JP4999004B2 - Secondary battery protection circuit and battery pack provided with the secondary battery protection circuit - Google Patents

Secondary battery protection circuit and battery pack provided with the secondary battery protection circuit Download PDF

Info

Publication number
JP4999004B2
JP4999004B2 JP2008049070A JP2008049070A JP4999004B2 JP 4999004 B2 JP4999004 B2 JP 4999004B2 JP 2008049070 A JP2008049070 A JP 2008049070A JP 2008049070 A JP2008049070 A JP 2008049070A JP 4999004 B2 JP4999004 B2 JP 4999004B2
Authority
JP
Japan
Prior art keywords
current
secondary battery
charging
discharge
protection circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008049070A
Other languages
Japanese (ja)
Other versions
JP2009207322A (en
Inventor
一貴 西脇
達也 稲上
宗俊 加賀谷
博匡 河本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Maxell Energy Ltd
Original Assignee
Hitachi Maxell Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Energy Ltd filed Critical Hitachi Maxell Energy Ltd
Priority to JP2008049070A priority Critical patent/JP4999004B2/en
Priority to CN200910118072A priority patent/CN101521299A/en
Publication of JP2009207322A publication Critical patent/JP2009207322A/en
Application granted granted Critical
Publication of JP4999004B2 publication Critical patent/JP4999004B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、二次電池に過大な放電電流や過大な充電電流が流れることを防止する二次電池用保護回路およびこの二次電池用保護回路を備えた電池パックに関する。   The present invention relates to a secondary battery protection circuit that prevents an excessive discharge current or an excessive charging current from flowing through a secondary battery, and a battery pack including the secondary battery protection circuit.

近年、携帯端末機器の小型化および高機能化等に伴って、体積当たりの放電容量が大きいリチウムイオン二次電池の需要が伸びている。かかる二次電池では、過大な放電電流や過大な充電電流が流れると、電解液が分解して発熱やガスが発生し、結果として電池性能の劣化や電池の破損等が生じる不利がある。   In recent years, demand for lithium ion secondary batteries having a large discharge capacity per volume has increased with the miniaturization and high functionality of portable terminal devices. In such a secondary battery, when an excessive discharge current or an excessive charging current flows, the electrolytic solution is decomposed to generate heat and gas, resulting in a disadvantage that the battery performance is deteriorated or the battery is damaged.

この対策のためには、例えばPTC素子からなる保護回路を二次電池に接続することが考えられる(特許文献1の図2参照)。当該保護回路によれば、二次電池に過大な電流が流れると、PTC素子自体が発熱することで電流を遮断して、二次電池の劣化や破損等を回避することができる。
特許文献1の図2に示す保護回路では、放電電流も充電電流も同じPTC素子を流れる。また、正常時においては、一般的に充電電流に比べて放電電流が大きい。このため、PTC素子は、正常時における放電電流に対応し得るだけの大きな許容電流値(放電電流限界値)を備えたものが選択される。しかし、許容電流値の大きなPTC素子が選択された場合には、充電装置の故障等で二次電池に過大な充電電流が流れても、当該PTC素子の許容電流値に至らない場合には、PTC素子が作動しないおそれがある。
As a countermeasure, for example, it is conceivable to connect a protection circuit made of a PTC element to the secondary battery (see FIG. 2 of Patent Document 1). According to the protection circuit, when an excessive current flows through the secondary battery, the PTC element itself generates heat, thereby interrupting the current and avoiding deterioration or breakage of the secondary battery.
In the protection circuit shown in FIG. 2 of Patent Document 1, the discharge current and the charge current flow through the same PTC element. In normal operation, the discharge current is generally larger than the charge current. For this reason, a PTC element having a large allowable current value (discharge current limit value) that can correspond to a discharge current in a normal state is selected. However, when a PTC element having a large allowable current value is selected, even if an excessive charging current flows through the secondary battery due to a failure of the charging device or the like, the allowable current value of the PTC element is not reached. The PTC element may not operate.

特許文献1の図1に示す保護回路では、二次電池に対して第1のダイオードとPTC素子を直列に接続するとともに、該第1のダイオードとは別の第2のダイオードをPTC素子および第1のダイオードの直列回路に対して並列状に、しかも該第1のダイオードとは逆向きの整流作用を発揮するように配置している。当該形態によれば、放電電流は逆向きの第2のダイオードを流れる一方で、充電電流は前記直列回路に流れる。したがって、充電電流に合わせた許容電流値(充電電流限界値)の小さなPTC素子を選定することで、二次電池に過大な充電電流が流れたときに、PTC素子を作動させて充電電流を適確に遮断することが可能となる。これにて、過充電時における安全性に優れた保護回路を得ることができる。   In the protection circuit shown in FIG. 1 of Patent Document 1, a first diode and a PTC element are connected in series to a secondary battery, and a second diode other than the first diode is connected to the PTC element and the second diode. The diodes are arranged in parallel to the series circuit of one diode so as to exert a rectifying action in the direction opposite to that of the first diode. According to this mode, the discharge current flows through the second diode in the reverse direction, while the charging current flows through the series circuit. Therefore, by selecting a PTC element with a small allowable current value (charging current limit value) according to the charging current, when an excessive charging current flows through the secondary battery, the PTC element is operated to appropriately adjust the charging current. It becomes possible to shut off with certainty. Thereby, the protection circuit excellent in the safety at the time of overcharge can be obtained.

特開2004−152580号公報(図1・図2)JP 2004-152580 A (FIGS. 1 and 2)

二次電池を充電する充電装置は、適正な充電のために、例えば二次電池の電池電圧が3.7Vに設定されている場合には、4.2V程度の電圧を出力するようになっている。しかし、特許文献1の形態では、充電電流がダイオードを介して二次電池に流れるため、該ダイオードの順方向の電圧降下分(0.3V程度)だけ、二次電池に印加される充電電圧が低下することが避けられず、二次電池が適正に充電されないおそれがある。また、特許文献1では、放電電流はPTC素子を流れることなく、二次電池に流れ込むため、過大な放電電流が流れたときに該放電電流の遮断を適確に行うことができず、二次電池が劣化や破損等するおそれがある。   The charging device for charging the secondary battery outputs a voltage of about 4.2 V for proper charging, for example, when the battery voltage of the secondary battery is set to 3.7 V. Yes. However, in the form of Patent Document 1, since the charging current flows to the secondary battery via the diode, the charging voltage applied to the secondary battery is equal to the forward voltage drop (about 0.3 V) of the diode. There is a risk that the secondary battery will not be properly charged. Further, in Patent Document 1, since the discharge current flows into the secondary battery without flowing through the PTC element, the discharge current cannot be properly interrupted when an excessive discharge current flows, and the secondary battery The battery may be deteriorated or damaged.

本発明は、以上のような二次電池用保護回路が抱える問題を解決するためになされたものであり、その目的は二次電池に過大な放電電流や過大な充電電流が流れることを確実に防止することができ、しかも二次電池に適正な充電電圧を印加できる二次電池用保護回路およびこの二次電池用保護回路を備えた電池パックを提供することにある。   The present invention has been made to solve the problems of the secondary battery protection circuit as described above, and its purpose is to ensure that an excessive discharge current or an excessive charge current flows through the secondary battery. An object of the present invention is to provide a secondary battery protection circuit that can be prevented and that can apply an appropriate charging voltage to the secondary battery, and a battery pack including the secondary battery protection circuit.

本発明は、図1に示すように、二次電池2に流れる放電電流が予め設定した放電電流限界値よりも大きくなると放電電流を遮断する放電用保護素子3と、二次電池2に流れる充電電流が予め設定した充電電流限界値よりも大きくなると充電電流を遮断する充電用保護素子5とを有する。放電用保護素子3および充電用保護素子5は、二次電池2に対して直列に接続されており、充電用保護素子5には、放電電流の流れる方向を順方向とする整流素子6が並列に接続されている。充電電流限界値は、放電電流限界値よりも小さくなるように設定してある。   As shown in FIG. 1, the present invention includes a discharge protection element 3 that cuts off a discharge current when the discharge current flowing through the secondary battery 2 exceeds a preset discharge current limit value, and the charge flowing through the secondary battery 2. A charging protection element 5 is provided for cutting off the charging current when the current becomes larger than a preset charging current limit value. The discharge protection element 3 and the charge protection element 5 are connected in series to the secondary battery 2, and the charge protection element 5 is in parallel with a rectifying element 6 whose forward direction is the discharge current flow direction. It is connected to the. The charging current limit value is set to be smaller than the discharge current limit value.

具体的には、整流素子6が、ショットキーバリアダイオードであるものとすることができる。   Specifically, the rectifying element 6 can be a Schottky barrier diode.

放電用保護素子3および充電用保護素子5は、PTC素子とすることができる。   The discharge protection element 3 and the charge protection element 5 can be PTC elements.

二次電池2に、放電時には放電電流限界値よりも小さい電流値で放電電流を遮断し、充電時には充電電流限界値よりも小さい電流値で充電電流を遮断し、二次電池2の電圧異常時には放電電流または充電電流を遮断する電流電圧制御回路7を接続することができる。   When the secondary battery 2 is discharged, the discharge current is cut off at a current value smaller than the discharge current limit value. At the time of charge, the charge current is cut off at a current value smaller than the charge current limit value. A current-voltage control circuit 7 that cuts off the discharging current or the charging current can be connected.

二次電池2は、複数個の電池を直列および/または並列に接続することで構成されているものとすることができる。   The secondary battery 2 can be configured by connecting a plurality of batteries in series and / or in parallel.

そして、本発明は、これらのように構成された二次電池用保護回路1を備えた電池パックであるものとすることができる。   And this invention shall be a battery pack provided with the protection circuit 1 for secondary batteries comprised as mentioned above.

本発明に係る二次電池用保護回路においては、充電時には、充電電圧によって整流素子6に逆方向の電圧が印加されるため、整流素子6はオフとなる。このため、充電電流は、整流素子6には流れず、放電用保護素子3および充電用保護素子5に流れる。したがって、従来形態(特許文献1の図1参照)のごとく、充電電圧が整流素子6の順方向電圧の分だけ降下した状態で、二次電池2に印加されることがなく、二次電池2に適正な充電電圧をあたえて、該二次電池2を所定の適正な充電条件で充電することができる。また、充電装置が故障等して、充電用保護素子5の充電電流限界値よりも大きな充電電流が流れたときには、充電用保護素子5が充電電流を遮断するため、過大な充電電流により二次電池2が劣化や破損等するおそれもない。   In the secondary battery protection circuit according to the present invention, during charging, a reverse voltage is applied to the rectifying element 6 by the charging voltage, so the rectifying element 6 is turned off. For this reason, the charging current does not flow to the rectifying element 6 but flows to the discharge protection element 3 and the charge protection element 5. Therefore, as in the conventional mode (see FIG. 1 of Patent Document 1), the charging voltage is not applied to the secondary battery 2 in a state where the charging voltage is lowered by the forward voltage of the rectifying element 6, and the secondary battery 2 Therefore, the secondary battery 2 can be charged under predetermined appropriate charging conditions. Further, when a charging current larger than the charging current limit value of the charging protection element 5 flows due to a failure of the charging device or the like, the charging protection element 5 cuts off the charging current. There is no possibility that the battery 2 is deteriorated or damaged.

また、放電時においては、二次電池2の電池電圧が負荷等を介して整流素子6に順方向の電圧として印加されて、整流素子6がオンとなる。このため、放電電流は、整流素子6を流れて充電用保護素子5をほとんど流れず、充電用保護素子5の充電電流限界値よりも大きな放電電流が保護回路1に流れても、充電用保護素子5が作動することがない。したがって、正常な放電ではあるが、かかる放電電流が充電用保護素子5の充電電流限界値よりも大きい場合にも、充電用保護素子5は作動せず、二次電池2から負荷に大きな放電電流を適正に供給することができる。放電用保護素子3の放電電流限界値よりも大きな放電電流が流れた場合には、放電用保護素子3が作動するため、過大な放電電流が流れることを防いで、二次電池2の破損等することを防止できる。   At the time of discharging, the battery voltage of the secondary battery 2 is applied as a forward voltage to the rectifying element 6 via a load or the like, and the rectifying element 6 is turned on. For this reason, even if a discharge current flows through the rectifying element 6 and hardly flows through the protection element 5 for charging, and a discharge current larger than the charging current limit value of the protection element 5 for charging flows through the protection circuit 1, the protection for charging is performed. The element 5 is not activated. Therefore, although the discharge is normal, even when the discharge current is larger than the charging current limit value of the charging protection element 5, the charging protection element 5 does not operate, and a large discharge current from the secondary battery 2 to the load. Can be supplied properly. When a discharge current larger than the discharge current limit value of the discharge protection element 3 flows, the discharge protection element 3 operates, so that an excessive discharge current is prevented from flowing, and the secondary battery 2 is damaged. Can be prevented.

整流素子6が、ショットキーバリアダイオードであると、該ショットキーバリアダイオードの順方向電圧が一般的なPN接合型ダイオードの順方向電圧よりも小さい分だけ、放電電圧が、整流素子6の順方向電圧で降下することを抑えることができる。   If the rectifier element 6 is a Schottky barrier diode, the discharge voltage is reduced in the forward direction of the rectifier element 6 because the forward voltage of the Schottky barrier diode is smaller than the forward voltage of a general PN junction diode. A drop in voltage can be suppressed.

放電用保護素子3および充電用保護素子5がPTC素子であると、放電用保護素子3および充電用保護素子5をヒューズ等で構成する場合よりも小型化が容易である。したがって、放電用保護素子3および充電用保護素子5を狭い設置スペースであっても配置することができる。このことは、保護回路の全体構成のコンパクト化を図ることができることを意味し、結果として保護回路の配置等の設計自由度、および該保護回路を有する機器(電池パック等)の設計自由度の向上に資する。   When the discharge protection element 3 and the charge protection element 5 are PTC elements, it is easier to reduce the size than when the discharge protection element 3 and the charge protection element 5 are formed of a fuse or the like. Therefore, the discharge protection element 3 and the charge protection element 5 can be arranged even in a narrow installation space. This means that the overall configuration of the protection circuit can be made compact. As a result, the degree of freedom in designing the arrangement of the protection circuit and the degree of freedom in designing the equipment (battery pack, etc.) having the protection circuit are reduced. Contribute to improvement.

二次電池2に電流電圧制御回路7を接続すると、二次電池2に過大な放電電流や過大な充電電流が流れることを、電流電圧制御回路7と保護回路1とで二重に防止できて、過大な充電電流や過大な充電電流が流れて二次電池2の破損等が生じることをより確実に防止できる。また、電流電圧制御回路7によって、二次電池2の電圧異常時には放電電流または充電電流が遮断されて、二次電池2の電圧異常によって二次電池2の破損等が生じることも防止できる。   When the current / voltage control circuit 7 is connected to the secondary battery 2, the current / voltage control circuit 7 and the protection circuit 1 can prevent the excessive discharge current and the excessive charge current from flowing through the secondary battery 2. Further, it is possible to more reliably prevent the secondary battery 2 from being damaged due to an excessive charging current or an excessive charging current flowing. Further, the current / voltage control circuit 7 cuts off the discharge current or the charging current when the voltage of the secondary battery 2 is abnormal, and can prevent the secondary battery 2 from being damaged due to the voltage abnormality of the secondary battery 2.

二次電池2が、複数個の電池を直列および/または並列に接続することで構成されていると、これら複数個の電池であっても、過大な充電電流や過大な充電電流が流れて各電池の破損等が生じることを確実に防止できる。   When the secondary battery 2 is configured by connecting a plurality of batteries in series and / or in parallel, an excessive charging current or an excessive charging current flows even in the plurality of batteries. It is possible to reliably prevent the battery from being damaged.

これらのように構成された二次電池用保護回路1を電池パックに備えることで、過大な充電電流や過大な充電電流等による二次電池2の破損等が生じない電池パックを得ることができる。つまり、信頼性の高い電池パックを得ることができる。   By providing the secondary battery protection circuit 1 configured as described above in the battery pack, it is possible to obtain a battery pack in which the secondary battery 2 is not damaged due to an excessive charging current or an excessive charging current. . That is, a highly reliable battery pack can be obtained.

図1に、本発明に係る二次電池用保護回路の実施形態を示す。二次電池用保護回路(以下、単に保護回路と記す)1は、二次電池2に流れる放電電流が予め設定した放電電流限界値よりも大きくなると放電電流を遮断する放電用PTC素子(放電用保護素子)3と、二次電池2に流れる充電電流が予め設定した充電電流限界値よりも大きくなると充電電流を遮断する充電用PTC素子(充電用保護素子)5とを有する。放電用PTC素子3および充電用PTC素子5は、二次電池2に対して直列に接続されており、充電用PTC素子5には、放電電流の流れる方向を順方向とするショットキーバリアダイオード(整流素子)6が並列に接続されている。保護回路1および二次電池2からなる直列回路には、電流電圧制御回路7が接続される。二次電池2は、リチウムイオン二次電池等が該当し、該二次電池2の電池電圧(公称電圧)は、3.7Vである。   FIG. 1 shows an embodiment of a secondary battery protection circuit according to the present invention. A secondary battery protection circuit (hereinafter simply referred to as a protection circuit) 1 is a discharge PTC element (for discharge) that cuts off the discharge current when the discharge current flowing through the secondary battery 2 exceeds a preset discharge current limit value. Protection element) 3 and a charging PTC element (charging protection element) 5 that cuts off the charging current when the charging current flowing through the secondary battery 2 becomes larger than a preset charging current limit value. The discharging PTC element 3 and the charging PTC element 5 are connected in series to the secondary battery 2, and the charging PTC element 5 includes a Schottky barrier diode (a forward direction in which the discharge current flows). Rectifying element) 6 is connected in parallel. A current / voltage control circuit 7 is connected to a series circuit including the protection circuit 1 and the secondary battery 2. The secondary battery 2 corresponds to a lithium ion secondary battery or the like, and the battery voltage (nominal voltage) of the secondary battery 2 is 3.7V.

放電用PTC素子3および充電用PTC素子5は、それぞれ流れる電流に応じて発熱し、放電用PTC素子3は、前記放電電流限界値よりも大きな電流が流れると、該電流に応じた発熱で抵抗値が急激に増加して、電流を遮断(トリップ)する。同様に充電用PTC素子5は、前記充電電流限界値よりも大きな電流が流れると、該電流に応じた発熱で抵抗値が急激に増加して、電流を遮断(トリップ)する。   The discharging PTC element 3 and the charging PTC element 5 generate heat in accordance with the flowing current, and the discharging PTC element 3 resists by generating heat in accordance with the current when a current larger than the discharge current limit value flows. The value suddenly increases and the current is cut off (tripped). Similarly, when a current larger than the charging current limit value flows, the charging PTC element 5 suddenly increases in resistance value due to heat generation according to the current, and interrupts (trips) the current.

充電用PTC素子5の充電電流限界値(トリップ電流値)は、例えば1Aに設定されており、放電用PTC素子3の放電電流限界値(例えば6A)よりも小さくなるように設定している。放電用PTC素子3は、トリップしていない正常状態で0.03Ω以下の極めて低い抵抗値を有し、充電用PTC素子5は、前記正常状態で0.3Ω以下の低い抵抗値を有する。これにて正常状態におけるPTC素子3・5での電圧降下は極めて小さくなる。ショットキーバリアダイオード6は、順方向の電圧降下、すなわち順方向電圧(0.2〜0.4V)が一般的なPN接合型ダイオードの順方向電圧(0.5〜0.7V)よりも小さくなっている。   The charging current limit value (trip current value) of the charging PTC element 5 is set to 1 A, for example, and is set to be smaller than the discharging current limit value (for example, 6 A) of the discharging PTC element 3. The discharging PTC element 3 has a very low resistance value of 0.03Ω or less in a normal state where the trip is not performed, and the charging PTC element 5 has a low resistance value of 0.3Ω or less in the normal state. As a result, the voltage drop at the PTC elements 3 and 5 in the normal state becomes extremely small. The Schottky barrier diode 6 has a forward voltage drop, that is, a forward voltage (0.2 to 0.4 V) smaller than a forward voltage (0.5 to 0.7 V) of a general PN junction diode. It has become.

電流電圧制御回路7は、放電時には放電電流限界値よりも小さい設定放電電流値で放電電流を遮断し、充電時には充電電流限界値よりも小さい設定充電電流値で充電電流を遮断する。つまり、電流電圧制御回路7は、二次電池2の電池電圧に基づいて該二次電池2が放電状態か充電状態かを判別し、放電電流値が前記設定放電電流値を超えたとき、または充電電流値が前記設定充電電流値を超えたときに作動して電流を遮断する。これにて電流電圧制御回路7は、二次電池2に流れる放電電流または充電電流が過大となることを保護回路1に先立って防止する。そして、保護回路1は、電流電圧制御回路7の故障等で該電流電圧制御回路7が作動しなかったときに作動して電流を遮断する。   The current / voltage control circuit 7 cuts off the discharge current at a set discharge current value smaller than the discharge current limit value at the time of discharge, and cuts off the charge current at a set charge current value smaller than the charge current limit value at the time of charge. That is, the current / voltage control circuit 7 determines whether the secondary battery 2 is in a discharged state or a charged state based on the battery voltage of the secondary battery 2, and when the discharge current value exceeds the set discharge current value, or It operates when the charge current value exceeds the set charge current value and cuts off the current. Thus, the current / voltage control circuit 7 prevents the discharge current or the charging current flowing through the secondary battery 2 from becoming excessive prior to the protection circuit 1. The protection circuit 1 is activated to cut off the current when the current / voltage control circuit 7 is not activated due to a failure of the current / voltage control circuit 7 or the like.

また、電流電圧制御回路7は、二次電池2の電圧異常時、例えば、充電時に過大な充電電圧が印加されたり、放電時に電池電圧が過剰に低下したりした場合には、放電電流または充電電流を遮断する。なお、電流電圧制御回路7は、非作動状態では放電電流および充電電流に対する抵抗値が極めて低くなる。   In addition, the current voltage control circuit 7 discharges or discharges the secondary battery 2 when an abnormal charging voltage is applied, for example, when an excessive charging voltage is applied during charging or when the battery voltage decreases excessively during discharging. Cut off current. Note that the resistance value with respect to the discharge current and the charge current is extremely low when the current-voltage control circuit 7 is not in operation.

保護回路1および電流電圧制御回路7は、二次電池2の外表面に配置された状態で樹脂によってモールドされ、または外装カバーで覆われており、これにて二次電池2、保護回路1および電流電圧制御回路7が一体化した電池パックが形成される。電池パックには、図外の充電装置や図外の携帯端末等の負荷を接続するための正極端子10および負極端子11が前記樹脂モールドや外装カバーに形成した窓を介して露出している。正極端子10は、二次電池2の正極に接続され、負極端子11は、電流電圧制御回路7および保護回路1を介して二次電池2の負極に接続されている。   The protection circuit 1 and the current / voltage control circuit 7 are molded with resin or covered with an exterior cover in a state of being arranged on the outer surface of the secondary battery 2, whereby the secondary battery 2, the protection circuit 1, and A battery pack in which the current / voltage control circuit 7 is integrated is formed. In the battery pack, a positive terminal 10 and a negative terminal 11 for connecting a load such as a charging device (not shown) or a portable terminal (not shown) are exposed through a window formed in the resin mold or the outer cover. The positive electrode terminal 10 is connected to the positive electrode of the secondary battery 2, and the negative electrode terminal 11 is connected to the negative electrode of the secondary battery 2 via the current / voltage control circuit 7 and the protection circuit 1.

次に、保護回路1の動作を説明する。なお、説明の都合上、電流電圧制御回路7は作動しないと仮定する。
まず、二次電池2に充電する場合について説明すると、正極端子10および負極端子11に充電装置が接続されることで、両端子10・11間に充電電圧が印加される。該充電電圧によって保護回路1のショットキーバリアダイオード6には、逆方向に電圧が印加され、ショットキーバリアダイオード6はオフになる。これにて、充電電流が、二次電池2、充電用PTC素子5および放電用PTC素子3の順に流れる。なお、充電装置は、例えば図2に示すように、190mAの定電流(充電電流I)で充電を開始し、充電開始から4時間の充電時間が経過すると、4.2Vの定電圧(充電電圧V)で充電する。
Next, the operation of the protection circuit 1 will be described. For convenience of explanation, it is assumed that the current / voltage control circuit 7 does not operate.
First, the case where the secondary battery 2 is charged will be described. When a charging device is connected to the positive terminal 10 and the negative terminal 11, a charging voltage is applied between the terminals 10 and 11. A voltage is applied in the reverse direction to the Schottky barrier diode 6 of the protection circuit 1 by the charging voltage, and the Schottky barrier diode 6 is turned off. Thus, the charging current flows in the order of the secondary battery 2, the charging PTC element 5, and the discharging PTC element 3. For example, as shown in FIG. 2, the charging device starts charging with a constant current (charging current I) of 190 mA, and after a charging time of 4 hours has elapsed from the start of charging, a charging voltage of 4.2 V (charging voltage) Charge with V).

ところが、例えば充電装置の故障によって過大な電圧が両端子10・11間に印加され、図3に示すように、例えば充電開始時刻t0で充電用PTC素子5の充電電流限界値I0よりも大きな充電電流Iが流れると、充電用PTC素子5が作動して、充電電流Iが遮断される。これにて過大な充電電流Iが二次電池2に流れて二次電池2が破損すること等が防止される。なお、放電用PTC素子3の放電電流限界値は、充電用PTC素子5の充電電流限界値I0よりも大きいために、放電用PTC素子3は作動しない。   However, for example, an excessive voltage is applied between the terminals 10 and 11 due to the failure of the charging device, and as shown in FIG. 3, the charging is larger than the charging current limit value I0 of the charging PTC element 5 at the charging start time t0, for example. When the current I flows, the charging PTC element 5 operates and the charging current I is interrupted. This prevents an excessive charging current I from flowing into the secondary battery 2 and damaging the secondary battery 2. Since the discharge current limit value of the discharge PTC element 3 is larger than the charge current limit value I0 of the charge PTC element 5, the discharge PTC element 3 does not operate.

次いで、二次電池2を放電する場合について説明すると、正極端子10および負極端子11に負荷が接続されることで、ショットキーバリアダイオード6には、順方向に電圧が印加され、ショットキーバリアダイオード6がオンする。これにて、放電電流が、二次電池2、負荷、放電用PTC素子3およびショットキーバリアダイオード6の順に流れ、充電用PTC素子5にはほとんど流れない。つまり、充電用PTC素子5には、ショットキーバリアダイオード6の順方向電圧に相当する電圧が印加されて、該電圧に対応する電流が流れるが、ショットキーバリアダイオード6の順方向電圧が小さいために、充電用PTC素子5には電流がほとんど流れない。   Next, a case where the secondary battery 2 is discharged will be described. When a load is connected to the positive terminal 10 and the negative terminal 11, a voltage is applied to the Schottky barrier diode 6 in the forward direction, and the Schottky barrier diode is discharged. 6 turns on. Thus, the discharge current flows in the order of the secondary battery 2, the load, the discharge PTC element 3 and the Schottky barrier diode 6, and hardly flows through the charge PTC element 5. That is, a voltage corresponding to the forward voltage of the Schottky barrier diode 6 is applied to the charging PTC element 5 and a current corresponding to the voltage flows, but the forward voltage of the Schottky barrier diode 6 is small. In addition, almost no current flows through the charging PTC element 5.

そして、例えば負荷側で短絡事故が生じて過大な放電電流が放電用PTC素子3に流れ、この放電電流が、放電用PTC素子3の放電電流限界値よりも大きいと、放電用PTC素子3が作動して、放電電流が遮断される。これにて過大な放電電流が二次電池2に流れて二次電池2が破損すること等が防止される。なお、前述のように充電用PTC素子5には放電電流がほとんど流れないために、充電用PTC素子5は作動しない。   For example, if a short circuit accident occurs on the load side and an excessive discharge current flows to the discharge PTC element 3, and the discharge current is larger than the discharge current limit value of the discharge PTC element 3, the discharge PTC element 3 In operation, the discharge current is interrupted. This prevents an excessive discharge current from flowing into the secondary battery 2 and damaging the secondary battery 2. As described above, since the discharge current hardly flows through the charging PTC element 5, the charging PTC element 5 does not operate.

以上のように、本発明に係る保護回路1によれば、充電時には、ショットキーバリアダイオード6がオフになって、充電電流が、充電用PTC素子5および放電用PTC素子3に流れて、ショットキーバリアダイオード6には流れない。つまり、充電電圧が、ショットキーバリアダイオード6の順方向電圧だけ降下した状態で、二次電池2に印加されることが防止される。したがって、二次電池2には、適正な充電電圧が印加されて、該二次電池2が適正に充電される。そして、電流電圧制御回路7が故障等によって作動しなくても、充電用PTC素子5の充電電流限界値よりも大きな充電電流が流れたときには、充電用PTC素子5が確実に作動し、過大な充電電流で二次電池2の破損等が生じることが確実に防止される。   As described above, according to the protection circuit 1 according to the present invention, at the time of charging, the Schottky barrier diode 6 is turned off, and the charging current flows to the charging PTC element 5 and the discharging PTC element 3 to cause the shot. It does not flow through the key barrier diode 6. That is, the charging voltage is prevented from being applied to the secondary battery 2 in a state where the charging voltage is lowered by the forward voltage of the Schottky barrier diode 6. Therefore, an appropriate charging voltage is applied to the secondary battery 2, and the secondary battery 2 is appropriately charged. Even when the current / voltage control circuit 7 does not operate due to a failure or the like, when a charging current larger than the charging current limit value of the charging PTC element 5 flows, the charging PTC element 5 operates reliably and is excessive. The secondary battery 2 can be reliably prevented from being damaged by the charging current.

放電時には、ショットキーバリアダイオード6がオンして、放電電流が充電用PTC素子5をほとんど流れないために、充電用PTC素子5の充電電流限界値よりも大きな放電電流が保護回路1に流れても、充電用PTC素子5が作動することがない。したがって、正常な放電ではあるが、かかる放電電流が充電用PTC素子5のトリップ電流値よりも大きい場合でも、充電用PTC素子5は作動しない。このため、二次電池2から負荷に大きな放電電流を適正に供給することができる。そして、電流電圧制御回路7が故障等によって作動しなくても、放電用PTC素子3の放電電流限界値よりも大きな放電電流が流れたときには、放電用PTC素子3が確実に作動して、過大な放電電流が流れることで二次電池2の破損等が生じることが防止される。   At the time of discharging, the Schottky barrier diode 6 is turned on and the discharging current hardly flows through the charging PTC element 5, so that a discharging current larger than the charging current limit value of the charging PTC element 5 flows into the protection circuit 1. However, the charging PTC element 5 does not operate. Therefore, although the discharge is normal, the charging PTC element 5 does not operate even when the discharge current is larger than the trip current value of the charging PTC element 5. For this reason, a large discharge current can be appropriately supplied from the secondary battery 2 to the load. Even if the current / voltage control circuit 7 does not operate due to a failure or the like, when a discharge current larger than the discharge current limit value of the discharge PTC element 3 flows, the discharge PTC element 3 operates reliably and is excessive. It is possible to prevent the secondary battery 2 from being damaged by the flow of a proper discharge current.

充電用PTC素子5に並列に接続される整流素子6としては、順方向電圧が低いほど好ましく、ショットキーバリアダイオードに代えて点接触型ゲルマニウムダイオード等であってもよい。放電用PTC素子3および充電用PTC素子5は、放電電流や充電電流を遮断したのちに温度が低下することで、自己復旧して再度、放電電流や充電電流を流すことができるが、放電用PTC素子3や充電用PTC素子5に代えて、設定した設定電流以上の電流が流れると該電流を恒久的に遮断するヒューズ等を用いてもよい。   The rectifying element 6 connected in parallel to the charging PTC element 5 is preferably as the forward voltage is low, and may be a point contact type germanium diode or the like instead of the Schottky barrier diode. The discharge PTC element 3 and the charge PTC element 5 can self-recover and flow the discharge current and the charge current again when the temperature decreases after the discharge current and the charge current are cut off. Instead of the PTC element 3 and the charging PTC element 5, a fuse or the like may be used that permanently cuts off the current when a current equal to or higher than the set current flows.

二次電池2は、複数個の電池を直列および/または並列に接続することで構成されていてもよい。   The secondary battery 2 may be configured by connecting a plurality of batteries in series and / or in parallel.

本発明に係る二次電池用保護回路の回路図である。It is a circuit diagram of the protection circuit for secondary batteries which concerns on this invention. 適正な充電状態を説明するための図表である。It is a chart for demonstrating an appropriate charge state. 異常時の充電電流を説明するための図表である。It is a graph for demonstrating the charging current at the time of abnormality.

符号の説明Explanation of symbols

1 二次電池用保護回路
2 二次電池
3 放電用PTC素子
5 充電用PTC素子
6 ショットキーバリアダイオード
7 電流電圧制御回路
DESCRIPTION OF SYMBOLS 1 Secondary battery protection circuit 2 Secondary battery 3 Discharge PTC element 5 Charging PTC element 6 Schottky barrier diode 7 Current voltage control circuit

Claims (6)

二次電池に流れる放電電流が予め設定した放電電流限界値よりも大きくなると前記放電電流を遮断する放電用保護素子と、前記二次電池に流れる充電電流が予め設定した充電電流限界値よりも大きくなると前記充電電流を遮断する充電用保護素子とを有し、
前記放電用保護素子および前記充電用保護素子は、前記二次電池に対して直列に接続されており、
前記充電用保護素子には、放電電流の流れる方向を順方向とする整流素子が並列に接続されており、
前記充電電流限界値が、前記放電電流限界値よりも小さくなるように設定してあることを特徴とする二次電池用保護回路。
When the discharge current flowing through the secondary battery becomes larger than a preset discharge current limit value, the discharge protection element that cuts off the discharge current, and the charge current flowing through the secondary battery is larger than the preset charge current limit value And having a protective element for charging that cuts off the charging current,
The discharge protection element and the charge protection element are connected in series to the secondary battery,
The charging protection element is connected in parallel with a rectifying element whose forward direction is the direction in which the discharge current flows,
A secondary battery protection circuit, wherein the charging current limit value is set to be smaller than the discharge current limit value.
前記整流素子が、ショットキーバリアダイオードである請求項1記載の二次電池用保護回路。   The secondary battery protection circuit according to claim 1, wherein the rectifying element is a Schottky barrier diode. 前記放電用保護素子および前記充電用保護素子が、PTC素子である請求項2記載の二次電池用保護回路。   The secondary battery protection circuit according to claim 2, wherein the discharge protection element and the charge protection element are PTC elements. 前記二次電池に、放電時には前記放電電流限界値よりも小さい電流値で放電電流を遮断し、充電時には前記充電電流限界値よりも小さい電流値で充電電流を遮断し、前記二次電池の電圧異常時には前記放電電流または前記充電電流を遮断する電流電圧制御回路が接続されている請求項1ないし3のいずれかに記載の二次電池用保護回路。   When the secondary battery is discharged, the discharge current is cut off at a current value smaller than the discharge current limit value, and at the time of charging, the charge current is cut off at a current value smaller than the charge current limit value. 4. The secondary battery protection circuit according to claim 1, wherein a current-voltage control circuit that cuts off the discharging current or the charging current is connected when an abnormality occurs. 5. 前記二次電池が、複数個の電池を直列および/または並列に接続することで構成されている請求項1ないし4のいずれかに記載の二次電池用保護回路。   The secondary battery protection circuit according to claim 1, wherein the secondary battery is configured by connecting a plurality of batteries in series and / or in parallel. 請求項1ないし5のいずれかに記載の二次電池用保護回路を備えた電池パック。   A battery pack comprising the secondary battery protection circuit according to claim 1.
JP2008049070A 2008-02-29 2008-02-29 Secondary battery protection circuit and battery pack provided with the secondary battery protection circuit Expired - Fee Related JP4999004B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008049070A JP4999004B2 (en) 2008-02-29 2008-02-29 Secondary battery protection circuit and battery pack provided with the secondary battery protection circuit
CN200910118072A CN101521299A (en) 2008-02-29 2009-02-27 Protection circuit for secondary battery and battery set with the protection circuit for secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008049070A JP4999004B2 (en) 2008-02-29 2008-02-29 Secondary battery protection circuit and battery pack provided with the secondary battery protection circuit

Publications (2)

Publication Number Publication Date
JP2009207322A JP2009207322A (en) 2009-09-10
JP4999004B2 true JP4999004B2 (en) 2012-08-15

Family

ID=41081751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008049070A Expired - Fee Related JP4999004B2 (en) 2008-02-29 2008-02-29 Secondary battery protection circuit and battery pack provided with the secondary battery protection circuit

Country Status (2)

Country Link
JP (1) JP4999004B2 (en)
CN (1) CN101521299A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104242253A (en) * 2014-09-30 2014-12-24 成都闰世科技有限公司 Lithium battery protection based on-board PTC (positive temperature coefficient) protection circuit
CN107134822B (en) * 2017-04-25 2023-05-16 福建省福芯电子科技有限公司 Battery charging overcurrent protection circuit
JP6793156B2 (en) * 2018-06-29 2020-12-02 株式会社Subaru Vehicle power supply
CN109616608B (en) * 2018-12-14 2022-06-07 宁德新能源科技有限公司 Battery, electronic device, and battery pack
CN115001121B (en) * 2022-08-03 2022-10-04 合肥华思系统有限公司 Current limiting circuit, control method and system for efficient energy storage system

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0864196A (en) * 1994-08-25 1996-03-08 Kojundo Chem Lab Co Ltd Small secondary battery
JPH09147922A (en) * 1995-11-21 1997-06-06 Shindengen Electric Mfg Co Ltd Charging type battery pack
JP4627588B2 (en) * 2000-10-20 2011-02-09 パナソニック株式会社 Battery pack and its inspection device
JP2002369392A (en) * 2001-06-05 2002-12-20 Uchihashi Estec Co Ltd Secondary battery protecting method and protector for secondary battery
JP4329326B2 (en) * 2002-10-30 2009-09-09 パナソニック株式会社 Secondary battery and secondary battery pack with temperature protection element unit
JP2006296180A (en) * 2005-03-17 2006-10-26 Furukawa Electric Co Ltd:The Protection component, protecting device, battery pack and portable electronic device
JP4886212B2 (en) * 2005-05-11 2012-02-29 パナソニック株式会社 Protection circuit
JP2006320048A (en) * 2005-05-10 2006-11-24 Matsushita Electric Ind Co Ltd Protection circuit

Also Published As

Publication number Publication date
CN101521299A (en) 2009-09-02
JP2009207322A (en) 2009-09-10

Similar Documents

Publication Publication Date Title
US9130383B2 (en) Charging/discharging control device, battery pack, electrical equipment, and charging/discharging control method
EP1107344B1 (en) Circuit and device for protecting secondary battery
JP5025160B2 (en) Secondary battery device
EP2079142B1 (en) Rechargeable battery pack with a thermal protection circuit
KR100485752B1 (en) Secondary Battery Protection Device
JP6510674B2 (en) Lithium-ion secondary battery protection circuit and battery pack
JP4999004B2 (en) Secondary battery protection circuit and battery pack provided with the secondary battery protection circuit
JP4821691B2 (en) Secondary battery pack
JP5712357B2 (en) Battery pack
JP2006352998A (en) Battery pack
JP5177843B2 (en) Battery pack
JP6292802B2 (en) Battery circuit, protection circuit
JPH11339766A (en) Battery pack
JP5177842B2 (en) Protection circuit and battery pack
JP5094129B2 (en) Battery pack
JP2006121827A (en) Protection circuit for secondary battery
KR102137698B1 (en) Protection circuit device for battery
JP2007305451A (en) Secondary battery pack with overcharge protection function
JP4778218B2 (en) Battery pack
JPH08149701A (en) Overcurrent protector for secondary battery
JP2007259656A (en) Protective device and charging apparatus
KR102004476B1 (en) Overcharge protection circuit, secondary battery and method for protecting from overcharge using the same
KR102135271B1 (en) Protection circuit device for battery
JP2005038713A (en) Battery pack
JP2009094037A (en) Battery pack

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101018

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110519

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110527

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120509

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120510

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150525

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150525

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150525

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees