internal impedance according to the period of the ripple current, flows the DC component of the ripple current through the coil, and flows the AC component through the capacitor, thereby charging or discharging the sample to be tested by the charge / discharge circuit. In this case, it is possible to flow a ripple current with a balance between positive and negative, and the test can be performed by superimposing the ripple current when performing a charge or discharge test on the sample under test without adjusting the offset. it can.

本発明の充放電試験装置は、図1を参照して説明すると、充放電回路3から被試験試料のコンデンサ又はバッテリーに対する直流の充放電電流に、リップル電流を重畳して供給する充放電試験装置1であって、被試験試料2に対する直流の充電又は放電を行う充放電回路3と、リップル重畳回路4とを含み、リップル重畳回路4は、交流信号発生部6からのリップル電流の周期の交流信号に従って内部インピーダンスを制御する電子負荷回路5と、この電子負荷回路5に直接又は電源7を介して並列に接続したコイル8と、電子負荷回路5に直接又は直流の電源7を介して直列に接続したコンデンサ9とを含む構成を備えている。   The charge / discharge test apparatus according to the present invention will be described with reference to FIG. 1. A charge / discharge test apparatus for supplying a ripple current superimposed on a DC charge / discharge current from a charge / discharge circuit 3 to a capacitor or battery of a sample to be tested. 1 and includes a charge / discharge circuit 3 that charges or discharges a direct current with respect to the sample 2 to be tested, and a ripple superimposing circuit 4. The ripple superimposing circuit 4 is an alternating current with a period of a ripple current from the alternating current signal generating unit 6. An electronic load circuit 5 that controls internal impedance in accordance with a signal, a coil 8 that is connected to the electronic load circuit 5 directly or in parallel via a power supply 7, and a serial connection to the electronic load circuit 5 directly or via a DC power supply 7 A configuration including a connected capacitor 9 is provided.

図1は、本発明の実施例1の説明図であり、1は充放電試験装置、2は被試験試料のバッテリーBATT、3は充放電回路、4はリップル重畳回路、5は電子負荷回路、6は交流信号発生部、7は直流の電源、8はコイル、9はコンデンサを示す。コンデンサ9は、DCカット用のコンデンサであり、交流信号発生部6は、通常100Hz〜10kHz程度の周波数とするものであるが、被試験試料の特性測定の為に、例えば、0.1Hz程度の低周波数とすることも可能である。又コンデンサ9は、比較的大きなリップル電流を流すことができる比較的大容量のコンデンサを用いるものである。例えば、比較的廉価で大容量化が容易な電解コンデンサを用いることが可能であり、又所望の静電容量を得る為に複数のコンデンサを並列接続して構成することができる。又被試験試料としてバッテリー2に替えてコンデンサとすることもできる。又電源7は省略した構成とすることも可能である。   FIG. 1 is an explanatory diagram of Embodiment 1 of the present invention, in which 1 is a charge / discharge test apparatus, 2 is a battery BATT of a sample to be tested, 3 is a charge / discharge circuit, 4 is a ripple superposition circuit, 5 is an electronic load circuit, 6 is an AC signal generator, 7 is a DC power source, 8 is a coil, and 9 is a capacitor. The capacitor 9 is a DC cut capacitor, and the AC signal generator 6 is normally set to a frequency of about 100 Hz to 10 kHz. For measuring the characteristics of the test sample, for example, about 0.1 Hz A low frequency is also possible. The capacitor 9 is a capacitor having a relatively large capacity capable of flowing a relatively large ripple current. For example, an electrolytic capacitor that is relatively inexpensive and easy to increase in capacity can be used, and a plurality of capacitors can be connected in parallel to obtain a desired capacitance. Moreover, it can replace with the battery 2 as a sample to be tested, and can also be used as a capacitor | condenser. The power source 7 may be omitted.

電子負荷回路5は、交流信号発生部6からの交流信号に応じて内部インピーダンスを変化させる機能を有し、例えば、図4に示す従来の電子負荷回路と同様な構成を適用することができる。この電子負荷回路5は、充放電回路3と共に被試験試料のバッテリー2に対して並列接続の状態となる。従って、被試験試料のバッテリー2に流れる充電電流又は放電電流は、電子負荷回路5の内部インピーダンスの変化の交流成分に従って変化することになり、交流成分であるリップル成分が重畳されて、被試験試料のバッテリー2に流れることになる。 The electronic load circuit 5 has a function of changing the internal impedance in accordance with the AC signal from the AC signal generator 6, and for example, a configuration similar to the conventional electronic load circuit shown in FIG. 4 can be applied. The electronic load circuit 5 is connected in parallel to the battery 2 to be tested together with the charge / discharge circuit 3 . Accordingly, the charging current or discharging current flowing through the battery 2 of the test sample, Ri Do to vary according to the AC component of the change in the internal impedance of the electronic load circuit 5, the ripple component is superimposed an alternating current component, to be tested It will flow to the battery 2 of the sample.

図2は、本発明の実施例1に於けるリップル電流の説明図であり、(A)はリップル重畳回路4内の交流信号発生部6からの交流信号により制御される電子負荷回路5に、バイアス電源7によって流れるリップル成分を示し、このリップル成分は、0Aを最低の電流とした場合に於いて、P−P振幅の電流が流れる。このリップル成分の電流の直流成分は、図2の(B)に示すように、0Aを最低の電流値として、1/2・IP−Pの電流となる。それにより、コンデンサ9を介して被試験試料2に流れる電流は、図2の(C)に示すように、0Aを中心とした正負の1/2・IP−Pの電流、即ち、交流電流となり、この交流電流がコンデンサ9を介して被試験試料2にリップル電流として重畳されて流れても、オフセット調整が必要でくなる。即ち、交流信号発生部6からの交流信号の周期に従ったリップル電流を、充放電回路3による充電電流又は放電電流に重畳することにより、リップル成分の正負のバランスをとる為のオフセット調整を行うことなく、被試験試料に対する充電電流或は放電電流リップル電流を重畳して供給することが可能となり、被試験試料に対する直流による充電試験の装置として及び放電試験の装置として、それぞれの試験時に、直流成分に影響しないように、バランスのとれたリップル電流の供給が可能となる。 FIG. 2 is an explanatory diagram of the ripple current in the first embodiment of the present invention . FIG. 2A shows an electronic load circuit 5 controlled by an AC signal from the AC signal generator 6 in the ripple superimposing circuit 4 . shows the ripple component flowing through the bias power source 7, the ripple component is, in the case where the 0A the lowest current, current flows in the amplitude of I P-P. DC component of the current of the ripple component, as shown in FIG. 2 (B), the 0A as the lowest current value, a current of 1/2 · I P-P. Thereby, the current flowing through the capacitor 9 to the sample under test 2, as shown in (C) of FIG. 2, the current of 1/2 · I P-P of the positive and negative around the 0A, i.e., alternating current next, even flow the alternating current is superposed as the ripple current through the capacitor 9 to the sample under test 2, the offset adjustment is such necessary Kunar. That is, offset adjustment for balancing the positive and negative of the ripple component is performed by superimposing the ripple current according to the cycle of the AC signal from the AC signal generator 6 on the charging current or discharging current by the charging / discharging circuit 3. without, as a device of the charging current or Ri Do can be supplied by superimposing the ripple current in the discharge current, device and as discharge test of charge test by DC with respect to the test sample with respect to the test samples, each test Sometimes, it becomes possible to supply a balanced ripple current so as not to affect the DC component.

本発明の実施例1の説明図である。It is explanatory drawing of Example 1 of this invention. 本発明の実施例1のリップル電流の説明図である。It is explanatory drawing of the ripple current of Example 1 of this invention. 従来例の説明図である。It is explanatory drawing of a prior art example. 電子負荷回路の説明図である。It is explanatory drawing of an electronic load circuit. 従来例のリップル電流の説明図である。It is explanatory drawing of the ripple current of a prior art example.

符号の説明Explanation of symbols

1 充放電試験装置
2 被試験試料のバッテリー
3 充放電回路
4 リップル重畳回路
5 電子負荷回路
6 交流信号発生部
7 電源
8 コイル
9 コンデンサ
DESCRIPTION OF SYMBOLS 1 Charge / discharge test apparatus 2 Battery of test object 3 Charge / discharge circuit 4 Ripple superposition circuit 5 Electronic load circuit 6 AC signal generation part 7 Power supply 8 Coil 9 Capacitor

Claims (2)

コンデンサ又はバッテリーを被試験試料とし、該被試験試料にリップル電流を重畳した充放電電流を供給する充放電試験装置に於いて、
前記被試験試料に対する直流の充電又は放電を行う充放電回路と、該充放電回路と並列に接続して前記リップル電流を重畳して前記被試験試料に供給するリップル重畳回路とを含む構成を有し、
前記リップル重畳回路は、前記リップル電流の周期に従って内部インピーダンスを制御する電子負荷回路と、該電子負荷回路に直接又は直流の電源を介して接続したコイルと、該コイルと両端の前記リップル電流の周期に従った電圧を前記被試験試料に印加するように、該コイルの一端と前記被試験試料の一端との間を接続したコンデンサとを含む構成を備えた
ことを特徴とする充放電試験回路。
In a charge / discharge test apparatus that uses a capacitor or a battery as a test sample and supplies a charge / discharge current with a ripple current superimposed on the test sample ,
A charging and discharging circuit that performs a DC charging or discharging of the sample under test, the including configuration and ripple superimposition circuit supplies said to be the test sample by superimposing the ripple current is connected in parallel with said charging and discharging circuit Have
The ripple superimposing circuit includes an electronic load circuit that controls internal impedance according to the period of the ripple current, a coil that is connected to the electronic load circuit directly or via a DC power source, and a period of the ripple current between the coil and both ends. A charge / discharge test circuit comprising: a capacitor connected between one end of the coil and one end of the sample to be tested so as to apply a voltage in accordance with the sample to the sample to be tested .
前記リップル重畳回路の前記コンデンサを単一又は並列接続の複数の電解コンデンサにより構成したことを特徴とする請求項1記載の充放電試験回路。   2. The charge / discharge test circuit according to claim 1, wherein the capacitor of the ripple superimposing circuit is constituted by a plurality of electrolytic capacitors connected in a single or in parallel.
JP2007305445A 2007-11-27 2007-11-27 Charge / discharge test equipment Expired - Fee Related JP5001120B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007305445A JP5001120B2 (en) 2007-11-27 2007-11-27 Charge / discharge test equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007305445A JP5001120B2 (en) 2007-11-27 2007-11-27 Charge / discharge test equipment

Publications (2)

Publication Number Publication Date
JP2009128274A JP2009128274A (en) 2009-06-11
JP5001120B2 true JP5001120B2 (en) 2012-08-15

Family

ID=40819339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007305445A Expired - Fee Related JP5001120B2 (en) 2007-11-27 2007-11-27 Charge / discharge test equipment

Country Status (1)

Country Link
JP (1) JP5001120B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6115915B2 (en) * 2013-07-08 2017-04-19 矢崎総業株式会社 Battery state detection device
JP6191501B2 (en) * 2014-02-25 2017-09-06 株式会社豊田自動織機 Charge / discharge system
JP6387116B2 (en) * 2015-01-30 2018-09-05 株式会社東芝 Internal resistance measuring device, storage battery device, and internal resistance value deriving method
JP6862877B2 (en) 2017-02-06 2021-04-21 富士通株式会社 Battery level measurement circuit, electronic devices and battery level measurement method
EP3719516B1 (en) * 2018-09-30 2022-11-02 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Charging device test system and method
AT523095A1 (en) * 2019-11-08 2021-05-15 Avl List Gmbh Coupling device for coupling in a ripple current, test system and coupling method
CN112557712B (en) * 2020-12-07 2022-12-13 常州绿能新能源检测有限公司 Parallel pulse current test system
JP7407136B2 (en) * 2021-01-13 2023-12-28 エスペック株式会社 Battery charging/discharging test equipment and battery testing equipment

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3330704B2 (en) * 1993-11-05 2002-09-30 新電元工業株式会社 Battery AC constant current charge / discharge circuit and battery test apparatus using the same
JP3987178B2 (en) * 1997-12-09 2007-10-03 日置電機株式会社 Battery pack deterioration determination method and battery pack deterioration determination device
JP4763322B2 (en) * 2005-03-15 2011-08-31 株式会社三社電機製作所 High frequency superimposed power supply

Also Published As

Publication number Publication date
JP2009128274A (en) 2009-06-11

Similar Documents

Publication Publication Date Title
JP5001120B2 (en) Charge / discharge test equipment
KR102554612B1 (en) Measuring apparatus of battery internal resistance and method of measuring same
RU2603260C2 (en) Method for increasing service life of capacitors in sequential units and device for its implementation
US11585856B2 (en) Direct current converter capable of monitoring battery condition and battery condition monitoring method thereof
JP2005221487A (en) Method and instrument for measuring internal impedance of secondary battery, device for determining deterioration of secondary battery, and power source system
JP5745655B2 (en) Electrical test apparatus and electrical test method
US11029364B2 (en) Method and arrangement for determining the state of charge and the state of health of an electrical energy store
JP2019503161A (en) Connectivity check between cell and control wiring electronics using one switch
US20080062732A1 (en) Method of compensating output voltage distortion of half-bridge inverter and device based on the method
JP2008175687A (en) Method and apparatus for measuring internal impedance of storage battery
JP6136820B2 (en) Battery monitoring device, power storage device, and battery monitoring method
US8611065B2 (en) Method and device for automatic positive and negative ion balance control in a bipolar ion generator
JP2016011916A (en) Battery state monitoring circuit and battery device
JP6115915B2 (en) Battery state detection device
JP6337836B2 (en) Calibration method for charge / discharge test equipment
JP3204091B2 (en) Charge / discharge current measuring device
JP2014010028A (en) Battery impedance measuring device and method
JP5618575B2 (en) Storage battery evaluation apparatus and method
JP2007181365A (en) Ac voltage applying circuit and method to battery group
JP4456584B2 (en) Method and system for measuring DC internal resistance value of electric double layer capacitor
JP2013050351A (en) Impedance measurement method for electric double-layer capacitor, impedance measurement device, and deterioration diagnostic method by impedance measured value and deterioration diagnostic device therefor
CN102636238B (en) Vortex shedding flowmeter detection device
JP5786577B2 (en) Static eliminator
KR102549257B1 (en) Dither charger for ess charging based on reused battery
JPH11281688A (en) Constant-current source and resistancemeasuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090910

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120517

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150525

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees