JP4996792B2 - Battery connection member and battery module using the same - Google Patents

Battery connection member and battery module using the same Download PDF

Info

Publication number
JP4996792B2
JP4996792B2 JP2001095283A JP2001095283A JP4996792B2 JP 4996792 B2 JP4996792 B2 JP 4996792B2 JP 2001095283 A JP2001095283 A JP 2001095283A JP 2001095283 A JP2001095283 A JP 2001095283A JP 4996792 B2 JP4996792 B2 JP 4996792B2
Authority
JP
Japan
Prior art keywords
cylindrical portion
batteries
battery
small
cylindrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001095283A
Other languages
Japanese (ja)
Other versions
JP2002298822A (en
Inventor
勉 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2001095283A priority Critical patent/JP4996792B2/en
Publication of JP2002298822A publication Critical patent/JP2002298822A/en
Application granted granted Critical
Publication of JP4996792B2 publication Critical patent/JP4996792B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Connection Of Batteries Or Terminals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は電池間の接続部材とそれを用いた電池間の接続構造に関し、更に詳しくは、それを用いた電池間の接続構造が、充分な機械的強度を確保し、電気抵抗が低く、低コストで形成され、生産性と信頼性の高いものとなる電池間の接続部材と、それを用いた電池間の接続構造に関する。
【0002】
【従来の技術】
近年、携帯電話、ノートパソコン等の電子機器類、ならびに各種の電動工具や電動アシスト自転車、更には電気自動車の駆動源として、複数個のニッケル・水素二次電池を直列に接続して成る電池モジュールが使用されている。そして、これら製品の市場拡大に伴って電池モジュールの需要も増加しており、その高出力化という性能向上のみならず、生産性の向上やコスト低減も強く求められている。
【0003】
このような電池モジュールで用いられている、電池間の接続構造の一例を図7に示す。
この接続構造は、円柱状の電池M,Nが図8で示した形状の接続部材40で直列に接続された構造になっている。
接続部材40は、底部と円筒部が一体化された皿形状をしており、溶接時の無効分流を低減するためのスリットD4または小孔D1がそれぞれ底部と円筒部に設けられている。
【0004】
この接続部材40を用いて接続構造を形成する場合には、まず、電池Nの上部に突設した状態で位置する正極端子N3の上面に接続部材40の底部を位置合わせして載置し、ついでスリットD4をまたいで2本の溶接電極を当接させてシリーズ式抵抗溶接法により両者を溶接する。しかる後、接続部材の円筒部の中に電池Mの缶底部M1を挿入し、小孔D1をまたいで2本の溶接電極を当接させてシリーズ式抵抗溶接法により両者を溶接して、上下に2個の電池を直列に接続する。
【0005】
【発明が解決しようとする課題】
しかしながら、上記した従来の電池間の接続構造には、以下のような問題がある。
電池モジュールの高出力化に伴って、接続される電池の個数が多くなっていくと、接続される電池の個数が2個程度の場合に比較して、各接続構造の溶接部への機械的負荷が大きくなる。具体的には、電池モジュール両端部への外部端子接続のためのボルトを締付けるときに発生する電池の円周方向の回転モーメントや、実使用時に電池モジュールに加えられる曲げ応力は非常に大きくなる場合がある。そのような場合、正極端子N3が電池Nの径方向の中心に位置し、その上面が狭いこともあって、正極端子N3と接続部材40の底部の溶接箇所に大きな回転モーメントあるいは曲げ応力が集中するようになり、溶接箇所が破断することがある。すなわち、この接続構造の場合、機械的強度不足という問題がある。
【0006】
また、同じく電池モジュールの高出力化に伴って、接続構造には大電流が流れることとなる。これにより、従来は問題とならなかった、電池間の接続構造における電気抵抗によって生じる電力損失が無視できない問題となる。
そして、この接続構造は、シリーズ式抵抗溶接法により形成されるナゲットの形状や大きさが、溶接時における接続部材と電池の接触状態の微妙な違いにより溶接ごとにばらつくため、溶接強度が安定せず、信頼性が低いという問題もある。
【0007】
また更に、この接続構造の場合、電池Nの正極端子N3に接続部材40を載置したのち溶接して形成されるが、そのとき、当該接続部材40が電池Nの径方向にずれないように両者を位置決めすることが必要になる。このような処置を施さないと、組み立てられた電池モジュールは真っ直ぐなものにならないからである。このようなことから、上記した接続構造の形成に際しては、接続部材Eと電池Nとの位置決め用の治具が必要になる。
【0008】
このことは、接続部材40の電池Nへの溶接作業に慎重さが求められるので生産性を低下させると同時に、別体の位置決め用治具も必要になるという点で、コスト上昇を招くことになる。
本発明は、この従来技術の電池間の接続部材及びそれを用いた電池間の接続構造における上記した問題を全て解決し、それを用いた電池間の接続構造が、充分な機械的強度を確保し、電気抵抗が低く、低コストで形成され、生産性と信頼性の高いものとなる電池間の接続部材と、それを用いた電池間の接続構造の提供とを目的とする。
【0009】
【課題を解決するための手段】
上記した目的を達成するために、本発明においては、正極端子が取り付けられている封口板及び前記封口板により上端開口が封口された外装缶を備えた円柱状電池を複数個直列に接続するための導電材料から成る電池間の接続部材であって、前記円柱状電池の缶底部を収容可能な収容領域を形成する有底円筒状の大円筒部と、前記大円筒部の底壁の中央部を前記収容領域とは反対側へ凹ませて形成され、前記大円筒部と同心の有底円筒状の小円筒部と、前記小円筒部の底壁の中央部を前記収容領域側へ膨出させて形成され、前記大円筒部と同心の円筒状をなし、且つ、前記収容領域側に位置した端面及びこの端面の中央に前記円柱状電池の正極端子と略同寸の貫通孔を有する膨出部とを備え、前記大円筒部は、自身の周壁に設けられ、前記大円筒部内に開口した開口を有する複数の小孔と、これら小孔の前記開口の周縁から前記大円筒部の径方向内側に向かって突出する環状の突出縁とを含み、前記小円筒部は、自身の底壁に設けられ、前記小円筒部外に開口した開口を有する複数の小孔と、これら小孔の前記開口の周縁から前記収容領域とは反対側に向かって突出する環状の突出縁とを含み、前記膨出部は、前記端面に前記膨出部の外径と前記貫通孔の内径との間の差によって残されたインナフランジを更に有することを特徴とする電池間の接続部材が提供される(請求項1)。
【0010】
また、本発明においては、前突出縁の高さが0.2mm〜0.7mmであることが好ましい(請求項)。
【0011】
また、本発明においては、厚み3μm以下のニッケルめっきが施されている請求項1または2に記載の電池間の接続部材が提供される(請求項)。
更に、本発明においては、複数の円柱状電池が、請求項1〜のいずれかの電池間の接続部材を用いて直列に接続された電池モジュールであって、前記小円筒部の底前記円柱状電池の封口板の間、および前記大円筒部の周壁前記円柱状電池の缶底部の間が、前記突出縁を溶解してナゲットとするシリーズ式抵抗溶接法で溶接されていることを特徴とする電池モジュールが提供される(請求項)。
【0012】
【発明の実施の形態】
以下、図面を参照して本発明に係る電池間の接続部材の参考例を説明する。
接続部材10は、図1および図1のII−II線に沿う断面図である図2に示したように、上部が開口する大円筒部Aとその下に位置する小円筒部Bとが一体的に形成されて段部を有する皿形状になっている。
【0013】
そして、大円筒部Aは、図2の仮想線で示したように、円柱状電池Mの缶底部M1の径と同じ大きさの直径になっていて、ここに電池Mの缶底部M1が収容できるようになっている。
また、小円筒部Bは、その高さが円柱状電池Nの上部に突出した状態で位置する正極端子N3よりも若干高く、円柱状電池Nの上面に位置する封口板N2と接触可能な底面を有し、その底面の中央に正極端子N3と略同寸の貫通孔B2とを有する。
【0014】
大円筒部Aの側部A1および小円筒部Bの底面B1には、それぞれ、複数個の小孔C1が形成されている。
そして、小孔C1の縁からはバリ部C2が突出形成されている。このとき、大円筒部の側部A1に形成されるバリ部C2は、側部A1の内側へと突出し、また、小円筒部Bの底面B1に形成されるバリ部C2は、小円筒部Bより下方へ向かって突出形成されている。
【0015】
次に、本発明に係る電池間の接続部材の実施形態を説明する。
接続部材20は、図3(a),3(b)および図3(a)のV−V線に沿う断面図である図5に示したように、上述の接続部材10と同様、上部が開口する大円筒部Aとその下に位置する小円筒部Bとが一体的に形成されて段部を有する皿形状になっている。但し、この実施形態においては、小円筒部Bが、円柱状電池Nの上面に位置する封口板N2と接触可能な底面B12を有する円環状部B11と、この底面B11の内縁より上方へ膨出する膨出部B3とから成り、その膨出部B3の上面中央部に正極端子N3と略同寸の貫通孔B2を有している。
【0016】
そして、大円筒部Aの側部A1および小円筒部Bの円環状部B11の底面B12には、それぞれ、複数個の小孔C1が形成されている。
