JP4995134B2 - Wind turbine monitoring device, method and program - Google Patents
Wind turbine monitoring device, method and program Download PDFInfo
- Publication number
- JP4995134B2 JP4995134B2 JP2008093738A JP2008093738A JP4995134B2 JP 4995134 B2 JP4995134 B2 JP 4995134B2 JP 2008093738 A JP2008093738 A JP 2008093738A JP 2008093738 A JP2008093738 A JP 2008093738A JP 4995134 B2 JP4995134 B2 JP 4995134B2
- Authority
- JP
- Japan
- Prior art keywords
- characteristic
- data
- windmill
- data file
- diagnosis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/72—Wind turbines with rotation axis in wind direction
Landscapes
- Wind Motors (AREA)
Description
本発明は、風力エネルギーを電力に変換する風車に適用するのに好適な風車の監視装置及び方法並びにプログラムに関するものである。 The present invention relates to a windmill monitoring apparatus and method suitable for application to a windmill that converts wind energy into electric power, and a program.
従来、風車の監視技術では、例えば、風車の各所に取り付けられたセンサから運転条件に応じた計測データを自動取得し、各計測項目に係る計測データと予め登録されている閾値とをそれぞれ比較することにより、運転状態(正常、要注意、故障等)を監視することが一般に知られている。
ところで、各センサによって計測された計測データから得られる各計測項目に係る状態量が、異常を示すか否かの判定は専門家でも非常に難しく、上述のように、計測データと、予め登録されている閾値とを比較することにより異常を判定するような方法では、精度の高い判断結果を期待できない。
また、複数の計測項目間で複数の組み合わせの相関があるときには、これらの相関を考慮して運転状態を判定することが好ましいが、このような複雑な処理については自動により判定することは困難であった。
また、診断精度の向上を図るために、専門家による診断判定を行うことも考えられるが、多大な計測データを処理することは、労力、時間の面から好ましくない。また、専門家による診断の場合には、運転時の異常検知や要因分析の精度・再現性が専門家個人の知見や熟練度に依存することとなる。従って、風車設備の異常検知や要因分析の診断レベルに大きなバラツキが生じてしまうという問題が生ずる。
By the way, it is very difficult even for an expert to determine whether or not the state quantity related to each measurement item obtained from the measurement data measured by each sensor indicates an abnormality. As described above, the measurement data is registered in advance. With a method of determining an abnormality by comparing with a threshold value, a highly accurate determination result cannot be expected.
In addition, when there are a plurality of combinations of correlations among a plurality of measurement items, it is preferable to determine the driving state in consideration of these correlations, but it is difficult to automatically determine such complicated processing. there were.
Further, in order to improve diagnosis accuracy, it may be possible to make a diagnosis by an expert, but it is not preferable from the viewpoint of labor and time to process a large amount of measurement data. In the case of diagnosis by an expert, the accuracy and reproducibility of abnormality detection during driving and factor analysis depends on the knowledge and skill level of the individual expert. Therefore, there arises a problem that a large variation occurs in the diagnosis level of wind turbine equipment abnormality detection and factor analysis.
本発明は、上記問題を解決するためになされたもので、風車の状態監視を自動で行うとともに、その状態評価を適切な基準に従い定量的に行うことのできる風車の監視装置及び方法並びにプログラムを提供することを目的とする。 The present invention has been made to solve the above-described problem. A wind turbine monitoring apparatus, method, and program capable of automatically monitoring a wind turbine state and quantitatively evaluating the state according to an appropriate standard. The purpose is to provide.
上記課題を解決するために、本発明は以下の手段を採用する。
本発明は、風車に設けられた複数のセンサによって計測された計測データに基づいて作成される特性値を用いて、前記風車の状態を監視する風車の監視装置であって、計測時間に関連付けられた複数の特性値が特性項目別に格納されているとともに、同じ計測時間に関連付けられている特性値を一つのデータセットとした場合に、該データセットには、所定の特性項目の特性値に応じて決定されるクラス分類を示す識別情報が付与されて格納されている第1記憶手段と、計測時間に関連付けられた複数の特性値が特性項目別に格納されているとともに、同じ計測時間に関連付けられている特性値を一つのデータセットとした場合に、該データセットには、所定の特性項目の特性値に応じて決定されるクラス分類を示す識別情報が付与されており、かつ、前記データセットを構成する特定の前記特性項目の特性値が予め定義されている所定の基準範囲に属している第2記憶手段と、前記第1記憶手段から診断に用いる複数の前記データセットを抽出して設定するとともに、前記第2記憶手段から前記診断に用いる複数の前記データセットを抽出して設定する診断設定手段と、前記診断設定手段によって設定された前記被診断データファイルのデータセット及び前記基準データファイルのデータセットを元に、統計的演算手法を用いて、前記風車の状態を表す状態指標値を算出する指標値算出手段と、前記指標値算出手段によって算出された状態指標値に基づいて、前記風車の状態を評価する評価手段と、前記評価手段による評価結果を通知する通知手段とを備える風車の監視装置を提供する。
In order to solve the above problems, the present invention employs the following means.
The present invention is a windmill monitoring device that monitors the state of the windmill using characteristic values created based on measurement data measured by a plurality of sensors provided in the windmill, and is associated with a measurement time. When a plurality of characteristic values are stored for each characteristic item and the characteristic values associated with the same measurement time are set as one data set, the data set corresponds to the characteristic value of a predetermined characteristic item. The first storage means storing the identification information indicating the class classification determined in this manner and a plurality of characteristic values associated with the measurement time are stored for each characteristic item and associated with the same measurement time If the characteristic value is a single data set, identification information indicating the class classification determined according to the characteristic value of a predetermined characteristic item is assigned to the data set. And a second storage means belonging to a predetermined reference range in which characteristic values of the specific characteristic items constituting the data set are defined in advance, and a plurality of the data used for diagnosis from the first storage means A diagnostic setting means for extracting and setting a set and extracting and setting a plurality of the data sets used for the diagnosis from the second storage means; and data of the diagnostic data file set by the diagnostic setting means Based on the set and the data set of the reference data file, using a statistical calculation method, an index value calculating unit that calculates a state index value representing the state of the windmill, and a state index calculated by the index value calculating unit A wind turbine monitoring device comprising: an evaluation unit that evaluates the state of the wind turbine based on a value; and a notification unit that notifies an evaluation result by the evaluation unit. To.
このように、被診断データファイルと基準データファイルとを用いて、風車の状態を表す状態指標値を算出するので、経験や知見に基づく定性的な評価に代えて、定量的な評価を実現することが可能となる。また、上記状態指標値は、各データセットに付与されたクラス分類が考慮された値となっているので、同じ状況下で取得されたデータ同士を比較することが可能となる。これにより、風車の状態をより的確に評価することが可能となる。 As described above, since the state index value representing the state of the windmill is calculated using the diagnosis data file and the reference data file, quantitative evaluation is realized instead of qualitative evaluation based on experience and knowledge. It becomes possible. Further, since the state index value is a value in consideration of the class classification given to each data set, it is possible to compare data acquired under the same situation. Thereby, it becomes possible to evaluate the state of a windmill more appropriately.
上記風車の監視装置において、前記特性項目は、風車を取り巻く環境に関する環境区分、風車運転の性能・発電条件に関する性能区分、及び風車に設定された各種監視部位に係る運転状態の診断に関する特性区分の3つに大別されることとしてもよい。 In the wind turbine monitoring device, the characteristic items include an environmental classification related to an environment surrounding the wind turbine, a performance classification related to the performance and power generation conditions of the wind turbine, and a characteristic classification related to diagnosis of an operation state related to various monitoring parts set in the wind turbine. It is good also as being roughly divided into three.
上記風車の監視装置において、前記クラス分類は、前記環境区分及び前記性能区分の少なくともいずれか一方に分類される所定の特性項目の特性値に応じて決定されることとしてもよい。 In the wind turbine monitoring apparatus, the class classification may be determined according to a characteristic value of a predetermined characteristic item classified into at least one of the environmental classification and the performance classification.
このように環境区分及び性能区分に基づいてクラス分類を決定するので、特性区分に分類される特性値が取得されたときの環境の状況や発電状況に応じて、データセットを分類することが可能となる。 Since the classification is determined based on the environmental classification and performance classification in this way, it is possible to classify the data set according to the environmental situation and power generation situation when the characteristic values classified in the characteristic classification are acquired. It becomes.
上記風車の監視装置において、前記第2記憶手段に格納される複数の前記データセットは、前記風車から収集された複数の前記計測データから生成される複数のデータセットのうち、前記特定の特性項目に係る特性値が予め設定されている基準範囲に属するデータセットのみが抽出されたものとしてもよい。 In the wind turbine monitoring device, the plurality of data sets stored in the second storage unit are the specific characteristic items among the plurality of data sets generated from the plurality of measurement data collected from the wind turbine. Only a data set belonging to a reference range in which the characteristic values related to are set in advance may be extracted.
同じ風車において計測された計測データを元に、基準データファイルを生成することから、固体の特性等を反映させた基準データファイルを用いて、風車の状態を評価することが可能となる。これにより、風車の状態をより的確に判断することが可能となる。 Since the reference data file is generated based on the measurement data measured in the same windmill, it is possible to evaluate the state of the windmill using the reference data file reflecting the characteristics of the solid. Thereby, it becomes possible to judge the state of a windmill more correctly.
上記風車の監視装置において、前記基準範囲は、前記クラス分類別に設定されていることとしてもよい。
このようにすることで、クラス分類別に設定された適切な基準範囲を用いて、基準データファイルを作成することが可能となる。
In the wind turbine monitoring apparatus, the reference range may be set for each class classification.
By doing in this way, it becomes possible to create a reference data file using an appropriate reference range set for each class classification.
上記風車の監視装置において、前記指標値算出手段は、前記診断設定手段によって設定された前記基準データの特性分布を求めるとともに、前記被診断データの特性分布を求め、互いの特性分布が乖離している距離を定量的に求めることで前記状態指標値を算出することとしてもよい。 In the wind turbine monitoring apparatus, the index value calculation means obtains the characteristic distribution of the reference data set by the diagnosis setting means, obtains the characteristic distribution of the diagnosis data, and the characteristic distributions are different from each other. The state index value may be calculated by quantitatively obtaining the distance.
このように、互いの特性分布を求め、これらの分布が乖離している距離を定量的に求めるので、被診断データが相対的にどの程度、基準データの特性分布から離れているかを定量的に評価することが可能となる。 In this way, the characteristic distributions of each other are obtained, and the distance at which these distributions are separated is obtained quantitatively, so it is possible to quantitatively determine how far the diagnosis data is from the characteristic distribution of the reference data. It becomes possible to evaluate.
上記風車の監視装置において、前記指標値算出手段により算出される前記状態指標値は、例えば、マハラノビス・タグチメソッドを用いて算出されるマハラノビス距離である。 In the wind turbine monitoring apparatus, the state index value calculated by the index value calculation means is, for example, a Mahalanobis distance calculated using a Mahalanobis Taguchi method.
上記風車の監視装置において、前記評価手段によって異常が発生していると評価された場合に、その異常の要因分析を行う要因分析手段を備えることとしてもよい。 The wind turbine monitoring device may further include a factor analysis unit that performs a factor analysis of the abnormality when the evaluation unit evaluates that an abnormality has occurred.
このように、要因分析を行うことにより、どの箇所が原因で異常と判断されたのかを速やかに把握することが可能となる。これにより、迅速な対応が可能となる。 In this way, by performing factor analysis, it is possible to quickly grasp which part is determined to be abnormal due to the cause. This makes it possible to respond quickly.
本発明は、複数の風車を備えるウィンドファームの一部または全体の状態を監視する風車群の監視システムであって、上記いずれかの風車の監視装置を備え、前記風車の監視装置によって求められた各前記風車の状態指標値及び前記ウィンドファームの一部または全体の運転性能に基づいて、ウィンドファームの一部または全体の状態を監視する風車群の監視システムを提供する。 The present invention is a wind turbine group monitoring system for monitoring the state of a part or the whole of a wind farm including a plurality of wind turbines, comprising any one of the wind turbine monitoring devices described above, and obtained by the wind turbine monitoring device. Provided is a wind turbine group monitoring system that monitors the state of a part or the whole of a wind farm based on the state index value of each wind turbine and the operation performance of the part or the whole of the wind farm.
このような構成によれば、ウィンドファームを構成する一部(セグメント)、或いは全体を相対的に評価して、他の風車に比べて異なる特性を示している風車を識別することが可能となる。このように、風車間でその状態を評価することにより、より適切な判定基準を用いて、各風車の状態の監視を行うことが可能となる。 According to such a configuration, it is possible to relatively evaluate a part (segment) or the whole of the wind farm and identify a wind turbine that exhibits different characteristics compared to other wind turbines. . In this way, by evaluating the state between wind turbines, it is possible to monitor the state of each wind turbine using a more appropriate criterion.
本発明は、風車に設けられた複数のセンサによって計測された計測データに基づいて作成される特性値を用いて、前記風車の状態を監視する風車の監視方法であって、計測時間に関連付けられた複数の特性値が特性項目別に格納された被診断データファイルを作成する過程と、前記被診断データファイルにおいて、同じ計測時間に関連付けられている前記特性値を一つのデータセットとした場合に、該データセットに、所定の特性項目の特性値に応じて決定されるクラス分類を示す識別情報を付与する過程と、特定の特性項目に関する特性値が、予め定義されている所定の基準範囲に属しているとともに、各特性項目の特性値が計測時間に関連付けられている基準データファイルを作成する過程と、前記基準データファイルにおいて、同じ計測時間に関連付けられている前記特性値を一つのデータセットとした場合に、該データセットに、所定の特性項目の特性値に応じて決定されるクラス分類を示す識別情報を付与する過程と、前記被診断データファイルから診断に用いる複数の前記データセットを抽出して設定するとともに、前記基準データファイルから前記診断に用いる複数の前記データセットを抽出して設定する過程と、設定した前記被診断データファイルのデータセット及び前記基準データファイルのデータセットを元に、統計的演算手法を用いて、前記風車の状態を表す状態指標値を算出する過程と、前記状態指標値に基づいて、前記風車の状態を評価する過程と、前記評価の結果を通知する過程とを有する風車の監視方法を提供する。 The present invention is a windmill monitoring method for monitoring the state of the windmill using characteristic values created based on measurement data measured by a plurality of sensors provided in the windmill, and is associated with a measurement time. In the process of creating a diagnosis data file in which a plurality of characteristic values are stored for each characteristic item, and in the diagnosis data file, when the characteristic values associated with the same measurement time are set as one data set, The process of assigning identification information indicating the class classification determined according to the characteristic value of the predetermined characteristic item to the data set, and the characteristic value related to the specific characteristic item belong to a predetermined reference range. In addition, in the process of creating a reference data file in which the characteristic values of each characteristic item are associated with the measurement time, the same measurement is performed in the reference data file. When the characteristic value associated with time is set as one data set, the process of giving identification information indicating a class classification determined according to the characteristic value of a predetermined characteristic item to the data set; Extracting and setting a plurality of the data sets used for diagnosis from the diagnosis data file, extracting and setting the plurality of data sets used for the diagnosis from the reference data file, and the set diagnosis data Based on the data set of the file and the data set of the reference data file, a process of calculating a state index value representing the state of the windmill using a statistical calculation method, and based on the state index value, There is provided a windmill monitoring method including a process of evaluating a state and a process of notifying a result of the evaluation.
本発明は、風車に設けられた複数のセンサによって計測された計測データに基づいて作成される特性値を用いて、前記風車の状態を監視するのに使用される風車の監視プログラムであって、計測時間に関連付けられた複数の特性値が特性項目別に格納された被診断データファイルを作成する処理と、前記被診断データファイルにおいて、同じ計測時間に関連付けられている前記特性値を一つのデータセットとした場合に、該データセットに、所定の特性項目の特性値に応じて決定されるクラス分類を示す識別情報を付与する処理と、特定の特性項目に関する特性値が、予め定義されている所定の基準範囲に属しているとともに、各特性項目の特性値が計測時間に関連付けられている基準データファイルを作成する処理と、前記基準データファイルにおいて、同じ計測時間に関連付けられている前記特性値を一つのデータセットとした場合に、該データセットに、所定の特性項目の特性値に応じて決定されるクラス分類を示す識別情報を付与する処理と、前記被診断データファイルから診断に用いる複数の前記データセットを抽出して設定するとともに、前記基準データファイルから前記診断に用いる複数の前記データセットを抽出して設定する処理と、設定した前記被診断データファイルのデータセット及び前記基準データファイルのデータセットを元に、統計的演算手法を用いて、前記風車の状態を表す状態指標値を算出する処理と、前記状態指標値に基づいて、前記風車の状態を評価する処理と、前記評価の結果を通知する処理とをコンピュータに実行させるための風車の監視プログラムを提供する。 The present invention is a windmill monitoring program used to monitor the state of the windmill using characteristic values created based on measurement data measured by a plurality of sensors provided in the windmill, A process for creating a diagnosis data file in which a plurality of characteristic values associated with measurement times are stored for each characteristic item, and the characteristic values associated with the same measurement time in the diagnosis data file are stored in one data set. In this case, a process for giving identification information indicating a class classification determined according to the characteristic value of a predetermined characteristic item to the data set, and a characteristic value related to the specific characteristic item are defined in advance. And a process for creating a reference data file in which the characteristic value of each characteristic item is associated with the measurement time, and the reference data file In this case, when the characteristic values associated with the same measurement time are set as one data set, identification information indicating class classification determined according to the characteristic value of a predetermined characteristic item is given to the data set. Extracting and setting a plurality of the data sets used for diagnosis from the diagnosis data file, extracting and setting the plurality of data sets used for the diagnosis from the reference data file, and setting Based on the data set of the diagnosed data file and the data set of the reference data file, a process for calculating a state index value representing the state of the windmill using a statistical calculation method, and based on the state index value And monitoring the windmill for causing the computer to execute a process for evaluating the state of the windmill and a process for notifying the result of the evaluation. To provide a program.
本発明によれば、風車の状態監視を自動で行うことができるとともに、その状態評価を適切な基準に基づいて定量的に行うことができるという効果を奏する。 According to the present invention, it is possible to automatically monitor the state of the windmill, and it is possible to quantitatively perform the state evaluation based on an appropriate standard.
以下に、本発明に係る風車の監視装置及び方法並びにプログラムの各実施形態について、図面を参照して説明する。 DESCRIPTION OF EMBODIMENTS Embodiments of a windmill monitoring apparatus and method and a program according to the present invention will be described below with reference to the drawings.
〔第1の実施形態〕
図1は、風車の概略構成を示した図である。図1に示すように、風車1は、基礎6の上に立設される支柱2と、支柱2の上端に設置されるナセル3と、略水平な軸線周りに回転可能にしてナセル3に設けられるロータヘッド4とを有している。ロータヘッド4には、その回転軸線周りに放射状に複数枚の風車翼5が取り付けられている。これにより、ロータヘッド4の回転軸線方向から風車翼5に当たった風の力が、ロータヘッド4を回転軸線周りに回転させる動力に変換され、この動力が発電機によって電気エネルギーに変換されるようになっている。
[First Embodiment]
FIG. 1 is a diagram showing a schematic configuration of a windmill. As shown in FIG. 1, the
図2は、本実施形態に係る風車の監視装置(以下「監視装置」という。)の概略構成を示したブロック図である。図2に示される本実施形態に係る監視装置は、風車構成の内部もしくは外部いずれの場所に設置されていてもよい。図2に示すように、監視装置10は、コンピュータシステム(計算機システム)であり、CPU(中央演算処理装置)11、RAM(Random Access
Memory)などの主記憶装置12、ROM(Read Only Memory)、HDD(Hard Disk
Drive)などの補助記憶装置13、キーボードやマウスなどの入力装置14、及びモニタやプリンタなどの出力装置15、外部の機器と通信を行うことにより情報の授受を行う通信装置16などで構成されている。
補助記憶装置13には、各種プログラム(例えば、監視プログラム)が格納されており、CPU11が補助記憶装置13から主記憶装置12にプログラムを読み出し、実行することにより種々の処理を実現させる。
FIG. 2 is a block diagram showing a schematic configuration of a wind turbine monitoring device (hereinafter referred to as “monitoring device”) according to the present embodiment. The monitoring device according to the present embodiment shown in FIG. 2 may be installed at any place inside or outside the wind turbine configuration. As shown in FIG. 2, the
Various programs (for example, a monitoring program) are stored in the
図3は、監視装置10が備える機能を展開して示した機能ブロック図である。図3に示されるように、監視装置10は、計測情報記憶部21と、データ生成部22と、クラス分類定義部23と、クラス分類部24と、第1記憶部(第1記憶手段)25と、正常データ条件定義部26と、正常データ抽出部27と、第2記憶部(第2記憶手段)28と、診断設定部(診断設定手段)29と、指標値算出部(指標値算出手段)30と、異常判定部(評価手段)31、通知部(通知手段)32とを備えている。
FIG. 3 is a functional block diagram in which the functions of the
計測情報記憶部21には、センサ毎に複数の測定データからなる複数のデータファイルが格納される。
ここで、各データファイルの各計測データには、その計測データが測定された計測時間が関連付けられている。この計測時間は、後述するクラス分類部24において行われる診断データの作成処理において、データファイル間の各種測定データを互いに関連付ける紐付けパラメータとして機能する。
The measurement
Here, each measurement data of each data file is associated with a measurement time during which the measurement data was measured. This measurement time functions as a linking parameter for associating various measurement data between data files with each other in a diagnostic data creation process performed in a
データ生成部22は、主に、以下に示す2つの処理を実行する。
〔サンプリング時間の統一化処理〕
上述した計測情報記憶部21に格納されている各種データファイルに係る各計測データの計測時間の時間間隔(以下「サンプリング時間」という)は統一されていない。従って、データ生成部22は、まず、これらのサンプリング時間を統一する処理を行う。本実施形態では、各データファイルを1分間隔の計測データとなるように再構築する。
The
[Unification processing of sampling time]
The time interval (hereinafter referred to as “sampling time”) of the measurement time of each measurement data related to various data files stored in the measurement
例えば、サンプリング時間が1分に比べ十分速いときは、1分間に取得された全ての計測データを用いて統計的手法により1分間の代表値を選定する。例えば、代表値は、平均値と標準偏差とにより表される。
このようにすることで、全てのデータファイルの計測データを共通の時間間隔で同期関連付けさせることができる。
For example, when the sampling time is sufficiently faster than 1 minute, a representative value for 1 minute is selected by a statistical method using all measurement data acquired in 1 minute. For example, the representative value is represented by an average value and a standard deviation.
By doing in this way, the measurement data of all the data files can be synchronously related at a common time interval.
〔診断物理量の算出〕
次に、データ生成部22は、計測時間を統一させた各種データファイルのうち、所定のデータファイルを対象に、「診断物理量」の抽出を行う。
つまり、上述のように、上記計測情報記憶部21には、各種センサによって計測された生のデータが格納されることとなるが、各監視部位の運転状況等を診断するためには、これら生のデータから診断に好適な診断物理量を生成、抽出する必要がある。
[Calculation of diagnostic physical quantity]
Next, the
That is, as described above, raw data measured by various sensors is stored in the measurement
例えば、軸受け・増速機には、その運転状況を監視するために、各計測箇所に8個の加速度センサが取り付けられている。各センサによって、計測された計測データである時系列波形はセンサ別に計測情報記憶部21に格納される。
For example, in a bearing / speed increaser, eight acceleration sensors are attached to each measurement location in order to monitor the operation status. A time-series waveform, which is measurement data measured by each sensor, is stored in the measurement
ところで、軸受け・増速機における増速機のある変速段の異常の診断には、その変速段を構成する複数の歯車の噛み合せ周波数(固有値)の振動加速度を算出し、この振動加速度によって、ある変速段の診断を行うこととなる。このため、データ生成部22は、8個のセンサCH1からCH8によってそれぞれ計測された時系列波形に対して周波数変換(一例として、Fast Fourier Transferの手段がある。)という信号処理を行い、図4に示されるような、周波数スペクトラムを得、この周波数スペクトラムから図4中の矢印が示す複数の固有周波数の振幅加速度をそれぞれ抽出する。そして抽出した振幅加速度を各チャネル及び固有周波数によって識別されるファイルに格納することにより、新たなデータファイルを作成する。
By the way, in the diagnosis of the abnormality of the gear stage with the speed increaser in the bearing / speed increaser, the vibration acceleration of the meshing frequency (eigenvalue) of a plurality of gears constituting the speed change stage is calculated, and this vibration acceleration is The shift stage is diagnosed. For this reason, the
図5に、新たに作成されたデータファイルの一例を示す。図5に示すように、CH1、CH2等のように表されるチャネル(センサ)と、「AZi1」、「AZi2」、「AZi3」等のように表される固有周波数とに関連付けられて各計測時間における振動加速度が診断物理量として格納される。ここで、各診断加速度の計測時間は、上述の如く、他のデータファイルの計測時間と統一したものとなっている。
このようにして、所定のデータファイルにおいて、診断物理量が算出され、新たなデータベースが作成される。
FIG. 5 shows an example of a newly created data file. As shown in FIG. 5, each measurement is associated with a channel (sensor) expressed as CH1, CH2, etc., and a natural frequency expressed as “AZi1,” “AZi2,” “AZi3,” etc. The vibration acceleration in time is stored as a diagnostic physical quantity. Here, as described above, the measurement time of each diagnostic acceleration is unified with the measurement time of other data files.
In this way, a diagnostic physical quantity is calculated in a predetermined data file, and a new database is created.
なお、上記診断物理量の算出は、主に、風車1の運転状況を診断するために各種監視部位に取り付けられたセンサによって計測された計測データに対して行われる。どのデータファイルの計測データに対して、どのような信号処理を行い、どのような診断物理量を算出するのかについては、データ生成部22に予め登録されている。
The calculation of the diagnostic physical quantity is performed mainly on measurement data measured by sensors attached to various monitoring parts in order to diagnose the operating state of the
データ生成部22によってサンプリング時間が統一化された各種データファイル及び新たに作成された診断物理量に対するデータファイルは、クラス分類部24に出力される。なお、診断物理量を算出するのに使用された元のデータファイルについては、以降の処理については特に必要とされないため、クラス分類部24には出力しないこととする。
Various data files whose sampling times are unified by the
クラス分類部24は、まず、データ生成部22から入力された各種データファイルを統合することにより、1つの被診断データファイルを作成する。
図6に、被診断データファイルの一例を示す。図6に示されるように、センサ別に各計測時間における計測データまたは診断物理量が関連付けられている。本実施形態では、図6の表の最上段に記載された各計測データや診断物理量の属性を示す「正規化風速」、「MET風速乱れ度」、「送電端出力」、「AZi1」、「AZi2」等の見出しを「特性項目」といい、各特性項目の各データを「特性値」と定義する。
The
FIG. 6 shows an example of a diagnosis data file. As shown in FIG. 6, the measurement data or the diagnostic physical quantity at each measurement time is associated with each sensor. In the present embodiment, “normalized wind speed”, “MET wind speed turbulence”, “power transmission end output”, “AZi1”, “attribute” indicating the attributes of each measurement data and diagnostic physical quantity described at the top of the table of FIG. A heading such as “AZi2” is called “characteristic item”, and each data of each characteristic item is defined as “characteristic value”.
特性項目は、その属性によって、「環境」、「性能」、「特性」に分類される。「環境」には、「風速」、「風速乱れ度」等の風車を取り巻く環境に関する特性項目が、「性能」には、発電条件、発電機回転数、発電制御に関する指令値等、風車運転の性能、発電条件に関する特性項目が、「特性」には、「AZi1」、「AZi2」等の風車の運転状況の診断に関する特性項目が分類される。ここで、「特性」に分類される特性項目は、上述したデータ生成部22において、新たに生成されたデータファイルが該当する。
本実施形態では、ある1日の0:00から23:59までの1分刻みの特性値を統合して1つの被診断データファイルを構成している。
The characteristic items are classified into “environment”, “performance”, and “characteristic” according to their attributes. “Environment” includes items related to the environment surrounding the wind turbine such as “wind speed” and “wind speed turbulence”, and “performance” includes the power generation conditions, generator speed, command values related to power generation control, etc. Characteristic items related to performance and power generation conditions are classified into “characteristics” such as “AZi1”, “AZi2”, etc. Here, the characteristic item classified as “characteristic” corresponds to a data file newly generated in the
In this embodiment, one diagnostic data file is configured by integrating characteristic values in increments of 1 minute from 0:00 to 23:59 on a certain day.
クラス分類部24は、続いて、被診断データファイルにおいて、同じ計測時間に関連付けられている特性値を一つのデータセットとし、各データセットに対してクラス分類を示す識別情報を付加する。
具体的には、クラス分類部24は、クラス分類定義部23に定義されているクラス定義に基づいて、各データセット、換言すると、図6に示された被診断データファイルの行毎に、どのクラス分類に属するかを区分けし、各データセットにクラス分類を示すフラグを立てる。
Subsequently, the
Specifically, the
ここで言う「クラス分類」とは、マハラノビスタグチ法(以下「MT法」という)のような統計的診断手法において、クラス分類定義部23で定めた、複数の特性項目の基準範囲に合致したデータ集団の区切りのことをいう。このように、同じ「クラス分類」同士での正常または異常を識別する統計的診断は、クラス分類しないデータ全体の場合より識別精度が高くなる。
“Class classification” as used herein refers to data that matches the reference ranges of a plurality of characteristic items defined by the class
風車における本発明の特徴である「クラス分類」について図7のクラス分類の模式図を用いて説明する。
本実施形態では、クラス分類の指標量となる特性項目を、「風速」としている。「風速」は、風車の発電性能に強い相関性を有しているため好都合である。ここでは、「風速」の段階毎の物理量で境界値(条件)を設定し、クラスF0、F1、F2、F3とクラス分類を定義している。
“Class classification”, which is a feature of the present invention in a windmill, will be described with reference to a schematic diagram of class classification in FIG.
In the present embodiment, the characteristic item that is an index amount for class classification is “wind speed”. “Wind speed” is advantageous because it has a strong correlation with the power generation performance of the wind turbine. Here, boundary values (conditions) are set with physical quantities for each stage of “wind speed”, and classes F0, F1, F2, and F3 and class classification are defined.
風車性能に係る具体的な意味合いとして、F0は、風車が発電に寄与しない風速域、F1は発電が開始し始める低速域、F2は発電が本格化し始める中速域、F3は定格発電し始める定格域とされている。
上記クラスF0は、風車が発電に寄与しない風速域であるため、クラスF0は診断対象外のデータ集団とし、クラスF1からF3の3クラスを診断対象となるクラスとして定義する。
As specific implications for windmill performance, F0 is the wind speed range where the windmill does not contribute to power generation, F1 is the low speed range where power generation starts, F2 is the medium speed range where power generation begins to become full-scale, and F3 is the rating at which rated power generation begins It is considered as an area.
Since the class F0 is a wind speed region where the windmill does not contribute to power generation, the class F0 is defined as a data group that is not a diagnosis target, and the three classes F1 to F3 are defined as classes to be diagnosed.
なお、上記クラス分類に代えて、風速の乱れ率と風速との2つのパラメータによって、各計測時間を複数のクラスに分類することとしてもよい。図8には、風の乱れ率(%)が小さい場合と大きい場合とに分け、F1´からF6の計6つのクラスに分類する場合を示している。
また、上記例では、風速等に基づいてクラス分類を行ったが、図7にカッコで示されるように、風車の発電性能に強い相関性を示す「回転数」に基づいてクラス分類を行うこととしてもよい。
Instead of the class classification, each measurement time may be classified into a plurality of classes based on two parameters, a wind speed turbulence rate and a wind speed. FIG. 8 shows a case in which the wind turbulence rate (%) is divided into a case where the wind turbulence rate (%) is small and a case where the wind turbulence rate (%) is large and is classified into a total of six classes F1 ′ to F6.
In the above example, the class classification is performed based on the wind speed or the like. However, as indicated in parentheses in FIG. 7, the class classification is performed based on the “rotation speed” indicating a strong correlation with the power generation performance of the windmill. It is good.
上述したようなクラス分類を定義した情報は、クラス分類定義部23に格納されている。クラス分類部24は、クラス分類定義部23に格納されているクラス分類の条件数値を参考に、被診断データファイルのデータセット毎(行毎)にクラス分類を割り当てる。
Information defining the class classification as described above is stored in the class
第1記憶部25は、クラス分類部24でクラス分類(フラグ付け)された被診断データファイルを格納する。第1記憶部25に格納されたクラス分類済みの被診断データファイルは、指標算出部30における演算処理において、「信号空間」として取り扱われる。
The
一方、第2記憶部28には、既に取得済みの「過去の被診断データファイル」から正常データ抽出部27の処理を経て、「過去の被診断データファイル」の中から正常定義部26の条件式、値等の定義の指示に従い、「正常」であると判断されたデータセットのみが抽出され、格納されている。その格納データを「正常データ」と呼ぶ。
もちろんこの段階で、第2記憶部28に格納されている正常データファイルの各データセットには、前段処理のクラス分類部24においてクラス分類のフラグが付加されている。
On the other hand, in the
Of course, at this stage, a class classification flag is added to each data set of the normal data file stored in the
第2記憶部28に格納されている正常データファイルは、正常データ抽出部27によって自動生成され、過去の正常データファイルから日々自動更新され、蓄積されることを特徴としている。ここでは、第1記憶部25に格納されている「被診断データファイル」から「正常データファイル」が自動生成される処理機能について図を用いて説明する。
The normal data file stored in the
正常データ抽出部27は、正常データ条件定義部26に定義されている正常範囲(基準範囲)を参照することで、その定義に合致した被診断データファイルのデータセットのみを抽出し第2記憶部28へ転送して格納する。
The normal
正常データ条件定義部26の定義条件の本発明の好適な例を図9から図10に示す。
図9は、発電量の変動範囲を規定したおよそ性能面からの正常定義である。
図9において横軸は風速、縦軸は発電量Pである。発電量の性能曲線は、P(V、r)の関数で表すことができる。発電量の正常範囲は、風速によるクラス分類F1〜F3毎に、正常範囲(I),(II),(III)がそれぞれ定義されており、正常な性能範囲であると定義する条件は、その性能曲線から±ΔP/2の変動幅としている。
Preferred examples of the definition conditions of the normal data
FIG. 9 is a normal definition in terms of performance that defines the fluctuation range of the power generation amount.
In FIG. 9, the horizontal axis represents the wind speed, and the vertical axis represents the power generation amount P. The performance curve of the power generation amount can be expressed as a function of P (V, r). As for the normal range of the power generation amount, the normal ranges (I), (II), and (III) are defined for each of the class classifications F1 to F3 based on the wind speed, and the condition that defines the normal performance range is The fluctuation range is ± ΔP / 2 from the performance curve.
上記ΔPは、任意の風速V0、回転数r0の時の発電量、回転数r0(V0)の割合A(%)と定義すると、ΔP=(A/100)×P0(V0,r0)である。 The [Delta] P is any wind speed V 0, the power generation amount when the rotational speed r 0, the ratio A (%) of the rotation speed r 0 (V 0) and by defining, ΔP = (A / 100) × P 0 (V 0 , r 0 ).
なお、上記例では、縦軸を発電量Pとしたが、これに代えて、回転数rを用いることとしてもよい。この場合、回転数の性能曲線は、r(V)の関数で表すことができる。回転数の正常範囲は、風速によるクラス分類F1〜F3毎に、正常範囲(I),(II),(III)がそれぞれ定義されており、正常な性能範囲であると定義する条件は、その性能曲線から±Δr/2の変動幅としている。 In the above example, the vertical axis is the power generation amount P, but instead, the rotational speed r may be used. In this case, the rotational speed performance curve can be expressed as a function of r (V). As for the normal range of the rotational speed, the normal ranges (I), (II), and (III) are defined for each of the class classifications F1 to F3 based on the wind speed, and the condition that defines the normal performance range is The fluctuation range is ± Δr / 2 from the performance curve.
上記Δrは、任意の風速V0、回転数r0の時の発電量、回転数r0(V0)の割合A(%)と定義すると、ΔP=(A/100)×P0(V0,r0)、Δr=(A/100)×r0(V0)である。
更に、上記例では、横軸を風速としたが、図9において、横軸を回転数r、縦軸を発電量Pとしてもよい。この場合、回転数に応じたクラス分類毎に、上記正常範囲(I)、(II)、(III)が定義されることとなる。
The Δr is any wind speed V 0, the power generation amount when the rotational speed r 0, the ratio A (%) of the rotation speed r 0 (V 0) and by defining, ΔP = (A / 100) × P 0 (V 0 , r 0 ), Δr = (A / 100) × r 0 (V 0 ).
Furthermore, in the above example, the horizontal axis is the wind speed, but in FIG. 9, the horizontal axis may be the rotational speed r and the vertical axis may be the power generation amount P. In this case, the normal ranges (I), (II), and (III) are defined for each class classification corresponding to the rotational speed.
図10は、風向偏差の変動範囲を規定したおよそ正常運転条件からの正常定義である。
図10において横軸は風速、縦軸は風向偏差Δθである。ここで「風向偏差」について説明する。通常、風車の「正常」な運転条件とは、常に風向きに対して風車翼の回転面が真正面で受け止めていることが前提となる。
FIG. 10 is a normal definition from an approximately normal operating condition in which the variation range of the wind direction deviation is defined.
In FIG. 10, the horizontal axis represents the wind speed, and the vertical axis represents the wind direction deviation Δθ. Here, the “wind direction deviation” will be described. Usually, the “normal” operating condition of the wind turbine is based on the premise that the rotating surface of the wind turbine blade is always received in front of the wind direction.
つまり実際の風向きと風車翼回転面の向きの差を「風向偏差」と呼び、それらが真正面の理想的な状態にある時の風向偏差Δθはゼロと基準にしている。「正常」な運転条件の一つである風向偏差Δθの範正常範囲は、風速によるクラス分類F1〜F3毎に、正常範囲(I´)、(II´)、(III´)がそれぞれ定義されている。 In other words, the difference between the actual wind direction and the direction of the wind turbine blade rotation surface is called “wind direction deviation”, and the wind direction deviation Δθ when they are in an ideal state directly in front is set to zero. The normal range of wind direction deviation Δθ, which is one of the “normal” operating conditions, is defined as normal ranges (I ′), (II ′), and (III ′) for each of the class classifications F1 to F3 based on wind speed. ing.
即ち、風車の向きは、自然条件で常に変化する風向きに対し、(I´)、(II´)、(III´)の範囲に収まるように追随しながら風を補足して、理想的な運転条件になるように発電を行っている。 That is, the direction of the windmill is supplemented by the wind while following the direction of the wind constantly changing under natural conditions so that it falls within the range of (I ′), (II ′), and (III ′). Power generation is performed to meet the conditions.
なお、上記例では、横軸を風速Vとしたが、これに代えて、横軸を回転数rとしてもよい。この場合、回転数に応じたクラス分類毎に上記正常範囲(I´)、(II´)、(III´)が定義されることとなる。 In the above example, the horizontal axis is the wind speed V, but instead, the horizontal axis may be the rotational speed r. In this case, the normal ranges (I ′), (II ′), and (III ′) are defined for each class classification corresponding to the rotational speed.
正常データ条件定義部26に格納されている上記正常範囲(I)、(II)、(III)と(I´)、(II´)、(III´)との論理式(AND、OR、NOT)の組み合わせについては、ユーザが任意に設定することが可能な構成とされている。 Logical expressions (AND, OR, NOT) of the normal ranges (I), (II), (III) and (I ′), (II ′), (III ′) stored in the normal data condition definition unit 26 )) Can be arbitrarily set by the user.
正常データ条件定義部26に格納されている上記正常範囲の定義に従って、正常データ抽出部27が被診断データファイルの中から正常範囲と判断されるデータセットのみを抽出して第2記憶部28に格納することで、正常データのみが第2記憶部28に格納されることとなる。第2記憶部28に格納されたこれらの正常データファイルは、指標算出部30における演算処理において、「単位空間」として取り扱われる。
In accordance with the definition of the normal range stored in the normal data
診断設定部29は、第1記憶部25の被診断データファイルからその全体または一部のデータセットを抽出し、診断用の「被診断データファイル」(信号空間)を作成するとともに、第2記憶部28の正常データファイルからその全体または一部のデータセットを抽出し、診断用の「基準データファイル」(単位空間)を作成する。
The
これらの「被診断データファイル」及び「基準データファイル」の各データセットには、上述のようにクラス分類のフラグが付加されている。詳細は後述するが、基本的にMT法では、同じクラス分類同士の「基準データファイル」と「被診断データファイル」との比較により異常診断が行われる。また、診断目的によっては、異なったクラス間での比較異常診断、または複数のクラス全体を一つの集団とし、クラスを再構築して比較異常診断を行うことも可能である。 As described above, the class classification flag is added to each data set of these “diagnostic data file” and “reference data file”. Although details will be described later, basically, in the MT method, abnormality diagnosis is performed by comparing the “reference data file” and the “diagnostic data file” between the same class classifications. In addition, depending on the purpose of diagnosis, it is possible to perform comparative abnormality diagnosis between different classes, or make a plurality of classes as one group and reconstruct the class to perform comparative abnormality diagnosis.
指標値算出部30は、診断設定部29によって作成された「被診断データファイル」および「基準データファイル」を元に統計的診断手法を用いて、風車1における軸受け・増速機の健全性を示す状態指標値を算出する。具体的には、指標値算出部30は、診断設定部29によって作成された「被診断データファイル」と「基準データファイル」を正規化し、正規化した「被診断データファイル」と「基準データファイル」の各項目分布を求め、互いのデータ分布(集団)が乖離している状態を分布間の距離として定量的に求め、その距離を健全性の状態指標値として取り扱う。
The index
より具体的には、指標値算出部30の統計的診断手法に、MT法を用い、そのMT法で得られる診断出力結果の一つである健全性の状態指標値としてマハラノビス距離(以下「MD値」という)を算出する。具体的な算出方法については後述する。
More specifically, the MT method is used as the statistical diagnosis method of the index
異常判定部31は、指標値算出部30によって算出された状態指標値を予め設定されている閾値と比較し、その比較結果に応じて風車1の状態を評価する。例えば、状態指標値が閾値を超えていた場合に、異常であると判定し、異常判定信号を通知部32に出力する。
The
通知部32は、異常判定信号が入力された場合に、風車1の異常の発生をディスプレイ等に表示することにより、ユーザに対して異常発生を通知する。なお、視覚による通知方法に代えて或いは加えて、聴覚による通知、例えば、報音により異常を通知することとしてもよい。このように、通知の手法については特に限定されない。
When the abnormality determination signal is input, the
次に、本実施形態に係る監視装置10が備える各部において実行される処理内容について図11を参照して詳しく説明する。なお、図3に示した各部により実現される後述の各種処理は、図2に示されるCPU11が補助記憶装置13に記憶されている監視プログラムを主記憶装置12に読み出して実行することにより実現されるものである。
また、本実施形態では、風車1を構成部位の一つのナセル3の中の軸受け・増速機(監視部位)の状態を監視する場合を想定する。
Next, processing contents executed in each unit included in the
Moreover, in this embodiment, the case where the state of the bearing and speed-up gear (monitoring part) in the
まず、監視装置10には、監視部位である風車1の軸受け・増速機に取り付けられた8個の加速度センサによって計測された計測データとともに、所定の箇所に設置された各種センサにより計測された計測データ、例えば、風速、風向、発電機回転数、温度等が時間情報に関連付けられて通信回線を介して逐次送信されてくる。これらの計測データは、センサ別に計測情報記憶部21に逐次蓄積される。
First, the
データ生成部22は、計測情報記憶部21に逐次格納される計測データのサンプリング時間を統一させるとともに、監視部位である軸受け・増速機に取り付けられた8つのセンサの計測データから診断物理量を算出し、固有周波数毎にデータファイルを生成する(図11のステップSA1)。
The
続いて、クラス分類部24により、各データファイルが統合されて被診断データファイルが生成され(図11のステップSA2)、この被診断データファイルにおいて同一の計測時間に関連付けられる各データセットに対して、クラス分類を表すフラグがそれぞれ付加される(図11のステップSA3)。クラス分類のフラグが付加された被診断データファイルは、第1記憶部25に格納される(図11のステップSA4)。
Subsequently, the
次に、正常データ抽出部27により、第1記憶部25に格納されているクラス分類済みの診断データファイルから正常のデータセットのみが抽出されて正常データファイルが作成され、第2記憶部28に格納される(図11のステップSA5)。
Next, the normal
次に、診断設定部29により第1記憶部25の診断データファイルの全部または一部のデータセットが抽出されて、診断用の被診断データファイルが作成されるとともに、第2記憶部28の正常データファイルの全部または一部のデータセットが抽出されて診断用の正常データファイル(以下「基準データファイル」という)として設定される(図11のステップSA6)。
Next, the
このようにして、「被診断データファイル」と「基準データファイル」が設定されると、指標値算出部30により健全性の状態指標値の算出処理が行われる(図11のステップSA7)。
以下、状態指標値の算出処理について図12を参照して説明する。
When the “diagnostic data file” and the “reference data file” are set in this way, the index
Hereinafter, the state index value calculation process will be described with reference to FIG.
〔データの規格化〕
まず、指標値算出部30は、データの規格化処理を実行する(図12のステップSB1)。
例えば、診断設定部29において設定された基準データファイルの計測時間数をi、特性項目数をjとすると、基準データファイルは、i行j列の行列を成す。例えば、1分間隔で1日分のデータ数ならば、24時間×60分=1440分で1440行、計測したデータ項目種類が200種類あれば、200列のデータサイズになる。
[Data standardization]
First, the index
For example, if the measurement time number of the reference data file set in the
基準データの規格化の理由は、統計処理において、異なった特性項目間(計測物理量間)の特性値を公平に扱うためである。そのため、各行、各列によって識別される特性値xijを以下の(1)、(2)式に基づいて算出した平均値mj及び標準偏差σjを用いて規格化する処理を行う。特性値xijの規格化後の値は、性規格値Xijとして表され、以下の(3)式で求められる。
なお、以下の説明においては、図13に示すように、n行k列の各データファイルを想定して説明する。
The reason for standardizing the reference data is to treat characteristic values between different characteristic items (between measured physical quantities) fairly in statistical processing. Therefore, the characteristic value x ij identified by each row and each column is normalized using the average value m j and standard deviation σ j calculated based on the following equations (1) and (2). The normalized value of the characteristic value x ij is expressed as a sex standard value X ij and is obtained by the following equation (3).
In the following explanation, as shown in FIG. 13, each data file of n rows and k columns is assumed.
同様に、指標値算出部30は、基準データファイルと同様の演算を行うことにより、「被診断データファイル」についても規格化を行う。規格化のために用いる平均値mj及び標準偏差σjは、上記式(1)、(2)で算出された「基準データファイル」の値を用いる。この結果、「被診断データファイル」の各特性値yijを規格化した特性規格値Yijが以下の(4)式により算出される。
Similarly, the index
指標値算出部30は、「基準データファイル」、「被診断データファイル」の各特性値を規格化後の特性規格値に置き換えることで、それぞれのデータファイルを再構築する。
The index
〔相関行列の算出〕
次に、指標値算出部30は、基準データファイルの特性規格値Xijを用いて、相関行列R=(rij)を計算する(図12のステップSB2)。相関行列Rは以下の(5)式を用いて導出される。相関行列は対角成分が1であるk次行列となる。
[Calculation of correlation matrix]
Next, the index
ここで、相関行列を求めるための具体的な説明を行う。基準データファイルの特性規格値Xijの特性項目jの種類がk個(k列)ある場合、その相関組み合わせ数は、k×kである。一例として、基準データファイルの特性項目数jがk=200種類(列)あった場合、その相関組み合わせは200×200=40000通りであり、それは同時に200×200の正則行列の特性となる。正則行列の対角成分は、同じ特性項目同士の相関であるため、必然的に1となる性質を有している。また、対角線以外の相関係数は、rpq=rqpとなり、その値は対角線を挟んで対称等しくなる。 Here, a specific description for obtaining the correlation matrix will be given. When there are k (k columns) types of characteristic items j of the characteristic standard value Xij of the reference data file, the number of correlation combinations is k × k. As an example, if the number of characteristic items j in the reference data file is k = 200 types (columns), there are 200 × 200 = 40000 correlation combinations, which simultaneously become the characteristics of a 200 × 200 regular matrix. The diagonal components of the regular matrix have the property of inevitably being 1 because they are the correlations between the same characteristic items. Further, the correlation coefficient other than the diagonal line is r pq = r qp , and its value is symmetrically equal across the diagonal line.
〔相関行列の逆行列の算出〕
続いて、指標値算出部30は、以下の(6)式を用いて、基準データファイルの相関行列Rの逆行列A=R-1を算出する(図12のステップSB3)。
[Calculation of inverse matrix of correlation matrix]
Subsequently, the index
〔マハラノビス距離の算出〕
次に、上記(6)式で求められた基準データファイルの相関逆行列Aと、規格化後の被診断データファイルの各特性規格値Yijを用いてマハラノビス距離D2 i(以下「MD値」という)を求める(図12のステップSB4)。MD値D2 iは、以下の(7)式を用いて算出される。
[Calculation of Mahalanobis distance]
Next, the Mahalanobis distance D 2 i (hereinafter referred to as “MD value”) using the correlation inverse matrix A of the reference data file obtained by the above equation (6) and each characteristic standard value Y ij of the diagnosis data file after normalization. (Refer to step SB4 in FIG. 12). The MD value D 2 i is calculated using the following equation (7).
ここで、kは、「被診断データファイル」の特性項目数、つまり、列の数であり、MD値は「被診断データファイル」のデータセット毎(行毎)に算出される。例えば、「被診断データファイル」が1分間隔で取得された1日分のデータファイルであるとすれば、行数は1440行となり、1440個のMD値が求められることとなる。このことは、軸受け・増速機の健全性診断指標であるMD値が計測時間毎に逐次算出されることを意味している。 Here, k is the number of characteristic items of the “diagnostic data file”, that is, the number of columns, and the MD value is calculated for each data set (for each row) of the “diagnostic data file”. For example, if the “diagnostic data file” is a data file for one day acquired at 1-minute intervals, the number of rows is 1440, and 1440 MD values are obtained. This means that the MD value, which is a soundness diagnostic index of the bearing / speed increaser, is sequentially calculated every measurement time.
ここで、ある計測時間のMD値を計算する場合は、規格化された「被診断データファイル」のある計測時間に相当するデータ行i(iは1〜nのいずれか)番目を指定して、そのi行の各列の値であるYi1からYikを式(7)に代入して計算する。図6の例でいえば、計測時間0:03におけるMD値を求める際には、データ行でi=4行目のk列数の特性規格値Y41からY4kを用いる。このようにして、「被診断データファイル」の計測時間の数だけMD値が求められる。 Here, when calculating the MD value of a certain measurement time, the data line i (i is any one of 1 to n) corresponding to the certain measurement time of the standardized “diagnostic data file” is designated. , Y i1 to Y ik which are values of each column of the i row are substituted into the equation (7) for calculation. In the example of FIG. 6, when obtaining the MD value at the measurement time of 0:03, the characteristic standard values Y 41 to Y 4k of the number of k columns in the i = 4th row in the data row are used. In this way, MD values are obtained for the number of measurement times of the “diagnostic data file”.
ここで、留意すべき点は、ステップSB1からSB4において、被診断データファイルのデータセットが、どのクラス分類の基準データファイルのデータセットとの比較を取るかによって、規格化のためのmjとσjおよびMD値計算時の相関逆行列Aを使い分けなければならない点にあるが、あらかじめプログラミングにより指示することで、自動計算処理が可能である。 Here, it should be noted that in steps SB1 to SB4, m j for normalization is determined depending on which class classification of the data set of the diagnosis data file is compared with the data set of the reference data file of which class classification. Although the correlation inverse matrix A at the time of σ j and MD value calculation must be properly used, automatic calculation processing is possible by instructing in advance by programming.
指標値算出部30によって算出された状態指標値は、異常判定部31に出力される。異常判定部31は、入力された各MD値D2 iと予め設定されている閾値(任意に設定可能な値であり、例えば、3)とをそれぞれ比較し、MD値D2 iが閾値よりも大きいか否かを判定する(図11のステップSA8)。この結果、閾値よりも大きいMD値D2 iが所定割合以上存在した場合には、風車1の状態が異常であるとして、異常信号を出力する。これにより、通知部30により、風車1の異常がユーザに通知される(図11のステップSA9)。
The state index value calculated by the index
一方、ステップSA8において、閾値を越えるMD値D2 iが所定割合以下であった場合には、風車1の状態は正常であるとして、図11のステップSA1に戻り、上述のステップSA1からの処理を繰り返し行う。これにより、異常が検出されない限り、上述のステップSA1からステップSA8までの処理が繰り返し行われ、風車1の状態監視が所定期間毎に行われることとなる。
On the other hand, when the MD value D 2 i exceeding the threshold is equal to or less than the predetermined ratio in step SA8, it is determined that the state of the
また、指標値算出部30によって算出された状態指標値は、図14に示すように、診断結果として表示装置に表示される。図14は、診断結果の一例を示した図である。横軸に、計測時間が、縦軸にMD値が示されている。
Further, the state index value calculated by the index
以上、説明してきたように、本実施形態に係る風車の監視装置及び方法並びにプログラムによれば、クラス分類された実測値である「基準データファイル」との比較にて、風車の健全性を、MD値にて定量的に判定できるため、経験や知見に基づく定性的な評価に代えて、適切な評価を実現することが可能となる。 As described above, according to the wind turbine monitoring apparatus and method and the program according to the present embodiment, the soundness of the wind turbine is compared with the “reference data file” that is an actually measured value classified into the class. Since it can be quantitatively determined by the MD value, it is possible to realize appropriate evaluation instead of qualitative evaluation based on experience and knowledge.
なお、上述した実施形態においては、第1記憶部25に格納されているデータを用いて第2記憶部28に格納する正常データを作成していたが、第2記憶部28に格納される正常データについては、この例に限定されることはない。例えば、所定のシミュレーションソフトウェア等によって演算された正常データを用いることとしてもよい。
In the above-described embodiment, normal data stored in the
また、上記実施形態においては、図11に示すように、ステップSA1からステップSA9までの処理を一連の処理として説明したが、正常データファイルの生成処理まで、つまり、第1記憶部25にデータを格納する処理及び第2記憶部28にデータを格納する処理を風車の状態を監視するために必要となる前処理として取り扱い、基準データファイル及び被診断データファイルの設定以降の処理、具体的には、図11のステップSA6からステップSA9の処理については、風車1の状態を評価する本処理として取り扱ってもよい。そして、前処理と本処理とは、時間差があってもよく、また、異なるコンピュータによって実現されることとしてもよい。
In the above embodiment, as shown in FIG. 11, the processing from step SA1 to step SA9 has been described as a series of processing. However, until the normal data file generation processing, that is, data is stored in the
〔第2の実施形態〕
次に、本発明の第2の実施形態について、図を参照して説明する。
上述した第1の実施形態に係る風車1の監視装置では、風車の増速機を監視する場合について説明したが、本実施形態では、風車構造体全体にかかる荷重及び強度を監視する場合について説明する。
一般に風車は、風を風車翼で受け、風車翼が回転することで機械的エネルギーを生みだし、その機械的エネルギーを電気的エネルギーに変換するが、このとき風車構造体は風等による荷重がかかっている。初期設計では、各構造部位の耐荷重許容値を充足する強度が保たれているが、風雨・腐食・経年劣化などにより強度劣化が進展する。
[Second Embodiment]
Next, a second embodiment of the present invention will be described with reference to the drawings.
In the monitoring apparatus for the
In general, a windmill receives wind with windmill blades and generates mechanical energy by rotating the windmill blades, and converts the mechanical energy into electrical energy. At this time, the windmill structure is subjected to a load such as wind. Yes. In the initial design, the strength that satisfies the allowable load tolerance of each structural part is maintained, but the strength deterioration progresses due to wind and rain, corrosion, and aging.
そこで、本実施形態では、風車1の歪み変化を電気式歪みゲージや光ファイバにより計測し、この計測データに基づいて風車1の健全性(累積荷重やその強度劣化の度合い)に関する状態の監視を行う。なお、本実施形態に係る各処理は、上述した第1の実施形態において実施される処理と同様であり、「特性」に区分される特性項目が変更されるだけである。従って、各処理についての説明を省略する。
Therefore, in the present embodiment, the strain change of the
このように、上述した第1の実施形態に係る特性項目として、風車1の所定箇所に取り付けられた歪センサにより計測された計測データを用い、これらを正常データと比較することで、MD値を算出する。これにより、風車の健全性を客観的な統計指標値であるMD値を用いて評価することが可能となる。
As described above, as the characteristic item according to the first embodiment described above, the MD value is obtained by using the measurement data measured by the strain sensor attached to the predetermined portion of the
なお、上述した第1または第2の実施形態においては、それぞれ1つの監視部位について監視を行う場合を例に挙げて説明してきたが、本発明の監視装置は、複数の監視部位が設定されている場合にも適用可能である。
この場合、図6に示した診断データファイルにおいて、「特性」に分類される特性項目が監視部位に応じて増えることとなる。
そして、上記MD値の算出については、複数の監視部位の状態を総合して、一種類のMD値にて風車の健全性指標値として算出される。
In the above-described first or second embodiment, the case where monitoring is performed for one monitoring part has been described as an example. However, the monitoring apparatus of the present invention has a plurality of monitoring parts set. It is also applicable when
In this case, in the diagnostic data file shown in FIG. 6, the number of characteristic items classified as “characteristics” increases according to the monitored part.
And about calculation of the said MD value, the state of a some monitoring site | part is integrated and it calculates as a soundness index value of a windmill with one type of MD value.
〔第3の実施形態〕
次に、本発明の第3の実施形態に係る監視装置について説明する。
上述した第1または第2の実施形態に係る監視装置において、異常判定部31によって異常が検知された場合、どの特性項目がその異常状態に関与しているのか、または関与してないのか、を定量的に特定する必要性が出てくる。本実施形態は、その要求に鑑み提案されたものである。
[Third Embodiment]
Next, a monitoring apparatus according to the third embodiment of the present invention will be described.
In the monitoring device according to the first or second embodiment described above, when an abnormality is detected by the
本実施形態では、上述した第1または第2の実施形態に係る監視装置において、図15に示すように、異常判定部31によって異常が判定された場合に、その異常の要因分析を行う要因分析部(要因分析手段)50を更に備えている。以下、本実施形態の監視装置について、第1の実施形態と共通する点については説明を省略し、異なる点である「要因効果解析」について主に説明する。
In the present embodiment, in the monitoring apparatus according to the first or second embodiment described above, when an abnormality is determined by the
本実施形態の「要因効果解析」とは、例えば、診断データを構成する特性項目が200項目あったとして、そのうちのどの特性項目がMD値の長短に影響を及ぼしているかを定量的に解析し、図16のように要因効果解析の出力値であるSN比利得の大小でランクアップ表示することである。 “Factor effect analysis” of the present embodiment is, for example, a quantitative analysis of which characteristic items have an influence on the length of MD values, assuming that there are 200 characteristic items constituting diagnostic data. As shown in FIG. 16, rank-up display is performed according to the magnitude of the SN ratio gain, which is the output value of the factor effect analysis.
図17を用いて要因効果の指標値である各特性項目のSN比利得の算出方法について説明する。説明の便宜上、図17では特性項目が5種類の場合を例に挙げ、その5種類の各特性項目を「使う○」、「使わない×」の2水準の直交表に割り付けて、その5種類の特性項目の「使う○」、「使わない×」の12通りの組み合わせ条件(直交表の行No.)に合わせて、それぞれの条件でMD値の算出処理(図12参照)を行い、5個の特性項目からなる被診断データファイルにおける各データセットのMD値を算出する。 A method for calculating the SN ratio gain of each characteristic item, which is an index value of the factor effect, will be described with reference to FIG. For convenience of explanation, FIG. 17 shows an example in which there are five types of characteristic items. Each of the five types of characteristic items is assigned to a two-level orthogonal table of “use ○” and “not use ×”, and the five types. The MD value calculation process (see FIG. 12) is performed in accordance with 12 combination conditions (row number of orthogonal table) of “use ○” and “not use ×” of the characteristic items of 5 The MD value of each data set in the diagnostic data file consisting of individual characteristic items is calculated.
例えば、異常判定部31で被診断データファイルの異常と判定された計測時間区間が述べ2分間(データ行数で2個)であった場合、各行に対して、それぞれ12通りの特性項目の「使う○」、「使わない×」の場合分けでMD値が算出される。結果として、12通り×2個のMD値D2(1)、D2(2)が図18の直交表の右端に算出結果として追加される。これらのMD値D2(1)、D2(2)から以下の(8)式を用いて、12通りの組み合わせのSN比ηを算出する。
For example, when the measurement time interval determined to be abnormal in the diagnosis data file by the
ここで、nは要因効果対象のデータ数(行数)であり、本例ではn=2である。
式(8)で算出された12通りのSN比η1〜η12の結果は、図18のように、直交表の右端に追加される。これで要因効果の各特性項目(特性項目1から特性項目5)についてのSN比利得を算出する準備が整ったこととなる。
具体的には、風車1の特性項目に併せて考えれば、例えば、「特性項目1=低速段噛み合せ1次」、「特性項目=中速段オーバーオール値」、「特性項目=風速乱れ度」、「特性項目=風向偏差」、「特性項目=風車翼中央歪み値」等のように、当てはめて考えて良い。
Here, n is the number of data (number of rows) of the factor effect target, and n = 2 in this example.
The results of 12 types of SN ratios η 1 to η 12 calculated by Expression (8) are added to the right end of the orthogonal table as shown in FIG. This completes the preparation for calculating the S / N ratio gain for each characteristic item (
Specifically, considering the characteristic items of the
以下、要因分析部50によって行われる、上記SN比の算出、並びに、SN比を用いた要因分析について詳しく説明する。
Hereinafter, the calculation of the S / N ratio and the factor analysis using the S / N ratio performed by the
〔SN比の算出〕
以下の式に表されるように、異常診断データファイルにおける要因効果分析で求める特性項目1から5のSN比利得ηc1〜ηc5とは、その特性項目を使った組み合わせの時(○)のSN比と使わなかった組み合わせの時(×)のSN比の差分である。
[Calculation of SN ratio]
As shown in the following equation, the SN ratio gains η c1 to η c5 of the
これにより、SN比利得が大きい特性値ほど、異常に関与している可能性が高いことが判定できる。上記式に代入するηc(○、×)の値は、図18の補助表一覧にあるSN比の値を図17の直交表での計算値を用いて、それぞれの平均値を用いる。 As a result, it can be determined that the characteristic value having a larger SN ratio gain is more likely to be involved in the abnormality. As the value of ηc (◯, x) to be substituted into the above equation, the average values of the SN ratio values in the auxiliary table list of FIG. 18 are used by using the calculated values in the orthogonal table of FIG.
〔要因分析〕
要因分析部50は、各特性項目に対する要因効果の寄与率を式(9)の利得に基づいて定量化することで、被診断データファイルの複数ある特性項目から異常の要因に寄与している可能性の高い特性項目を選定し、この要因効果の結果を通知部32に出力する。これにより、通知部32によって要因分析部50の解析結果がユーザに通知される。
[Factor analysis]
The
図16は、要因分析結果を示す表示画面の一例を示した図である。利得が大きな値を示す特性項目ほど、今回検出された異常発生の要因となり得ることを示している。 FIG. 16 is a diagram showing an example of a display screen showing the factor analysis results. It shows that a characteristic item having a large gain value can be a cause of occurrence of an abnormality detected this time.
以上説明してきたように、本実施形態に係る監視装置によれば、風車の状態異常が検出された場合に、その異常の要因となる可能性の高い特性項目を分析し、その分析結果をユーザに通知することが可能となる。これにより、異常発生に対する適切な対応を速やかにとることが可能となる。 As described above, according to the monitoring apparatus according to the present embodiment, when a wind turbine state abnormality is detected, a characteristic item that is likely to cause the abnormality is analyzed, and the analysis result is analyzed by the user. Can be notified. Thereby, it is possible to promptly take an appropriate response to the occurrence of an abnormality.
なお、上述した要因分析部50によって求められた要因分析結果を、メンテナンスやアフターサービスなどに採用することとしてもよい。このように、要因分析結果を二次的に利用することにより、異常の前兆を発見することが可能となるので、機器の交換等の重大な異常の発生を未然に防ぐことが可能となる。これにより、異常発生に起因する風車の運転効率の低減を防止することが可能となるとともに、保全費を削減させることが可能となる。
The factor analysis result obtained by the
〔第4の実施形態〕
次に、本発明の第4の実施形態に係る風車の監視装置について説明する。
上述した各実施形態においては、基準データファイルとして正常データファイルを用いていた。本実施形態では、これに代えて、基準データファイルとして異常データファイルを用いることにより、上述したMD値を算出する。そして、このMD値が所定の閾値よりも小さかった場合に、異常が発生していると判定する。
[Fourth Embodiment]
Next, a wind turbine monitoring device according to a fourth embodiment of the present invention will be described.
In each of the embodiments described above, a normal data file is used as the reference data file. In the present embodiment, instead of this, the above-described MD value is calculated by using an abnormal data file as the reference data file. And when this MD value is smaller than a predetermined threshold value, it determines with abnormality having generate | occur | produced.
このように、異常データファイルを基準データファイルとして用いることにより、例えば、多様な異常・故障状態を単位空間において分別してMD値を算出することで、上述した第3の実施形態のように、要因効果分析を行うことなく、どの特性項目の被診断データがどのような異常を示しているのかを容易に特定することが可能となる。 As described above, by using the abnormal data file as the reference data file, for example, by dividing the various abnormal / failure states in the unit space and calculating the MD value, the factor as in the third embodiment described above is obtained. Without performing the effect analysis, it is possible to easily specify which characteristic item diagnosis data indicates what kind of abnormality.
〔応用例〕
次に、本発明の一実施形態に係る監視システムについて説明する。
上述した各実施形態に係る監視装置は、1台の風車の各部に関する状態監視を行うものであった。本実施形態に係る監視システムは、複数の風車が設置されているウィンドファームにおいて、その一部或いは全ての風車1の状態監視を行う。
[Application example]
Next, a monitoring system according to an embodiment of the present invention will be described.
The monitoring device according to each of the above-described embodiments performs state monitoring regarding each part of one windmill. The monitoring system according to the present embodiment monitors the state of some or all of the
本実施形態の監視システムは、上述した第1から第4の実施形態に係るいずれかの監視装置を備えており、これら各監視装置によって求められた各風車の状態指標値と、これら複数の運転性能に基づいて、監視対象となる複数の風車の状態を監視する。
具体的には、監視システムは、各監視装置から上記状態指数値等の監視結果の情報を無線通信ネットワーク等の通信ネットワークを介して取得するとともに、監視対象である風車から出力される総出力電力量について、ネットワークを介して取得する。
The monitoring system of the present embodiment includes any one of the monitoring devices according to the first to fourth embodiments described above, and the state index value of each wind turbine obtained by each of these monitoring devices, and the plurality of operations. Based on the performance, the state of a plurality of wind turbines to be monitored is monitored.
Specifically, the monitoring system acquires the information of the monitoring result such as the state index value from each monitoring device via a communication network such as a wireless communication network, and outputs the total output power output from the wind turbine to be monitored. Get about the amount via the network.
そして、監視システムは、各監視装置から取得した状態指標値をMT法のパラメータとして用いることにより、これらの状態指標値のMD値を算出する。そして、このMD値と予め設定されている閾値とを比較することにより、ウィンドファームにおける風車の状態を判定する。 Then, the monitoring system calculates the MD values of these state index values by using the state index values acquired from the respective monitoring devices as parameters of the MT method. And the state of the windmill in a wind farm is determined by comparing this MD value with the preset threshold value.
以上、説明してきたように、ウィンドファームの運転性能を風車単位の状態指標値の統計量で監視することにより、ウィンドファームを構成する複数の風車のうち、他と異なる特性値を示している風車を判定することが可能となる。このように、一義的に決定される所定の閾値に基づいて異常な風車を特定するのではなく、複数の風車を対象として、他と異なる特性を示している風車を異常として特定することにより、さまざまな要因を対象として幅広い見地から総合的に風車の異常を判定することが可能となる。これにより、風車の監視精度を高めることができる。 As described above, by monitoring the operating performance of the wind farm with the statistic of the state index value in units of wind turbines, a wind turbine that exhibits a characteristic value different from the others among a plurality of wind turbines constituting the wind farm. Can be determined. Thus, instead of specifying an abnormal windmill based on a predetermined threshold that is uniquely determined, by specifying a windmill showing characteristics different from others as a target for a plurality of windmills, It is possible to comprehensively determine wind turbine abnormalities from a wide range of viewpoints for various factors. Thereby, the monitoring precision of a windmill can be improved.
なお、上述した監視システムは、必ずしも複数のコンピュータが必要となるわけではなく、例えば、1つのコンピュータシステムにおいて複数の風車の状態指標値の算出を順番に行った後、これらの状態指標値を用いて風車全体の異常判定を行うこととしてもよい。即ち、上記機能を実現するためのソフトウェアをインストールし、このソフトウェアをCPUが実行することにより、1つの装置で上記各機能を実現させることとしてもよい。 Note that the monitoring system described above does not necessarily require a plurality of computers. For example, after calculating the state index values of a plurality of wind turbines in one computer system in order, these state index values are used. It is also possible to determine abnormality of the entire windmill. That is, by installing software for realizing the above functions and executing the software by the CPU, the above functions may be realized by a single device.
以上、本発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計変更等も含まれる。 As mentioned above, although embodiment of this invention was explained in full detail with reference to drawings, the specific structure is not restricted to this embodiment, The design change etc. of the range which does not deviate from the summary of this invention are included.
1 風車
3 ナセル
4 ロータヘッド
5 風車翼
10 風車の監視装置
11 CPU
12 主記憶装置
13 補助記憶装置
14 入力装置
15 出力装置
16 通信装置
21 計測情報記憶部
22 データ生成部
23 クラス分類定義部
24 クラス分類部
25 第1記憶部
26 正常データ条件定義部
27 正常データ抽出部
28 第2記憶部
29 診断設定部
30 指標算出部
31 異常判定部
32 通知部
50 要因分析部
DESCRIPTION OF
12
Claims (11)
計測時間に関連付けられた複数の特性値が特性項目別に格納されているとともに、同じ計測時間に関連付けられている特性値を一つのデータセットとした場合に、該データセットには、所定の特性項目の特性値に応じて決定されるクラス分類を示す識別情報が付与されて格納されている第1記憶手段と、
計測時間に関連付けられた複数の特性値が特性項目別に格納されているとともに、同じ計測時間に関連付けられている特性値を一つのデータセットとした場合に、該データセットには、所定の特性項目の特性値に応じて決定されるクラス分類を示す識別情報が付与されており、かつ、前記データセットを構成する特定の前記特性項目の特性値が予め定義されている所定の基準範囲に属している第2記憶手段と、
前記第1記憶手段から診断に用いる複数の前記データセットを抽出して設定するとともに、前記第2記憶手段から前記診断に用いる複数の前記データセットを抽出して設定する診断設定手段と、
前記診断設定手段によって設定された前記被診断データファイルのデータセット及び前記基準データファイルのデータセットを元に、統計的演算手法を用いて、前記風車の状態を表す状態指標値を算出する指標値算出手段と、
前記指標値算出手段によって算出された状態指標値に基づいて、前記風車の状態を評価する評価手段と、
前記評価手段による評価結果を通知する通知手段と
を備える風車の監視装置。 A windmill monitoring device that monitors the state of the windmill using characteristic values created based on measurement data measured by a plurality of sensors provided on the windmill,
When a plurality of characteristic values associated with the measurement time are stored for each characteristic item and the characteristic values associated with the same measurement time are set as one data set, the data set includes predetermined characteristic items. First storage means stored with identification information indicating a class classification determined according to the characteristic value of
When a plurality of characteristic values associated with the measurement time are stored for each characteristic item and the characteristic values associated with the same measurement time are set as one data set, the data set includes predetermined characteristic items. Identification information indicating a class classification determined according to the characteristic value of the data set is assigned, and the characteristic value of the specific characteristic item constituting the data set belongs to a predetermined reference range defined in advance Second storage means,
A plurality of the data sets used for diagnosis extracted from the first storage means and set, and a plurality of the data sets used for diagnosis extracted from the second storage means and set,
An index value for calculating a state index value representing the state of the windmill using a statistical calculation method based on the data set of the diagnosis data file and the data set of the reference data file set by the diagnosis setting unit A calculation means;
Evaluation means for evaluating the state of the windmill based on the state index value calculated by the index value calculation means;
A wind turbine monitoring device comprising: notification means for notifying an evaluation result by the evaluation means.
請求項1から請求項8のいずれかに記載の風車の監視装置を備え、前記風車の監視装置によって求められた各前記風車の状態指標値及び前記ウィンドファームの一部または全体の運転性能に基づいて、ウィンドファームの一部または全体の状態を監視する風車群の監視システム。 A wind turbine group monitoring system for monitoring the state of a part or the whole of a wind farm having a plurality of wind turbines,
A wind turbine monitoring device according to any one of claims 1 to 8, comprising: a state index value of each wind turbine obtained by the wind turbine monitoring device and a part or all of the operating performance of the wind farm. Wind turbine group monitoring system that monitors the state of part or the entire wind farm.
計測時間に関連付けられた複数の特性値が特性項目別に格納された被診断データファイルを作成する過程と、
前記被診断データファイルにおいて、同じ計測時間に関連付けられている前記特性値を一つのデータセットとした場合に、該データセットに、所定の特性項目の特性値に応じて決定されるクラス分類を示す識別情報を付与する過程と、
特定の特性項目に関する特性値が、予め定義されている所定の基準範囲に属しているとともに、各特性項目の特性値が計測時間に関連付けられている基準データファイルを作成する過程と、
前記基準データファイルにおいて、同じ計測時間に関連付けられている前記特性値を一つのデータセットとした場合に、該データセットに、所定の特性項目の特性値に応じて決定されるクラス分類を示す識別情報を付与する過程と、
前記被診断データファイルから診断に用いる複数の前記データセットを抽出して設定するとともに、前記基準データファイルから前記診断に用いる複数の前記データセットを抽出して設定する過程と、
設定した前記被診断データファイルのデータセット及び前記基準データファイルのデータセットを元に、統計的演算手法を用いて、前記風車の状態を表す状態指標値を算出する過程と、
前記状態指標値に基づいて、前記風車の状態を評価する過程と、
前記評価の結果を通知する過程と
を有する風車の監視方法。 A windmill monitoring method for monitoring a state of the windmill using characteristic values created based on measurement data measured by a plurality of sensors provided on the windmill,
A process of creating a diagnostic data file in which a plurality of characteristic values associated with measurement time are stored for each characteristic item;
In the diagnosis data file, when the characteristic values associated with the same measurement time are set as one data set, a class classification determined according to the characteristic value of a predetermined characteristic item is indicated in the data set. A process of providing identification information;
A process of creating a reference data file in which the characteristic values related to a specific characteristic item belong to a predetermined reference range defined in advance and the characteristic values of each characteristic item are associated with the measurement time;
In the reference data file, when the characteristic values associated with the same measurement time are set as one data set, an identification indicating a class classification determined according to the characteristic value of a predetermined characteristic item in the data set The process of giving information,
Extracting and setting a plurality of the data sets used for diagnosis from the diagnosis data file, and extracting and setting the plurality of data sets used for the diagnosis from the reference data file; and
Based on the data set of the diagnosis data file set and the data set of the reference data file, a process of calculating a state index value representing the state of the windmill using a statistical calculation method;
A process of evaluating the state of the windmill based on the state index value;
A wind turbine monitoring method comprising: notifying a result of the evaluation.
計測時間に関連付けられた複数の特性値が特性項目別に格納された被診断データファイルを作成する処理と、
前記被診断データファイルにおいて、同じ計測時間に関連付けられている前記特性値を一つのデータセットとした場合に、該データセットに、所定の特性項目の特性値に応じて決定されるクラス分類を示す識別情報を付与する処理と、
特定の特性項目に関する特性値が、予め定義されている所定の基準範囲に属しているとともに、各特性項目の特性値が計測時間に関連付けられている基準データファイルを作成する処理と、
前記基準データファイルにおいて、同じ計測時間に関連付けられている前記特性値を一つのデータセットとした場合に、該データセットに、所定の特性項目の特性値に応じて決定されるクラス分類を示す識別情報を付与する処理と、
前記被診断データファイルから診断に用いる複数の前記データセットを抽出して設定するとともに、前記基準データファイルから前記診断に用いる複数の前記データセットを抽出して設定する処理と、
設定した前記被診断データファイルのデータセット及び前記基準データファイルのデータセットを元に、統計的演算手法を用いて、前記風車の状態を表す状態指標値を算出する処理と、
前記状態指標値に基づいて、前記風車の状態を評価する処理と、
前記評価の結果を通知する処理と
をコンピュータに実行させるための風車の監視プログラム。 A windmill monitoring program used to monitor the state of the windmill, using characteristic values created based on measurement data measured by a plurality of sensors provided on the windmill,
A process of creating a diagnostic data file in which a plurality of characteristic values associated with the measurement time are stored for each characteristic item;
In the diagnosis data file, when the characteristic values associated with the same measurement time are set as one data set, a class classification determined according to the characteristic value of a predetermined characteristic item is indicated in the data set. A process of providing identification information;
A process for creating a reference data file in which the characteristic value related to a specific characteristic item belongs to a predetermined reference range defined in advance and the characteristic value of each characteristic item is associated with the measurement time;
In the reference data file, when the characteristic values associated with the same measurement time are set as one data set, an identification indicating a class classification determined according to the characteristic value of a predetermined characteristic item in the data set A process of giving information,
A process of extracting and setting a plurality of the data sets used for diagnosis from the diagnosis data file, and extracting and setting a plurality of the data sets used for the diagnosis from the reference data file;
Based on the set data set of the diagnostic data file and the data set of the reference data file, a process of calculating a state index value representing the state of the windmill using a statistical calculation method;
A process for evaluating the state of the windmill based on the state index value;
A windmill monitoring program for causing a computer to execute processing for notifying the result of the evaluation.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008093738A JP4995134B2 (en) | 2008-03-31 | 2008-03-31 | Wind turbine monitoring device, method and program |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008093738A JP4995134B2 (en) | 2008-03-31 | 2008-03-31 | Wind turbine monitoring device, method and program |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009243428A JP2009243428A (en) | 2009-10-22 |
JP4995134B2 true JP4995134B2 (en) | 2012-08-08 |
Family
ID=41305600
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008093738A Active JP4995134B2 (en) | 2008-03-31 | 2008-03-31 | Wind turbine monitoring device, method and program |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4995134B2 (en) |
Families Citing this family (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5725833B2 (en) * | 2010-01-04 | 2015-05-27 | Ntn株式会社 | Rolling bearing abnormality diagnosis device, wind power generation device and abnormality diagnosis system |
JP5112538B2 (en) * | 2011-05-26 | 2013-01-09 | 株式会社ビルメン鹿児島 | Wind power generator management system |
JP5824959B2 (en) * | 2011-08-18 | 2015-12-02 | 株式会社Ihi | Abnormality diagnosis device |
JP5680526B2 (en) | 2011-12-28 | 2015-03-04 | 三菱重工業株式会社 | Impact load monitoring system and impact load monitoring method for wind turbine for wind power generation |
CN104160145B (en) * | 2012-03-08 | 2017-06-13 | Ntn株式会社 | Condition monitoring system |
JP5917956B2 (en) * | 2012-03-08 | 2016-05-18 | Ntn株式会社 | Condition monitoring system |
KR101986984B1 (en) * | 2013-03-05 | 2019-06-10 | 한국전력공사 | Method for generating caution through monitoring power curve |
JP6407592B2 (en) * | 2013-07-22 | 2018-10-17 | Ntn株式会社 | Wind turbine generator abnormality diagnosis device and abnormality diagnosis method |
KR20160017681A (en) | 2014-07-31 | 2016-02-17 | 두산중공업 주식회사 | System and method for managing wind plant |
JP6320307B2 (en) * | 2015-01-07 | 2018-05-09 | 三菱重工業株式会社 | Diagnostic system and diagnostic method for wind power generation equipment |
JP6638370B2 (en) * | 2015-12-15 | 2020-01-29 | オムロン株式会社 | Control device, monitoring system, control program, and recording medium |
DE102016203013A1 (en) * | 2016-02-25 | 2017-08-31 | Innogy Se | Method for monitoring the vibration condition of a wind turbine |
KR101764540B1 (en) * | 2016-06-21 | 2017-08-02 | 두산중공업 주식회사 | Vibration Monitoring and Diagnosis System for Wind Turbine |
JP6759157B2 (en) | 2017-06-14 | 2020-09-23 | 三菱重工業株式会社 | Wind farm anomaly monitoring device and anomaly monitoring method |
JP2019210811A (en) * | 2018-05-31 | 2019-12-12 | 株式会社日立製作所 | Wind power generation system |
WO2020044533A1 (en) * | 2018-08-31 | 2020-03-05 | 東芝三菱電機産業システム株式会社 | Manufacturing process monitoring device |
JP7288794B2 (en) * | 2019-02-14 | 2023-06-08 | 三菱重工業株式会社 | Operating state evaluation method and operating state evaluation device |
JP7359608B2 (en) * | 2019-09-12 | 2023-10-11 | アズビル株式会社 | Information presentation device, information presentation method, and information presentation system |
US11869284B2 (en) | 2019-12-05 | 2024-01-09 | Nec Corporation | Failure diagnosis device, failure diagnosis system, failure diagnosis method, and failure diagnosis program |
CN110985309B (en) | 2019-12-09 | 2022-03-11 | 远景智能国际私人投资有限公司 | Yaw wind anomaly detection method, device, equipment and storage medium |
US11808248B2 (en) * | 2020-02-18 | 2023-11-07 | Fischer Block, Inc. | Method and system for performing condition monitoring of wind turbine components |
JP2021142797A (en) * | 2020-03-10 | 2021-09-24 | 大同信号株式会社 | Remote monitoring device for railroad crossing gate |
CN113494428B (en) * | 2020-03-20 | 2022-11-22 | 新疆金风科技股份有限公司 | Fault detection method and device of wind generating set |
KR20240113510A (en) | 2022-01-31 | 2024-07-22 | 미츠비시 파워 가부시키가이샤 | Monitoring method, SN ratio gain calculation method, monitoring device and program |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002349415A (en) * | 2001-05-25 | 2002-12-04 | Mitsubishi Heavy Ind Ltd | Monitoring system of wind power generation device |
JP2004101417A (en) * | 2002-09-11 | 2004-04-02 | Mitsubishi Heavy Ind Ltd | Monitoring device |
JP4686969B2 (en) * | 2003-10-24 | 2011-05-25 | シンフォニアテクノロジー株式会社 | Power generator with power supply |
JP3679801B1 (en) * | 2004-09-08 | 2005-08-03 | 三重電子株式会社 | Wind power generator |
JP2006342766A (en) * | 2005-06-10 | 2006-12-21 | Mitsubishi Electric Corp | Monitoring system of wind power generating facility |
-
2008
- 2008-03-31 JP JP2008093738A patent/JP4995134B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2009243428A (en) | 2009-10-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4995134B2 (en) | Wind turbine monitoring device, method and program | |
WO2011024304A1 (en) | Device and method for monitoring wind turbine, and program | |
JP5101396B2 (en) | Soundness diagnosis method and program, and windmill soundness diagnosis device | |
JP6698715B2 (en) | Facility condition monitoring device and facility condition monitoring method | |
CN102022264B (en) | System and method for wind turbine health management | |
US20110106510A1 (en) | Methods, apparatus and computer readable storage mediums for model-based diagnosis | |
CN110362045B (en) | Marine doubly-fed wind turbine generator fault discrimination method considering marine meteorological factors | |
Butler et al. | A feasibility study into prognostics for the main bearing of a wind turbine | |
JP6315836B2 (en) | Windmill monitoring device, windmill monitoring method, and windmill monitoring program | |
CN116467972A (en) | Wind turbine energy efficiency evaluation method and system | |
Junior et al. | Unbalance evaluation of a scaled wind turbine under different rotational regimes via detrended fluctuation analysis of vibration signals combined with pattern recognition techniques | |
CN116306139A (en) | Intelligent monitoring method and system for service life of wind turbine blade | |
CN114154779A (en) | Health assessment and fault diagnosis method and system based on EMD-SOM | |
Sethi et al. | Vibration signal-based diagnosis of wind turbine blade conditions for improving energy extraction using machine learning approach | |
CN113468728A (en) | Variable pitch system fault prediction method based on neural network | |
CN117232809A (en) | Fan main shaft fault pre-diagnosis method based on DEMATEL-ANP-CRITIC combined weighting | |
US11339763B2 (en) | Method for windmill farm monitoring | |
Häckell | A holistic evaluation concept for long-term structural health monitoring | |
Song et al. | Framework of designing an adaptive and multi-regime prognostics and health management for wind turbine reliability and efficiency improvement | |
Zhang et al. | Probability warning for wind turbine gearbox incipient faults based on SCADA data | |
da Rosa et al. | Wind Turbine Blade Mass Imbalance Detection Using Artificial Intelligence | |
Kang et al. | Tracking gearbox degradation based on stable distribution parameters: A case study | |
US20240280084A1 (en) | Systems and methods for monitoring wind turbines using wind turbine component vibration data | |
KR102273363B1 (en) | Digital based offshore wind farm integrated Operation and Maintenance service platform device | |
CN118462508B (en) | Fatigue life prediction method and system for wind turbine blade |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100121 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20111018 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120417 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120509 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150518 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4995134 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150518 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |