JP4999640B2 - Induction machine controller - Google Patents

Induction machine controller Download PDF

Info

Publication number
JP4999640B2
JP4999640B2 JP2007282585A JP2007282585A JP4999640B2 JP 4999640 B2 JP4999640 B2 JP 4999640B2 JP 2007282585 A JP2007282585 A JP 2007282585A JP 2007282585 A JP2007282585 A JP 2007282585A JP 4999640 B2 JP4999640 B2 JP 4999640B2
Authority
JP
Japan
Prior art keywords
magnetic flux
induction machine
flux command
speed
command
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007282585A
Other languages
Japanese (ja)
Other versions
JP2009112131A (en
Inventor
正志 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Electric Manufacturing Ltd
Original Assignee
Toyo Electric Manufacturing Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Electric Manufacturing Ltd filed Critical Toyo Electric Manufacturing Ltd
Priority to JP2007282585A priority Critical patent/JP4999640B2/en
Publication of JP2009112131A publication Critical patent/JP2009112131A/en
Application granted granted Critical
Publication of JP4999640B2 publication Critical patent/JP4999640B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、誘導機のトルク制御精度及び安定性に関するもので、特に、高速側の出力パワー安定性を保ちつつ、低速側の誘導機速度演算精度及びトルク制御精度を維持するものである。   The present invention relates to torque control accuracy and stability of an induction machine. In particular, the present invention maintains low-speed induction machine speed calculation accuracy and torque control accuracy while maintaining high-speed output power stability.

図3は、従来の一例を示すブロック図である。1は誘導機、2は電流検出器、3は電力変換器、4はトルク制御手段、5は磁束演算器、6は速度演算器である。
電流検出器2は、誘導機1に流れる電流iを検出する。
FIG. 3 is a block diagram showing a conventional example. 1 is an induction machine, 2 is a current detector, 3 is a power converter, 4 is torque control means, 5 is a magnetic flux calculator, and 6 is a speed calculator.
The current detector 2 detects a current i flowing through the induction machine 1.

磁束演算器5は、電流iと電力変換器に入力される電圧指令vから、誘導機磁束φを式(1)で演算する。   The magnetic flux calculator 5 calculates the induction machine magnetic flux φ by the equation (1) from the current i and the voltage command v input to the power converter.

Figure 0004999640
ここで、R1は誘導機1の一次抵抗、L1は一次自己インダクタンス、L2は二次自己インダクタンス、Mは相互インダクタンスである。
Figure 0004999640
Here, R1 is a primary resistance of the induction machine 1, L1 is a primary self-inductance, L2 is a secondary self-inductance, and M is a mutual inductance.

速度演算器6は、電流iと誘導機磁束φから、式(2)〜式(4)を用いて誘導機速度ωmを演算する。   The speed calculator 6 calculates the induction machine speed ωm from the current i and the induction machine magnetic flux φ using the equations (2) to (4).

Figure 0004999640
Figure 0004999640

Figure 0004999640
ここで、R2は誘導機1の二次抵抗、FAとFBは誘導機磁束φの成分である。
Figure 0004999640
Here, R2 is a secondary resistance of the induction machine 1, and FA and FB are components of the induction machine magnetic flux φ.

トルク制御手段4は、誘導機速度ωmと電流iを基に、誘導機1の磁束とトルクが磁束指令基準値φ*、トルク指令τ*となるような電圧指令vを出力する。
電力変換器3は、電圧指令vを増幅して誘導機1に電力を供給する。
Based on the induction machine speed ωm and the current i, the torque control means 4 outputs a voltage command v such that the magnetic flux and torque of the induction machine 1 become the magnetic flux command reference value φ * and the torque command τ *.
The power converter 3 amplifies the voltage command v and supplies power to the induction machine 1.

以上の構成とすることにより、誘導機1のトルクをトルク指令τ*に制御することができる。
特開平11-069895
With the above configuration, the torque of the induction machine 1 can be controlled to the torque command τ *.
JP 11-066985 A

従来技術においては、以下に示す問題点がある。
式(1)〜(4)にて、誘導機速度ωmを推定する際、誘導機1のモータ定数設定誤差、電流検出器2の検知誤差、演算時の量子化誤差、等により、誘導機速度ωmの演算精度がわずかながら落ちてしまう。
The prior art has the following problems.
When estimating the induction machine speed ωm using the formulas (1) to (4), the induction machine speed ωm is determined by the motor constant setting error of the induction machine 1, the detection error of the current detector 2, the quantization error at the time of calculation, etc. The calculation accuracy of ωm is slightly reduced.

速度演算精度がわずかでも落ちると、以下のような問題点がある。
高速側では、トルク指令τ*=0制御時、速度演算精度落ちが出力パワー安定性の低下をもたらし、回生パワー発生につながる可能性がある。車両制御システムの場合には、トルク制御終了時に0トルク制御期間が存在し、速度演算精度落ちの回生パワー発生が直流側電圧を押し上げ、電力変換器3のパワー素子の破壊につながる恐れがあり、更には、変電所に影響を与える恐れがある。
If the speed calculation accuracy drops even slightly, there are the following problems.
On the high speed side, when the torque command τ * = 0 is controlled, a decrease in speed calculation accuracy may cause a decrease in output power stability, which may lead to generation of regenerative power. In the case of a vehicle control system, there is a zero torque control period at the end of torque control, and the generation of regenerative power with reduced speed calculation accuracy may boost the DC side voltage, leading to the destruction of the power element of the power converter 3, Furthermore, there is a risk of affecting the substation.

速度演算精度落ちによる回生パワーを緩和し、出力パワーの安定化を実現するために、トルク制御終了時に磁束指令基準値φ*を下げる対策が考えられる。
しかし、低速側では、磁束絞り時の電圧指令vが小さくなるため、一次抵抗R1の設定誤差の影響が大きく、誘導機1のトルク制御への影響が多大となる。更には、誘導機磁束φが下がったとき、量子化誤差により、式(2)の演算精度が悪化し、誘導機速度ωm演算精度の悪化につながり、誘導機1のトルク制御へ影響する。
本発明は、以上の問題点を解決するためになされたものである。
In order to alleviate the regenerative power due to speed calculation accuracy drop and to stabilize the output power, a measure to lower the magnetic flux command reference value φ * at the end of torque control can be considered.
However, on the low speed side, the voltage command v at the time of magnetic flux restriction is small, so the influence of the setting error of the primary resistance R1 is large, and the influence on the torque control of the induction machine 1 is great. Further, when the induction machine magnetic flux φ decreases, the calculation accuracy of the equation (2) deteriorates due to the quantization error, which leads to deterioration of the calculation accuracy of the induction machine speed ωm and affects the torque control of the induction machine 1.
The present invention has been made to solve the above problems.

誘導機速度ωmと磁束指令基準値φ*を入力し下限磁束指令φLを出力する制限量演算器8と、磁束指令基準値φ*と下限磁束指令φLを入力し制御磁束指令φsを出力する磁束指令制限器7を追加し、磁束指令基準値φ*の代わりに制御磁束指令φsを誘導機1のトルク制御に用いる。   The limit amount calculator 8 that inputs the induction machine speed ωm and the magnetic flux command reference value φ * and outputs the lower limit magnetic flux command φL, and the magnetic flux that inputs the magnetic flux command reference value φ * and the lower limit magnetic flux command φL and outputs the control magnetic flux command φs A command limiter 7 is added, and a control magnetic flux command φs is used for torque control of the induction machine 1 instead of the magnetic flux command reference value φ *.

磁束指令φ*を制御磁束指令φsとすることにより、高速側の出力パワー安定性を保ちつつ、低速側の誘導機速度演算精度及びトルク制御精度を維持することができる。   By setting the magnetic flux command φ * as the control magnetic flux command φs, it is possible to maintain the low speed side induction machine speed calculation accuracy and the torque control accuracy while maintaining the high speed side output power stability.

磁束指令を操作することにより、高速側の出力パワー安定性を保ちつつ、低速側の誘導機速度演算精度及びトルク制御精度を維持することが可能な形態を実現する。   By manipulating the magnetic flux command, a mode capable of maintaining the low speed side induction machine speed calculation accuracy and the torque control accuracy while maintaining the high speed side output power stability is realized.

図1は、本発明の一実施例を示すブロック図であり、7は磁束指令制限器、8は制限量演算器である。以下、図1について図3と異なる点のみを説明する。   FIG. 1 is a block diagram showing an embodiment of the present invention, where 7 is a magnetic flux command limiter and 8 is a limit amount calculator. Hereinafter, only the points of FIG. 1 different from FIG. 3 will be described.

制限量演算器8は、誘導機速度ωmと磁束指令基準値φ*を入力し下限磁束指令φLを出力する。図2は、制限量演算器8の一演算例を示す図であり、誘導器速度ωmに対する下限磁束指令φLの特性を現している。ここで、ωm1は高速しきい値、ωm2は低速しきい値、K1は高速側制限ゲイン、K2は低速側制限ゲインであり、ωm2≦ωm1、K1≦K2、0≦K1≦1、0<K2≦1とする。   The limit amount calculator 8 inputs the induction machine speed ωm and the magnetic flux command reference value φ *, and outputs the lower limit magnetic flux command φL. FIG. 2 is a diagram showing one calculation example of the limit amount calculator 8 and shows the characteristic of the lower limit magnetic flux command φL with respect to the inductor speed ωm. Here, ωm1 is a high speed threshold value, ωm2 is a low speed threshold value, K1 is a high speed side limiting gain, and K2 is a low speed side limiting gain, and ωm2 ≦ ωm1, K1 ≦ K2, 0 ≦ K1 ≦ 1, 0 <K2 ≦ 1.

磁束指令制限器7は、磁束指令基準値φ*と下限磁束指令φLを入力し制御磁束指令φsを出力する。磁束指令制限器7の出力である制御磁束指令φsを磁束指令基準値φ*の代わりにトルク制御手段4に入力する。   The magnetic flux command limiter 7 inputs the magnetic flux command reference value φ * and the lower limit magnetic flux command φL, and outputs a control magnetic flux command φs. A control magnetic flux command φs that is an output of the magnetic flux command limiter 7 is input to the torque control means 4 instead of the magnetic flux command reference value φ *.

以上の構成とすることにより、以下の効果が得られる。
誘導機1の磁束の下限値を誘導機速度ωmで変えることができ、高速側の0トルク制御では、制御磁束指令φsを大幅に絞ることにより、速度演算精度落ちによる回生パワーの緩和ができ、出力パワーの安定化が図れる。
With the above configuration, the following effects can be obtained.
The lower limit value of the magnetic flux of the induction machine 1 can be changed by the induction machine speed ωm. In the high-speed side 0 torque control, the regenerative power can be reduced by reducing the speed calculation accuracy by greatly reducing the control magnetic flux command φs. The output power can be stabilized.

低速側においては、制御磁束指令φsの絞り幅を少なくすることにより、誘導機磁束φの下げ過ぎによる誘導機速度ωmの演算精度悪化を防ぐことができ、誘導機1の高精度なトルク制御が期待できる。   On the low speed side, by reducing the aperture width of the control magnetic flux command φs, it is possible to prevent deterioration of the calculation accuracy of the induction machine speed ωm due to excessive reduction of the induction machine magnetic flux φ, and high-precision torque control of the induction machine 1 can be achieved. I can expect.

図3において、ωm1=ωm2とすれば、下限磁束指令φLが誘導機速度ωm=ωm1でステップ変化するパターンが得られる。   In FIG. 3, if ωm1 = ωm2, a pattern in which the lower limit magnetic flux command φL changes stepwise at the induction machine speed ωm = ωm1 is obtained.

磁束指令を操作することにより、高速側の出力パワー安定性を保ちつつ、低速側の誘導機速度演算精度及びトルク制御精度を維持することができる。   By operating the magnetic flux command, it is possible to maintain the low speed side induction machine speed calculation accuracy and the torque control accuracy while maintaining the high speed side output power stability.

図1は、本発明の一実施例を示すブロック図である。FIG. 1 is a block diagram showing an embodiment of the present invention. 図2は、本発明の制限量演算器の一演算例を示す図である。FIG. 2 is a diagram showing one calculation example of the limit amount calculator of the present invention. 図3は、一従来例を示すブロック図である。FIG. 3 is a block diagram showing a conventional example.

符号の説明Explanation of symbols

1 誘導機
2 電流検出器
3 電力変換器
4 トルク制御手段
5 磁束演算器
6 速度演算器
7 磁束指令制限器
8 制限量演算器

i・・・・電流
v・・・・電圧指令
τ*・・・・トルク指令
φ*・・・・磁束指令基準値
ωm・・・・誘導機速度
φ・・・・誘導機磁束
φs・・・・制御磁束指令
φL・・・・下限磁束指令
K1・・・・高速側制限ゲイン
K2・・・・低速側制限ゲイン
ωm1・・・・高速しきい値
ωm2・・・・低速しきい値
DESCRIPTION OF SYMBOLS 1 Induction machine 2 Current detector 3 Power converter 4 Torque control means 5 Magnetic flux calculator 6 Speed calculator 7 Magnetic flux command limiter 8 Limit amount calculator

i ... current v ... voltage command τ * ... torque command φ * ... magnetic flux command reference value ωm ... induction machine speed φ ... induction machine magnetic flux φs ... ..Control magnetic flux command φL ... Lower limit magnetic flux command
K1 ・ ・ ・ ・ High-speed side limiting gain
K2 ・ ・ ・ ・ Low speed side limit gain ωm1 ・ ・ ・ High speed threshold ωm2 ・ ・ ・ Low speed threshold

Claims (1)

誘導機の電流と電圧から誘導機磁束と誘導機速度を演算し、該電流と該誘導機速度と磁束指令基準値とトルク指令を基に該誘導機のトルクを制御する誘導機制御装置において、
前記誘導機速度と該磁束指令基準値を入力し下限磁束指令を出力する制限量演算器と、前記磁束指令基準値と該下限磁束指令を入力し制御磁束指令を出力する磁束指令制限器を追加し、前記磁束指令基準値の代わりに該制御磁束指令を前記誘導機のトルク制御に用いることを特徴とする誘導機制御装置。
In an induction machine control device that calculates induction machine magnetic flux and induction machine speed from the current and voltage of the induction machine, and controls torque of the induction machine based on the current, induction machine speed, magnetic flux command reference value, and torque command,
A limit calculator that inputs the induction machine speed and the magnetic flux command reference value and outputs a lower limit magnetic flux command, and a magnetic flux command limiter that inputs the magnetic flux command reference value and the lower limit magnetic flux command and outputs a control magnetic flux command are added. An induction machine control device using the control magnetic flux command for torque control of the induction machine instead of the magnetic flux command reference value.
JP2007282585A 2007-10-31 2007-10-31 Induction machine controller Active JP4999640B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007282585A JP4999640B2 (en) 2007-10-31 2007-10-31 Induction machine controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007282585A JP4999640B2 (en) 2007-10-31 2007-10-31 Induction machine controller

Publications (2)

Publication Number Publication Date
JP2009112131A JP2009112131A (en) 2009-05-21
JP4999640B2 true JP4999640B2 (en) 2012-08-15

Family

ID=40780005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007282585A Active JP4999640B2 (en) 2007-10-31 2007-10-31 Induction machine controller

Country Status (1)

Country Link
JP (1) JP4999640B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63314193A (en) * 1987-06-15 1988-12-22 Toyo Electric Mfg Co Ltd Method of controlling flux of motor
JPH06343201A (en) * 1993-04-09 1994-12-13 Fuji Electric Co Ltd Electric system for electric car
JP3777943B2 (en) * 1999-08-04 2006-05-24 富士電機機器制御株式会社 Control device for vector control inverter for AC motor drive
JP4059725B2 (en) * 2002-07-30 2008-03-12 東洋電機製造株式会社 Electric vehicle control device

Also Published As

Publication number Publication date
JP2009112131A (en) 2009-05-21

Similar Documents

Publication Publication Date Title
JP5071516B2 (en) Power converter
JP5280332B2 (en) Semiconductor device for current control and control device using the same
JP2010068708A5 (en)
US9742296B2 (en) Isolated DC-DC power conversion circuit system with circulating current reduction
EP1884784B1 (en) Circuit and method for detecting electric current
JP5226399B2 (en) Power supply device and control method of power supply device
JP2010206699A (en) Solenoid current control circuit
JP2008154408A (en) Output voltage control device of pwm inverter
JP6653645B2 (en) Control device for DC / DC converter
JP5071129B2 (en) Reactor state detection device for chopper type converter
JP4999640B2 (en) Induction machine controller
JP2005287148A (en) Vector controller of winding field type synchronous machine
JP6443652B2 (en) Power converter
JP6057876B2 (en) Power converter
JP6769246B2 (en) Electric motor control device
JP2009027900A (en) Output voltage detection error correction method for inverter and error correction circuit
JP4731133B2 (en) Induction machine controller
JP2006340549A (en) Single-phase power conversion apparatus and three-phase power conversion apparatus
JP4934442B2 (en) Switching power supply
JP2010178443A (en) Motor control system
JP2009273270A (en) Induction-machine control device
JP2010124554A (en) Induction machine control device
JP4615336B2 (en) Single-phase power converter and three-phase power converter
JP5921030B2 (en) Induction machine controller
JP5691635B2 (en) Motor control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120515

R150 Certificate of patent or registration of utility model

Ref document number: 4999640

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150525

Year of fee payment: 3