上述した接続部材10及び接続部材20は、所望厚みの例えば鉄板などをプレス成形したのち、バリ部C2が同時に形成されるよう、所定箇所に小孔C1を穴開け加工するなどの方法で簡単に製造することができる。また、予めニッケルめっきが表面に施された鉄板を用いて接続部材10及び接続部材20を製造すると、後述するシリーズ式抵抗溶接を行ったのちの溶接強度が高くなるので好適である。その場合、めっき厚は3μm以下であればよい。なお、このニッケルめっきは接続部材を製造した後に、接続部材の表面に後めっきして形成してもよい。
【0017】
尚、小孔C1の形状は、例示的に円形としたが、図4に示したようにスリット状、あるいは楕円形、矩形等の形状であってもよい。また、接続部材の側部A1に、図4に示したようにその周縁上端まで達するスリットA11を2〜4箇所設けると、円柱状電池の缶底部M1を接続部材の大円筒部Aへ収容するときにスリットA11が開きスムーズな収容が可能となる。
【0018】
次に本発明の接続構造の形成方法を電池間の接続部材20を用いる場合について説明する。
まず、円柱状電池Nの上面(プラス極)に接続部材20を配置する。
このとき、接続部材20の貫通孔B2に電池Nの正極端子N3が嵌入することにより、接続部材20は電池Nの径方向について位置決めされる。そして、それと同時に小円筒部Bの底面B12は電池Nの封口板N2とバリ部C2を介して接触し、これらバリ部C2は小孔C1の縁と略同じ長さで溶接箇所へと線接触するようになる。
【0019】
ついで、この円環状部B11の底面B12に位置する小孔C1の両脇に上方より2本の電極を配置してシリーズ式抵抗溶接が行われ、バリ部C2が溶融してナゲットC3を形成することにより上記接続部材20が電池Nに溶接・固定される。このとき、小孔C1が無効電流を防止するため、効率的にバリ部C2が溶融してナゲットC3となる。また、このバリ部C2により、溶接電流が流れる箇所の断面積を溶接ごとに常に一定にすることができるので、溶接強度のばらつきが小さい信頼性の高い溶接が可能となる。
【0020】
尚、バリ部C2の突出する高さは0.2mm〜0.7mmであるのが好ましい。0.19mm以下であると、他の部分を溶接電流が流れてしまい、また0.75mm以上であるとそれを小孔の縁に略均一に形成するのが難しくなり、いずれの場合も溶接強度のばらつきが大きくなる。
ついで、接続部材20の大円筒部Aに円柱状電池Mの缶底部(マイナス極)M1が収容される。缶底部M1の側面は、大円筒部Aの側部A1の内側とバリ部C2を介して接触し、また各バリ部C2は大円筒部Aの側部A1と線接触するようになる。なお、小円筒部Bは先に接続部材20に固定されている電池Nの正極端子N3よりも高いので、正極端子N3が収容の障害となることがない。
【0021】
そして、この大円筒部Aの側部A1に位置する小孔C1の両脇に2本の溶接電極を配置してシリーズ式抵抗溶接が行われる。その結果、缶底部M1と大円筒部Aとの間が溶接・固定されるが、このときも、やはり上記したと同じ理由により、溶接強度のばらつきが小さい信頼性の高い溶接が実現される。
このようにして、図6で示したように、円柱状電池M,Nが接続部材20を介して順次直列に接続された、本発明に係る電池間の接続構造の一例が形成される。
【0022】
この電池間の接続構造では、電池Nの上面に位置する封口板N2の上に、接続部材20の円環状部B11の底面B12がナゲットC3を介して溶接・固定され、更に、電池Mの缶底部M1の側面が接続部材20の大円筒部Aの側部A1にナゲットC3を介して溶接・固定された構造になっている。
このように、接続部材20の円環状部B11の底面B12を、電池Nの正極端子N3の上面ではなく、それよりも外径が大きい封口板N2が支持するので、この部分に回転モーメントあるいは曲げ応力が加えられても、それらの間に形成されたナゲットC3に大きな回転モーメントあるいは応力が集中することがない。そのため、ナゲットC3の破断が防止され、接続構造の機械的強度が確保される。また、それと同時に、電池モジュールが放電する際に、電流が正極端子N3を経由せずに円環状部B11と封口板N2との間を直接流れるため、接続構造の電気抵抗を低くすることができる。
【0023】
なお、本発明の接続構造の場合、小孔C1の径によって形成されるナゲットC3の外径を大きくすることができ、もって容易に溶接強度の向上を図ることができる。また、大円筒部Aの底面と小円筒部Bに接続されている円柱状電池の上面との間に、小円筒部Bの高さに応じて形成される空間に、ポリカーボネートなどの合成樹脂からなる絶縁リングを介在させると、それらが接触して起こる短絡を防止することができる。
【0024】
(実施例)
実施例として、円環状部の底面と大円筒部の側部に、その縁に高さ略0.2mmのバリ部を有する直径4mmの小孔が合計8個形成された接続部材20を用いて、6個の単1サイズの円柱状電池が、本発明の接続構造にて接続された電池モジュール(M6)を作製した。また、比較例として、小孔がバリ部を有していない以外は接続部材20と同様の構成である接続部材を用いて実施例と同様にして電池モジュールを作製した。そして、実施例と比較例の電池モジュールそれぞれ3個について、その中間部をチャックを用い固定した上で、その一端部に電池の円周方向で回転トルクを加え、モジュールが破壊されたときの回転トルクの平均値を求めた(回転強度試験)。
【0025】
また、上記したと同じ実施例と比較例の電池モジュールそれぞれ5個について、電池モジュールの長手方向における引張り強度を測定してその平均値とばらつき(標準偏差)を求めた。
以上の結果を溶接条件とともに表1に示す。
【0026】
【表1】

Figure 0004996792
【0027】
表1から明らかなように、実施例は比較例よりも回転強度が高く、また電池モジュール(M6)の規定トルク1.76N・mを上回っており、機械強度が充分確保されている。これは、溶接時にバリ部によりナゲットの形成が効率的に進んだことにより、各溶接部の強度が向上されたためと考えられる。
また、引張り試験結果では、実施例の方が比較例よりも引張り強度のばらつきが抑制されていることがわかる。これは、バリ部により溶接電流の流れる断面積が溶接ごとに一定に保たれたためと考えられる。
【0028】
更に、上記した実施例の電池モジュール1個について50%深度(SOC)まで15Cにて充電してから10秒後の出力電圧を測定したところ5.92Vであった。図7に示した従来の電池間の接続構造の電池モジュールにおける同一条件下での出力電圧が5.80Vであったことから、実施例の方が従来の場合よりも出力電圧が大きくなっており、電池モジュールの高出力化が達成されている。これは、円環状部の底面と封口板を接続することにより、接続構造の電気抵抗が減少し、もってそこでの電力損失が抑制されたためと考えられる。
【0029】
【発明の効果】
本発明の電池間の接続部材及びそれを用いた電池間の接続構造は次のような効果を奏する。
(1)円環状部と封口板が溶接・固定されるため、溶接時にバリ部がナゲットを形成することと相俟って、得られる接続構造の機械的強度が大きく、かつそのばらつきが小さい。
【0030】
(2)円環状部と封口板が溶接・固定されるため、得られる接続構造の電気抵抗が低く、高出力の電池モジュールを作製することができる。
(3)接続部材には位置決め用の貫通孔が形成されているので、この接続部材を電池の上面に配置したときに自動的に両者の相互位置関係は調節され、直ちに次の工程である溶接作業に移行でき、組立作業は非常に簡便になり、かつ位置決め用の治具が不必要となる。
【0031】
したがって、得られる接続構造の生産性が向上し、かつ、コスト低減を実現することができる。
【図面の簡単な説明】
【図1】 本発明に係る電池間の接続部材の参考例の斜視図である。
【図2】 図1のII−II線に沿う断面図である。
【図3】 本発明に係る電池間の接続部材の実施形態の斜視図である。
【図4】 本発明に係る電池間の接続部材の実施形態の変形例の斜視図である。
【図5】 図3のV−V線に沿う断面図である。
【図6】 本発明に係る電池モジュールの一例を示す概略断面図である。
【図7】 従来の電池間の接続構造の一例を示す概略断面図である。
【図8】 従来用いられている接続部材の一例を示す斜視図である。
【符号の説明】
M,N 円柱状電池
M1 缶底部
N2 封口板
N3 正極端子
10,20 接続部材
A 大円筒部
A1 大円筒部側部
A11 スリット
B 小円筒部
B1 小円筒部の底面
B11 小円筒部の円環状部
B12 小円筒部の円環状部の底面
B2 小円筒部の貫通孔
B3 小円筒部の膨出部
C1 小孔
C2 バリ部(突出縁)
C3 ナゲット[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a connection member between batteries and a connection structure between batteries using the same, and more particularly, the connection structure between batteries using the same ensures sufficient mechanical strength, low electrical resistance, low The present invention relates to a connecting member between batteries which is formed at a low cost and has high productivity and reliability, and a connecting structure between batteries using the connecting member.
[0002]
[Prior art]
In recent years, a battery module comprising a plurality of nickel-hydrogen secondary batteries connected in series as a drive source for electronic devices such as mobile phones and laptop computers, as well as various electric tools, electric assist bicycles, and electric vehicles. Is used. As the market for these products expands, the demand for battery modules is increasing, and there is a strong demand not only for improved performance, but also for improving productivity and reducing costs.
[0003]
An example of a connection structure between batteries used in such a battery module is shown in FIG.
This connection structure is a structure in which cylindrical batteries M and N are connected in series by a connection member 40 having the shape shown in FIG.
The connecting member 40 has a dish shape in which the bottom portion and the cylindrical portion are integrated, and a slit D4 or a small hole D1 for reducing an invalid diversion during welding is provided in the bottom portion and the cylindrical portion, respectively.
[0004]
When the connection structure is formed using the connection member 40, first, the bottom of the connection member 40 is positioned and placed on the upper surface of the positive electrode terminal N3 that is positioned in a protruding state on the battery N. Subsequently, two welding electrodes are brought into contact with each other across the slit D4, and both are welded by a series resistance welding method. After that, the bottom M1 of the battery M is inserted into the cylindrical portion of the connecting member, the two welding electrodes are brought into contact with each other across the small hole D1, and both are welded by a series resistance welding method. Two batteries are connected in series.
[0005]
[Problems to be solved by the invention]
However, the conventional connection structure between batteries has the following problems.
As the number of connected batteries increases as the output of the battery module increases, the number of connected batteries is increased compared to the case where the number of connected batteries is about two. The load increases. Specifically, when the rotational moment in the circumferential direction of the battery that occurs when tightening the bolts for connecting external terminals to both ends of the battery module, or when the bending stress applied to the battery module during actual use becomes very large There is. In such a case, the positive terminal N3 is located at the center in the radial direction of the battery N, and the top surface thereof is narrow, and a large rotational moment or bending stress is concentrated at the welded portion between the positive terminal N3 and the bottom of the connecting member 40. The welded part may break. That is, this connection structure has a problem of insufficient mechanical strength.
[0006]
Similarly, as the output of the battery module increases, a large current flows through the connection structure. As a result, power loss caused by electric resistance in the connection structure between the batteries, which has not been a problem in the past, cannot be ignored.
In this connection structure, the shape and size of the nugget formed by the series resistance welding method varies from welding to welding due to subtle differences in the contact state between the connecting member and the battery during welding. There is also a problem that the reliability is low.
[0007]
Furthermore, in the case of this connection structure, the connection member 40 is placed on the positive electrode terminal N3 of the battery N and then welded. However, at this time, the connection member 40 is not displaced in the radial direction of the battery N. It is necessary to position both. This is because the assembled battery module will not be straight unless such treatment is performed. For this reason, a jig for positioning the connection member E and the battery N is required when forming the connection structure described above.
[0008]
This requires carefulness in the welding operation of the connecting member 40 to the battery N, which lowers productivity, and at the same time, requires a separate positioning jig, leading to an increase in cost. Become.
The present invention solves all the above-mentioned problems in the connection member between batteries and the connection structure between batteries using the prior art, and the connection structure between the batteries using the same ensures sufficient mechanical strength. Then, it aims at providing the connection member between the batteries which has low electrical resistance, is formed at low cost, and has high productivity and reliability, and a connection structure between the batteries using the same.
[0009]
[Means for Solving the Problems]
In order to achieve the above-described object, in the present invention, a plurality of cylindrical batteries including a sealing plate to which a positive electrode terminal is attached and an outer can whose upper end opening is sealed by the sealing plate are connected in series. A connecting member between the batteries made of the conductive material, and a cylindrical portion having a bottomed cylindrical shape that forms a receiving area capable of storing the bottom portion of the cylindrical battery, and a central portion of the bottom wall of the large cylindrical portion Is formed to be recessed to the opposite side of the housing region, and a bottomed cylindrical small cylindrical portion concentric with the large cylindrical portion and a central portion of the bottom wall of the small cylindrical portion bulge toward the housing region side. It is formed by the no large cylindrical portion and concentric cylindrical and has a positive terminal and a substantially same size of the through hole before Symbol cylindrical batteries in the middle of the end face and the end face located in the housing area side The large cylindrical portion is provided on its peripheral wall, and the large cylindrical portion A plurality of small holes each having an opening opened in a cylindrical portion; and an annular projecting edge projecting radially inward of the large cylindrical portion from a peripheral edge of the opening of these small holes, A plurality of small holes provided on the bottom wall of the small hole and having openings opened to the outside of the small cylindrical portion, and an annular projecting edge projecting from the periphery of the opening of the small holes toward the side opposite to the accommodation region The bulging portion further includes an inner flange left on the end surface due to a difference between the outer diameter of the bulging portion and the inner diameter of the through hole. Is provided (claim 1).
[0010]
In the present invention, it is preferable that the height of the front Symbol projecting edge is 0.2 to 0.7 mm (claim 2).
[0011]
Moreover, in this invention, the connection member between the batteries of Claim 1 or 2 with which nickel plating with a thickness of 3 micrometers or less is given is provided (Claim 3 ).
Furthermore, in the present invention, the plurality of columnar batteries are battery modules connected in series using the connection member between the batteries according to any one of claims 1 to 3 , and the bottom wall of the small cylindrical portion and between the sealing plate of the cylindrical battery, and the is between the can bottom portion of the peripheral wall and the cylindrical battery of the large cylindrical portion, are welded in the series resistance welding method with nugget by dissolving the projecting edge A battery module is provided (Claim 4 ).
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, reference examples of connecting members between batteries according to the present invention will be described with reference to the drawings.
As shown in FIG. 2, which is a cross-sectional view taken along the line II-II in FIGS. 1 and 1, the connecting member 10 is integrally formed with a large cylindrical portion A having an upper opening and a small cylindrical portion B positioned therebelow. It is formed in a dish shape having a stepped portion.
[0013]
The large cylindrical portion A has a diameter that is the same as the diameter of the can bottom M1 of the cylindrical battery M, as indicated by the phantom line in FIG. 2, and the can bottom M1 of the battery M is accommodated therein. It can be done.
The small cylindrical portion B is slightly higher in height than the positive terminal N3 positioned in a state of protruding from the top of the columnar battery N, and can be contacted with the sealing plate N2 positioned on the top surface of the columnar battery N. And has a positive electrode terminal N3 and a through hole B2 of substantially the same size at the center of the bottom surface.
[0014]
A plurality of small holes C1 are formed in the side portion A1 of the large cylindrical portion A and the bottom surface B1 of the small cylindrical portion B, respectively.
And the burr | flash part C2 is protrudingly formed from the edge of the small hole C1. At this time, the burr part C2 formed on the side part A1 of the large cylindrical part protrudes to the inside of the side part A1, and the burr part C2 formed on the bottom surface B1 of the small cylindrical part B is the small cylindrical part B. It protrudes further downward.
[0015]
Next, the implementation form of the connecting member between the battery according to the present invention.
As shown in FIG. 5, which is a cross-sectional view taken along the line VV in FIGS. 3A, 3B, and 3A, the connecting member 20 has an upper portion similar to the connecting member 10 described above. The large cylindrical portion A that is open and the small cylindrical portion B that is positioned below the large cylindrical portion A are integrally formed to have a dish shape having a stepped portion. However, in this embodiment, the small cylindrical portion B is an annular portion B1 1 having a sealing plate N2 and contactable bottom B1 2 located on the upper surface of the cylindrical battery N, above the inner edge of the bottom B1 1 A bulging portion B3 that bulges out, and has a through hole B2 that is substantially the same size as the positive electrode terminal N3 at the center of the upper surface of the bulging portion B3.
[0016]
Then, the bottom surface B1 2 of the annular portion B1 1 side A1 and the small cylindrical portion B of the large cylindrical portion A, respectively, a plurality of small holes C1 are formed.
The connecting member 10 and the connecting member 20 described above are simply formed by, for example, punching a small hole C1 at a predetermined location so that the burr portion C2 is formed simultaneously after press forming a desired thickness such as an iron plate. Can be manufactured. In addition, it is preferable to manufacture the connecting member 10 and the connecting member 20 using an iron plate whose surface is previously plated with nickel because the welding strength after series resistance welding described later is increased. In that case, the plating thickness should just be 3 micrometers or less. The nickel plating may be formed by post-plating the surface of the connecting member after the connecting member is manufactured.
[0017]
The shape of the small hole C1 is illustratively circular, but may be a slit shape, an elliptical shape, a rectangular shape or the like as shown in FIG. Further, on the side A1 of the connecting member, providing the slit A1 1 2-4 point reaching its periphery upper end as shown in FIG. 4, housing the can bottom M1 of the cylindrical batteries to large cylindrical portion A of the connecting members slit A1 1 it is possible to smoothly accommodate open when.
[0018]
Next, the method for forming the connection structure of the present invention will be described in the case of using the connection member 20 between batteries.
First, the connection member 20 is disposed on the upper surface (plus electrode) of the cylindrical battery N.
At this time, when the positive terminal N3 of the battery N is fitted into the through hole B2 of the connection member 20, the connection member 20 is positioned in the radial direction of the battery N. The same bottom surface B1 2 of the small cylindrical portion B simultaneously contacted via sealing plate N2 and burrs C2 of the battery N, the line of these burrs C2 is the edge of the stoma C1 substantially to the welding point at the same length Come into contact.
[0019]
Then, the annular portion B1 1 of the bottom surface B1 2 series-type by arranging the two electrodes from above on both sides of the small holes C1 located resisting welding is performed, the nugget C3 burr portion C2 is melted The connection member 20 is welded and fixed to the battery N by forming. At this time, since the small hole C1 prevents the reactive current, the burr portion C2 is efficiently melted to become the nugget C3. Further, the burr portion C2 can always make the cross-sectional area of the portion where the welding current flows constant for each welding, so that highly reliable welding with small variations in welding strength is possible.
[0020]
In addition, it is preferable that the protrusion height of the burr | flash part C2 is 0.2 mm-0.7 mm. If it is 0.19 mm or less, the welding current flows through other parts, and if it is 0.75 mm or more, it becomes difficult to form it almost uniformly on the edge of the small hole. The variation of the is increased.
Subsequently, the can bottom part (minus pole) M1 of the cylindrical battery M is accommodated in the large cylindrical part A of the connecting member 20. The side surface of the can bottom portion M1 comes into contact with the inside of the side portion A1 of the large cylindrical portion A via the burr portion C2, and each burr portion C2 comes into line contact with the side portion A1 of the large cylindrical portion A. In addition, since the small cylindrical part B is higher than the positive electrode terminal N3 of the battery N previously fixed to the connection member 20, the positive electrode terminal N3 does not become an obstacle for accommodation.
[0021]
Then, series resistance welding is performed by arranging two welding electrodes on both sides of the small hole C1 located on the side portion A1 of the large cylindrical portion A. As a result, the can bottom portion M1 and the large cylindrical portion A are welded and fixed, and at this time, for the same reason as described above, highly reliable welding with small variations in welding strength is realized.
In this way, as shown in FIG. 6, an example of the connection structure between the batteries according to the present invention in which the cylindrical batteries M and N are sequentially connected in series via the connection member 20 is formed.
[0022]
In the connection structure between the battery, on the sealing plate N2 located on the upper surface of the battery N, bottom B1 2 of the annular portion B1 1 of the connecting member 20 is welded and fixed via the nugget C3, further, a battery M The side surface of the can bottom portion M1 is welded and fixed to the side portion A1 of the large cylindrical portion A of the connecting member 20 via a nugget C3.
Thus, the bottom surface B1 2 of the annular portion B1 1 of the connecting member 20, rather than the upper surface of the positive terminal N3 of the battery N, since the sealing plate N2 having a larger outer diameter to support than the rotation moment in this part Alternatively, even when bending stress is applied, a large rotational moment or stress does not concentrate on the nugget C3 formed between them. Therefore, the nugget C3 is prevented from being broken and the mechanical strength of the connection structure is ensured. At the same time, when the battery module is discharged, to flow directly between the annular portion B1 1 and the sealing plate N2 without passing through the current positive terminal N3, it is possible to lower the electrical resistance of the connection structure it can.
[0023]
In the connection structure of the present invention, the outer diameter of the nugget C3 formed by the diameter of the small hole C1 can be increased, so that the welding strength can be easily improved. Further, a synthetic resin such as polycarbonate is formed in the space formed according to the height of the small cylindrical portion B between the bottom surface of the large cylindrical portion A and the upper surface of the columnar battery connected to the small cylindrical portion B. If the insulating ring which becomes is interposed, the short circuit which occurs when they contact can be prevented.
[0024]
(Example)
As an example, using a connecting member 20 in which a total of eight small holes with a diameter of 4 mm having burr portions with a height of about 0.2 mm are formed on the bottom surface of the annular portion and the side portion of the large cylindrical portion. A battery module (M6) in which six single-size cylindrical batteries were connected by the connection structure of the present invention was produced. In addition, as a comparative example, a battery module was fabricated in the same manner as in the example using a connection member having the same configuration as the connection member 20 except that the small hole did not have a burr portion. Then, for each of the three battery modules of the example and the comparative example, the middle part is fixed by using a chuck, and rotational torque is applied to the one end part in the circumferential direction of the battery to rotate the module when it is destroyed. The average value of torque was determined (rotational strength test).
[0025]
Further, for each of the five battery modules of the same example and comparative example as described above, the tensile strength in the longitudinal direction of the battery module was measured, and the average value and variation (standard deviation) were obtained.
The above results are shown in Table 1 together with the welding conditions.
[0026]
[Table 1]
Figure 0004996792
[0027]
As is apparent from Table 1, the rotational strength of the example is higher than that of the comparative example and exceeds the specified torque of 1.76 N · m of the battery module (M6), so that the mechanical strength is sufficiently secured. This is considered to be because the strength of each welded portion was improved due to the efficient formation of nuggets by the burr portion during welding.
Moreover, it can be seen from the tensile test results that the variation in the tensile strength is suppressed in the example than in the comparative example. This is considered to be because the cross-sectional area through which the welding current flows is kept constant for each welding by the burr.
[0028]
Furthermore, when one battery module of the above-described embodiment was charged at 15 C to 50% depth (SOC) at 15 C, the output voltage after 10 seconds was measured and found to be 5.92 V. Since the output voltage under the same conditions in the battery module having the connection structure between the batteries shown in FIG. 7 was 5.80 V, the output voltage in the example was larger than that in the conventional case. High output of the battery module has been achieved. This is considered to be because the electrical resistance of the connection structure is reduced by connecting the bottom surface of the annular portion and the sealing plate, and the power loss there is suppressed.
[0029]
【Effect of the invention】
The connecting member between batteries and the connecting structure between batteries using the same according to the present invention have the following effects.
(1) Since the annular portion and the sealing plate are welded and fixed, coupled with the formation of the nugget by the burr portion at the time of welding, the mechanical strength of the obtained connection structure is large and the variation thereof is small.
[0030]
(2) Since the annular portion and the sealing plate are welded and fixed, the electric resistance of the obtained connection structure is low, and a high output battery module can be manufactured.
(3) Since a through hole for positioning is formed in the connecting member, the mutual positional relationship between the two is automatically adjusted when the connecting member is arranged on the upper surface of the battery, and welding is immediately performed in the next step. It is possible to shift to work, assembly work becomes very simple, and a positioning jig is not required.
[0031]
Therefore, productivity of the obtained connection structure can be improved, and cost reduction can be realized.
[Brief description of the drawings]
FIG. 1 is a perspective view of a reference example of a connection member between batteries according to the present invention.
2 is a cross-sectional view taken along line II-II in FIG.
Is a perspective view of an embodiment of a connection member between the battery according to the present invention; FIG.
4 is a perspective view of a modification of the embodiment of a connection member between the battery according to the present invention.
5 is a cross-sectional view taken along line VV in FIG. 3. FIG.
FIG. 6 is a schematic cross-sectional view showing an example of a battery module according to the present invention.
FIG. 7 is a schematic cross-sectional view showing an example of a conventional connection structure between batteries.
FIG. 8 is a perspective view showing an example of a connection member used conventionally.
[Explanation of symbols]
M, N cylindrical batteries M1 can bottom N2 sealing plate N3 positive terminal 10 and 20 connecting member A large cylindrical portion A1 large cylindrical portion side A1 1 slit B small cylindrical portion B1 circle of the bottom surface B1 1 small cylindrical portion of the small cylindrical portion annular portion B1 2 small cylindrical portion of the bottom surface B2 small cylindrical portion of the annular portion of the through-hole B3 bulging portion C1 small hole C2 burrs of the small cylindrical portion (protruding edge)
C3 Nugget

Claims (4)

正極端子が取り付けられている封口板及び前記封口板により上端開口が封口された外装缶を備えた円柱状電池を複数個直列に接続するための導電材料から成る電池間の接続部材であって、
前記円柱状電池の缶底部を収容可能な収容領域を形成する有底円筒状の大円筒部と、
前記大円筒部の底壁の中央部を前記収容領域とは反対側へ凹ませて形成され、前記大円筒部と同心の有底円筒状の小円筒部と、
前記小円筒部の底壁の中央部を前記収容領域側へ膨出させて形成され、前記大円筒部と同心の円筒状をなし、且つ、前記収容領域側に位置した端面及びこの端面の中央に前記円柱状電池の正極端子と略同寸の貫通孔を有する膨出部と
を備え、
前記大円筒部は、
自身の周壁に設けられ、前記大円筒部内に開口した開口を有する複数の小孔と、これら小孔の前記開口の周縁から前記大円筒部の径方向内側に向かって突出する環状の突出縁とを含み、
前記小円筒部は、
自身の底壁に設けられ、前記小円筒部外に開口した開口を有する複数の小孔と、これら小孔の前記開口の周縁から前記収容領域とは反対側に向かって突出する環状の突出縁とを含み、
前記膨出部は、
前記端面に前記膨出部の外径と前記貫通孔の内径との間の差によって残されたインナフランジを更に有することを特徴とする電池間の接続部材。
A connecting member between batteries made of a conductive material for connecting in series a plurality of cylindrical batteries each having a sealing plate to which a positive electrode terminal is attached and an outer can whose sealing opening is sealed by the sealing plate ,
A bottomed cylindrical large cylindrical portion that forms an accommodating region capable of accommodating a can bottom of the columnar battery;
A central portion of the bottom wall of the large cylindrical portion is formed to be recessed to the opposite side of the accommodating region, and a bottomed cylindrical small cylindrical portion concentric with the large cylindrical portion;
An end surface that is formed by bulging the central portion of the bottom wall of the small cylindrical portion toward the accommodation region side, is concentric with the large cylindrical portion, and is located on the accommodation region side, and the center of the end surface a bulge portion having a positive terminal and a substantially same size of the through hole before Symbol cylindrical batteries
With
The large cylindrical portion is
A plurality of small holes provided on its peripheral wall and having openings opened in the large cylindrical portion; and an annular projecting edge projecting radially inward of the large cylindrical portion from a peripheral edge of the small holes. Including
The small cylindrical portion is
A plurality of small holes provided on the bottom wall of the small hole and having openings opened to the outside of the small cylindrical portion, and an annular projecting edge projecting from the periphery of the opening of the small holes toward the side opposite to the accommodation region Including
The bulging part is
The connection member between batteries further having an inner flange left on the end face due to a difference between an outer diameter of the bulging portion and an inner diameter of the through hole .
前記突出縁の高さが0.2mm〜0.7mmである請求項1に記載の電池間の接続部材。The connection member between batteries according to claim 1 , wherein a height of the protruding edge is 0.2 mm to 0.7 mm. 厚み3μm以下のニッケルめっきが施されている請求項1または2に記載の電池間の接続部材。The connection member between batteries of Claim 1 or 2 with which nickel plating of thickness 3 micrometers or less is given. 複数の円柱状電池が、請求項1〜のいずれかの電池間の接続部材を用いて直列に接続された電池モジュールであって、前記小円筒部の底前記円柱状電池の封口板の間、および前記大円筒部の周壁前記円柱状電池の缶底部の間が、前記突出縁を溶解してナゲットとするシリーズ式抵抗溶接法で溶接されていることを特徴とする電池モジュールA plurality of cylindrical batteries, a battery modules connected in series with a connecting member between one of the battery of claims 1 to 3, the sealing plate of the bottom wall and the cylindrical battery of the small cylindrical portion cells during, and wherein between the can bottom portion of the peripheral wall and the cylindrical battery of the large cylindrical portion, characterized in that it is welded in the series resistance welding method with nugget by dissolving the protruding edge of the Module .
JP2001095283A 2001-03-29 2001-03-29 Battery connection member and battery module using the same Expired - Lifetime JP4996792B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001095283A JP4996792B2 (en) 2001-03-29 2001-03-29 Battery connection member and battery module using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001095283A JP4996792B2 (en) 2001-03-29 2001-03-29 Battery connection member and battery module using the same

Publications (2)

Publication Number Publication Date
JP2002298822A JP2002298822A (en) 2002-10-11
JP4996792B2 true JP4996792B2 (en) 2012-08-08

Family

ID=18949353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001095283A Expired - Lifetime JP4996792B2 (en) 2001-03-29 2001-03-29 Battery connection member and battery module using the same

Country Status (1)

Country Link
JP (1) JP4996792B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100515356B1 (en) 2003-06-19 2005-09-15 삼성에스디아이 주식회사 Secondary battery and method for fabricating safety valve thereof
KR100874055B1 (en) 2007-01-25 2008-12-12 삼성에스디아이 주식회사 Inter-Connecter between Unit Cell and Serial Cell equipped it
KR100949333B1 (en) 2007-11-12 2010-03-26 삼성에스디아이 주식회사 Battery module
KR100949335B1 (en) 2007-11-12 2010-03-26 삼성에스디아이 주식회사 Battery Module
KR100989119B1 (en) 2008-10-08 2010-10-20 삼성에스디아이 주식회사 Rechargealbe battery and battery module
US9184425B2 (en) 2009-01-13 2015-11-10 Samsung Sdi Co., Ltd. Battery pack

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60105166A (en) * 1983-11-10 1985-06-10 Japan Storage Battery Co Ltd Alkaline storage battery
JPH04368771A (en) * 1991-06-17 1992-12-21 Sanyo Electric Co Ltd Manufacture of non-sintered type electrode for alkaline storage battery
JPH0562666A (en) * 1991-08-29 1993-03-12 Sanyo Electric Co Ltd Manufacture of non-sintered type electrode for alkaline storage battery
JP3312853B2 (en) * 1996-09-26 2002-08-12 松下電器産業株式会社 Battery connection structure
JP3488064B2 (en) * 1997-12-05 2004-01-19 松下電器産業株式会社 Cylindrical storage battery
JP2000251781A (en) * 1999-02-25 2000-09-14 Canon Inc Image display device
JP2000268793A (en) * 1999-03-17 2000-09-29 Toshiba Battery Co Ltd Cell interconnection structure
JP2000357502A (en) * 1999-06-15 2000-12-26 Toshiba Battery Co Ltd Battery connecting structure
JP2001035473A (en) * 1999-07-15 2001-02-09 Toshiba Battery Co Ltd Battery connecting member and vehicle

Also Published As

Publication number Publication date
JP2002298822A (en) 2002-10-11

Similar Documents

Publication Publication Date Title
EP2668684B1 (en) Rechargeable battery pack including low-resistance battery-pack interconnect
KR101239456B1 (en) Inter-battery connection device
CN103227307B (en) Rectangular secondary cell
US8906545B2 (en) Prismatic secondary battery
JP4974734B2 (en) Secondary battery and secondary battery module
EP1760804B1 (en) No-welding contact type secondary battery
US20050287427A1 (en) Battery module
EP2380226B1 (en) Modular cid assembly for a lithium ion battery
KR20070122471A (en) High capacity lithium ion secondary battery with metal casing
JP3709197B2 (en) Cylindrical battery and manufacturing method thereof
JP3951526B2 (en) Cylindrical storage battery
JP2001256954A (en) Electricity storage device
EP3726605A1 (en) Cylindrical lithium ion secondary battery
JP4601840B2 (en) Battery connection structure
JP4996792B2 (en) Battery connection member and battery module using the same
KR20070081559A (en) No-welding type battery pack using forced-inserting type rivet
JPH10312783A (en) Secondary battery and its manufacture
JP3574772B2 (en) Cylindrical battery and method of manufacturing the same
JP2000357502A (en) Battery connecting structure
JP2008159357A (en) Cylindrical secondary battery
WO2000039868A1 (en) Cylindrical alkaline storage battery and method of manufacturing the same
JP2000268793A (en) Cell interconnection structure
JP2001126703A (en) Module cell
JP2002246003A (en) Connection member for battery
JP2002246006A (en) Battery connection member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070914

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120411

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120514

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4996792

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

EXPY Cancellation because of completion of term