JP4615336B2 - Single-phase power converter and three-phase power converter - Google Patents

Single-phase power converter and three-phase power converter Download PDF

Info

Publication number
JP4615336B2
JP4615336B2 JP2005070118A JP2005070118A JP4615336B2 JP 4615336 B2 JP4615336 B2 JP 4615336B2 JP 2005070118 A JP2005070118 A JP 2005070118A JP 2005070118 A JP2005070118 A JP 2005070118A JP 4615336 B2 JP4615336 B2 JP 4615336B2
Authority
JP
Japan
Prior art keywords
current
voltage
output
power
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005070118A
Other languages
Japanese (ja)
Other versions
JP2006254636A (en
Inventor
正明 大島
寛一 清水
修一 宇敷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Co Inc
Origin Electric Co Ltd
Original Assignee
Tokyo Electric Power Co Inc
Origin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc, Origin Electric Co Ltd filed Critical Tokyo Electric Power Co Inc
Priority to JP2005070118A priority Critical patent/JP4615336B2/en
Priority to US11/368,480 priority patent/US7184282B2/en
Publication of JP2006254636A publication Critical patent/JP2006254636A/en
Application granted granted Critical
Publication of JP4615336B2 publication Critical patent/JP4615336B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Inverter Devices (AREA)

Description

本発明は単相電力変換装置及び三相電力変換装置に関する。詳しくは、直流電力を交流電力に変換する電力変換装置において、出力端子間電圧から直流成分を抽出して目標電流を補正することにより、交流電力に含まれる直流成分を抑制する単相電力変換装置及び三相電力変換装置に関する。   The present invention relates to a single-phase power converter and a three-phase power converter. Specifically, in a power conversion device that converts DC power into AC power, a single-phase power conversion device that suppresses a DC component contained in AC power by extracting a DC component from the output terminal voltage and correcting the target current. And a three-phase power converter.

電力変換装置には、変換器と負荷とを絶縁するため、あるいは変換器の出力を負荷の系統電圧に合致させるために変圧器を有するものが多い。一方、制御系の温度ドリフトやオフセットのずれなどによって、負荷側の変圧器の入力電圧に直流成分が含まれると、その直流成分により変圧器の鉄心が一方向に磁化してしまい、磁束分布が偏る偏磁が発生する。これにより、変圧器の励磁インダクタンスが極端に減少し、過大な励磁電流が流れる、出力電圧が歪む、変圧器の局部加熱、電磁騒音の増加などが生じて、電力変換装置が供給する交流電力が不安定になるという問題があった。   Many power converters have a transformer to insulate the converter from the load or to match the output of the converter to the system voltage of the load. On the other hand, if a DC component is included in the input voltage of the load-side transformer due to temperature drift or offset in the control system, the iron core of the transformer is magnetized in one direction by the DC component, and the magnetic flux distribution is Unbiased magnetism occurs. As a result, the exciting inductance of the transformer is extremely reduced, an excessive exciting current flows, the output voltage is distorted, the transformer is locally heated, the electromagnetic noise is increased, and the AC power supplied by the power converter is reduced. There was a problem of becoming unstable.

このような問題を解決する方法として、例えば、変圧器の一次側に、可飽和リアクトルおよび鎖交磁束数に比例した励磁電流を流すリアクトルを並列接続し、リアクトルに流れる励磁電流から直流成分を検出し、変換器のインバータ制御回路の制御に還元して変圧器の偏磁を補償する直流成分抑制方法が開示されている。変換器から出力される交流電力に直流成分が含まれていないときは、リアクトルに正負対象の電流が流れ、リアクトルに流れる電流を積分する演算増幅器の出力には直流成分が発生しない。しかし、直流成分が含まれているときは、リアクトルには正負非対称の電流が流れ、演算増幅器の出力には磁気飽和量に比例した直流成分が検出されるので、可飽和リアクトルおよびリアクトルの励磁電流の正負非対称のピーク値を検出し、積分回路にて1周期積分して磁気飽和量に比例した直流成分を検出して、変圧器の偏磁を補償している。(例えば、特許文献1,2参照)   As a method for solving such a problem, for example, a saturable reactor and a reactor that supplies an exciting current proportional to the number of flux linkages are connected in parallel to the primary side of the transformer, and a DC component is detected from the exciting current flowing through the reactor. However, a DC component suppression method is disclosed that compensates for the bias of the transformer by reducing the control to the inverter control circuit of the converter. When the DC power is not included in the AC power output from the converter, a positive / negative target current flows through the reactor, and no DC component is generated at the output of the operational amplifier that integrates the current flowing through the reactor. However, when a DC component is included, a positive and negative asymmetric current flows through the reactor, and a DC component proportional to the magnetic saturation is detected at the output of the operational amplifier. Therefore, the saturable reactor and the exciting current of the reactor Is detected and a DC component proportional to the magnetic saturation is detected by integrating for one period by an integrating circuit to compensate for the bias of the transformer. (For example, see Patent Documents 1 and 2)

他方、電力変換装置の電流制御方法として、目標電流生成手段にて目標電流を生成し、出力電流を目標電流に追従させるように変換器のPWM(パルス幅変調)制御を行なう誤差追従式交流電流制御方式が発明者達により提案されている。(例えば、非特許文献1,2参照)   On the other hand, as a current control method for the power converter, an error tracking AC current that generates a target current by the target current generating means and performs PWM (pulse width modulation) control of the converter so that the output current tracks the target current. Control schemes have been proposed by the inventors. (For example, see Non-Patent Documents 1 and 2)

図11に、誤差追従式交流電流制御方式を採用する単相電力変換装置の回路構成例を示す。1は直流電力を供給する直流電源1(起電圧E)である。主回路100は、主として、直流電源1から供給される直流電力を交流電力に変換する変換器2と、変換器2からインダクタ3(インダクタンス成分L)を通して出力端子u1,u2に電流を流す配線a1,a2と、インダクタ3と出力端子u1,u2の間で、かつ、出力端子u1,u2間(配線a1,a2間)に接続されたフィルタ回路5とから構成される。フィルタ回路5は抵抗RとコンデンサCを直列接続した回路であり、変換器2で生成した交流電力に含まれるスイッチング周波数成分を除去する。変換器2は、パワーデバイス(半導体スイッチ素子)で構成されたフルブリッジ回路を有する。半導体スイッチ素子として、例えば、IGBT(絶縁ゲート型バイポーラトランジスタ)を使用できる。なお、4は出力端子u1,u2間に接続される負荷である。 FIG. 11 shows an example of a circuit configuration of a single-phase power converter that employs an error tracking type AC current control method. Reference numeral 1 denotes a DC power source 1 (electromotive voltage E B ) for supplying DC power. The main circuit 100 mainly includes a converter 2 that converts DC power supplied from the DC power source 1 into AC power, and wiring that allows current to flow from the converter 2 to the output terminals u1 and u2 through the inductor 3 (inductance component L P ). and a filter circuit 5 connected between the inductor 3 and the output terminals u1 and u2 and between the output terminals u1 and u2 (between the wirings a1 and a2). The filter circuit 5 is a circuit in which a resistor R F and a capacitor C F are connected in series, and removes a switching frequency component included in the AC power generated by the converter 2. The converter 2 has a full bridge circuit composed of power devices (semiconductor switching elements). For example, an IGBT (insulated gate bipolar transistor) can be used as the semiconductor switch element. Reference numeral 4 denotes a load connected between the output terminals u1 and u2.

18は出力端子間電圧として、フィルタ回路5と配線a1,a2との接続点間に印加されるフィルタ電圧v(t)を検出する電圧検出手段である。19は変換器2からインダクタ3に流れる出力電流i(t)を検出する第1の電流検出手段である。7は出力端子u1,u2から負荷4に流れる負荷電流i(t)を検出する第2の電流検出手段である。出力電流i(t)は変換器2の近傍の配線a1又はa2から検出され、負荷電流i(t)は出力端子u1又はu2近傍の配線a1又はa2から検出される。インダクタ3は出力電流i(t)を電流制御するために使用される。17は変換器2を制御するPWM(パルス幅変調)制御手段(変換器制御手段)であり、変換器2の複数の半導体スイッチ素子のゲートにパルスでオンオフ信号を供給して制御する。出力電流i(t)の制御は、PWM(パルス幅変調)制御手段17でのゲートコントロールにより行われる。 Reference numeral 18 denotes voltage detection means for detecting the filter voltage v (t) applied between the connection points of the filter circuit 5 and the wirings a1 and a2 as the output terminal voltage. Reference numeral 19 denotes first current detecting means for detecting an output current i P (t) flowing from the converter 2 to the inductor 3. Reference numeral 7 denotes second current detecting means for detecting a load current i S (t) flowing from the output terminals u 1 and u 2 to the load 4. The output current i P (t) is detected from the wiring a1 or a2 near the converter 2, and the load current i S (t) is detected from the wiring a1 or a2 near the output terminal u1 or u2. The inductor 3 is used for current control of the output current i P (t). Reference numeral 17 denotes PWM (pulse width modulation) control means (converter control means) for controlling the converter 2, which is controlled by supplying ON / OFF signals to the gates of a plurality of semiconductor switch elements of the converter 2 in pulses. The output current i P (t) is controlled by gate control in PWM (pulse width modulation) control means 17.

110は目標電流生成手段であり、出力電流i(t)の目標値としての目標電流j(t)を演算して生成する。目標電流生成手段110において、13、9、14は、与えられた入力信号を増幅する増幅度α、β、γの第1、第2、第3の増幅器である。
10は出力端子間電圧すなわちフィルタ電圧v(t)の目標値となるフィルタ電圧指令Vc(t)を生成するフィルタ電圧指令手段、11はフィルタを構成するコンデンサCを流れるフィルタ電流の目標値となるフィルタ電流指令iCF(=C(dv/dt)を生成するフィルタ電流指令手段、12は出力電流i(t)と目標電流j(t)との偏差を補償するための偏差補償指令D(t)を生成するPWM電流偏差補償手段である。
Reference numeral 110 denotes target current generating means, which calculates and generates a target current j (t) as a target value of the output current i P (t). In the target current generating unit 110, reference numerals 13, 9, and 14 denote first, second, and third amplifiers having amplification degrees α, β, and γ that amplify a given input signal.
10 the filter voltage command means for generating a filter voltage command Vc (t) as a target value of the output terminal voltage or filter voltage v (t), 11 is a target value of the filter capacitor current C F constituting the filter A filter current command means for generating a filter current command i CF (= C F (dv c / dt), and 12 is a deviation compensation for compensating for a deviation between the output current i P (t) and the target current j (t). PWM current deviation compensating means for generating a command D (t).

図12に、上記単相電力変換装置における電力変換の制御方法の処理フローを示す。直流電力を負荷に供給する交流電力に変換する工程として、変換器2で直流電力を単相交流電力に変換し(ステップS001)、交流電力を負荷4に供給する(ステップS002)。   FIG. 12 shows a processing flow of a power conversion control method in the single-phase power converter. As a process of converting DC power into AC power supplied to a load, the converter 2 converts DC power into single-phase AC power (step S001) and supplies AC power to the load 4 (step S002).

電圧検出手段18にて負荷4に印加される出力端子間電圧、すなわち、フィルタ回路5と配線a1,a2との接続点間に印加されるフィルタ電圧v(t)を検出し(ステップS003)、第2の電流検出手段7にて、負荷4に流れる負荷電流i(t)を検出し(ステップS004)、第1の電流検出手段19にて、変換器2からインダクタ3(インダクタンス成分L)に流れる出力電流i(t)を検出する(ステップS005)。 The voltage between the output terminals applied to the load 4 by the voltage detection means 18, that is, the filter voltage v (t) applied between the connection points between the filter circuit 5 and the wirings a1 and a2 is detected (step S003). The second current detection means 7 detects the load current i S (t) flowing through the load 4 (step S004), and the first current detection means 19 converts the converter 2 to the inductor 3 (inductance component L P the output current i to detect the P (t) flowing in) (step S005).

次に、目標電流生成手段110の制御処理について説明する。
フィルタ電圧指令手段10により生成されたフィルタ電圧指令V(t)(ステップS006)と、電圧検出手段18によって検出されたフィルタ電圧v(t)とは、第2の加算器15にて減算演算されて誤差が求められ(ステップS007)、第1の増幅器13にてα倍され(ステップS008)、第4の加算器16に入力される。
Next, the control process of the target current generation unit 110 will be described.
The filter voltage command V C (t) (step S006) generated by the filter voltage command means 10 and the filter voltage v (t) detected by the voltage detection means 18 are subtracted by the second adder 15. Then, an error is obtained (step S007), multiplied by α by the first amplifier 13 (step S008), and input to the fourth adder 16.

第2の電流検出手段7にて検出された負荷電流i(t)は、第2の増幅器9にてβ倍され(ステップS009)、第4の加算器16に入力されることにより負荷電流i(t)のフィードフォワードとして働く。 The load current i S (t) detected by the second current detection means 7 is multiplied by β by the second amplifier 9 (step S 009) and input to the fourth adder 16, whereby the load current i S (t) is input. Acts as feed forward for i S (t).

フィルタ電流指令手段11により生成されたフィルタ電流指令iCF(ステップS010)は、第3の増幅器14にてγ倍され(ステップS011)、第3の加算器21に入力される。 The filter current command i CF (step S010) generated by the filter current command means 11 is multiplied by γ by the third amplifier 14 (step S011) and input to the third adder 21.

PWM電流偏差補償手段12により生成された偏差補償指令D(t)(ステップS012)は、目標電流j(t)と変換器2からインダクタ3に流れる実際の出力電流i(t)との偏差を補償するもので、第3の加算器21に入力され、γ倍されたフィルタ電流指令iCFと加算される(ステップS013)。 The deviation compensation command D (t) (step S012) generated by the PWM current deviation compensation means 12 is a deviation between the target current j (t) and the actual output current i P (t) flowing from the converter 2 to the inductor 3. intended to compensate for, is input to the third adder 21, and is added to the γ multiplied by filter current command i CF (step S013).

第4の加算器16にて、α倍されたフィルタ電圧誤差(フィルタ電圧指令Vc(t)−フィルタ電圧v(t))と、β倍された負荷電流i(t)と、第3の加算器21での加算結果が加算され、その出力として目標電流j(t)が得られる(ステップS014)。第1の加算器20にて、第1の電流検出手段19で検出された出力電流i(t)は、目標電流j(t)から減算されて誤差Δ(t)が求められる(ステップS015)。PWM制御手段17は、第1の加算器20にて求めた誤差Δ(t)に基いて、パルスでオンオフ信号を発生し、変換器2の半導体スイッチ素子のゲートに供給して、変換器2を制御する(ステップS016)。 In the fourth adder 16, the filter voltage error multiplied by α (filter voltage command Vc (t) −filter voltage v (t)), the load current i S (t) multiplied by β, and the third The addition results from the adder 21 are added, and the target current j (t) is obtained as the output (step S014). The output current i P (t) detected by the first current detector 19 is subtracted from the target current j (t) by the first adder 20 to obtain an error Δ (t) (step S015). ). The PWM control means 17 generates an on / off signal with a pulse based on the error Δ (t) obtained by the first adder 20, and supplies it to the gate of the semiconductor switch element of the converter 2. Is controlled (step S016).

次に三相の場合について説明する。電圧検出手段18は出力端子間電圧v(t)として、3つの出力端子u,v,w間の線間電圧vab(t),vbc(t),vca(t)を検出し、第1の電流検出手段19が検出する出力電流i(t)は三相に対応して3成分ipa(t),ipb(t),ipc(t)を有し、第2の電流検出手段7が検出する負荷電流i(t)は三相に対応して3成分isa(t),isb(t),isc(t)を有する。これに対応して目標電流j(t)も3成分j(t),j(t),j(t)を有し、目標電流生成手段110もこれら3成分についての処理を行う。 Next, the case of three phases will be described. The voltage detection means 18 detects line voltages v ab (t), v bc (t), v ca (t) between the three output terminals u, v, w as the output terminal voltage v (t), The output current i p (t) detected by the first current detection means 19 has three components i pa (t), i pb (t), i pc (t) corresponding to the three phases, The load current i s (t) detected by the current detection means 7 has three components i sa (t), i sb (t), and i sc (t) corresponding to the three phases. Correspondingly, the target current j (t) also has three components j a (t), j b (t), j c (t), and the target current generating means 110 also performs processing for these three components.

図13に誤差追従式交流電流制御方式を採用する三相電力変換装置の回路構成例を示す。図において、図11と同じ機能を呈する部分については同一の符号を付して説明を省略する。図11に比して異なる点を主に説明する。変換器2は交流電力として三相交流を出力する。主回路100は変換器2と、変換器2からインダクタ3(インダクタンス成分LPa,LPb,LPc)を通して出力端子u,v,wに電流を流す3配線a,b,cと、インダクタ3と出力端子u,v,wの間で、かつ、出力端子u,v,w間(配線a,b,c間)に接続されたフィルタ回路5とから構成される。フィルタ回路5は、3つのコンデンサCをデルタ型に接続した回路の3つの端子と3つの各配線a,b,cとの間にそれぞれ抵抗Rを接続した回路で構成され、単相の場合と同様に、各相間のスイッチング周波数成分を除去するフィルタとして機能する。 FIG. 13 shows an example of a circuit configuration of a three-phase power converter that employs an error tracking AC current control method. In the figure, parts having the same functions as those in FIG. Differences compared to FIG. 11 will be mainly described. The converter 2 outputs a three-phase alternating current as alternating current power. The main circuit 100 includes a converter 2, three wires a, b, and c that pass current from the converter 2 to the output terminals u, v, and w through the inductor 3 (inductance components L Pa , L Pb , and L Pc ), and the inductor 3. And a filter circuit 5 connected between the output terminals u, v, and w (between the wirings a, b, and c). The filter circuit 5 is constituted by a circuit connected to the resistor R F respectively between the three capacitors C F 3 terminals and each of the three wires a circuit connected to the delta, b, is c, single-phase As in the case, it functions as a filter that removes switching frequency components between the phases.

電圧検出手段18は、フィルタ回路5の近くに設けられ、出力端子間電圧v(t)として、フィルタ回路5と配線a,b,cとの接続点間(すなわちab間、bc間、ca間)に印加されるフィルタ電圧v(t)(vab(t),vbc(t),vca(t))を検出し、第1の電流検出手段19は変換器2の近くの3つの配線a,b,cに設けられ、変換器2から3つのインダクタ3(インダクタンス成分Lpa,Lpb,Lpc)に流れる出力電流i(t)(ipa(t),ipb(t),ipc(t))を検出し、第2の電流検出手段7は出力端子u,v,w近くの3つの配線a,b,cに設けられ、各配線の負荷電流i(t)(isa(t),isb(t),isc(t))を検出する。 The voltage detection means 18 is provided in the vicinity of the filter circuit 5, and as a voltage v (t) between the output terminals, between the connection points of the filter circuit 5 and the wirings a, b, and c (that is, between ab, bc, and ca. ) To detect the filter voltage v (t) (v ab (t), v bc (t), v ca (t)) applied to the first current detecting means 19 Output currents i P (t) (i pa (t), i pb (t) provided in the wirings a, b, c and flowing from the converter 2 to the three inductors 3 (inductance components L pa , L pb , L pc ) ), I pc (t)), and the second current detection means 7 is provided in three wirings a, b, c near the output terminals u, v, w, and the load current i S (t ) (I sa (t), i sb (t), i sc (t)) are detected.

信号変換手段120は、電圧検出手段18によって検出されたフィルタ電圧v(t)(vab(t),vbc(t),vca(t))をdq変換する第1のdq変換器24と、第1のdq変換器24と目標電流生成手段110内の第2の加算器15の間に挿入され、高周波成分を除去するためのローパスフィルタ25と、第2の電流検出手段7により検出された負荷電流i(t)(isa(t),isb(t),isc(t))をdq変換する第2のdq変換器26と、目標電流生成手段110内の第4の加算器16の出力値jdq(t)を逆dq変換して目標電流j(t)(j(t),j(t),j(t))を出力する逆dq変換器27とを有する。第1の加算器20は三相に対応して3成分の出力電流i(t)(ipa(t),ipb(t),ipc(t))と目標電流j(t)(j(t),j(t),j(t))の誤差Δ(t)(Δ(t),Δ(t),Δ(t))を減算演算し、PMW制御手段17に出力する。 The signal converter 120 is a first dq converter 24 that performs dq conversion on the filter voltage v (t) (v ab (t), v bc (t), v ca (t)) detected by the voltage detector 18. , And inserted between the first dq converter 24 and the second adder 15 in the target current generating means 110 and detected by the low-pass filter 25 for removing high frequency components and the second current detecting means 7. A second dq converter 26 that performs dq conversion on the generated load current i s (t) (i sa (t), i sb (t), i sc (t)), and a fourth in the target current generating unit 110. An inverse dq converter that outputs a target current j (t) (j a (t), j b (t), j c (t)) by performing inverse dq conversion on the output value j dq (t) of the adder 16 27. The first adder 20 corresponds to the three phases and outputs a three-component output current i p (t) (i pa (t), i pb (t), i pc (t)) and a target current j (t) ( j a (t), j b (t), the error of the j c (t)) Δ ( t) (Δ a (t), Δ b (t), subtracts calculates Δ c (t)), PMW control Output to means 17.

目標電流生成手段110については、フィルタ電圧指令手段10により生成されるフィルタ電圧指令、フィルタ電流指令手段11により生成されるフィルタ電流指令、PWM電流偏差補償手段12により生成される偏差補償指令はdq空間で生成され、出力値jdq(t)を逆dq変換器27に入力するまでの演算をdq空間上で行う。演算のフローについては、図12に比して、第4の加算器16での演算(ステップS014)と第1の加算器での演算(ステップS015)の間に、出力値jdq(t)を逆dq変換器27に入力して、目標電流j(t)(j(t),j(t),j(t))として出力する工程が追加される。なお、dq空間上での処理を行うのは演算の便宜のためである。 For the target current generating means 110, the filter voltage command generated by the filter voltage command means 10, the filter current command generated by the filter current command means 11, and the deviation compensation command generated by the PWM current deviation compensating means 12 are dq space. The calculation until the output value j dq (t) is input to the inverse dq converter 27 is performed on the dq space. As for the flow of calculation, as compared with FIG. 12, the output value j dq (t) is calculated between the calculation by the fourth adder 16 (step S014) and the calculation by the first adder (step S015). Is input to the inverse dq converter 27 and output as a target current j (t) (j a (t), j b (t), j c (t)). Note that the processing in the dq space is performed for convenience of calculation.

なお、第2の電流検出手段7、第1の電流検出手段19及び電圧検出手段18は、それぞれ3相全てにおいて検出をする必要はなく、少なくとも2つの相について検出すれば良く、また、図13中の()は省略可能なことを意味する。   Note that the second current detection means 7, the first current detection means 19 and the voltage detection means 18 do not need to detect in all three phases, but may detect at least two phases, and FIG. The inside () means that it can be omitted.

特開平5−316754号公報(段落0007〜0014、図1〜図6等)JP-A-5-316754 (paragraphs 0007 to 0014, FIGS. 1 to 6 etc.) 特開平6−217559号公報(段落0007〜0013、図1〜図7等)JP-A-6-217559 (paragraphs 0007-0013, FIGS. 1-7, etc.) 大島正明、「単相自励式電圧型交直変換装置における誤差追従式交流電流波形制御方式」、電気学会D論文誌、114巻3号、289−298頁、平成6年Masaaki Oshima, “Error tracking AC current waveform control method in single-phase self-excited voltage-type AC / DC converter”, IEEJ Transactions, Vol. 114, No. 3, pages 289-298, 1994 大島正明、中村文則、玉井伸三、山本融真、吉田幸一、「誤差追従式PWMをマイナーループとする三相UPS用インバータ」、電気学会D論文誌、125巻2月号、163−173頁、平成17年Masaaki Oshima, Bunori Nakamura, Shinzo Tamai, Kazumasa Yamamoto, Koichi Yoshida, “Inverter for three-phase UPS with error-following PWM as a minor loop”, IEEJ Journal, Vol. 125, February 163-173, 2005

しかしながら、従来の可飽和リアクトル等を用いる直流成分抑制方法では、可飽和リアクトルおよびリアクトルの励磁電流の正負非対称のピーク値を検出し、積分回路にて1周期積分して磁気飽和量に比例した直流成分を検出しているため、応答が遅いという問題があった。また、可飽和リアクトルおよびリアクトルの製作のバラツキがあるため、直流成分の補正の精度を高めることが困難であった。さらに、可飽和リアクトルおよびリアクトルが大きくなるため、装置が大型化するという問題があった。   However, in the conventional DC component suppression method using a saturable reactor or the like, the peak value of the positive and negative asymmetrical values of the saturable reactor and the exciting current of the reactor is detected, and the integration circuit is integrated for one period and is proportional to the magnetic saturation amount. Since the component was detected, there was a problem that the response was slow. Further, since there is variation in the production of the saturable reactor and the reactor, it is difficult to improve the accuracy of correcting the DC component. Furthermore, since the saturable reactor and the reactor are large, there is a problem that the apparatus is enlarged.

また、誤差追従式交流電流制御方式を採用した電力変換装置に関しては、負荷に流れる電流を精密制御するので、リアクトルのような大きな部品を使用せず、高速応答、高精度、装置の小型化に適しているが、電力変換装置の運転中に、電流ループの温度ドリフトなどによっても直流成分が発生し、その直流成分が制御手段により増幅され、主回路の出力に直流成分が発生するという問題が見出された。一般に主回路の出力端子に接続される負荷に要求される所望の電圧とするため、主回路と負荷との間に変圧器を設けている場合が多く、このような場合、電力変換装置の出力に直流成分があると変圧器が偏磁するなどの不具合が発生する。このため、直流成分を抑制する必要があった。   In addition, power converters that employ an error-following AC current control system precisely control the current flowing through the load, so large parts such as reactors are not used, resulting in high-speed response, high accuracy, and downsizing of the device. Although it is suitable, there is a problem that during operation of the power converter, a DC component is also generated due to temperature drift of the current loop, and the DC component is amplified by the control means, and a DC component is generated at the output of the main circuit. It was found. Generally, in order to obtain a desired voltage required for a load connected to the output terminal of the main circuit, a transformer is often provided between the main circuit and the load. If there is a direct current component in the transformer, problems such as transformer biasing will occur. For this reason, it was necessary to suppress the direct current component.

ここで、単相電力変換装置について直流成分の影響を説明する。
従来例において、図12のステップS014で得られる目標電流j(t)は(式1)のように表される。
j(t)=α(v(t)−v(t))+βi(t)+γC(dv/dt)+D(t)・・・(式1)
上式で表される目標電流j(t)に直流成分Iが発生すると、次式のように表される。
j(t)=α(v(t)−v(t))+βi(t)+γC(dv/dt)+D(t)+I・・・(式2)
上式を展開すると、(式3)のように表される。
j(t)=α((v(t)+(I/α))−v(t))+βi(t)+γC(d/dt(v(t)+(I/α)))+D(t)・・・(式3)
したがって、目標電流j(t)に発生した直流成分Iの効果は、フィルタ電圧指令v(t)をI/α[V]だけバイアスすることと等価になる。
Here, the influence of a direct current component is demonstrated about a single phase power converter device.
In the conventional example, the target current j (t) obtained in step S014 of FIG. 12 is expressed as (Equation 1).
j (t) = α (v C (t) −v (t)) + βi S (t) + γC F (dv C / dt) + D (t) (Equation 1)
When the direct current component ID is generated in the target current j (t) represented by the above formula, it is represented by the following formula.
j (t) = α (v C (t) −v (t)) + βi S (t) + γC F (dv C / dt) + D (t) + ID (Expression 2)
When the above equation is expanded, it is expressed as (Equation 3).
j (t) = α ((v C (t) + ( ID / α)) − v (t)) + βi S (t) + γC F (d / dt (v C (t) + ( ID / α) ))) + D (t) (Formula 3)
Therefore, the effect of the DC component ID generated on the target current j (t) is equivalent to biasing the filter voltage command v C (t) by ID / α [V].

一方、単相電力変換装置の無負荷時のフィルタ電圧v(t)は、(式4)のように表される。
(t)=v(t)+R(dv/dt)(t)…(式4)
目標フィルタ電圧v(t)がv(t)+I/αとなったことにより、無負荷時のフィルタ電圧v(t)は、(式5)のように表される。
(t)=v(t)+R(dv/dt)(t)+I/α…(式5)
結局、無負荷フィルタ電圧v(t)に発生する直流成分Vは、(式6)のように表される。
=I/α [V] …(式6)
これにより、直流成分抑制の観点からは、フィードバックゲインαが大きい方が有利であることが分かる。
On the other hand, the filter voltage v 0 (t) at the time of no load of the single-phase power converter is expressed as (Equation 4).
v 0 (t) = v C (t) + R F C F (dv C / dt) (t) (Equation 4)
Since the target filter voltage v C (t) becomes v C (t) + I D / α, the filter voltage v 0 (t) at the time of no load is expressed as (Equation 5).
v 0 (t) = v C (t) + R F C F (dv C / dt) (t) + I D / α (Formula 5)
Eventually, the DC component V D generated in the no-load filter voltage v 0 (t) is expressed as (Equation 6).
V D = I D / α [V] (Formula 6)
As a result, it can be seen that a larger feedback gain α is more advantageous from the viewpoint of DC component suppression.

以上のことから、目標電流j(t)に存在する直流成分Iにより、単相電力変換装置の出力端子間電圧の直流成分Vがどの程度変化するか、すなわち、直流成分Vを抑制するにはどの程度目標電流j(t)を変更すれば良いかが解る。 From the above, how much the DC component V D of the voltage between the output terminals of the single-phase power converter changes due to the DC component ID existing in the target current j (t), that is, the DC component V D is suppressed. To this end, it is understood how much the target current j (t) should be changed.

三相の場合の直流成分の影響も、単相の場合と同じように見積もることができる。
目標電流ja(t)、jb(t)、jc(t)の直流成分をそれぞれ、IaD、IbD、IcD(IaD+IbD+IcD=0)とすると、三相電力変換装置の線間電圧(端子間出力電圧、フィルタ電圧)vab(t)、vbc(t)、vca(t)に発生する直流成分VabD、VbcD、VcaDは、各々、(式7a)〜(式7c)で表される。
abD=(IaD−IbD)/α [V] ・・・(式7a)
bcD=(IbD−IcD)/α [V] ・・・(式7b)
caD=(IcD−IaD)/α [V] ・・・(式7c)
The influence of the direct current component in the case of three phases can be estimated in the same manner as in the case of a single phase.
When the direct current components of the target currents ja (t), jb (t), and jc (t) are I aD , I bD , and I cD (I aD + I bD + I cD = 0), respectively, the line of the three-phase power converter DC components V abD , V bcD , and V caD generated in the inter-voltages (inter-terminal output voltage, filter voltage) v ab (t), v bc (t), and v ca (t) are expressed by (Equation 7a) to (Expression 7c)
V abD = (I aD −I bD ) / α [V] (Formula 7a)
V bcD = (I bD −I cD ) / α [V] (Formula 7b)
V caD = (I cD −I aD ) / α [V] (Formula 7c)

図14に、図13の直流成分抑制対策をしていない三相電力変換装置において、目標電流に直流成分を加えた場合の実験結果を示す。なお、負荷条件は無負荷である。下欄に変換器2の半導体スイッチ素子のゲートに供給したパルス信号(オンオフ信号)を、上欄に線間電圧vab(t)、vbc(t)、vca(t)と線間電圧をdq変換したd軸成分Vとq軸成分Vを示す。横軸は時間(ms)である。直流成分を加える前の波形を実線で、直流成分を加えた後の波形を点線で示す。図14より、線間電圧vab(t)は正側に、vca(t)は負側に直流成分がバイアスされていることが解る(バイアス方向が矢印で示される)。vbc(t)はバイアスされていないと見なせる。また、V成分の平均値は印加した直流成分Vに対応するが、V、V成分には50Hz成分が生じている。 FIG. 14 shows the experimental results when the DC component is added to the target current in the three-phase power converter that does not take the DC component suppression measure of FIG. The load condition is no load. The lower column shows the pulse signal (on / off signal) supplied to the gate of the semiconductor switch element of the converter 2, and the upper column shows the line voltages v ab (t), v bc (t), v ca (t) and the line voltage. Shows a d-axis component V d and a q-axis component V q obtained by dq conversion. The horizontal axis is time (ms). The waveform before adding the DC component is indicated by a solid line, and the waveform after adding the DC component is indicated by a dotted line. As can be seen from FIG. 14, the DC voltage is biased to the positive side of the line voltage v ab (t) and the negative side of v ca (t) (the bias direction is indicated by an arrow). It can be considered that v bc (t) is not biased. Further, the average value of V d component corresponding to the DC component V D was applied, V d, the V q component has arisen 50Hz component.

以上より、電力変換装置の各線間電圧の直流成分を抑制するためには、各相の目標電流から直流成分を除去する補正を行えば良いことが解る。   From the above, it can be understood that in order to suppress the DC component of each line voltage of the power conversion device, correction for removing the DC component from the target current of each phase may be performed.

本発明は、リアクトルのような大きな部品を使用することなく、電力変換装置から出力される交流電力に含まれる直流成分を抑制し、高速応答、高精度で装置を小型化できる電力変換装置を提供することを目的とする。   The present invention provides a power converter that can suppress the DC component contained in the AC power output from the power converter without using a large component such as a reactor, and can reduce the size of the device with high speed response and high accuracy. The purpose is to do.

上記課題を解決するために、本発明の第1の態様に係る単相電力変換装置は、例えば図1に示すように、直流電源1から単相交流電力を生成して出力端子u1,u2に接続される負荷4に電力を供給する単相電力変換装置であって、直流電源1からの直流電力を単相交流電力に変換する変換器2と、変換器2の交流側に接続されるインダクタ3と、インダクタ3を流れる出力電流i(t)を検出する第1の電流検出手段19と、出力端子u1,u2間に印加される出力端子間電圧v(t)を検出する電圧検出手段18と、出力電流i(t)の目標値としての目標電流j(t)を生成する目標電流生成手段110と、出力電流i(t)と目標電流j(t)との誤差Δ(t)に基いて、変換器2をパルス幅変調制御する変換器制御手段17とを備え、目標電流生成手段110は、電圧検出手段18で検出された出力端子間電圧v(t)の積分値を増幅して、目標電流j(t)を補正することにより、単相交流電力に含まれる直流成分を抑制する直流成分抑制手段8を有する。 In order to solve the above-described problem, a single-phase power converter according to a first aspect of the present invention generates single-phase AC power from a DC power source 1 and outputs it to output terminals u1 and u2, for example, as shown in FIG. A single-phase power converter for supplying power to a connected load 4, a converter 2 for converting DC power from a DC power source 1 into single-phase AC power, and an inductor connected to the AC side of the converter 2 3, first current detection means 19 for detecting the output current i P (t) flowing through the inductor 3, and voltage detection means for detecting the output terminal voltage v (t) applied between the output terminals u 1 and u 2. 18, a target current generation means 110 for generating a target current j as the target value of the output current i P (t) (t) , the output current i P (t) and the error between the target current j (t) delta ( converter control means for controlling the pulse width of the converter 2 based on t) 7, the target current generation means 110 amplifies the integrated value of the output terminal voltage v (t) detected by the voltage detection means 18 and corrects the target current j (t), thereby obtaining a single phase. DC component suppression means 8 for suppressing a DC component included in AC power is included.

また、本発明の第2の態様に係る発明は、第1の態様に記載の単相電力変換装置において、例えば図1に示すように、出力端子u1,u2間に接続され、単相交流電力に含まれるスイッチング周波数成分を除去するフィルタ回路5を備え、電圧検出手段18は、フィルタ回路5に印加されるフィルタ電圧を出力端子間電圧v(t)として検出し、第1の直流成分抑制手段8は、フィルタ電圧v(t)の積分値を増幅して、目標電流j(t)を補正する。 Moreover, the invention according to the second aspect of the present invention is the single-phase power converter according to the first aspect . For example, as shown in FIG. 1, the single-phase AC power is connected between the output terminals u1 and u2. The voltage detecting means 18 detects the filter voltage applied to the filter circuit 5 as the output terminal voltage v (t), and the first DC component suppressing means. 8 amplifies the integral value of the filter voltage v (t) to correct the target current j (t).

また、本発明の第3の態様に係る単相電力変換装置は、例えば図7に示すように、直流電源1から単相交流電力を生成して出力端子u1,u2に接続される負荷4に電力を供給する単相電力変換装置であって、直流電源1からの直流電力を単相交流電力に変換する変換器2と、変換器2の交流側に接続されるインダクタ3と、インダクタ3を流れる出力電流i(t)を検出する第1の電流検出手段19と、出力端子u1,u2間に印加される出力端子間電圧v(t)を検出する電圧検出手段と、出力電流i(t)の目標値としての目標電流j(t)を生成する目標電流生成手段110と、出力電流i(t)と目標電流j(t)との誤差Δ(t)に基いて、変換器2をパルス幅変調制御する変換器制御手段17とを備え、電圧検出手段18は、出力端子u1,u2間にコンデンサCと抵抗Rとを直列接続した回路から構成され、出力端子u1,u2間に印加される直流電圧成分Vを検出する直流電圧検出手段6を有し、目標電流生成手段110は、直流電圧成分Vに基いて、目標電流j(t)を補正することにより、単相交流電力に含まれる直流成分を抑制する直流成分抑制手段8を有する。 In addition, the single-phase power converter according to the third aspect of the present invention generates a single-phase AC power from the DC power source 1 and applies it to the load 4 connected to the output terminals u1 and u2, as shown in FIG. A single-phase power converter for supplying power, comprising a converter 2 for converting DC power from a DC power source 1 into single-phase AC power, an inductor 3 connected to the AC side of the converter 2, and an inductor 3 First current detection means 19 for detecting the flowing output current i P (t), voltage detection means for detecting the output terminal voltage v (t) applied between the output terminals u1, u2, and the output current i P Based on the target current generating means 110 for generating the target current j (t) as the target value of (t) and the error Δ (t) between the output current i P (t) and the target current j (t) Converter control means 17 for controlling the pulse width modulation of the device 2, 18 is composed of a capacitor C d between the output terminals u1, u2 and resistance R d from the circuit connected in series, the DC voltage detecting means for detecting a DC voltage component V D applied between the output terminals u1, u2 6 And the target current generating means 110 corrects the target current j (t) based on the DC voltage component V D , thereby providing the DC component suppressing means 8 that suppresses the DC component included in the single-phase AC power. Have.

また、本発明の第4の態様に係る発明は、第3の態様に記載の単相電力変換装置において、例えば図8に示すように、直流成分抑制手段8は、直流電圧検出手段6で検出された直流成分を増幅する増幅手段34と、直流成分の電圧値の極性を判定し、判定結果に基いて符号を付して出力する判定手段39とを有する。 Further, the invention according to the fourth aspect of the present invention is the single-phase power conversion device according to the third aspect . For example, as shown in FIG. 8, the DC component suppression means 8 is detected by the DC voltage detection means 6. Amplifying means 34 for amplifying the direct current component, and determination means 39 for judging the polarity of the voltage value of the direct current component, adding a sign based on the judgment result, and outputting the result.

また、本発明の第5の態様に係る三相電力変換装置は、例えば図3に示すように、直流電源1から三相交流電力を生成して出力端子u,v,wに接続される負荷4に電力を供給する三相電力変換装置であって、直流電源1からの直流電力を三相交流電力に変換する変換器2と、変換器2の交流側に接続されるインダクタ3と、インダクタ3を流れる出力電流i(t)(ipa(t),ipb(t),ipc(t))を検出する電流検出手段19と、出力端子u,v,w間に印加される出力端子間電圧v(t)(vab(t),vbc(t),vca(t))を検出する電圧検出手段18と、出力電流i(t)(ipa(t),ipb(t),ipc(t))の目標値としての目標電流j(t)を生成する目標電流生成手段110と、出力電流i(t)と目標電流j(t)(j(t),j(t),j(t))との誤差Δ(t)(Δ(t),Δ(t),Δ(t))に基いて、変換器2をパルス幅変調制御する変換器制御手段17とを備え、目標電流生成手段110は、電圧検出手段18で検出された出力端子間電圧v(t)(vab(t),vbc(t),vca(t))の積分値を増幅して、目標電流j(t)(j(t),j(t),j(t))を補正することにより、三相交流電力に含まれる直流成分を抑制する直流成分抑制手段8を有する。 Moreover, the three-phase power converter according to the fifth aspect of the present invention generates a three-phase AC power from a DC power source 1 and is connected to output terminals u, v, and w as shown in FIG. 4 is a three-phase power converter for supplying power to a converter 2, which converts DC power from a DC power source 1 into three-phase AC power, an inductor 3 connected to the AC side of the converter 2, and an inductor 3 is applied between the current detection means 19 for detecting the output current i P (t) (i pa (t), i pb (t), i pc (t)) flowing through the output terminals u, v, and w. Voltage detection means 18 for detecting the output terminal voltage v (t) (v ab (t), v bc (t), v ca (t)), and the output current i P (t) (i pa (t), Target current generating means for generating a target current j (t) as a target value of i pb (t), i pc (t)) 110 and an error Δ (t) (Δ a (t),) between the output current i P (t) and the target current j (t) (j a (t), j b (t), j c (t)). Based on Δ b (t), Δ c (t)), the converter 2 is provided with converter control means 17 for controlling the pulse width of the converter 2, and the target current generation means 110 is output detected by the voltage detection means 18. The integrated value of the inter-terminal voltage v (t) (v ab (t), v bc (t), v ca (t)) is amplified, and the target current j (t) (j a (t), j b ( By correcting t), j c (t)), there is a DC component suppression means 8 that suppresses a DC component included in the three-phase AC power.

また、本発明の第6の態様に係る発明は、第5の態様に記載の三相電力変換装置において、例えば図3に示すように、出力端子u,v,w間に接続され、三相交流電力に含まれるスイッチング周波数成分を除去するフィルタ回路5を備え、電圧検出手段18は、出力端子間電圧としてフィルタ回路5と各配線a,b,cとの接続点間(すなわちab間、bc間、ca間)に印加されるフィルタ電圧v(t)(vab(t),vbc(t),vca(t))を検出し、直流成分抑制手段8は、フィルタ電圧v(t)(vab(t),vbc(t),vca(t))の積分値を増幅して、目標電流j(t)(j(t),j(t),j(t))を補正する。 Further, the invention according to the sixth aspect of the present invention is the three-phase power converter according to the fifth aspect , wherein the three-phase power converter is connected between the output terminals u, v, and w, for example, as shown in FIG. The filter circuit 5 for removing the switching frequency component contained in the AC power is provided, and the voltage detection means 18 is used as a voltage between the output terminals between the connection points of the filter circuit 5 and the wirings a, b, c (that is, between ab, bc The filter voltage v (t) (v ab (t), v bc (t), v ca (t)) applied between the dc component and ca is detected, and the DC component suppression means 8 detects the filter voltage v (t ) (V ab (t), v bc (t), v ca (t)) is amplified to obtain a target current j (t) (j a (t), j b (t), j c ( t)) is corrected.

また、本発明の第7の態様に係る三相電力変換装置は、例えば図9に示すように、直流電源1から三相交流電力を生成して出力端子u,v,wに接続される負荷4に電力を供給する三相電力変換装置であって、直流電源1からの直流電力を三相交流電力に変換する変換器2と、変換器2の交流側に接続されるインダクタ3と、インダクタ3を流れる出力電流i(t)(ipa(t),ipb(t),ipc(t))を検出する第1の電流検出手段19と、出力端子u,v,w間に印加される出力端子間電圧v(t)(vab(t),vbc(t),vca(t))を検出する電圧検出手段と、出力電流i(t)(ipa(t),ipb(t),ipc(t))の目標値としての目標電流j(t)(j(t),j(t),j(t))を生成する目標電流生成手段110と、出力電流i(t)(ipa(t),ipb(t),ipc(t))と目標電流j(t)(j(t),j(t),j(t))との誤差Δ(t)(Δ(t),Δ(t),Δ(t))に基いて、変換器2をパルス幅変調制御する変換器制御手段17とを備え、電圧検出手段18は、出力端子u,v,w間にコンデンサCと抵抗Rとを直列接続した回路から構成され、出力端子u,v,w間に印加される直流電圧成分V(VabD,VcbD)を検出する直流電圧検出手段6を有し、目標電流生成手段110は、直流電圧成分V(VabD,VcbD)に基いて、目標電流j(t)(j(t),j(t),j(t))を補正することにより、三相交流電力に含まれる直流成分を抑制する直流成分抑制手段8を有する。 Moreover, the three-phase power converter according to the seventh aspect of the present invention is a load that generates three-phase AC power from a DC power source 1 and is connected to output terminals u, v, and w, for example, as shown in FIG. 4 is a three-phase power converter for supplying power to a converter 2, which converts DC power from a DC power source 1 into three-phase AC power, an inductor 3 connected to the AC side of the converter 2, and an inductor 3 between the output terminals u, v, w and the first current detection means 19 for detecting the output current i P (t) (i pa (t), i pb (t), i pc (t)) Voltage detection means for detecting the applied output terminal voltage v (t) (v ab (t), v bc (t), v ca (t)), and output current i P (t) (i pa (t ), i pb (t), the target current j as the target value of i pc (t)) (t ) (j a (t), j b ( ), J and the target current generation means 110 for generating a c (t)), the output current i P (t) (i pa (t), i pb (t), i pc (t)) between the target current j (t ) (J a (t), j b (t), j c (t)) and an error Δ (t) (Δ a (t), Δ b (t), Δ c (t)), Converter control means 17 for controlling the converter 2 for pulse width modulation, and the voltage detection means 18 is composed of a circuit in which a capacitor Cd and a resistor Rd are connected in series between output terminals u, v, and w. A DC voltage detection unit 6 that detects a DC voltage component V D (V abD , V cbD ) applied between the output terminals u, v, and w is provided , and the target current generation unit 110 includes a DC voltage component V D (V ABD, based on V CBD), the target current j (t) (j a ( t), j b (t), to correct the j c (t)) More has a suppressing DC component suppression means 8 the DC component included in the three-phase AC power.

また、本発明の第8の態様に係る発明は、第7の態様に記載の三相電力変換装置において、例えば図10に示すように、直流成分抑制手段8は、直流電圧検出手段6で検出された2つの直流成分VabD,VcbDを増幅する増幅手段34a,34bと、第1の直流成分VabDの2倍と第2の直流成分VcbDとを加算する第1の加算手段37aと、第1の直流成分VabDと第2の直流成分VcbDの2倍とを加算する第2の加算手段37bと、第1の加算手段37aで加算された電圧値の極性を判定し、判定結果に基いて符号を付して出力する第1の判定手段39aと、第2の加算手段37bで加算された電圧値の極性を判定し、判定結果に基いて符号を付して出力する第2の判定手段39bとを有する。 Further, the invention according to the eighth aspect of the present invention is the three-phase power converter according to the seventh aspect , wherein the DC component suppression means 8 is detected by the DC voltage detection means 6 as shown in FIG. are two DC component V ABD, a first addition means 37a for adding the amplification means 34a, 34b for amplifying the V CBD, and 2 times the first DC component V ABD and second DC component V CBD The second adding means 37b for adding the first DC component V abD and twice the second DC component V cbD and the polarity of the voltage value added by the first adding means 37a are determined and determined. The polarity of the voltage value added by the first determination means 39a and the second addition means 37b, which are attached with a sign based on the result and output, is determined, and the sign is output based on the determination result. 2 determination means 39b.

本願の特許請求の範囲において、出力端子間電圧v(t)は出力端子間に印加される電圧をいうが、これと実質的に同等の電圧、例えば出力端子間に接続されるフィルタ回路5等に印加される電圧を含むものとする。この場合、例えば出力端子u1,u2とインダクタ3間を繋ぐ配線の途中に出力端子間電圧v(t)に実質的に影響するものが存在しなければ、出力端子u1,u2とインダクタ3間の配線の任意の位置にフィルタ回路5を設けても良い。また、出力端子間電圧v(t)の検出はその直流成分Vを直接検出するものであっても良い。また、目標電流生成手段110は直流成分抑制手段8を有するが、この場合、直流成分抑制手段8は物理的には目標電流生成手段110の外部に設けられても良い。また、負荷4として変圧器が接続され、配線が直接変圧器の巻線に連なる場合でも、電力変換装置と変圧器の間に出力端子があると見なすものとする。 In the claims of the present application, the output terminal voltage v (t) refers to a voltage applied between the output terminals, but a voltage substantially equivalent to this, for example, the filter circuit 5 connected between the output terminals, etc. The voltage applied to is included. In this case, for example, if there is no substantial influence on the output terminal voltage v (t) in the middle of the wiring connecting the output terminals u 1 and u 2 and the inductor 3, the output terminals u 1 and u 2 and the inductor 3 are connected. You may provide the filter circuit 5 in the arbitrary positions of wiring. Further, the detection of the output terminal voltage v (t) may be configured to detect the DC component V D directly. Further, the target current generation unit 110 includes the DC component suppression unit 8. In this case, the DC component suppression unit 8 may be physically provided outside the target current generation unit 110. Further, even when a transformer is connected as the load 4 and the wiring is directly connected to the winding of the transformer, it is assumed that there is an output terminal between the power converter and the transformer.

また、三相の電力変換装置に関しては、三相を電流すなわち配線a,b,cに対応させて表すものとする。また、出力端子間電圧、フィルタ電圧、出力電流、目標電流、誤差は、3成分を含む電圧、電流を指すものとする。また、フィルタ回路5は各配線間に別個の回路として独立に存在しても良く、一つの回路が各配線に接続され、それぞれの配線間すなわち相間でスイッチング周波数成分を除去するように機能するものでも良い。また、直流成分抑制手段8における積分手段、乗算手段等の各手段はそれぞれ別個の回路として存在しても良く、集積され又は分割されて存在しても良い。   Further, regarding the three-phase power converter, the three phases are represented in correspondence with the currents, that is, the wirings a, b, and c. Further, the output terminal voltage, the filter voltage, the output current, the target current, and the error refer to a voltage and current including three components. Further, the filter circuit 5 may exist independently as a separate circuit between the wirings, and one circuit is connected to each wiring and functions to remove the switching frequency component between the respective wirings, that is, between the phases. But it ’s okay. Each means such as the integrating means and the multiplying means in the DC component suppressing means 8 may exist as a separate circuit, or may be integrated or divided.

本発明によれば、目標電流生成手段を用いて目標電流を生成し、電圧検出手段で交流電力に含まれる直流成分を検出して、目標電流を補正するので、リアクトルのような大きな部品を使用することなく、電力変換装置から出力される交流電力に含まれる直流成分を抑制でき、高速応答、高精度で装置を小型化できる電力変換装置を提供できる。   According to the present invention, the target current is generated by using the target current generating unit, the DC component contained in the AC power is detected by the voltage detecting unit, and the target current is corrected, so that a large component such as a reactor is used. Therefore, it is possible to provide a power conversion device that can suppress a direct current component included in the AC power output from the power conversion device and can downsize the device with high speed response and high accuracy.

以下に図面に基づき本発明の実施の形態について説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1に、本発明の第1の実施の形態における単相電力変換装置の回路構成例を示す。図1において、図11と同じ機能を呈する部分については同一の符号を付する。図11に比して、第4の加算器16の出力を目標電流から第1次目標電流j(t)と言い換え、目標電流生成手段110内に、電圧検出手段18からの検出信号としてフィルタ電圧v(t)を入力し、目標電流j(t)の補正量j(t)を算出する直流成分抑制手段8と、補正量j(t)を第1次目標電流j(t)に加算して目標電流j(t)を第1の加算器20に出力する第5の加算器22が追加されている点が異なる。補正は、フィルタ電圧v(t)、すなわち、出力端子間電圧に含まれる直流成分Vを抑制するために行なわれる。 FIG. 1 shows a circuit configuration example of a single-phase power converter according to the first embodiment of the present invention. 1, parts having the same functions as those in FIG. Compared to FIG. 11, the output of the fourth adder 16 is changed from the target current to the primary target current j 1 (t), and is filtered as a detection signal from the voltage detection means 18 in the target current generation means 110. type voltage v a (t), the target current and the DC component suppression means 8 calculates a correction amount j h (t) of j (t), the correction amount j h (t) of the primary target current j 1 (t ), And a fifth adder 22 for outputting the target current j (t) to the first adder 20 is added. Correction filter voltage v (t), i.e., is performed in order to suppress the DC component V D included in the voltage between the output terminals.

すなわち、本実施の形態における電力変換装置は、直流電源1から単相交流電力を生成して出力端子u1,u2に接続される負荷4に電力を供給する単相電力変換装置であって、直流電源1からの直流電力を単相交流電力に変換する変換器2と、変換器2の交流側に接続されるインダクタ3と、インダクタ3を流れる出力電流i(t)を検出する第1の電流検出手段19と、出力端子u1,u2間に印加される出力端子間電圧v(t)を検出する電圧検出手段18と、出力電流i(t)の目標値としての目標電流j(t)を生成する目標電流生成手段110と、出力電流i(t)と目標電流j(t)との誤差Δ(t)に基いて、変換器2をパルス幅変調制御する変換器制御手段17とを備え、目標電流生成手段110は、電圧検出手段18で検出された出力端子間電圧v(t)の積分値に基いて、目標電流j(t)を補正することにより、単相交流電力に含まれる直流成分を抑制する直流成分抑制手段8を有する。 That is, the power conversion device according to the present embodiment is a single-phase power conversion device that generates single-phase AC power from a DC power source 1 and supplies power to a load 4 connected to output terminals u1 and u2. A converter 2 that converts DC power from the power source 1 into single-phase AC power, an inductor 3 connected to the AC side of the converter 2, and a first current that detects an output current i P (t) flowing through the inductor 3 A current detection means 19, a voltage detection means 18 for detecting a voltage v (t) between the output terminals applied between the output terminals u1 and u2, and a target current j (t as a target value of the output current i P (t) ), And converter control means 17 for performing pulse width modulation control on the converter 2 based on the error Δ (t) between the output current i P (t) and the target current j (t). The target current generating means 110 includes a voltage detection DC component suppression means 8 that suppresses the DC component contained in the single-phase AC power by correcting the target current j (t) based on the integrated value of the output terminal voltage v (t) detected in the stage 18. Have

本実施の形態における直流成分抑制対策の特徴的な点は、出力端子間電圧v(t)を検出して積分し、その積分値をゲイン1/Lで乗算した値を求め、直流成分を補正する補正量j(t)とし、補正量j(t)を目標電流j(t)に加えて(実質的には減じて)、さらに目標電流j(t)と出力電流との誤差Δ(t)を求めて、PWM制御手段17に入力し、誤差Δ(t)に基いて変換器2の制御を行うことである。この積分ではデジタル的にサンプリング値を積算しても良く、アナログ的に電圧値を積分しても良い。このように、第1次目標電流j(t)に補正量j(t)を加算(実質的には減算)することにより、直流成分Vを抑制することができる。 The characteristic feature of the DC component suppression in the present embodiment, integrated by detecting the output terminal voltage v (t), obtains a value obtained by multiplying the integrated value by the gain 1 / L F, the DC component A correction amount j h (t) to be corrected is added, and the correction amount j h (t) is added (substantially reduced) to the target current j (t), and further, an error between the target current j (t) and the output current. Δ (t) is obtained and input to the PWM control means 17, and the converter 2 is controlled based on the error Δ (t). In this integration, sampling values may be integrated digitally, or voltage values may be integrated analogically. In this way, the DC component V D can be suppressed by adding (substantially subtracting) the correction amount j h (t) to the primary target current j 1 (t).

このように構成すると、リアクトルのような大きな部品を使用することなく、電力変換装置から出力される交流電力に含まれる直流成分を抑制でき、高速応答、高精度で装置を小型化できる電力変換装置を提供できる。   If comprised in this way, the power converter which can suppress the direct current component contained in the alternating current power output from a power converter device without using big parts like a reactor, and can miniaturize a device with high-speed response and high accuracy Can provide.

また、フィルタ回路5はコンデンサCと抵抗Rを直列接続した回路から構成され、電圧検出手段18は、出力端子間電圧v(t)としてフィルタ回路5と配線a1,a2との接続点間に印加されるフィルタ電圧を検出する。また、負荷4に流れる負荷電流i(t)を検出する第2の電流検出手段7を備える。目標電流生成手段110は、フィルタ電圧v(t)の目標値としてのフィルタ電圧指令v(t)を生成するフィルタ電圧指令手段10と、コンデンサCに流れるフィルタ電流iCfの目標値としてのフィルタ電流指令iCF(=C(dv/dt))を生成するフィルタ電流指令手段11と、出力電流i(t)と目標電流j(t)との電流偏差を補償するため偏差補償指令D(t)を生成する電流偏差補償手段12とを有し、フィルタ電圧指令v(t)、フィルタ電流指令iCF、偏差補償指令D(t)及び補正量j(t)に基いて目標電流j(t)を算出する。PWM制御手段17(変換器制御手段)は、誤差Δ(t)に基いて複数の半導体スイッチ素子にオンオフ信号を供給する。ここにおいて、第2の電流検出手段7、フィルタ電流指令iCF、偏差補償指令D(t)を省略することも可能である。また、フィルタ回路5は本実施形態の回路から抵抗Rを除いたものを用いても良い。 The filter circuit 5 is composed of a circuit in which a capacitor C F and a resistor R F are connected in series, and the voltage detection means 18 is connected between the connection points of the filter circuit 5 and the wirings a1 and a2 as the output terminal voltage v (t). The filter voltage applied to is detected. In addition, second current detection means 7 for detecting a load current i S (t) flowing through the load 4 is provided. Target current generation means 110 includes a filter voltage command means 10 for generating a filter voltage command v C (t) as the target value of the filter voltage v (t), as the target value of the filter current i Cf flowing through the capacitor C F Deviation compensation to compensate for the current deviation between the filter current command means 11 for generating the filter current command i CF (= C F (dv C / dt)) and the output current i P (t) and the target current j (t). Current deviation compensation means 12 for generating a command D (t), based on a filter voltage command v C (t), a filter current command i CF , a deviation compensation command D (t), and a correction amount j h (t). The target current j (t) is calculated. The PWM control means 17 (converter control means) supplies on / off signals to a plurality of semiconductor switch elements based on the error Δ (t). Here, the second current detection means 7, the filter current command i CF , and the deviation compensation command D (t) can be omitted. Further, the filter circuit 5 may be a circuit obtained by removing the resistor R F from the circuit of this embodiment.

また、目標電流生成手段110は、電圧検出手段18により検出された1次電圧v(t)とフィルタ電圧指令v(t)との減算を行う第2の加算器15と、第2の加算器15から出力された誤差をα倍増幅する第1の増幅器13と、第1の電流検出手段7により検出された負荷電流i(t)をβ倍増幅する第2の増幅器9と、フィルタ電流指令iCFをγ倍増幅する第3の増幅器14と、第3の増幅器14からの出力信号と偏差補償指令D(t)とを加算する第3の加算器21と、第1の増幅器13からの出力信号と第2の増幅器9からの出力信号と第3の加算器21からの出力信号を加算して第1次目標電流j(t)を算出する第4の加算器16と、第1次目標電流j(t)に補正量j(t)を加算して目標電流j(t)を算出して第1の加算器20に供給する第5の加算器22を有する。また、電力変換装置は、目標電流生成手段110の外側に、第1の電流検出手段19により検出された出力電流i(t)と目標電流j(t)との減算を行い、その差を誤差Δ(t)として変換器制御手段17に供給する第1の加算器20を備える。 In addition, the target current generation unit 110 includes a second adder 15 that performs subtraction between the primary voltage v (t) detected by the voltage detection unit 18 and the filter voltage command v C (t), and a second addition. A first amplifier 13 for amplifying the error output from the multiplier 15 by a factor, a second amplifier 9 for amplifying the load current i S (t) detected by the first current detector 7 by a factor of β, and a filter The third amplifier 14 for amplifying the current command i CF by γ times, the third adder 21 for adding the output signal from the third amplifier 14 and the deviation compensation command D (t), and the first amplifier 13 A fourth adder 16 for adding the output signal from the second amplifier 9, the output signal from the second amplifier 9, and the output signal from the third adder 21 to calculate the primary target current j 1 (t); primary target current j 1 (t) of the correction amount j adds h (t) and the target current j (t) Calculated by the first adder 20 having a fifth adder 22 and supplies. In addition, the power converter performs subtraction between the output current i P (t) detected by the first current detection unit 19 and the target current j (t) outside the target current generation unit 110, and the difference is obtained. There is provided a first adder 20 that supplies the converter control means 17 as an error Δ (t).

図2に本実施の形態における電力変換装置の直流成分抑制方法の処理フロー例を示す。まず、図12に追加された工程について説明し、重複する説明を省略する。図中で追加されたフローを二重線で示す。フィルタ電圧v(t)に生ずる直流成分Vを抑制するために、直流成分抑制手段8において、電圧検出手段18にて検出したフィルタ電圧v(t)を積分して積分値を求め(ステップS017)、求めた積分値をゲイン(−1/L)倍して補正量j(t)を求める(ステップS018)。すなわち、電圧検出手段18にて検出したフィルタ電圧v(t)を積分することで交流成分をキャンセルして、直流成分を抽出している。補正量j(t)は、(式8a)のように表され、j(t)をラプラス演算子sを変数とする関数に変換すると(式8b)のように表される。第5の加算器22で第1次目標電流j(t)に補正量j(t)が加算され、目標電流j(t)が出力される(ステップS019)。 FIG. 2 shows an example of a processing flow of the DC component suppression method for the power conversion device in the present embodiment. First, the process added to FIG. 12 is demonstrated and the overlapping description is abbreviate | omitted. The added flow is indicated by a double line in the figure. In order to suppress the DC component V D generated in the filter voltage v (t), the DC component suppression means 8 integrates the filter voltage v (t) detected by the voltage detection means 18 to obtain an integrated value (step S017). ), The obtained integral value is multiplied by a gain (−1 / L F ) to obtain a correction amount j h (t) (step S018). That is, the AC component is canceled by integrating the filter voltage v (t) detected by the voltage detection means 18, and the DC component is extracted. The correction amount j h (t) is expressed as (Equation 8a), and when j h (t) is converted into a function using the Laplace operator s as a variable, it is expressed as (Equation 8b). The fifth adder 22 adds the correction amount j h (t) to the primary target current j 1 (t) and outputs the target current j (t) (step S019).

Figure 0004615336
Figure 0004615336

ここで、Lは、ゲインの逆数であるが、インダクタンスの次元を持つ。負荷4に変圧器を接続する場合、Lの値は変圧器の励磁インダクタンスよりも小さくする必要がある一方、フィルタ回路5との共振を起こさないようにするため、ある所定値以上である必要もある。Lの値は、主回路構成、電力変換装置の動作条件、負荷条件などによって変わってくるため、一概には決められないが、α・Lが直流成分抑制の時定数となるので、ゲイン1/Lの値は、α・Lの値が変圧器の偏磁耐量の面からおよそ0.01秒から1秒程度となるように設定することが望ましい。 Here, L F is the inverse of the gain, with the dimensions of the inductance. When a transformer is connected to the load 4, the value of L F needs to be smaller than the exciting inductance of the transformer, while it needs to be greater than a certain predetermined value so as not to cause resonance with the filter circuit 5. There is also. The value of L F is a main circuit configuration, the operating conditions of the power converter, for varies depending on the load conditions, but categorically can not decide, because alpha · L F is the time constant of the DC component suppression gain the value of 1 / L F, it is desirable that the value of alpha · L F is set to be about 1 second from about 0.01 seconds in terms of the polarization磁耐of the transformer.

すなわち、本実施の形態における電力変換装置の直流成分抑制方法は、直流電力を変換して交流電力を供給する電力変換装置の直流成分抑制方法であって、変換器2で直流電力を交流電力に変換する変換工程(ステップS001)と、交流電力を負荷4に供給する電力供給工程(ステップS002)と、出力端子u1,u2間に印加される出力端子間電圧v(t)を検出する電圧検出工程(ステップS003)と、配線上のインダクタ3に変換器2から流れる出力電流i(t)を検出する電流検出工程(ステップS005)と、出力電流i(t)の目標値としての目標電流j(t)を出力する目標電流生成工程(ステップS014)と、出力電流i(t)と目標電流j(t)の誤差Δ(t)に基いて、変換器2を制御する変換器制御工程(ステップS016)とを備え、目標電流生成工程(ステップS014)は、電圧検出工程で検出された検出信号に基いて、交流電力に含まれる直流成分を抑制するために目標電流j(t)の補正量j(t)を算出する補正量算出工程(ステップS017〜ステップS018)と、補正量j(t)を用いて目標電流j(t)を補正する補正工程(ステップS019)とを有する。 That is, the direct current component suppression method for the power conversion device according to the present embodiment is a direct current component suppression method for a power conversion device that converts direct current power and supplies alternating current power. The converter 2 converts the direct current power into alternating current power. Conversion step (step S001) for conversion, power supply step (step S002) for supplying AC power to the load 4, and voltage detection for detecting the output terminal voltage v (t) applied between the output terminals u1 and u2. A step (step S003), a current detection step (step S005) for detecting the output current i P (t) flowing from the converter 2 to the inductor 3 on the wiring, and a target as a target value of the output current i P (t) A target current generating step (step S014) for outputting the current j (t), and a converter for controlling the converter 2 based on the error Δ (t) between the output current i P (t) and the target current j (t) System And the target current generation step (step S014) includes a target current j (t) for suppressing a DC component contained in the AC power based on the detection signal detected in the voltage detection step. correction amount j h (t) correction amount calculating step of calculating (step S017~ step S018), the correction amount j h correcting step for correcting the target current j (t) using (t) (step S019) Have

このように構成すると、電力変換装置から出力される交流電力に含まれる直流成分を抑制できる。   If comprised in this way, the direct-current component contained in the alternating current power output from a power converter device can be suppressed.

次に本発明の第2の実施の形態として三相の電力変換装置について説明する。三相の場合も直流成分抑制対策の基本的対処法は、単相の場合と同じである。三相電力変換装置の場合には、3つの目標電流j(t)、j(t)、j(t)に対して、各々、補正量jha(t)、jhb(t)、jhc(t)を算出して、補正すれば良く、単相の場合と同様の直流成分抑制対策を適用可能である。 Next, a three-phase power conversion device will be described as a second embodiment of the present invention. In the case of three phases, the basic countermeasures for DC component suppression are the same as in the case of a single phase. In the case of a three-phase power converter, correction amounts j ha (t) and j hb (t) are respectively applied to the three target currents j a (t), j b (t), and j c (t). , J hc (t) may be calculated and corrected, and the same DC component suppression measures as in the case of a single phase can be applied.

三相に対応して、電圧検出手段18は出力端子間電圧v(t)として、3つの出力端子u,v,w間の線間電圧vab(t),vbc(t),vca(t)を検出し、第1の電流検出手段19が検出する出力電流i(t)は3成分ipa(t),ipb(t),ipc(t)を有し、第2の電流検出手段7が検出する負荷電流i(t)は3成分isa(t),isb(t),isc(t)を有する。目標電流生成手段110もこれら3成分についての処理を行う。 Corresponding to the three phases, the voltage detection means 18 uses the line voltages v ab (t), v bc (t), v ca between the three output terminals u, v, w as the output terminal voltage v (t). (T) is detected, and the output current i p (t) detected by the first current detection means 19 has three components i pa (t), i pb (t), i pc (t), The load current i s (t) detected by the current detection means 7 has three components i sa (t), i sb (t), and i sc (t). The target current generating unit 110 also performs processing for these three components.

図3に、第2の実施の形態における三相電力変換装置の回路構成例を示す。図において、図1、図13と同じ機能を呈する部分については同一の符号を付し、異なる点を主に説明する。図3では、図13に比して、目標電流生成手段110において、逆dq変換器27の出力側に直流成分抑制手段8及び第5の加算器22が挿入されている点が異なる。また、第4の加算器16から出力されるdq空間上の目標電流jdq(t)をdq空間上の第1次目標電流jdq1(t)と、逆dq変換器27で逆dq変換して出力される目標電流j(t)を第1次目標電流j(t)(ja1(t)、jb1(t)、jc1(t))と言い換えている。信号変換手段120は図13と機能的に同様である。直流成分抑制手段8は、電圧検出手段18で検出される出力端子間電圧v(t)が入力されると、目標電流の補正量j(t)を算出して第5の加算器22に入力し、第5の加算器22は、逆dq変換器27から出力される第1次目標電流j(t)に補正量j(t)を加算して、目標電流j(t)を出力する。また、第1の実施の形態(図1参照)とは、目標電流j(t)が3成分を有する点、演算の便宜のため、目標電流生成手段110などにおいてdq空間上で演算処理を行う点が異なる。なお、図3中の()は省略可能なことを意味する。 FIG. 3 shows a circuit configuration example of the three-phase power converter in the second embodiment. In the figure, portions having the same functions as those in FIGS. 1 and 13 are denoted by the same reference numerals, and different points will be mainly described. 3 differs from FIG. 13 in that the direct current component suppression unit 8 and the fifth adder 22 are inserted in the output side of the inverse dq converter 27 in the target current generation unit 110. Also, the target current j dq (t) output from the fourth adder 16 in the dq space is subjected to inverse dq conversion by the primary target current j dq1 (t) in the dq space and the inverse dq converter 27. The target current j (t) output in this way is paraphrased as the primary target current j 1 (t) (j a1 (t), j b1 (t), j c1 (t)). The signal conversion means 120 is functionally similar to FIG. When the output component voltage v (t) detected by the voltage detection unit 18 is input, the direct current component suppression unit 8 calculates the target current correction amount j h (t) and supplies it to the fifth adder 22. Then, the fifth adder 22 adds the correction amount j h (t) to the primary target current j 1 (t) output from the inverse dq converter 27 to obtain the target current j (t). Output. The first embodiment (see FIG. 1) is different from the first embodiment in that the target current j (t) has three components, and for the convenience of calculation, the target current generation unit 110 and the like perform calculation processing in the dq space. The point is different. In addition, () in FIG. 3 means that it can be omitted.

すなわち、本実施の形態における電力変換装置は、直流電源1から三相交流電力を生成して出力端子u,v,wに接続される負荷4に電力を供給する三相電力変換装置であって、直流電源1からの直流電力を三相交流電力に変換する変換器2と、三相変換器2の交流側に接続されるインダクタ3と、インダクタ3を流れる出力電流i(t)(ipa(t),ipb(t),ipc(t))を検出する第1の電流検出手段19と、出力端子間電圧v(t)(vab(t),vbc(t),vca(t))を検出する電圧検出手段18と、出力電流i(t)(ipa(t),ipb(t),ipc(t))の目標値としての目標電流j(t)(j(t),j(t),j(t))を生成する目標電流生成手段110と、出力電流i(t)と目標電流j(t)との誤差Δ(t)(Δ(t),Δ(t),Δ(t))に基いて、変換器2をパルス幅変調制御するPWM制御手段17(変換器制御手段)とを備え、目標電流生成手段110は、電圧検出手段18で検出された出力端子間電圧v(t)(vab(t),vbc(t),vca(t))の積分値に基いて、目標電流j(t)(j(t),j(t),j(t))を補正することにより、三相交流電力に含まれる直流成分を抑制する直流成分抑制手段8を有する。 That is, the power conversion device in the present embodiment is a three-phase power conversion device that generates three-phase AC power from a DC power source 1 and supplies power to the load 4 connected to the output terminals u, v, and w. , A converter 2 for converting DC power from the DC power source 1 into three-phase AC power, an inductor 3 connected to the AC side of the three-phase converter 2, and an output current i P (t) (i) flowing through the inductor 3 first current detecting means 19 for detecting pa (t), i pb (t), i pc (t)), and output terminal voltage v (t) (v ab (t), v bc (t), voltage detection means 18 for detecting v ca (t)), and target current j () as a target value of output current i P (t) (i pa (t), i pb (t), i pc (t)) t) (target current generating means 110 for generating (j a (t), j b (t), j c (t)); , Pulse the converter 2 based on the error Δ (t) (Δ a (t), Δ b (t), Δ c (t)) between the output current i P (t) and the target current j (t). PWM control means 17 (converter control means) that performs width modulation control, and the target current generation means 110 outputs the output terminal voltage v (t) (v ab (t), v bc detected by the voltage detection means 18. By correcting the target current j (t) (j a (t), j b (t), j c (t)) based on the integral value of (t), v ca (t)), three-phase DC component suppression means 8 for suppressing a DC component included in AC power is included.

このように構成すると、三相交流においても、リアクトルのような大きな部品を使用することなく、電力変換装置から出力される交流電力に含まれる直流成分を抑制でき、高速応答、高精度で装置を小型化できる電力変換装置を提供できる。   With this configuration, even in three-phase AC, the DC component contained in AC power output from the power conversion device can be suppressed without using large components such as a reactor, and the device can be operated with high speed response and high accuracy. A power converter that can be miniaturized can be provided.

なお、三相を説明するに当り、目標電流j(t)、出力電流i(t)、負荷電流i(t)、出力端子間電圧v(t)、誤差Δ(t)などの表記は、上記のように特に3成分を記載しなくても、3成分含んでいるものとする。 In describing the three phases, notations such as target current j (t), output current i P (t), load current i s (t), output terminal voltage v (t), error Δ (t), etc. As described above, it is assumed that three components are included even if three components are not particularly described.

また、フィルタ回路5は3つのコンデンサCをデルタ型に接続し、その各端子をそれぞれ抵抗Rを介して前記各配線(a,b,c)と接続した回路を有し、電圧検出手段18は、出力端子間電圧v(t)としてフィルタ回路5と配線a,b,cとの接続点間に印加されるフィルタ電圧を検出する。また、負荷4に流れる負荷電流i(t)を検出する第2の電流検出手段7を備える。また、目標電流生成手段110は、フィルタ電圧v(t)の目標値としてのフィルタ電圧指令v(t)を生成するフィルタ電圧指令手段10と、コンデンサCに流れるフィルタ電流の目標値としてのフィルタ電流指令iCFを生成するフィルタ電流指令手段11と、出力電流i(t)と目標電流j(t)との偏差を補償するため偏差補償指令D(t)を生成する電流偏差補償手段12とを有し、フィルタ電圧指令v(t)、フィルタ電流指令iCF、偏差補償指令D(t)及び補正量j(s)に基いて目標電流j(t)を算出する。PMW制御手段17は、誤差Δ(t)に基いて複数の半導体スイッチ素子にオンオフ信号を供給する。 The filter circuit 5 is connected three capacitors C F in delta, have circuitry connected each wire (a, b, c) and through a respective resistor R F each of its terminals, the voltage detecting means 18 detects the filter voltage applied between the connection points of the filter circuit 5 and the wirings a, b, and c as the output terminal voltage v (t). In addition, second current detection means 7 for detecting a load current i S (t) flowing through the load 4 is provided. Also, the target current generation means 110 includes a filter voltage command means 10 for generating a filter voltage command as the target value v of the filter voltage v (t) C (t) , as the target value of the filter current flowing through the capacitor C F Filter current command means 11 for generating a filter current command i CF, and current deviation compensation means for generating a deviation compensation command D (t) to compensate for a deviation between the output current i P (t) and the target current j (t) The target current j (t) is calculated based on the filter voltage command v C (t), the filter current command i CF , the deviation compensation command D (t), and the correction amount j h (s). The PMW control means 17 supplies an on / off signal to the plurality of semiconductor switch elements based on the error Δ (t).

また、目標電流生成手段110は、第1のdq変換器24を介して電圧検出手段18から出力された出力端子間電圧v(t)とフィルタ電圧指令v(t)との減算を行う第2の加算器15と、第2の加算器15から出力された誤差Δ(t)をα倍増幅する第1の増幅器13と、第2のdq変換器26により出力された負荷電流i(t)をβ倍増幅する第2の増幅器9と、フィルタ電流指令iCFをγ倍増幅する第3の増幅器14と、偏差補償指令D(t)と第3の増幅器14からの出力信号を加算する第3の加算器21と、第1の増幅器13からの出力信号と第2の増幅器9からの出力信号と第3の加算器21からの出力信号を加算してdq空間での第1次目標電流jdq1(t)を算出して逆dq変換器27に出力する第4の加算器16と、逆dq変換器27から出力信号である第1次目標電流j(t)に補正量j(t)を加算して目標電流j(t)を算出して第1の加算器20に供給する第5の加算器22を有する。また、電力変換装置は、目標電流生成手段110の外側に、第1の電流検出手段19により検出された出力電流i(t)と目標電流j(t)との減算を行い、その誤差Δ(t)を変換器制御手段17に供給する第1の加算器20を備える。 Further, the target current generation means 110 performs subtraction between the output terminal voltage v (t) output from the voltage detection means 18 via the first dq converter 24 and the filter voltage command v C (t). 2 adder 15, first amplifier 13 that amplifies the error Δ (t) output from second adder 15 by α, and load current i s (output from second dq converter 26). The second amplifier 9 for amplifying t) by β times, the third amplifier 14 for amplifying the filter current command i CF by γ times, the deviation compensation command D (t) and the output signal from the third amplifier 14 are added. The third adder 21, the output signal from the first amplifier 13, the output signal from the second amplifier 9, and the output signal from the third adder 21 are added to obtain a first order in the dq space. fourth adder to calculate target current j dq1 a (t) is output to the inverse dq converter 27 6, the first adder calculates the target current j (t) by adding the correction amount j h (t) in the primary target current j 1 is the output signal from the inverse dq converter 27 (t) And a fifth adder 22 that supplies the signal 20. In addition, the power converter performs subtraction between the output current i P (t) detected by the first current detection unit 19 and the target current j (t) outside the target current generation unit 110, and an error Δ A first adder 20 for supplying (t) to the converter control means 17 is provided.

なお、第1の電流検出手段19は、各相を流れる出力電流i(t)のうち2以上の出力電流を検出すれば良く、第2の電流検出手段7は、各相を流れる負荷電流i(t)のうち2以上の負荷電流を検出すれば良く、電圧検出手段18は線間に印加される出力端子間電圧(線間電圧)v(t)のうち2以上の出力端子間電圧を検出すれば良い。また、第2の電流検出手段7、フィルタ電流指令iCF、偏差補償指令D(t)を省略することも可能である。また、フィルタ回路5については3つのコンデンサCをデルタ型に接続した各端子と3つの各配線a,b,cとの間にそれぞれ抵抗Rを接続した回路で構成した例を説明したが、3つのコンデンサCをスター型に接続した各端子と3つの各配線a,b,cとの間にそれぞれ抵抗Rを接続した回路で構成しても良い。また、フィルタ回路5は本実施形態の回路又は上記回路から抵抗Rを除いたものを用いても良い。また、第1のdq変換器24とローパスフィルタ25の順序を入れ替えることも可能である。また、第5の加算器22と逆dq変換器27の順序を入れ替えると共に、電圧検出手段18により検出された出力端子間電圧v(t)の信号を第1のdq変換器24を通過後に直流成分抑制手段8に供給し、dq空間上で目標電流jdq1(t)を補正してから逆dq変換を行い、第1の加算器20に目標電流j(t)を入力しても良い。また、dq変換に代えてαβ変換を用いても良く、座標変換を行なわなくても良い。 The first current detection means 19 only needs to detect two or more output currents out of the output current i p (t) flowing through each phase, and the second current detection means 7 is the load current flowing through each phase. It is only necessary to detect two or more load currents out of i S (t), and the voltage detecting means 18 is between two or more output terminals among the output terminal voltage (line voltage) v (t) applied between the lines. What is necessary is just to detect a voltage. Further, the second current detecting means 7, the filter current command i CF , and the deviation compensation command D (t) can be omitted. In addition, the filter circuit 5 has been described as being configured by a circuit in which a resistor R F is connected between each terminal in which three capacitors C F are connected in a delta shape and three wirings a, b, c. You may comprise by the circuit which connected resistance R F between each terminal which connected three capacitor | condensers CF in star shape, and each three wiring a, b, c. The filter circuit 5 may be the circuit of the present embodiment or a circuit obtained by removing the resistor R F from the above circuit. In addition, the order of the first dq converter 24 and the low-pass filter 25 can be changed. Further, the order of the fifth adder 22 and the inverse dq converter 27 is changed, and the signal of the output terminal voltage v (t) detected by the voltage detection means 18 is passed through the first dq converter 24 and then DC. The target current j (t) may be input to the first adder 20 by supplying the component suppression means 8 and correcting the target current j dq1 (t) in the dq space and performing inverse dq conversion. Further, αβ conversion may be used instead of dq conversion, and coordinate conversion may not be performed.

目標電流を求める演算については、図2の処理フローがそのまま適用される。   The processing flow of FIG. 2 is applied as it is to the calculation for obtaining the target current.

目標電流の補正量j(t)を算出するには、線間電圧(フィルタ電圧)vab(t)及びvcb(t)の積分値から直流成分VabD、VcbD、VcaDを求め、この積分値を用いて、補正量jah(t)、jbh(t)、jch(t)を算出する。ここで、補正量jah(t)、jbh(t)、jch(t)をラプラス変換してラプラス演算子sを用いて表すと、(式9a)〜(式9c)のようになる。
ah(s)=−(2/3)・(vab(s)/(L・s))+(1/3)・(vcb(s)/(L・s))・・・(式9a)
bh(s)=(1/3)・(vab(s)/(L・s))+(1/3)・(vcb(s)/(L・s))・・・(式9b)
ch(s)=(1/3)・(vab(s)/(L・s))−(2/3)・(vcb(s)/(L・s))・・・(式9c)
In order to calculate the target current correction amount j h (t), DC components V abD , V cbD , and V caD are obtained from the integrated values of the line voltages (filter voltages) v ab (t) and v cb (t). The correction values j ah (t), j bh (t), and j ch (t) are calculated using the integrated values. Here, when the correction amounts j ah (t), j bh (t), and j ch (t) are Laplace transformed and expressed using the Laplace operator s, (Expression 9a) to (Expression 9c) are obtained. .
j ah (s) = − (2/3) · (v ab (s) / (L F · s)) + (1/3) · (v cb (s) / (L F · s)) ·· (Formula 9a)
j bh (s) = (1/3) · (v ab (s) / (L F · s)) + (1/3) · (v cb (s) / (L F · s))... (Formula 9b)
j ch (s) = (1/3) · (v ab (s) / (L F · s)) − (2/3) · (v cb (s) / (L F · s))... (Formula 9c)

図4は、第2の実施の形態における直流成分抑制手段8の処理の例を示す図である。線間電圧vab(t)とvcb(t)から補正量jah(t)とjch(t)を求めるものであり、(式9a)及び(式9c)に添ってフローが形成されている。直流成分抑制手段8は、積分手段31a,31b、乗算手段32a,32b及び補正量算出手段33を有する。積分手段、乗算手段を2つずつ有する。積分手段31a,31bは電圧検出手段18で検出された2つの出力端子間電圧(線間電圧、フィルタ電圧)vab(t)及びvcb(t)についてそれぞれの積分値を求め、乗算手段32a,32bは求めた2つの積分値をそれぞれゲイン(1/L)倍し、補正量算出手段33はゲイン倍して得られたそれぞれの乗算結果を1/3と2/3に分割し、それぞれの分割された乗算結果を加減算して(具体的には(式9a)、(式9c)の演算を行って)、補正量jah(t)、jch(t)を求め、符号を反転して、図3に示す第5の加算器22に入力する。補正量jbh(t)は、(式9b)を用いてjah(t)とjch(t)から求められる。 FIG. 4 is a diagram illustrating an example of processing of the DC component suppressing unit 8 in the second embodiment. Correction amounts j ah (t) and j ch (t) are obtained from the line voltages v ab (t) and v cb (t), and a flow is formed according to (Equation 9a) and (Equation 9c). ing. The DC component suppression unit 8 includes integration units 31 a and 31 b, multiplication units 32 a and 32 b, and a correction amount calculation unit 33. Two integrating means and two multiplying means are provided. The integrating means 31a and 31b obtain respective integrated values for the two output terminal voltages (line voltage, filter voltage) v ab (t) and v cb (t) detected by the voltage detecting means 18, and multiplying means 32a. , 32b multiply the obtained two integral values by a gain (1 / L F ), respectively, and the correction amount calculation means 33 divides each multiplication result obtained by the gain multiplication into 1/3 and 2/3, Each of the divided multiplication results is added or subtracted (specifically, the operations of (Equation 9a) and (Equation 9c) are performed) to obtain correction amounts j ah (t) and j ch (t), and the sign is Inverted and input to the fifth adder 22 shown in FIG. The correction amount j bh (t) is obtained from j ah (t) and j ch (t) using (Equation 9b).

直流成分抑制手段8で求められた補正量jah(t)、jbh(t)、jch(t)は、第5の加算器22で第1次目標電流ja1(t)、jb1(t)、jc1(t)に加算されて、目標電流j(t)、j(t)、j(t)が算出される。さらに第1の加算器20で、目標電流j(t)、j(t)、j(t)と第1の電流検出手段19によって検出された出力電流ipa(t)、ipb(t)、ipc(t)、との誤差Δ(t)、Δ(t)、Δ(t)を算出してPWM制御手段17に入力し、PWM制御手段17で誤差Δ(t)、Δ(t)、Δ(t)に基いて変換器2の半導体スイッチ素子を制御する。 The correction amounts j ah (t), j bh (t), and j ch (t) obtained by the DC component suppression means 8 are the primary target currents j a1 (t) and j b1 by the fifth adder 22. The target currents j a (t), j b (t), and j c (t) are calculated by adding to (t) and j c1 (t). Further, in the first adder 20, the target currents j a (t), j b (t), j c (t) and the output currents i pa (t), i pb detected by the first current detecting means 19 are detected. (T), i pc (t), and errors Δ a (t), Δ b (t), Δ c (t) are calculated and input to the PWM control unit 17, and the PWM control unit 17 determines the error Δ a The semiconductor switch element of the converter 2 is controlled based on (t), Δ b (t), and Δ c (t).

図5に、第2の実施の形態における図3の三相電力変換装置を用いて、目標電流j(t)、j(t)、j(t)に意図的に直流成分(IaD=1A、IbD=−2A、IcD=1A)を加えた場合の実験結果を示す。下欄に変換器2の半導体スイッチ素子のゲートに供給したパルス信号(オンオフ信号)を、上欄に線間電圧vab(t)、vbc(t)、vca(t)と線間電圧をdq変換した直流成分(d軸成分V,q軸成分V)を示し、横軸は時間を示す。負荷条件については図14の実験と同じである。直流成分は、図5の横軸(5ms付近)に直交する点線で示された時点で加えている。直流成分を加える前の波形を実線で、直流成分を加えた後の波形を点線で示す。直流成分(V,V)には50Hz成分が生じているが、この振幅が約120msの間で徐々に小さくなっており、また、線間電圧vab(t)、vbc(t)、vca(t)に含まれる直流成分(実線と破線の差分すなわちバイアス分)が徐々に0に収束していることが分かる。この実施例において、直流成分を加えた直後の線間電圧の直流成分は、ab間が、5.278V、bc間が、−5.347Vであったが、数秒後の定常状態になったときの線間電圧の直流成分を測定したところ、ab間が、1.3mV、bc間が、26.3mVとなった。この測定結果において、例えば、bc間の、26.3mVは、定格200Vの線間電圧に対して、0.005%の値であり、誤差範囲であると考えられ、十分に直流成分の抑制効果が得られていることが分かる。 FIG. 5 intentionally uses the three-phase power converter of FIG. 3 according to the second embodiment to intentionally apply a direct current component (I) to the target currents j a (t), j b (t), and j c (t). aD = 1A, I bD = -2A , shows the experimental results when adding I cD = 1A). The lower column shows the pulse signal (on / off signal) supplied to the gate of the semiconductor switch element of the converter 2, and the upper column shows the line voltages v ab (t), v bc (t), v ca (t) and the line voltage. Represents a DC component (d-axis component V d , q-axis component V q ) obtained by dq conversion, and the horizontal axis represents time. The load conditions are the same as in the experiment of FIG. The DC component is added at the time indicated by the dotted line orthogonal to the horizontal axis (near 5 ms) in FIG. The waveform before adding the DC component is indicated by a solid line, and the waveform after adding the DC component is indicated by a dotted line. The DC component (V d , V q ) has a 50 Hz component, but this amplitude gradually decreases in about 120 ms, and the line voltages v ab (t), v bc (t) , V ca (t), the direct current component (difference between solid line and broken line, ie, bias) gradually converges to zero. In this example, the DC component of the line voltage immediately after adding the DC component was 5.278V between ab and -5.347V between bc, but when it became a steady state several seconds later. When the DC component of the line voltage was measured, it was 1.3 mV between ab and 26.3 mV between bc. In this measurement result, for example, 26.3 mV between bc is 0.005% of the rated line voltage of 200 V, which is considered to be within the error range, and the DC component is sufficiently suppressed. It can be seen that

図6に、図3の回路を定常動作させた後に、目標電流j(t)、j(t)、j(t)に直流成分を意図的に加えて、負荷4として変圧器を接続し、変圧器の電流の過渡応答の実験を行った結果を示す。なお、変圧器として単相変圧器を3台用いた。図6(A)は、直流電流を加えた直後(偏磁が生じた状態)の単相変圧器に流れる電流の波形を、図6(B)は、直流電流を加えて数秒後(偏磁が抑制された状態)に単相変圧器に流れる電流波形を示す。横軸は時間(10ms/div)を示す。図6(A)から、直流電流が加わった直後(図6(A)の上段に示すトリガ用信号がLレベル(0V)からHレベルに変化した時点)では、単相変圧器が偏磁したために単相変圧器の電流のピーク値が過大に上昇して、電流波形の正負の対称性が崩れていることが分かる。しかし、図6(B)から、直流成分を加え続けていても(図6(B)の上段に示すトリガ用信号がHレベルの状態)、直流電流が加わって(トリガ用信号が変化した時点)から数秒後には、単相変圧器の電流は偏磁する前の正常な値に戻り、電流波形の対称性が回復して、直流成分が抑制されていることが分かる。 6, after the circuit of FIG. 3 is steadily operated, a direct current component is intentionally added to the target currents j a (t), j b (t), j c (t), and a transformer is used as the load 4. The result of conducting an experiment of the transient response of the transformer current is shown. Three single-phase transformers were used as transformers. FIG. 6A shows the waveform of the current flowing through the single-phase transformer immediately after the DC current is applied (in a state where the magnetization is generated), and FIG. Shows the current waveform flowing in the single-phase transformer. The horizontal axis represents time (10 ms / div). From FIG. 6 (A), immediately after the DC current is applied (when the trigger signal shown in the upper part of FIG. 6 (A) changes from L level (0 V) to H level), the single-phase transformer is demagnetized. It can be seen that the peak value of the current of the single-phase transformer rises excessively, and the positive / negative symmetry of the current waveform is broken. However, from FIG. 6B, even when the DC component is continuously added (the trigger signal shown in the upper part of FIG. 6B is in the H level), the DC current is applied (when the trigger signal changes). After a few seconds, it can be seen that the current of the single-phase transformer returns to a normal value before demagnetization, the symmetry of the current waveform is restored, and the DC component is suppressed.

図7に第3の実施の形態における単相電力変換装置の回路構成例を示す。図7において、図1と同じ機能を呈する部分については同一の符号を付して説明を省略する。図1に比して異なる点を主に説明する。フィルタ回路5と第2の電流検出手段7との間に直流電圧検出手段6が挿入されており、直流電圧検出手段6にて出力端子間電圧v(t)の直流成分Vを検出する点、また、直流成分抑制手段8はフィルタ回路5で検出されるフィルタ電圧を入力する代わりに、直流電圧検出手段6で検出される出力端子間電圧v(t)の直流成分Vを入力して、目標電流の補正量j(t)を算出する点の2点が異なる。直流電圧検出手段6は、フィルタ回路5と電流検出手段7との間に設けられ、配線a1とa2間に抵抗RとコンデンサCを直列接続し、抵抗RとコンデンサCとの中間点から、配線a1とa2間に含まれる直流成分Vを検出する。これらの直流成分も出力端子間電圧v(t)に含まれるので、本実施の形態では、直流電圧検出手段6が電圧検出手段18として機能する。目標電流生成手段110の処理は、直流成分抑制手段8の処理が異なることを除いて第1の実施の形態と同様である。なお、直流電圧検出手段6は、インダクタ3とフィルタ回路5との間に設けても良く、電流検出手段7と出力端子u1,u2との間に設けても良い。 FIG. 7 shows a circuit configuration example of the single-phase power converter according to the third embodiment. In FIG. 7, parts having the same functions as those in FIG. Differences compared to FIG. 1 will be mainly described. A DC voltage detecting means 6 is inserted between the filter circuit 5 and the second current detecting means 7, and the DC voltage detecting means 6 detects the DC component V D of the output terminal voltage v (t). The DC component suppression means 8 inputs the DC component V D of the output terminal voltage v (t) detected by the DC voltage detection means 6 instead of inputting the filter voltage detected by the filter circuit 5. The difference is that the target current correction amount j h (t) is calculated. DC voltage detection unit 6 is provided between the filter circuit 5 and the current detecting means 7, the resistance R d and a capacitor C d between wire a1 and a2 are connected in series, intermediate between the resistance R d and a capacitor C d From the point, the DC component V D included between the wirings a1 and a2 is detected. Since these direct current components are also included in the output terminal voltage v (t), the direct current voltage detection means 6 functions as the voltage detection means 18 in the present embodiment. The processing of the target current generation unit 110 is the same as that of the first embodiment except that the processing of the direct current component suppression unit 8 is different. Note that the DC voltage detection means 6 may be provided between the inductor 3 and the filter circuit 5, or may be provided between the current detection means 7 and the output terminals u1 and u2.

本実施の形態における電力変換装置では、電圧検出手段は、出力端子u1,u2間にコンデンサCと抵抗Rとを直列接続した回路から構成され、出力端子u1,u2間に印加される直流電圧成分Vを検出する直流電圧検出手段6を有し、目標電流生成手段110は、直流電圧成分Vに基いて、目標電流j(t)を補正することにより、単相交流電力に含まれる直流成分を抑制する直流成分抑制手段8を有する。なお、図7の18はフィルタ電圧v(t)を検出する手段として機能する。 In the power conversion device of this embodiment, the voltage detection means is constituted of a capacitor C d and resistor R d from the circuit connected in series between the output terminals u1, u2, is applied between the output terminals u1, u2 DC DC voltage detection means 6 for detecting the voltage component V D is included, and the target current generation means 110 is included in the single-phase AC power by correcting the target current j (t) based on the DC voltage component V D. DC component suppressing means 8 for suppressing the DC component to be generated. Note that reference numeral 18 in FIG. 7 functions as a means for detecting the filter voltage v (t).

このように構成すると、リアクトルのような大きな部品を使用することなく、電力変換装置から出力される交流電力に含まれる直流成分を抑制でき、高速応答、高精度で装置を小型化できる電力変換装置を提供できる。   If comprised in this way, the power converter which can suppress the direct current component contained in the alternating current power output from a power converter device without using big parts like a reactor, and can miniaturize a device with high-speed response and high accuracy Can provide.

出力端子間電圧v(t)の直流成分Vと目標電流j(t)に発生する直流成分Iの間には(式6)の関係が成立するので、I=V・αに見合った補正量j(t)を目標電流j(t)にフィードバックすることにより直流成分の抑制ができることが解る。補正量j(t)は、直流成分Iと反対極性の一定値を用いても良く、(式6)で計算した値を用いても良い。 Since during the DC component I D generated on the DC component V D and the target current j of the output terminal voltage v (t) (t) holds the relationship (Equation 6), the I D = V D · alpha It can be seen that the DC component can be suppressed by feeding back the corresponding correction amount j h (t) to the target current j (t). As the correction amount j h (t), a constant value having a polarity opposite to that of the DC component ID may be used, or a value calculated by (Equation 6) may be used.

図8は、第3の実施の形態における直流成分抑制手段8の処理の例を示す図である。直流成分抑制手段8をアナログ回路にて構成し、直流成分Iを求めるものである。直流成分抑制手段8は、直流電圧検出手段6で検出された直流成分Vを増幅する増幅手段としての増幅器34、I極性判定回路39を有する。本実施の形態では、直流成分Vは増幅器34に入力され、増幅される。検出された微小な直流成分Vを増幅器34で増幅し、ローパスフィルタ35を通して高周波数成分を除去してフォトカプラ38に入力し、入力部と絶縁されたフォトカプラ38の出力信号によりI極性判定回路39を動作させて負荷電流の直流成分Iの極性を判定する。単相の場合、コンデンサCの電圧が正にバイアスされていれば、直流成分Iも正にバイアスされ、コンデンサCの電圧が負にバイアスされていれば、直流成分Iも負にバイアスされていることになる。演算器40には予め補正量j(t)を設定しておき、負荷電流の直流成分Iの極性が正のときは、負の符号の補正量を出力し、IaDの極性が負のときは、正の符号の補正量を出力し、第5の加算器22に入力する。なお、ローパスフィルタ35は、省略可能である。この実施の形態では、リアクトルのような大きな部品を使用することなく、アナログ回路による簡単な回路構成によって、容易に電力変換装置から出力される交流電力に含まれる直流成分を抑制でき、高速応答、高精度で装置を小型化できる電力変換装置を提供できる。 FIG. 8 is a diagram illustrating an example of processing of the DC component suppressing unit 8 in the third embodiment. The DC component suppression means 8 is constituted by an analog circuit, and the DC component ID is obtained. The DC component suppression unit 8 includes an amplifier 34 as an amplification unit that amplifies the DC component V D detected by the DC voltage detection unit 6 and an ID polarity determination circuit 39. In this embodiment, the DC component V D is inputted to the amplifier 34 and amplified. The detected minute DC component V D is amplified by the amplifier 34, the high frequency component is removed through the low-pass filter 35, input to the photocoupler 38, and the ID polarity is output by the output signal of the photocoupler 38 insulated from the input unit. The determination circuit 39 is operated to determine the polarity of the DC component ID of the load current. If a single-phase, if the voltage of the capacitor C d is positively biased, the DC component I D also positively biased, if the voltage of the capacitor C d is negatively biased, the DC component I D to the negative It will be biased. A correction amount j h (t) is set in advance in the computing unit 40. When the polarity of the DC component ID of the load current is positive, a correction amount with a negative sign is output and the polarity of I aD is negative. In this case, the correction amount of the positive sign is output and input to the fifth adder 22. The low-pass filter 35 can be omitted. In this embodiment, without using a large component such as a reactor, the DC component included in the AC power output from the power converter can be easily suppressed by a simple circuit configuration using an analog circuit, and a high-speed response. It is possible to provide a power conversion device that can reduce the size of the device with high accuracy.

図9に第4の実施の形態における三相電力変換装置の回路構成例を示す。図9において、図3と同じ機能を呈する部分については同一の符号を付して説明を省略する。図3に比して異なる点を主に説明する。フィルタ回路5と第2の電流検出手段7との間に直流電圧検出手段6が挿入されており、直流電圧検出手段6にて出力端子間電圧v(t)の直流成分(詳しくは3つの線間電圧のうち2つの線間電圧の直流成分)VabD,VcbDを検出する点、また、直流成分抑制手段8はフィルタ回路5で検出されるフィルタ電圧を入力する代わりに、直流電圧検出手段6で検出される出力端子間電圧v(t)の直流成分VabD,VcbDを入力して、目標電流の補正量j(t)を算出する点の2点が異なる。直流電圧検出手段6は、フィルタ回路5と電流検出手段7との間に設けられ、配線ab間、cb間にそれぞれ抵抗RとコンデンサCを直列接続し、抵抗RとコンデンサCとの中間点から、配線ab間、配線cb間に含まれる直流成分VabD,VcbDを検出する。本実施の形態では、直流電圧検出手段6が電圧検出手段として機能する。また、図9中の()は省略可能なことを意味する。なお、直流電圧検出手段6は、インダクタ3とフィルタ回路5との間に設けても良く、電流検出手段7と出力端子u,v,wとの間に設けても良い。 FIG. 9 shows a circuit configuration example of the three-phase power converter in the fourth embodiment. In FIG. 9, parts having the same functions as those in FIG. Differences compared to FIG. 3 will be mainly described. A DC voltage detecting means 6 is inserted between the filter circuit 5 and the second current detecting means 7, and the DC voltage detecting means 6 uses the DC component of the output terminal voltage v (t) (specifically, three lines). The DC component of two line voltages among the inter-voltages) V abD , V cbD is detected, and the DC component suppression means 8 is a DC voltage detection means instead of inputting the filter voltage detected by the filter circuit 5. The difference is that the direct current components V abD and V cbD of the output terminal voltage v (t) detected at 6 are input and the target current correction amount j h (t) is calculated. DC voltage detection unit 6 is provided between the filter circuit 5 and the current detecting means 7, between lines ab, the resistors R d and a capacitor C d between cb connected in series, a resistor R d and a capacitor C d DC components V abD and V cbD included between the wiring ab and the wiring cb are detected from the intermediate point. In the present embodiment, the DC voltage detection means 6 functions as a voltage detection means. Further, () in FIG. 9 means that it can be omitted. Note that the DC voltage detection means 6 may be provided between the inductor 3 and the filter circuit 5, or may be provided between the current detection means 7 and the output terminals u, v, and w.

本実施の形態における電力変換装置では、電圧検出手段は、出力端子u,v,w間にコンデンサCと抵抗Rとを直列接続した回路から構成され、出力端子u,v,w間に印加される直流電圧成分V(VabD,VcbD)を検出する直流電圧検出手段6を有し、目標電流生成手段110は、直流電圧成分V(VabD,VcbD)に基いて、目標電流j(t)(j(t),j(t),j(t))を補正することにより、三相交流電力に含まれる直流成分を抑制する直流成分抑制手段8を有する。なお、図9の18はフィルタ電圧v(t)を検出する手段として機能する。また、直流電圧検出手段6及びフィルタ電圧検出手段18は3つあっても良い。 In the power conversion device according to the present embodiment, the voltage detection means is composed of a circuit in which a capacitor Cd and a resistor Rd are connected in series between the output terminals u, v, and w, and between the output terminals u, v, and w. DC voltage detection means 6 for detecting the applied DC voltage component V D (V abD , V cbD ) is provided , and the target current generation means 110 is based on the DC voltage component V D (V abD , V cbD ), By correcting the target current j (t) (j a (t), j b (t), j c (t)), the DC component suppressing means 8 is provided that suppresses the DC component included in the three-phase AC power. . Note that reference numeral 18 in FIG. 9 functions as a means for detecting the filter voltage v (t). Further, there may be three DC voltage detection means 6 and filter voltage detection means 18.

このように構成すると、三相交流においても、リアクトルのような大きな部品を使用することなく、電力変換装置から出力される交流電力に含まれる直流成分を抑制でき、高速応答、高精度で装置を小型化できる電力変換装置を提供できる。   With this configuration, even in three-phase AC, the DC component contained in AC power output from the power conversion device can be suppressed without using large components such as a reactor, and the device can be operated with high speed response and high accuracy. A power converter that can be miniaturized can be provided.

目標電流生成手段110の処理は、直流成分抑制手段8の処理が異なることを除いて第2の実施の形態と同様である。
(式7a)〜(式7c)及び次の(式10)より、(式11a)、(式11b)が導かれる。

aD+IbD+IcD=0 ・・(式10)
aD=α/3・(2VabD+VcbD) ・・(式11a)
cD=−α/3・(VabD+2VcbD) ・・(式11b)

これより、(2VabD+VcbD)及び(VabD+2VcbD)の計算結果がわかれば、各配線a,b,cを流れる負荷電流の直流成分IaD、IbD、IcDを求められること、この直流成分IaD、IbD、IcDを目標電流j(t)にフィードバックすることにより直流成分の抑制ができることが解る。
The processing of the target current generation means 110 is the same as that of the second embodiment except that the processing of the direct current component suppression means 8 is different.
(Expression 11a) and (Expression 11b) are derived from (Expression 7a) to (Expression 7c) and the following (Expression 10).

I aD + I bD + I cD = 0 (Equation 10)
I aD = α / 3 (2V abD + V cbD ) (Equation 11a)
I cD = −α / 3 · (V abD + 2V cbD ) (Equation 11b)

From this, if the calculation results of (2V abD + V cbD ) and (V abD + 2V cbD ) are known, the direct current components I aD , I bD , and I cD of the load current flowing through the wirings a, b, and c can be obtained. It can be seen that the DC component can be suppressed by feeding back the DC components I aD , I bD , and I cD to the target current j (t).

図10は、第4の実施の形態における直流成分抑制手段8の処理の例を示す図である。直流成分抑制手段8をアナログ回路にて構成したフローであり、(式11a)、(式11b)に従って負荷電流i(t)の直流成分IaD、IcDを求めるものである。直流成分抑制手段8は、直流電圧検出手段6で検出された2つの直流成分VabD,VcbDを増幅する増幅手段としての増幅器34a,34b、第1の加算手段としての加算回路37a、第2の加算手段としての加算回路37b、第1の判定手段としてのIaD極性判定回路39a及び第2の判定手段としてのIcD極性判定回路39bを有する。 FIG. 10 is a diagram illustrating an example of processing of the DC component suppressing unit 8 in the fourth embodiment. This is a flow in which the DC component suppression means 8 is configured by an analog circuit, and determines the DC components I aD and I cD of the load current i s (t) according to (Equation 11a) and (Equation 11b). The direct current component suppression means 8 includes amplifiers 34a and 34b as amplification means for amplifying the two direct current components V abD and V cbD detected by the direct current voltage detection means 6, an addition circuit 37a as a first addition means, An adder circuit 37b as an adder, an IaD polarity determiner 39a as a first determiner, and an IcD polarity determiner 39b as a second determiner.

本実施の形態では、第1の直流成分VabD、第2の直流成分VcbDは増幅器34a、34bに入力され、増幅される。配線ab間で検出された微小な直流成分VabDを増幅器34aで増幅し、ローパスフィルタ35aを通して高周波数成分を除去し、2倍器36aで2倍にして2VabDを得る。これに配線cb間で検出され、増幅器34bで増幅されてローパスフィルタ35bを通して高周波数成分を除去し、得られた直流成分VcbDを加算回路37aで加算して演算結果(2VabD+VcbD)を得る。その演算結果をフォトカプラ38aに入力し、入力部と絶縁されたフォトカプラ38aの出力信号によりIaD極性判定回路39aを動作させて負荷電流の直流成分IaDの極性を判定する。演算器40には予め補正量j(t)を設定しておき、負荷電流の直流成分IaDの極性が正のときは、負の補正量を出力し、IaDの極性が負のときは、正の補正量を出力し、第5の加算器22に入力する。他方、配線ab間で検出され、増幅器34aで増幅されてローパスフィルタ35aを通して得られた直流成分VabDと、配線cb間で検出され増幅器34bで増幅されてローパスフィルタ35bを通して2倍器36bで2倍して得られた直流成分2VcbDを加算回路37bで加算して演算結果(VabD+2VcbD)を得る。その演算結果についてもフォトカプラ38bを通してIcD極性判定回路39bにて負荷電流の直流成分IcDの極性を判定し、演算器40にて正又は負の補正量を第5の加算器22に入力する。 In the present embodiment, the first DC component V abD and the second DC component V cbD are input to the amplifiers 34a and 34b and amplified. A minute DC component V abD detected between the wirings ab is amplified by an amplifier 34a, a high frequency component is removed through a low-pass filter 35a, and doubled by a doubler 36a to obtain 2V abD . This is detected between the wirings cb, amplified by the amplifier 34b, removed from the high frequency component through the low pass filter 35b, and the obtained DC component V cbD is added by the adder circuit 37a to obtain the calculation result (2V abD + V cbD ). obtain. The calculation result is input to the photocoupler 38a, and the IaD polarity determination circuit 39a is operated by the output signal of the photocoupler 38a insulated from the input unit to determine the polarity of the direct current component IaD of the load current. A correction amount j h (t) is set in advance in the arithmetic unit 40, and when the polarity of the direct current component I aD of the load current is positive, a negative correction amount is output, and when the polarity of I aD is negative Outputs a positive correction amount and inputs it to the fifth adder 22. On the other hand, the DC component V abD detected between the wirings ab and amplified by the amplifier 34a and obtained through the low-pass filter 35a, and detected between the wirings cb and amplified by the amplifier 34b and passed through the low-pass filter 35b by the doubler 36b. The DC component 2V cbD obtained by multiplying is added by the adder circuit 37b to obtain a calculation result (V abD + 2V cbD ). As for the calculation result, the polarity of the DC component I cD of the load current is determined by the I cD polarity determination circuit 39b through the photocoupler 38b, and a positive or negative correction amount is input to the fifth adder 22 by the calculator 40. To do.

また、本実施の形態における電力変換装置において、直流成分抑制手段8は、直流電圧検出手段6で検出された2つの直流成分VabD,VcbDを増幅する増幅手段34a,34bと、第1の直流成分VabDの2倍と第2の直流成分VcbDとを加算する第1の加算手段37aと、第1の直流成分VabDと第2の直流成分VcbDの2倍とを加算する第2の加算手段37bと、第1の加算手段37aで加算された電圧値の極性を判定し、判定結果に基いて符号を付して出力する第1の判定手段39aと、第2の加算手段37bで加算された電圧値の極性を判定し、判定結果に基いて符号を付して出力する第2の判定手段39bとを有する。 In the power conversion device according to the present embodiment, the DC component suppression unit 8 includes amplification units 34 a and 34 b that amplify the two DC components V abD and V cbD detected by the DC voltage detection unit 6, First addition means 37a for adding twice the direct current component V abD and the second direct current component V cbD , and adding the first direct current component V abD and the second direct current component V cbD twice. The first adding means 37b, the first determining means 39a for determining the polarity of the voltage value added by the first adding means 37a, adding a sign based on the determination result, and the second adding means. A second determination unit 39b that determines the polarity of the voltage value added in 37b, adds a sign based on the determination result, and outputs the result.

このように、本実施の形態でも、アナログ回路による簡単な回路構成によって、第3の実施の形態と同様に、出力端子間電圧から直流成分を検出して目標電流を補正することにより直流成分を抑制することができる。   As described above, in this embodiment as well, in the same manner as in the third embodiment, the DC component is detected by correcting the target current by detecting the DC component from the voltage between the output terminals by a simple circuit configuration using an analog circuit. Can be suppressed.

以上、本発明の実施の形態について説明したが、本発明は上記の実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で実施の形態に種々変更を加えられることは明白である。   Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications can be made to the embodiments without departing from the spirit of the present invention. It is.

例えば、上記実施の形態では、電力変換装置の出力端子に負荷が直接接続される場合について説明したが、電力変換装置の出力端子に変圧器が存在する場合についても適用できる。出力端子間電圧として変圧器の1次側に印加される1次電圧v(t)を電圧検出手段により検出し、目標電流j(t)を直流成分抑制手段8で補正することにより、変換器から出力され、交流電力に含まれ、変圧器に流れる直流成分を抑制でき、変圧器の偏磁を防止できる。   For example, although the case where a load is directly connected to the output terminal of the power conversion device has been described in the above embodiment, the present invention can also be applied to the case where a transformer is present at the output terminal of the power conversion device. The primary voltage v (t) applied to the primary side of the transformer as the voltage between the output terminals is detected by the voltage detection means, and the target current j (t) is corrected by the direct current component suppression means 8, whereby the converter It is possible to suppress the direct current component that is output from the power source and included in the alternating current power and flows to the transformer, and to prevent the transformer from being magnetized.

また、上記実施の形態では、目標電流を発生させる目標電流生成手段は実施の形態で説明した構成に限定されず、多様な構成が可能である。例えば、上記実施の形態では第2の電流検出手段で検出された負荷電流を目標電流に反映させる例を示したが、第2の電流検出手段を省略することも可能である。また、フィルタ電流指令iCF、偏差補償指令D(t)を省略することも可能である。また、フィルタ回路は抵抗Rを除いてコンデンサCのみで構成しても良い。また、dq変換に代えてαβ変換を用いても良く、座標変換を行なわなくても良い。また、dq変換器24とローパスフィルタ25の順序を入れ替えても良く、直流成分抑制手段8における目標電流の補正をdq空間で行なうことも可能である。また、積分手段、乗算手段、その他の手段を個別の回路で構成しても良く、同一回路に集積し又は分割して構成しても良い。また、積分時間やゲイン値は種々変更可能である。 In the above embodiment, the target current generating means for generating the target current is not limited to the configuration described in the embodiment, and various configurations are possible. For example, in the above embodiment, an example in which the load current detected by the second current detection unit is reflected in the target current has been described, but the second current detection unit can be omitted. Also, the filter current command i CF and the deviation compensation command D (t) can be omitted. Further, the filter circuit may be composed of only the capacitor C F except for the resistor R F. Further, αβ conversion may be used instead of dq conversion, and coordinate conversion may not be performed. Further, the order of the dq converter 24 and the low-pass filter 25 may be changed, and the target current correction in the DC component suppression means 8 can be performed in the dq space. Further, the integrating means, the multiplying means, and other means may be constituted by individual circuits, or may be constituted by being integrated or divided in the same circuit. Further, the integration time and the gain value can be variously changed.

本発明は、直流電源から交流電力を生成する電力変換装置において、変換器から出力される交流電力に含まれる直流成分を抑制するのに利用される。   The present invention is used in a power conversion device that generates AC power from a DC power supply to suppress a DC component contained in AC power output from a converter.

第1の実施の形態における単相電力変換装置の回路構成例を示す図である。It is a figure which shows the circuit structural example of the single phase power converter device in 1st Embodiment. 第1の実施の形態における電力変換装置の直流成分抑制方法の処理フロー例を示す図である。It is a figure which shows the example of a processing flow of the direct current | flow component suppression method of the power converter device in 1st Embodiment. 第2の実施の形態における三相電力変換装置の回路構成例を示す図である。It is a figure which shows the circuit structural example of the three-phase power converter device in 2nd Embodiment. 第2の実施の形態における直流成分抑制手段の処理の例を示す図であるIt is a figure which shows the example of a process of the direct current | flow component suppression means in 2nd Embodiment. 第2の実施の形態における目標電流に直流成分を加えた場合の実験結果を示す図である。It is a figure which shows the experimental result at the time of adding a direct-current component to the target electric current in 2nd Embodiment. 第2の実施の形態における過渡応答の実験結果の例を示す図である。It is a figure which shows the example of the experiment result of the transient response in 2nd Embodiment. 第3の実施の形態における単相電力変換装置の回路構成例を示す図である。It is a figure which shows the circuit structural example of the single phase power converter device in 3rd Embodiment. 第3の実施の形態における直流成分抑制手段の処理の例を示す図である。It is a figure which shows the example of a process of the direct current | flow component suppression means in 3rd Embodiment. 第4の実施の形態における三相電力変換装置の回路構成例を示す図である。It is a figure which shows the circuit structural example of the three-phase power converter device in 4th Embodiment. 第4の実施の形態における直流成分抑制手段の処理の例を示す図である。It is a figure which shows the example of a process of the direct current | flow component suppression means in 4th Embodiment. 直流成分抑制対策をしていない単相電力変換装置の回路構成例を示す図である。It is a figure which shows the circuit structural example of the single phase power converter device which is not taking DC component suppression measures. 直流成分抑制対策をしていない単相電力変換装置における電力変換の制御方法の処理フローを示す図である。It is a figure which shows the processing flow of the control method of the power conversion in the single phase power converter device which is not taking DC component suppression measures. 直流成分抑制対策をしていない三相電力変換装置の回路構成例を示す図である。It is a figure which shows the circuit structural example of the three-phase power converter device which is not taking DC component suppression measures. 直流成分抑制対策をしていない三相電力変換装置の目標電流に直流成分を加えた場合の実験結果を示す図である。It is a figure which shows the experimental result at the time of adding a DC component to the target electric current of the three-phase power converter device which is not taking DC component suppression measures.

符号の説明Explanation of symbols

1 直流電源
2 変換器
3 インダクタ
4 負荷
5 フィルタ回路
6 直流電圧検出手段
7 第2の電流検出手段
8 直流成分抑制手段
9 第2の増幅器
10 フィルタ電圧指令手段
11 フィルタ電流指令手段
12 PWM電流偏差補償手段
13 第1の増幅器
14 第3の増幅器
15 第2の加算器
16 第4の加算器
17 PWM制御手段
18 電圧検出手段
19 第1の電流検出手段
20 第1の加算器
21 第3の加算器
22 第5の加算器
23 第6の加算器
24 第1のdq変換器
25 ローパスフィルタ
26 第2のdq変換器
27 逆dq変換器
31a,31b 積分手段
32a,32b 乗算手段
33 補正量算出手段
34,34a,34b 増幅器
35,35a,35b ローパスフィルタ
36a,36b 2倍器
37a,37b 加算回路
38,38a,38b フォトカプラ
39 I極性判定回路
39a IaD極性判定回路
39b IcD極性判定回路
40 演算器
100 主回路
110 目標電流生成手段
120 信号変換手段
a,a1,a2,b,c 配線
,C コンデンサ
D(t) 偏差補償指令
直流電源の起電圧
目標電流の直流成分
(t) 出力電流
(t) 負荷電流
CF フィルタ電流指令
j(t) 目標電流
(t) 第1次目標電流
(t) 目標電流の補正量
インダクタンス
ゲインの逆数
,R 抵抗
s ラプラス演算子
t 時間
u,u1,u2,v,w 出力端子
v(t) 出力端子間電圧(フィルタ電圧)
(t) フィルタ電圧指令
出力端子間電圧の直流成分
α,β,γ 増幅度
Δ(t) 出力電流と目標電流の誤差
DESCRIPTION OF SYMBOLS 1 DC power supply 2 Converter 3 Inductor 4 Load 5 Filter circuit 6 DC voltage detection means 7 Second current detection means 8 DC component suppression means 9 Second amplifier 10 Filter voltage command means 11 Filter current command means 12 PWM current deviation compensation Means 13 First amplifier 14 Third amplifier 15 Second adder 16 Fourth adder 17 PWM control means 18 Voltage detection means 19 First current detection means 20 First adder 21 Third adder 22 5th adder 23 6th adder 24 1st dq converter 25 Low pass filter 26 2nd dq converter 27 Inverse dq converter 31a, 31b Integration means 32a, 32b Multiplication means 33 Correction amount calculation means 34 , 34a, 34b Amplifiers 35, 35a, 35b Low pass filters 36a, 36b Doublers 37a, 37b Adder circuits 38, 38a, 38b Photocoupler 39 I D polarity determination circuit 39a I aD polarity determination circuit 39 b I cD polarity determination circuit 40 calculator 100 main circuit 110 target current generation means 120 signal converting means a, a1, a2, b, c wiring C F, C d capacitor D (t) the DC component of the electromotive voltage I D target current deviation compensation command E B DC power source i p (t) output current i s (t) load current i CF filter current command j (t) target current j 1 (t ) Primary target current j h (t) Target current correction amount L P inductance L F gain reciprocal R F , R d resistance s Laplace operator t Time u, u 1, u 2, v, w Output terminal v (t ) Output terminal voltage (filter voltage)
v C (t) Filter voltage command V D DC component of output voltage α, β, γ Amplification factor Δ (t) Error between output current and target current

Claims (12)

直流電源から単相交流電力を生成して出力端子に接続される負荷に電力を供給する誤差追従式交流電流制御方式の単相電力変換装置であって;
前記直流電源からの直流電力を単相交流電力に変換する変換器と、
前記変換器の交流側に接続されるインダクタと、
前記インダクタを流れる出力電流を検出する電流検出手段と、
前記出力端子間に印加される出力端子間電圧を検出する電圧検出手段と、
前記出力電流の目標値としての目標電流を生成する目標電流生成手段と、
前記出力電流と前記目標電流との誤差に基いて、前記変換器をパルス幅変調制御する変換器制御手段とを備え;
前記目標電流生成手段は、前記電圧検出手段で検出された出力端子間電圧の積分値を増幅して、前記目標電流を補正することにより、前記単相交流電力に含まれる直流成分を抑制する直流成分抑制手段を有する;
単相電力変換装置。
An error-following AC current control type single-phase power converter that generates single-phase AC power from a DC power source and supplies power to a load connected to an output terminal;
A converter for converting DC power from the DC power source into single-phase AC power;
An inductor connected to the AC side of the converter;
Current detection means for detecting an output current flowing through the inductor;
Voltage detecting means for detecting a voltage between the output terminals applied between the output terminals;
Target current generating means for generating a target current as a target value of the output current;
Converter control means for performing pulse width modulation control on the converter based on an error between the output current and the target current;
The target current generating means amplifies the integrated value of the voltage between the output terminals detected by the voltage detecting means and corrects the target current, thereby suppressing a DC component contained in the single-phase AC power. Having component suppression means;
Single phase power converter.
前記出力端子間に接続され、前記単相交流電力に含まれるスイッチング周波数成分を除去するフィルタ回路を備え;
前記電圧検出手段は、前記フィルタ回路に印加されるフィルタ電圧を前記出力端子間電圧として検出し、
前記直流成分抑制手段は、前記フィルタ電圧の積分値を増幅して、前記目標電流を補正する;
請求項1に記載の単相電力変換装置。
A filter circuit connected between the output terminals for removing a switching frequency component included in the single-phase AC power;
The voltage detection means detects a filter voltage applied to the filter circuit as a voltage between the output terminals,
The direct current component suppression means amplifies an integral value of the filter voltage to correct the target current;
The single phase power converter device according to claim 1.
前記電流検出手段を第1の電流検出手段とし;  The current detection means is a first current detection means;
前記出力端子から負荷に流れる負荷電流を検出する第2の電流検出手段を備え;  Second current detection means for detecting a load current flowing from the output terminal to the load;
前記目標電流生成手段は、前記出力端子間電圧の目標値となるフィルタ電圧指令を生成するフィルタ電圧指令手段、前記フィルタ回路を構成するコンデンサを流れるフィルタ電流の目標値となるフィルタ電流指令を生成するフィルタ電流指令手段、前記出力電流と前記目標電流との偏差を補償するための偏差補償指令を生成するPWM電流偏差補償手段とを有し、前記フィルタ電圧指令と前記電圧検出手段で検出された出力端子間電圧との差、前記フィルタ電流指令及び前記偏差補償指令にそれぞれ係数倍して加算した第1次目標電流に前記直流成分抑制手段で求めた補正量を加算して目標電流を生成し;  The target current generating means generates a filter voltage command means for generating a filter voltage command to be a target value of the output terminal voltage, and a filter current command to be a target value of a filter current flowing through a capacitor constituting the filter circuit. Filter current command means, PWM current deviation compensation means for generating a deviation compensation command for compensating for deviation between the output current and the target current, and output detected by the filter voltage command and the voltage detection means A target current is generated by adding the correction amount obtained by the DC component suppressing means to the primary target current obtained by multiplying the difference between the voltages between the terminals, the filter current command and the deviation compensation command by a coefficient, respectively;
前記第1の電流検出手段で検出された出力電流と前記目標電流生成手段で生成された目標電流との減算を行ない、前記変換器制御手段に供給する;  Subtracting the output current detected by the first current detection means from the target current generated by the target current generation means, and supplying the subtraction to the converter control means;
請求項1又は請求項2に記載の単相電力変換装置。  The single phase power converter device according to claim 1 or 2.
直流電源から単相交流電力を生成して出力端子に接続される負荷に電力を供給する誤差追従式交流電流制御方式の単相電力変換装置であって;
前記直流電源からの直流電力を単相交流電力に変換する変換器と、
前記単相変換器の交流側に接続されるインダクタと、
前記インダクタを流れる出力電流を検出する電流検出手段と、
前記出力端子間に印加される出力端子間電圧を検出する電圧検出手段と、
前記出力電流の目標値としての目標電流を生成する目標電流生成手段と、
前記出力電流と前記目標電流との誤差に基いて、前記変換器をパルス幅変調制御する変換器制御手段とを備え;
前記電圧検出手段は、出力端子間にコンデンサと抵抗とを直列接続した回路から構成され、前記出力端子間に印加される直流電圧成分を検出する直流電圧検出手段を有し、
前記目標電流生成手段は、前記直流電圧成分に基いて、前記目標電流を補正することにより、前記単相交流電力に含まれる直流成分を抑制する直流成分抑制手段を有する;
単相電力変換装置。
An error-following AC current control type single-phase power converter that generates single-phase AC power from a DC power source and supplies power to a load connected to an output terminal;
A converter for converting DC power from the DC power source into single-phase AC power;
An inductor connected to the AC side of the single-phase converter;
Current detection means for detecting an output current flowing through the inductor;
Voltage detecting means for detecting a voltage between the output terminals applied between the output terminals;
Target current generating means for generating a target current as a target value of the output current;
Converter control means for performing pulse width modulation control on the converter based on an error between the output current and the target current;
The voltage detection means is composed of a circuit in which a capacitor and a resistor are connected in series between output terminals, and has a DC voltage detection means for detecting a DC voltage component applied between the output terminals,
The target current generating unit includes a DC component suppressing unit that corrects the target current based on the DC voltage component to suppress a DC component included in the single-phase AC power;
Single phase power converter.
前記電流検出手段を第1の電流検出手段とし;  The current detection means is a first current detection means;
前記出力端子から負荷に流れる負荷電流を検出する第2の電流検出手段と、前記出力端子間に接続され、前記単相交流電力に含まれるスイッチング周波数成分を除去するフィルタ回路とを備え;   A second current detecting means for detecting a load current flowing from the output terminal to the load; and a filter circuit connected between the output terminals and for removing a switching frequency component included in the single-phase AC power;
前記目標電流生成手段は、前記出力端子間電圧の目標値となるフィルタ電圧指令を生成するフィルタ電圧指令手段、前記フィルタ回路を構成するコンデンサを流れるフィルタ電流の目標値となるフィルタ電流指令を生成するフィルタ電流指令手段、前記出力電流と前記目標電流との偏差を補償するための偏差補償指令を生成するPWM電流偏差補償手段とを有し、前記フィルタ電圧指令と前記電圧検出手段で検出された出力端子間電圧との差、前記フィルタ電流指令及び前記偏差補償指令にそれぞれ係数倍して加算した第1次目標電流に前記直流成分抑制手段で求めた補正量を加算して目標電流を生成し;  The target current generating means generates a filter voltage command means for generating a filter voltage command to be a target value of the output terminal voltage, and a filter current command to be a target value of a filter current flowing through a capacitor constituting the filter circuit. Filter current command means, PWM current deviation compensation means for generating a deviation compensation command for compensating for deviation between the output current and the target current, and output detected by the filter voltage command and the voltage detection means A target current is generated by adding the correction amount obtained by the DC component suppressing means to the primary target current obtained by multiplying the difference between the voltages between the terminals, the filter current command and the deviation compensation command by a coefficient, respectively;
前記第1の電流検出手段で検出された出力電流と前記目標電流生成手段で生成された目標電流との減算を行ない、前記変換器制御手段に供給する;  Subtracting the output current detected by the first current detection means from the target current generated by the target current generation means, and supplying the subtraction to the converter control means;
請求項4に記載の単相電力変換装置。  The single phase power converter device according to claim 4.
前記直流成分抑制手段は、前記直流電圧検出手段で検出された直流成分を増幅する増幅手段と、前記直流成分の電圧値の極性を判定し、判定結果に基いて符号を付して出力する判定手段とを有する;
請求項4又は請求項5に記載の単相電力変換装置。
The direct current component suppression means is configured to amplify the direct current component detected by the direct current voltage detection means, to determine the polarity of the voltage value of the direct current component, and to determine and output a sign based on the determination result Means;
The single phase power converter device according to claim 4 or 5 .
直流電源から三相交流電力を生成して出力端子に接続される負荷に電力を供給する誤差追従式交流電流制御方式の三相電力変換装置であって;
前記直流電源からの直流電力を三相交流電力に変換する変換器と、
前記変換器の交流側に接続されるインダクタと、
前記インダクタを流れる出力電流を検出する電流検出手段と、
前記出力端子間に印加される出力端子間電圧を検出する電圧検出手段と、
前記出力電流の目標値としての目標電流を生成する目標電流生成手段と、
前記出力電流と前記目標電流との誤差に基いて、前記変換器をパルス幅変調制御する変換器制御手段とを備え;
前記目標電流生成手段は、前記電圧検出手段で検出された出力端子間電圧の積分値を増幅して、前記目標電流を補正することにより、前記三相交流電力に含まれる直流成分を抑制する直流成分抑制手段を有する;
三相電力変換装置。
An error-following AC current control type three-phase power converter that generates three-phase AC power from a DC power source and supplies power to a load connected to an output terminal;
A converter that converts DC power from the DC power source into three-phase AC power;
An inductor connected to the AC side of the converter;
Current detection means for detecting an output current flowing through the inductor;
Voltage detecting means for detecting a voltage between the output terminals applied between the output terminals;
Target current generating means for generating a target current as a target value of the output current;
Converter control means for performing pulse width modulation control on the converter based on an error between the output current and the target current;
The target current generating means amplifies the integrated value of the voltage between the output terminals detected by the voltage detecting means and corrects the target current, thereby suppressing a DC component contained in the three-phase AC power. Having component suppression means;
Three-phase power converter.
前記出力端子間に接続され、前記三相交流電力に含まれるスイッチング周波数成分を除去するフィルタ回路を備え;
前記電圧検出手段は、前記出力端子間電圧として前記フィルタ回路と各配線との接続点間に印加されるフィルタ電圧を検出し、
前記直流成分抑制手段は、前記フィルタ電圧の積分値を増幅して、前記目標電流を補正する;
請求項に記載の三相電力変換装置。
A filter circuit connected between the output terminals for removing a switching frequency component included in the three-phase AC power;
The voltage detection means detects a filter voltage applied between connection points of the filter circuit and each wiring as the output terminal voltage,
The direct current component suppression means amplifies an integral value of the filter voltage to correct the target current;
The three-phase power converter according to claim 7 .
前記電流検出手段を第1の電流検出手段とし;  The current detection means is a first current detection means;
前記出力端子から負荷に流れる負荷電流を検出する第2の電流検出手段を備え;   Second current detection means for detecting a load current flowing from the output terminal to the load;
前記目標電流生成手段は、前記出力端子間電圧の目標値となるフィルタ電圧指令を生成するフィルタ電圧指令手段、前記フィルタ回路を構成するコンデンサを流れるフィルタ電流の目標値となるフィルタ電流指令を生成するフィルタ電流指令手段、前記出力電流と前記目標電流との偏差を補償するための偏差補償指令を生成するPWM電流偏差補償手段とを有し、前記フィルタ電圧指令と前記電圧検出手段で検出された出力端子間電圧との差、前記フィルタ電流指令及び前記偏差補償指令にそれぞれ係数倍して加算した第1次目標電流に前記直流成分抑制手段で求めた補正量を加算して目標電流を生成し;  The target current generating means generates a filter voltage command means for generating a filter voltage command to be a target value of the output terminal voltage, and a filter current command to be a target value of a filter current flowing through a capacitor constituting the filter circuit. Filter current command means, PWM current deviation compensation means for generating a deviation compensation command for compensating for deviation between the output current and the target current, and output detected by the filter voltage command and the voltage detection means A target current is generated by adding the correction amount obtained by the DC component suppressing means to the primary target current obtained by multiplying the difference between the voltages between the terminals, the filter current command and the deviation compensation command by a coefficient, respectively;
前記第1の電流検出手段で検出された出力電流と前記目標電流生成手段で生成された目標電流との減算を行ない、前記変換器制御手段に供給する;   Subtracting the output current detected by the first current detection means from the target current generated by the target current generation means, and supplying the subtraction to the converter control means;
請求項7又は請求項8に記載の三相電力変換装置。  The three-phase power converter device according to claim 7 or 8.
直流電源から三相交流電力を生成して出力端子に接続される負荷に電力を供給する誤差追従式交流電流制御方式の三相電力変換装置であって;
前記直流電源からの直流電力を三相交流電力に変換する変換器と、
前記変換器の交流側に接続されるインダクタと、
前記インダクタを流れる出力電流を検出する電流検出手段と、
前記出力端子間に印加される出力端子間電圧を検出する電圧検出手段と、
前記出力電流の目標値としての目標電流を生成する目標電流生成手段と、
前記出力電流と前記目標電流との誤差に基いて、前記変換器をパルス幅変調制御する変換器制御手段とを備え;
前記電圧検出手段は、出力端子間にコンデンサと抵抗とを直列接続した回路から構成され、前記出力端子間に印加される直流電圧成分を検出する直流電圧検出手段を有し、
前記目標電流生成手段は、前記直流電圧成分に基いて、前記目標電流を補正することにより、前記三相交流電力に含まれる直流成分を抑制する直流成分抑制手段を有する;
三相電力変換装置。
An error-following AC current control type three-phase power converter that generates three-phase AC power from a DC power source and supplies power to a load connected to an output terminal;
A converter that converts DC power from the DC power source into three-phase AC power;
An inductor connected to the AC side of the converter;
Current detection means for detecting an output current flowing through the inductor;
Voltage detecting means for detecting a voltage between the output terminals applied between the output terminals;
Target current generating means for generating a target current as a target value of the output current;
Converter control means for performing pulse width modulation control on the converter based on an error between the output current and the target current;
The voltage detection means is composed of a circuit in which a capacitor and a resistor are connected in series between output terminals, and has a DC voltage detection means for detecting a DC voltage component applied between the output terminals,
The target current generating unit includes a DC component suppressing unit that corrects the target current based on the DC voltage component to suppress a DC component included in the three-phase AC power;
Three-phase power converter.
前記電流検出手段を第1の電流検出手段とし;  The current detection means is a first current detection means;
前記出力端子から負荷に流れる負荷電流を検出する第2の電流検出手段と、前記出力端子間に接続され、前記三相交流電力に含まれるスイッチング周波数成分を除去するフィルタ回路とを備え;   A second current detecting means for detecting a load current flowing from the output terminal to the load; and a filter circuit connected between the output terminals for removing a switching frequency component included in the three-phase AC power;
前記目標電流生成手段は、前記出力端子間電圧の目標値となるフィルタ電圧指令を生成するフィルタ電圧指令手段、前記フィルタ回路を構成するコンデンサを流れるフィルタ電流の目標値となるフィルタ電流指令を生成するフィルタ電流指令手段、前記出力電流と前記目標電流との偏差を補償するための偏差補償指令を生成するPWM電流偏差補償手段とを有し、前記フィルタ電圧指令と前記電圧検出手段で検出された出力端子間電圧との差、前記フィルタ電流指令及び前記偏差補償指令にそれぞれ係数倍して加算した第1次目標電流に前記直流成分抑制手段で求めた補正量を加算して目標電流を生成し;  The target current generating means generates a filter voltage command means for generating a filter voltage command to be a target value of the output terminal voltage, and a filter current command to be a target value of a filter current flowing through a capacitor constituting the filter circuit. Filter current command means, PWM current deviation compensation means for generating a deviation compensation command for compensating for deviation between the output current and the target current, and output detected by the filter voltage command and the voltage detection means A target current is generated by adding the correction amount obtained by the DC component suppressing means to the primary target current obtained by multiplying the difference between the voltages between the terminals, the filter current command and the deviation compensation command by a coefficient, respectively;
前記第1の電流検出手段で検出された出力電流と前記目標電流生成手段で生成された目標電流との減算を行ない、前記変換器制御手段に供給する;   Subtracting the output current detected by the first current detection means from the target current generated by the target current generation means, and supplying the subtraction to the converter control means;
請求項10に記載の三相電力変換装置。  The three-phase power converter according to claim 10.
直流電源から三相交流電力を生成して出力端子に接続される負荷に電力を供給する三相電力変換装置であって;
前記直流電源からの直流電力を三相交流電力に変換する変換器と、
前記変換器の交流側に接続されるインダクタと、
前記インダクタを流れる出力電流を検出する電流検出手段と、
前記出力端子間に印加される出力端子間電圧を検出する電圧検出手段と、
前記出力電流の目標値としての目標電流を生成する目標電流生成手段と、
前記出力電流と前記目標電流との誤差に基いて、前記変換器をパルス幅変調制御する変換器制御手段とを備え;
前記電圧検出手段は、出力端子間にコンデンサと抵抗とを直列接続した回路から構成され、前記出力端子間に印加される直流電圧成分を検出する直流電圧検出手段を有し、
前記目標電流生成手段は、前記直流電圧成分に基いて、前記目標電流を補正することにより、前記三相交流電力に含まれる直流成分を抑制する直流成分抑制手段を有し;
前記直流成分抑制手段は、前記直流電圧検出手段で検出された2つの直流成分を増幅する増幅手段と、第1の直流成分の2倍と第2の直流成分とを加算する第1の加算手段と、前記第1の直流成分と前記第2の直流成分の2倍とを加算する第2の加算手段と、前記第1の加算手段で加算された電圧値の極性を判定し、判定結果に基いて符号を付して出力する第1の判定手段と、前記第2の加算手段で加算された電圧値の極性を判定し、判定結果に基いて符号を付して出力する第2の判定手段とを有する;
三相電力変換装置。
A three-phase power converter for generating three-phase AC power from a DC power source and supplying power to a load connected to an output terminal;
A converter that converts DC power from the DC power source into three-phase AC power;
An inductor connected to the AC side of the converter;
Current detection means for detecting an output current flowing through the inductor;
Voltage detecting means for detecting a voltage between the output terminals applied between the output terminals;
Target current generating means for generating a target current as a target value of the output current;
Converter control means for performing pulse width modulation control on the converter based on an error between the output current and the target current;
The voltage detection means is composed of a circuit in which a capacitor and a resistor are connected in series between output terminals, and has a DC voltage detection means for detecting a DC voltage component applied between the output terminals,
The target current generating unit includes a DC component suppressing unit that corrects the target current based on the DC voltage component to suppress a DC component included in the three-phase AC power;
The direct current component suppression means includes an amplification means for amplifying two direct current components detected by the direct current voltage detection means, and a first addition means for adding twice the first direct current component and the second direct current component. A second adding means for adding the first DC component and twice the second DC component, and the polarity of the voltage value added by the first adding means. First determination means for adding a sign based on the output, and second determination for determining the polarity of the voltage value added by the second addition means and adding the sign based on the determination result Having means;
Three-phase power converter.
JP2005070118A 2005-03-11 2005-03-11 Single-phase power converter and three-phase power converter Expired - Fee Related JP4615336B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005070118A JP4615336B2 (en) 2005-03-11 2005-03-11 Single-phase power converter and three-phase power converter
US11/368,480 US7184282B2 (en) 2005-03-11 2006-03-07 Single-phase power conversion device and three-phase power conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005070118A JP4615336B2 (en) 2005-03-11 2005-03-11 Single-phase power converter and three-phase power converter

Publications (2)

Publication Number Publication Date
JP2006254636A JP2006254636A (en) 2006-09-21
JP4615336B2 true JP4615336B2 (en) 2011-01-19

Family

ID=37094520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005070118A Expired - Fee Related JP4615336B2 (en) 2005-03-11 2005-03-11 Single-phase power converter and three-phase power converter

Country Status (1)

Country Link
JP (1) JP4615336B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5194634B2 (en) * 2007-08-20 2013-05-08 富士電機株式会社 DC-DC converter
JP4945476B2 (en) * 2008-02-20 2012-06-06 オリジン電気株式会社 Single-phase voltage type AC / DC converter and three-phase voltage type AC / DC converter

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0661074A (en) * 1992-08-04 1994-03-04 Canon Inc High voltage power supply equipment
JPH0698559A (en) * 1992-09-09 1994-04-08 Kyosan Electric Mfg Co Ltd Circuit for preventing biased magnetization in power supply apparatus
JP3253822B2 (en) * 1995-05-02 2002-02-04 東芝アイティー・コントロールシステム株式会社 Welding machine control device
JP3237698B2 (en) * 1997-07-18 2001-12-10 サンケン電気株式会社 Feedback control device

Also Published As

Publication number Publication date
JP2006254636A (en) 2006-09-21

Similar Documents

Publication Publication Date Title
US7184282B2 (en) Single-phase power conversion device and three-phase power conversion device
US9401656B2 (en) Method of controlling power conversion apparatus
JP4945476B2 (en) Single-phase voltage type AC / DC converter and three-phase voltage type AC / DC converter
KR101171659B1 (en) Control apparatus for permanent magnet synchronous motor
JP5742980B1 (en) Power converter control method
KR20080067958A (en) Inverter device
JP2010288440A (en) Motor control apparatus and control method therefor
JP5622437B2 (en) Neutral point clamp type power converter
JP5322534B2 (en) Control device and motor control device
JP4615336B2 (en) Single-phase power converter and three-phase power converter
KR102142288B1 (en) System for controlling grid-connected apparatus for distributed generation
JP2006340549A (en) Single-phase power conversion apparatus and three-phase power conversion apparatus
JP5131467B2 (en) Control device for power converter
JP4946642B2 (en) Harmonic current compensator
JP5078144B2 (en) Power conversion method and power conversion device
JP2019058038A (en) Power conversion device and power conversion system
JP5165916B2 (en) Bias suppression control device
JP4649940B2 (en) CONVERTER CONTROL METHOD AND CONVERTER CONTROL DEVICE
JPH07298627A (en) Controller for power converter
JP4607617B2 (en) Control device for power converter
WO2022270470A1 (en) High harmonic suppression device
JP2006149045A (en) Motor driver
JP6018792B2 (en) Power converter control method
JP7255475B2 (en) Power converter control system
US9927466B2 (en) System and method for controlling dynamic output impedance of an inverter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101005

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101020

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees