JP4994818B2 - Centrifugal force formed concrete pipe manufacturing method and centrifugal force formed concrete pipe manufactured thereby - Google Patents

Centrifugal force formed concrete pipe manufacturing method and centrifugal force formed concrete pipe manufactured thereby Download PDF

Info

Publication number
JP4994818B2
JP4994818B2 JP2006331588A JP2006331588A JP4994818B2 JP 4994818 B2 JP4994818 B2 JP 4994818B2 JP 2006331588 A JP2006331588 A JP 2006331588A JP 2006331588 A JP2006331588 A JP 2006331588A JP 4994818 B2 JP4994818 B2 JP 4994818B2
Authority
JP
Japan
Prior art keywords
centrifugal force
concrete pipe
formed concrete
less
inner layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006331588A
Other languages
Japanese (ja)
Other versions
JP2008142987A (en
Inventor
茂 富岡
一裕 相澤
隆行 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2006331588A priority Critical patent/JP4994818B2/en
Publication of JP2008142987A publication Critical patent/JP2008142987A/en
Application granted granted Critical
Publication of JP4994818B2 publication Critical patent/JP4994818B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacturing Of Tubular Articles Or Embedded Moulded Articles (AREA)

Description

本発明は、遠心力成形コンクリート管の製造方法及びそれにより製造された遠心力成形コンクリート管に関する。   The present invention relates to a method for producing a centrifugal force-formed concrete pipe and a centrifugal force-formed concrete pipe produced thereby.

ライニング管やヒューム管等のコンクリート製品は、遠心力成形によって製造されている。
ヒューム管等のコンクリート製品の製造において、遠心力成形によって発生したスラッジ排出後に内面仕上げをする場合、セメントなどを粉体又はスラリー状で投入し、仕上げ棒で表面の凹凸が無くなるように均し、最後に刷毛で仕上げる方法が実施されている。
この仕上げ作業は、ヒューム管等を回転しながら行うため、危険が伴い、熟練が必要である。
しかしながら、このような、熟練が必要な作業ができる作業員を育てるには、時間を必要とするものであり、そのため、遠心力成形コンクリート製品工場では熟練作業員が不足し、人員確保に苦慮しているのが現状である。
Concrete products such as lining pipes and fume pipes are manufactured by centrifugal force forming.
In the manufacture of concrete products such as fume pipes, when finishing the inner surface after discharging sludge generated by centrifugal force molding, cement or the like is added in powder or slurry form, and smoothed so that the surface irregularities are eliminated with the finish bar, Finally, a method of finishing with a brush has been implemented.
Since this finishing operation is performed while rotating the fume tube or the like, it is dangerous and requires skill.
However, it takes time to nurture workers who can perform such work that requires skill, and as a result, there is a shortage of skilled workers in the centrifugally formed concrete product factory, and it is difficult to secure personnel. This is the current situation.

この改善策として、例えば、凝結促進剤と非(陰)イオン界面活性剤とを添加して、遠心力成形で生ずるスラッジ中の固形分をコンクリート内面に凝結させ、スラッジから水を分離し、コンクリート内面のコテ仕上げを容易にし、かつ、平滑にする方法(特許文献1参照)、アルカリ性で水溶性となるカルボキシル基を有する高分子を、酸性の水溶液中に微粒子状に分散させた液を、遠心力成形中のセメント製品の仕上げ層に添加する方法(特許文献2参照)、スラッジの発生を低減又は防止する遠心力成形方法により遠心力成形した後、遠心力成形体内面に形成された柔らかいペースト又はモルタル層の表面に、遠心力成形体を回転させながら、急硬性成分のスラリーや吸水性物質を投入して硬化させ、平均厚さ0.2〜10mmのライニング層を形成する内面仕上げ方法(特許文献3〜特許文献5参照)、及び遠心力成形品のパイプの内面に速硬性セメントミルクを投入し、パイプを回転させて遠心力により速硬性セメントミルクをパイプ内面に付着、硬化させることにより内層を仕上げる方法(特許文献6参照)等が知られている。
しかしながら、これらコテ仕上げやライニング層の形成等の内面モルタル仕上げによって形成される内面は平滑度が悪く、他にヒューム管の評価のひとつである外圧強度(曲げ強度)の確保が容易に得られにくいという課題があった。
As an improvement measure, for example, a setting accelerator and a non-anionic surfactant are added to solidify the solid content in the sludge generated by centrifugal force molding on the inner surface of the concrete, and water is separated from the sludge. A method of facilitating and smoothing the inner surface of the iron (see Patent Document 1), a solution in which a polymer having a carboxyl group that is alkaline and water-soluble is dispersed in fine particles in an acidic aqueous solution is centrifuged. A soft paste formed on the inner surface of a centrifugal force molded body after centrifugal force molding by a method of adding to the finishing layer of a cement product during force molding (see Patent Document 2) or a centrifugal force molding method that reduces or prevents the generation of sludge Alternatively, while rotating the centrifugally molded product on the surface of the mortar layer, a slurry of a rapid hardening component or a water-absorbing substance is added and cured to form a lining layer having an average thickness of 0.2 to 10 mm. The inner surface finishing method to be performed (see Patent Documents 3 to 5) and the fast-curing cement milk is put into the inner surface of the pipe of the centrifugal force molded product, and the pipe is rotated and the fast-curing cement milk is applied to the inner surface of the pipe by centrifugal force. A method of finishing an inner layer by adhesion and curing (see Patent Document 6) is known.
However, the inner surface formed by inner surface mortar finishing such as trowel finishing and lining layer formation has poor smoothness, and it is difficult to easily obtain external pressure strength (bending strength) which is one of the evaluations of the fume tube. There was a problem.

特開昭56−160358号公報JP-A-56-160358 特開平04−077376号公報Japanese Patent Laid-Open No. 04-077376 特開平11−207725号公報JP-A-11-207725 特開昭61−268406号公報JP-A 61-268406 特開昭62−257811号公報JP-A-62-257811 特開平03−187711号公報Japanese Patent Laid-Open No. 03-187711

本発明者は、遠心力成形コンクリート管の製造方法において、特定のモルタルを使用することによって、遠心力成形仕上げが容易になり、また、外圧強度を増大することができることを見出し、本発明を完成するに至った。   The present inventor has found that the use of a specific mortar in the method for producing a centrifugal force-formed concrete tube facilitates the centrifugal force forming finish and can increase the external pressure strength, thereby completing the present invention. It came to do.

即ち、本発明は、遠心力成形コンクリート管の外層を遠心力成形し、その後、150μm以上の粒子含有率が3%以下の、また、150μm以上の粒子含有率が3%以下で、5μm未満の粒子含有率が5%以下の膨張材を含有してなり、スランプフローが250mm以上、養生温度が50〜90℃の範囲で蒸気養生を行い自然降温後20℃で測定した膨張率が100〜1,000×10-6粒径0.42mmを超えるものが5%未満の細骨材を含有してなるモルタルを用いて内層を遠心力成形する遠心力成形コンクリート管の製造方法であり、内層の厚みが、1mmから管厚の30%である該遠心力成形コンクリート管の製造方法であり、内層を遠心力成形する際に、重力加速度G2.5で回転後、重力加速度G20〜40で遠心力成形する該遠心力成形コンクリート管の製造方法であり、重力加速度G20〜40で遠心力成形する時間が、5〜15分である該遠心力成形コンクリート管の製造方法であり、該遠心力成形コンクリート管の製造方法で遠心力成形された遠心力成形コンクリート管である。 That is, in the present invention, the outer layer of the centrifugally formed concrete tube is subjected to centrifugal force molding, and then the particle content of 150 μm or more is 3% or less, and the particle content of 150 μm or more is 3% or less and less than 5 μm. It contains an expanding material with a particle content of 5% or less, a slump flow of 250 mm or more, a steam curing in a curing temperature range of 50 to 90 ° C., and an expansion rate measured at 20 ° C. after natural cooling is 100 to 1,000. × a method of manufacturing a centrifugal molding concrete pipes in excess of 10 -6 particle size 0.42mm is formed centrifugally inner layer using a mortar comprising a fine aggregate less than 5%, the thickness of the inner layer Is a method for producing the centrifugal force-formed concrete pipe from 1 mm to 30% of the tube thickness. When the inner layer is subjected to centrifugal force forming, it is rotated with a gravitational acceleration G2.5 and then subjected to centrifugal force forming with a gravitational acceleration G20-40. Is a method of manufacturing the centrifugally formed concrete pipe, and the gravitational acceleration G2 The centrifugal force-forming concrete tube is a centrifugal force-forming concrete tube formed by centrifugal force molding in the centrifugal force-forming concrete tube, wherein the centrifugal force-forming time is 0 to 40 minutes. is there.

本発明の遠心力成形コンクリート管の製造方法を用いることによって、コンクリート管の仕上げが容易になり、外圧強度を増大させることが可能となる。   By using the method for producing a centrifugally formed concrete pipe of the present invention, the finishing of the concrete pipe becomes easy and the external pressure strength can be increased.

以下、本発明を詳細に説明する。
発明における部や%は特に規定しない限り質量基準で示す。
Hereinafter, the present invention will be described in detail.
Unless otherwise specified, parts and percentages in the invention are shown on a mass basis.

まず、本発明では、遠心力成形コンクリート管の外層を成形する。   First, in the present invention, an outer layer of a centrifugally formed concrete pipe is formed.

遠心力成形コンクリート管の外層を成形する材料は特に限定されるものではなく、通常使用される、セメント、減水剤、細骨材、及び粗骨材等が使用可能であり、その成形方法も特に限定されるものではない。   The material for molding the outer layer of the centrifugally formed concrete pipe is not particularly limited, and commonly used cement, water reducing agent, fine aggregate, coarse aggregate, etc. can be used, and the molding method is also particularly It is not limited.

ついで、遠心力成形コンクリート管の内層をモルタルで成形する。   Next, the inner layer of the centrifugally formed concrete pipe is formed with mortar.

本発明で遠心力成形コンクリート管の内層を成形するために使用するモルタルは膨張材を含有するものである。   In the present invention, the mortar used for forming the inner layer of the centrifugally formed concrete pipe contains an expansion material.

本発明で使用する膨張材は、150μm以上の粒子含有率が3%以下の、また、150μm以上の粒子含有率が3%以下で、5μm未満の粒子含有率が5%以下の膨張材である。   The expansion material used in the present invention is an expansion material having a particle content of 150 μm or more of 3% or less, a particle content of 150 μm or more of 3% or less, and a particle content of less than 5 μm of 5% or less. .

本発明で使用する膨張材の150μm以上の粒子含有率が3%を超えると、硬化後、内層を形成したモルタル(以下、内層モルタルという)の表面に凹凸が生じるおそれがある。
また、本発明で使用する膨張材の5μm未満の粒子含有率が5%を超えると、モルタルの流動性を損なったりして、内層モルタルの仕上がりが悪くなるおそれがある。
If the content of particles of 150 μm or more in the expansion material used in the present invention exceeds 3%, the surface of a mortar (hereinafter referred to as an inner layer mortar) on which an inner layer has been formed may be uneven after curing.
Moreover, when the content rate of particles less than 5 μm of the expandable material used in the present invention exceeds 5%, the fluidity of the mortar may be impaired, and the finish of the inner layer mortar may be deteriorated.

本発明で使用するモルタルは、上記膨張材を含有するもので、スランプフローは250mm以上であり、膨張率は100〜1,000×10-6である。 The mortar used in the present invention contains the above expansion material, has a slump flow of 250 mm or more, and an expansion rate of 100 to 1,000 × 10 −6 .

本発明の膨張率は、JIS A 6202付属書1の試験方法に準じて測定されるもので、100〜1,000×10-6であり、200〜1,000×10-6が好ましい。100×10-6未満では外圧強度が上がらず、1,000×10-6を超えても外圧強度の伸びが期待できない。 Expansion of the present invention, which is measured according to the test method JIS A 6202 Annex 1 is 100 to 1,000 × 10 -6, preferably 200 to 1,000 × 10 -6. If it is less than 100 × 10 −6 , the external pressure strength does not increase, and even if it exceeds 1,000 × 10 −6 , it cannot be expected to increase the external pressure strength.

本発明のスランプフローは、JIS R 5201のフロー試験にしたがって測定されるもので、フローコーンを上方に取り去った後の自然に広がったモルタルの直径であり、250mm以上であり、260〜350mmが好ましい。スランプフローが250mm未満では、内層モルタルの流動性が悪くなり厚みが均等にならないおそれがある。   The slump flow of the present invention is measured according to the flow test of JIS R 5201, and is the diameter of the mortar that has naturally spread after the flow cone is removed upward, and is 250 mm or more, preferably 260 to 350 mm. . If the slump flow is less than 250 mm, the fluidity of the inner layer mortar is deteriorated and the thickness may not be uniform.

本発明で使用するセメントとしては、各種ポルトランドセメント、各種混合セメント、及びエコセメントが挙げられ、これらの任意量を混合したセメントでも使用可能である。   Examples of the cement used in the present invention include various Portland cements, various mixed cements, and eco-cements, and cements in which these arbitrary amounts are mixed can also be used.

本発明の細骨材は、0.42mm以上が5%未満であるものが好ましく、5%以上であると内層モルタルに細骨材が浮き、平滑度が悪くなるおそれがある。   The fine aggregate of the present invention is preferably 0.42 mm or more and less than 5%, and if it is 5% or more, the fine aggregate floats in the inner layer mortar and the smoothness may be deteriorated.

本発明で使用されるセメントと細骨材の比は、セメントと膨張材からなる結合材100部に対して、細骨材が50〜250部が好ましく、100〜200部がより好ましい。細骨材が50部未満では、数日後にひび割れが発生するおそれがあり、250部を超えると内層の平滑度が悪くなるおそれがある。   The ratio of cement and fine aggregate used in the present invention is preferably 50 to 250 parts, and more preferably 100 to 200 parts, with respect to 100 parts of the binder composed of cement and expansion material. If the fine aggregate is less than 50 parts, cracks may occur after several days, and if it exceeds 250 parts, the smoothness of the inner layer may be deteriorated.

本発明の内層を遠心力成形する際の重力加速度は、重力加速度G2.5で回転後、重力加速度G20〜40で遠心力成形する。重力加速度がG20未満では内層モルタルのしまりが悪く外圧強度が上がらないおそれがあり、重力加速度G40を超えても外圧強度の伸びが期待できない。   When the inner layer of the present invention is subjected to centrifugal force shaping, the gravitational acceleration is rotated by the gravitational acceleration G2.5, and then the centrifugal force is formed by the gravitational acceleration G20-40. If the gravitational acceleration is less than G20, the inner layer mortar has a poor tightness and the external pressure strength may not increase, and even if the gravitational acceleration G40 is exceeded, an increase in the external pressure strength cannot be expected.

重力加速度G20〜40で遠心力成形する時間は、5〜15分が好ましい。遠心力成形時間が5分未満では内層モルタルの締まりが悪く外圧強度が上がらないおそれがあり、遠心力成形時間が15分を超えても外圧強度の伸びが期待できない。   The time for forming the centrifugal force with the gravitational acceleration G20-40 is preferably 5-15 minutes. If the centrifugal molding time is less than 5 minutes, the inner layer mortar may not be tightly tightened and the external pressure strength may not be increased.

本発明の遠心力成形コンクリート管の内層の厚みは、1mmから管厚の30%が好ましく、3mmから管厚の30%がより好ましい。1mm未満では外圧強度が上がらないおそれがあり、管厚が30%を超えても外圧強度ののびは期待できない。   The thickness of the inner layer of the centrifugally formed concrete pipe of the present invention is preferably 1 mm to 30% of the pipe thickness, more preferably 3 mm to 30% of the pipe thickness. If it is less than 1 mm, the external pressure strength may not increase, and even if the tube thickness exceeds 30%, the external pressure strength cannot be expected to increase.

遠心力成形した遠心力成形コンクリート管の養生温度は、50〜90℃が好ましく、60〜80℃がより好ましい。50℃未満では外圧強度が上がらないおそれがあり、90℃を超えても外圧強度は上がらないおそれがある。   The curing temperature of the centrifugally formed concrete pipe formed by centrifugal force is preferably 50 to 90 ° C, more preferably 60 to 80 ° C. If it is less than 50 ° C, the external pressure strength may not increase, and if it exceeds 90 ° C, the external pressure strength may not increase.

本発明ではその他、抗菌剤の使用も可能である。   In the present invention, an antibacterial agent can also be used.

さらに、本発明では高性能減水剤や高性能AE減水剤の使用も可能である。   Further, in the present invention, a high performance water reducing agent or a high performance AE water reducing agent can be used.

高性能減水剤とは、ポリアルキルアリルスルホン酸塩系、芳香族アミノスルホン酸塩系、及びメラミンホルマリン樹脂スルホン酸塩系のいずれかを主成分とするものであり、これらの一種又は二種以上が使用されるものである。
ポリアルキルアリルスルホン酸塩系高性能減水剤には、メチルナフタレンスルホン酸ホルマリン縮合物、ナフタレンスルホン酸ホルマリン縮合物、及びアントラセンスルホン酸ホルマリン縮合物等があり、市販品としては電気化学工業(株)社商品名「FT-500」とそのシリーズ、花王(株)社商品名「マイティ-100」(粉末)や「マイティ-150」とそのシリーズ、第一工業製薬(株)社商品名「セルフロー110P」(粉末)、竹本油脂(株)社商品名「ポールファイン510N」など、日本製紙(株)社商品名「サンフローPS」とそのシリーズなどが代表的である。芳香族アミノスルホン酸塩系高性能減水剤としては、藤沢薬品(株)社商品名「パリックFP200H」とそのシリーズがあり、メラミンホルマリン樹脂スルホン酸塩系高性能減水剤にはグレースケミカルズ社商品名「FT-3S 」、昭和電工(株)社商品名「モルマスターF-10」(粉末)や「モルマスターF-20」(粉末)が挙げられる。
The high-performance water reducing agent is based on any one of polyalkylallyl sulfonate, aromatic amino sulfonate, and melamine formalin sulfonate, and one or more of these Is what is used.
Polyalkylallyl sulfonate-based high-performance water reducing agents include methyl naphthalene sulfonic acid formalin condensate, naphthalene sulfonic acid formalin condensate, and anthracene sulfonic acid formalin condensate. Company product name “FT-500” and its series, Kao Corporation product name “Mighty-100” (powder) and “Mighty-150” and its series, Daiichi Kogyo Seiyaku Co., Ltd. product name “Selflow 110P” (Powder), Takemoto Yushi Co., Ltd. trade name “Pole Fine 510N”, and Nippon Paper Industries Co., Ltd. trade name “Sunflow PS” and its series are typical. Aromatic aminosulfonate-based high-performance water reducing agents include Fujisawa Pharmaceutical Co., Ltd. product name “Palic FP200H” and its series, and melamine formalin sulfonate-based high-performance water reducing agents are Grace Chemicals product names. “FT-3S”, trade name “Molmaster F-10” (powder) and “Molmaster F-20” (powder) of Showa Denko K.K.

高性能AE減水剤は、通常、ポリカルボン酸塩系減水剤と呼称され、不飽和カルボン酸モノマーを一成分として含む共重合体又はその塩である。例えば、ポリアルキレングリコールモノアクリル酸エステル、ポリアルキレングリコールモノメタクリル酸エステル、無水マレイン酸及びスチレンの共重合体やアクリル酸やメタクリル酸塩の共重合体及びこれらの単量体と共重合可能な単量体から導かれた共重合体等を挙げることができる。(株)エヌエムビー社商品名「レオビルドSP8N 」シリーズ、藤沢薬品工業(株)社商品名「パリックFP100S,300S 」シリーズ、竹本油脂(株)社商品名「チュポールHP8,11」シリーズ、グレースケミカルズ(株)社商品名「ダーレックススーパー100、200、300,1000」シリーズ、その他が市販されている。   The high-performance AE water reducing agent is usually called a polycarboxylate-based water reducing agent, and is a copolymer or a salt thereof containing an unsaturated carboxylic acid monomer as one component. For example, polyalkylene glycol monoacrylate, polyalkylene glycol monomethacrylate, a copolymer of maleic anhydride and styrene, a copolymer of acrylic acid or methacrylate, and a monomer copolymerizable with these monomers. Examples thereof include a copolymer derived from a monomer. NMB Co., Ltd. product name “Leo Build SP8N” series, Fujisawa Pharmaceutical Co., Ltd. product name “Palic FP100S, 300S” series, Takemoto Yushi Co., Ltd. product name “Tupol HP8,11” series, Grace Chemicals Co., Ltd. ) The company name "Darlex Super 100, 200, 300, 1000" series and others are commercially available.

以下、実験例に基づき本発明を詳細に説明するが、本発明はこれらに限定されるものではない。   Hereinafter, although this invention is demonstrated in detail based on an experiment example, this invention is not limited to these.

実験例1
セメント450kg/m3、水170kg/m3、細骨材A612kg/m3、粗骨材1,145kg/m3、及び減水剤a2.7kg/m3での単位量で、スランプ8cm、s/a35%、及びW/C37.8%のコンクリート配合を用い、容量50リットルの強制二軸ミキサーで3分間練混ぜ、30リットル分のコンクリートを練り上げた。
練り上げたコンクリートを、直径20cm×長さ30cm×厚さ5cmの遠心力成形用型枠に、外層コンクリートの厚みが3.5cmになるように投入した。
遠心力の低速G2.5で5分、中速G10で2分、及び高速G30で10分の三段階の遠心力成形条件で成形した。その時、内層に発生したスラッジは排出した。
その後、セメント92部、表1に示す膨張材8部、及び細骨材B150部、並びに、セメントと膨張材からなる結合材100部に対して、水45部と減水剤b1.4部を配合し、表1に示すスランプフローと膨張率のモルタルを調製した。
調製したモルタルを、G2.5で、内層厚が5mmになるように投入し、G2.5で1分、G30で10分の遠心力成形条件で遠心力成形コンクリート管を製造した。
養生は、前置き5時間、昇温20℃/時間、65℃×5時間保持で、以後自然降温とした。
製造した遠心力成形コンクリート管の内層モルタルの仕上がり状態を確認した。結果を表1に併記する。試験は温度20℃で実施した。
Experimental example 1
Cement 450 kg / m 3, water 170 kg / m 3, fine aggregates A612kg / m 3, the unit amount in the coarse aggregate 1,145kg / m 3, and water reducing agent a2.7kg / m 3, slump 8cm, s / a35 %, And W / C 37.8% concrete mix was mixed for 3 minutes with a 50 liter forced biaxial mixer, and 30 liters of concrete was kneaded.
The kneaded concrete was put into a centrifugal mold for molding having a diameter of 20 cm, a length of 30 cm and a thickness of 5 cm so that the thickness of the outer concrete layer was 3.5 cm.
Molding was carried out in three stages of centrifugal force molding conditions of 5 minutes at a low speed G2.5, 2 minutes at a medium speed G10, and 10 minutes at a high speed G30. At that time, sludge generated in the inner layer was discharged.
Thereafter, 92 parts of cement, 8 parts of the expansion material shown in Table 1, 150 parts of fine aggregate B, and 100 parts of binder made of cement and expansion material were mixed with 45 parts of water and 1.4 parts of water reducing agent. The slump flow and expansion rate mortar shown in Table 1 were prepared.
The prepared mortar was charged with G2.5 so that the inner layer thickness was 5 mm, and a centrifugal force-formed concrete tube was produced under the centrifugal force forming conditions of G2.5 for 1 minute and G30 for 10 minutes.
Curing was conducted for 5 hours in advance, with a temperature increase of 20 ° C./hour and a temperature of 65 ° C. × 5 hours.
The finished state of the inner layer mortar of the produced centrifugally formed concrete pipe was confirmed. The results are also shown in Table 1. The test was conducted at a temperature of 20 ° C.

<使用材料>
セメント :普通ポルトランドセメント
膨張材 :カルシウムサルホアルミネート系膨張材、市販品、粒度調整品
細骨材A :新潟県姫川水系産天然砂、密度2.62cm2/g
細骨材B :珪砂、N80 20部、N60 80部の混合品、0.42mm以上5%未満、密度2.65cm2/g
粗骨材 :新潟県姫川水系産砕石、骨材寸法5〜20mm、密度2.64cm2/g
減水剤a :ポリカルボン酸塩系減水剤、市販品
減水剤b :ポリアルキルアリルスルホン酸塩系高性能減水剤、市販品
水 :水道水
<Materials used>
Cement: Ordinary Portland cement expansive material: Calcium sulfoaluminate-based expansive material, commercial product, particle size adjusted fine aggregate A: Natural sand from Himekawa water system, Niigata Prefecture, density 2.62cm 2 / g
Fine aggregate B: Silica sand, N80 20 parts, N60 80 parts, 0.42mm to less than 5%, density 2.65cm 2 / g
Coarse aggregate: Crushed stone from Himekawa water system, Niigata prefecture, aggregate size 5-20mm, density 2.64cm 2 / g
Water reducing agent a: Polycarboxylate-based water reducing agent, commercially available water reducing agent b: Polyalkylallyl sulfonate-based high-performance water reducing agent, commercially available water: tap water

<測定方法>
スランプフロー:JIS R 5202のフロー試験にしたがって測定、フローコーンを上方に取り去った後の自然に広がったモルタルの直径を測定
膨張率 :JIS R 6202のモルタル試験方法にしたがって測定
内層モルタルの仕上がり状態:目視評価
<Measurement method>
Slump flow: Measured according to the flow test of JIS R 5202, measured the diameter of the mortar that naturally expanded after removing the flow cone upward Expansion rate: Measured according to the mortar test method of JIS R 6202 Finished state of the inner mortar: Visual evaluation

Figure 0004994818
Figure 0004994818

実験例2
結合材100部中、表2に示す量の、150μm以上が1%で、5μm未満が3%の膨張材を配合し、表2に示す膨張率とスランプフローのモルタルを使用し、外圧強度を測定し、外圧強度比を算出したこと以外は実験例1と同様に実施した。結果を表2に併記する。
なお、外圧強度比算出用として、セメント100部、細骨材B150部、及び水45部を混合してプレーンモルタルを調製し、同様に製造した。
Experimental example 2
In 100 parts of the binder, the amount shown in Table 2 is blended with an expansion material of 150% or more 1% and less than 5μm 3%. Using the expansion rate and slump flow mortar shown in Table 2, the external pressure strength is The measurement was carried out in the same manner as in Experimental Example 1 except that the external pressure intensity ratio was calculated. The results are also shown in Table 2.
For calculating the external pressure strength ratio, 100 parts of cement, 150 parts of fine aggregate B, and 45 parts of water were mixed to prepare plain mortar, which was manufactured in the same manner.

<測定方法>
外圧強度比:曲げ強度(外圧強度)試験、製管した直径20cm×長さ30cm×厚さ4cmの試験体を、材齢14日にマルイ製作所社製商品名「HI-TRITRON(3000KN)圧縮試験機」を使用し、円周面が上下になるように載荷して測定、成形した遠心力成形コンクリート管の曲げ強度(外圧強度)を測定し、プレーンモルタルを用いて成形した遠心力成形コンクリート管の外圧強度を1とし、外圧強度比を算出
<Measurement method>
External pressure strength ratio: Bending strength (external pressure strength) test, pipe-made diameter 20 cm x length 30 cm x thickness 4 cm test piece "HI-TRITRON (3000KN) compression test" by Marui Seisakusho on the age of 14 Machine, measuring the bending strength (external pressure strength) of a molded centrifugal force molded concrete tube loaded and measured with the circumferential surface up and down, and forming a centrifugal force molded concrete tube using plain mortar The external pressure strength ratio is set to 1, and the external pressure strength ratio is calculated.

Figure 0004994818
Figure 0004994818

実験例3
セメント92部、150μm以上が1%で、5μm未満が3%の膨張材8部、及び細骨材B150部、並びに、結合材100部に対して、水45部と表3に示す減水剤bを配合し、膨張率512×10-6で、表3に示すスランプフローのモルタルを使用し、内層モルタルの仕上がり状態を確認したこと以外は実験例1と同様に行った。結果を表3に併記する。
Experimental example 3
45 parts of water and water reducing agent b shown in Table 3 for 92 parts of cement, 8 parts of expansion material of 1% over 150 μm and 3% less than 5 μm, 150 parts of fine aggregate B, and 100 parts of binder The expansion rate was 512 × 10 −6 , and slump flow mortar shown in Table 3 was used, and the finished state of the inner layer mortar was confirmed. The results are also shown in Table 3.

Figure 0004994818
Figure 0004994818

実験例4
セメント92部、150μm以上が1%で、5μm未満が3%の膨張材8部、及び細骨材Bと細骨材Cを混合して調製した表4に示す粒度の細骨材150部を配合し、膨張率512×10-6で、表4に示すスランプフローのモルタルを調製し、内層モルタルの仕上がり状態を確認したこと以外は実験例1と同様に行った。結果を表4に併記する。
Experimental Example 4
92 parts of cement, 1 part of 150% or more and 8% of expansion material less than 5 micrometers 3%, and 150 parts of fine aggregate with the particle size shown in Table 4 prepared by mixing fine aggregate B and fine aggregate C The same procedure as in Experimental Example 1 was carried out except that a slump flow mortar shown in Table 4 was prepared with an expansion rate of 512 × 10 −6 and the finished state of the inner layer mortar was confirmed. The results are also shown in Table 4.

<使用材料>
細骨材C :珪砂、N50の0.42mm以上を使用、密度2.65cm2/g
<Materials used>
Fine aggregate C: Silica sand, N50 of 0.42mm or more, density 2.65cm 2 / g

Figure 0004994818
Figure 0004994818

実験例5
セメント92部、150μm以上が1%で、5μm未満が3%の膨張材8部、及び細骨材B150部を配合し、膨張率512×10-6でスランプフロー279mmのモルタルを使用し、外層と内層全体の厚みを4cmとし、表5に示す厚みの内層を成形したこと以外は実験例1と同様に行い、外圧強度比を算出した。結果を表5に併記する。
Experimental Example 5
Mixing 92 parts of cement, 8 parts of expansive material with 1% over 150 μm and 3% under 5 μm, and 150 parts of fine aggregate B, using mortar with slump flow of 279 mm with expansion rate of 512 × 10 -6 The outer pressure strength ratio was calculated in the same manner as in Experimental Example 1 except that the thickness of the entire inner layer was 4 cm and the inner layer having the thickness shown in Table 5 was formed. The results are also shown in Table 5.

Figure 0004994818
Figure 0004994818

実験例6
セメント92部、150μm以上が1%で、5μm未満が3%の膨張材8部、及び細骨材B150部を配合し、膨張率512×10-6でスランプフロー279mmのモルタルを使用し、表6に示す遠心力条件で、内層を形成したこと以外は実験例1と同様に行い、外圧強度比を算出した。結果を表6に併記する。
Experimental Example 6
Mixing 92 parts of cement, 8 parts of expansive material of 1% over 150μm and 3% below 5μm, and 150 parts of fine aggregate B, using mortar with slump flow 279mm with expansion coefficient 512 × 10-6 , Except that the inner layer was formed under the centrifugal force condition shown in FIG. The results are also shown in Table 6.

Figure 0004994818
Figure 0004994818

実験例7
セメント92部、150μm以上が1%で、5μm未満が3%の膨張材8部、及び細骨材B150部を配合し、膨張率512×10-6でスランプフロー279mmのモルタルを使用し、表7に示す遠心力条件で、内層を形成したこと以外は実験例1と同様に行い外圧強度比を算出した。
Experimental Example 7
Mixing 92 parts of cement, 8 parts of expansive material of 1% over 150μm and 3% below 5μm, and 150 parts of fine aggregate B, using mortar with slump flow 279mm with expansion coefficient 512 × 10-6 , The external pressure strength ratio was calculated in the same manner as in Experimental Example 1 except that the inner layer was formed under the centrifugal force condition shown in FIG.

Figure 0004994818
Figure 0004994818

本発明の遠心力成形コンクリート管の製造の際に仕上げが容易になり、外圧強度を増加させることができ、遠心力成形コンクリート管に幅広く適用できる。   Finishing is facilitated during the production of the centrifugally formed concrete pipe of the present invention, the external pressure strength can be increased, and it can be widely applied to centrifugally formed concrete pipes.

Claims (6)

遠心力成形コンクリート管の外層を遠心力成形し、その後、150μm以上の粒子含有率が3%以下の膨張材を含有してなり、スランプフローが250mm以上、養生温度が50〜90℃の範囲で蒸気養生を行い自然降温後20℃で測定した膨張率が100〜1,000×10-6粒径0.42mmを超えるものが5%未満の細骨材を含有してなるモルタルを用いて内層を遠心力成形する遠心力成形コンクリート管の製造方法。 Centrifugal forming of the outer layer of the centrifugally formed concrete tube, and then containing an expansion material with a particle content of 150 μm or more and 3% or less, with a slump flow of 250 mm or more and a curing temperature of 50 to 90 ° C. centrifuged inner layer using a mortar that expansion rate was measured at 20 ° C. after air cooling performed steam curing is a particle diameter exceeding 0.42mm of 100 to 1,000 × 10 -6 is comprising less than 5% fine aggregate A method for producing a centrifugally formed concrete pipe for force forming. 遠心力成形コンクリート管の外層を遠心力成形し、その後、150μm以上の粒子含有率が3%以下で、5μm未満の粒子含有率が5%以下の膨張材を含有してなり、スランプフローが250mm以上、養生温度が50〜90℃の範囲で蒸気養生を行い自然降温後20℃で測定した膨張率が100〜1000×10-6粒径0.42mmを超えるものが5%未満の細骨材を含有してなるモルタルを用いて内層を遠心力成形する遠心力成形コンクリート管の製造方法。 Centrifugal forming of the outer layer of the centrifugally formed concrete tube, and then containing an expansion material with a particle content of 150 μm or more of 3% or less and a particle content of less than 5 μm of 5% or less, and a slump flow of 250 mm As mentioned above, the fine aggregate with less than 5% is the one with the expansion rate of 100-1000 × 10 -6 exceeding the particle size of 0.42 mm measured by steam curing in the curing temperature range of 50-90 ° C. A method for producing a centrifugally-formed concrete pipe, wherein an inner layer is subjected to centrifugal force molding using a mortar containing the same . 内層の厚みが、1mmから管厚の30%である請求項1又は請求項2に記載の遠心力成形コンクリート管の製造方法。 The method for producing a centrifugal force-formed concrete pipe according to claim 1 or 2 , wherein the thickness of the inner layer is from 1 mm to 30% of the pipe thickness. 内層を遠心力成形する際に、重力加速度G2.5で回転後、重力加速度G20〜40で遠心力成形する請求項1〜請求項のうちのいずれか一項に記載の遠心力成形コンクリート管の製造方法。 The centrifugal force-forming concrete pipe according to any one of claims 1 to 3 , wherein, when the inner layer is subjected to centrifugal force forming, the centrifugal force is formed at a gravitational acceleration G20 to 40 after being rotated at a gravitational acceleration G2.5. Manufacturing method. 重力加速度G20〜40で遠心力成形する時間が、5〜15分である請求項に記載の遠心力成形コンクリート管の製造方法。 The method for producing a centrifugal force-formed concrete pipe according to claim 4 , wherein the time for centrifugal force forming at a gravitational acceleration G20 to 40 is 5 to 15 minutes. 請求項1〜請求項のうちのいずれか一項に記載の遠心力成形コンクリート管の製造方法で遠心力成形された遠心力成形コンクリート管。 A centrifugal force-formed concrete pipe formed by centrifugal force forming by the method for producing a centrifugal force-formed concrete pipe according to any one of claims 1 to 5 .
JP2006331588A 2006-12-08 2006-12-08 Centrifugal force formed concrete pipe manufacturing method and centrifugal force formed concrete pipe manufactured thereby Active JP4994818B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006331588A JP4994818B2 (en) 2006-12-08 2006-12-08 Centrifugal force formed concrete pipe manufacturing method and centrifugal force formed concrete pipe manufactured thereby

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006331588A JP4994818B2 (en) 2006-12-08 2006-12-08 Centrifugal force formed concrete pipe manufacturing method and centrifugal force formed concrete pipe manufactured thereby

Publications (2)

Publication Number Publication Date
JP2008142987A JP2008142987A (en) 2008-06-26
JP4994818B2 true JP4994818B2 (en) 2012-08-08

Family

ID=39603689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006331588A Active JP4994818B2 (en) 2006-12-08 2006-12-08 Centrifugal force formed concrete pipe manufacturing method and centrifugal force formed concrete pipe manufactured thereby

Country Status (1)

Country Link
JP (1) JP4994818B2 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51128019A (en) * 1975-04-30 1976-11-08 Nippon Fume Can Kk Reinforced concrete pipe
JPS5827432B2 (en) * 1979-06-30 1983-06-09 電気化学工業株式会社 Concrete pipe and its manufacturing method
JPH0651285B2 (en) * 1986-02-07 1994-07-06 電気化学工業株式会社 Method for manufacturing centrifugal force molding concrete pipe
JPH1112009A (en) * 1997-06-16 1999-01-19 Denki Kagaku Kogyo Kk Cement admixture, cement composition and chemical prestressed concrete using the same
JPH11207725A (en) * 1998-01-22 1999-08-03 Denki Kagaku Kogyo Kk Manufacture of centrifugal force molding
JP2000280223A (en) * 1999-03-31 2000-10-10 Denki Kagaku Kogyo Kk Inner face-finishing material for manufacture of concrete pipe body
JP4462466B2 (en) * 2000-05-17 2010-05-12 電気化学工業株式会社 Non-shrink mortar composition and fast-curing non-shrink mortar composition
JP4563562B2 (en) * 2000-08-30 2010-10-13 電気化学工業株式会社 Cement composition
JP2005162564A (en) * 2003-12-05 2005-06-23 Taiheiyo Material Kk Expansion material for mortar concrete and concrete using it

Also Published As

Publication number Publication date
JP2008142987A (en) 2008-06-26

Similar Documents

Publication Publication Date Title
KR101204872B1 (en) Ultra-high-performance self-compacting concrete, preparation method thereof and use of same
JP6057712B2 (en) Sprayable hydraulic binder composition and method of use thereof
JP6129157B2 (en) Rapid hardening cement
JP2009084092A (en) Mortar-based restoring material
JP7271185B2 (en) Construction method of members
JP4994818B2 (en) Centrifugal force formed concrete pipe manufacturing method and centrifugal force formed concrete pipe manufactured thereby
JP4691423B2 (en) Centrifugal forming material and method for producing centrifugal formed concrete product
JP2004292245A (en) Acid-proof cement composition
JP2001220201A (en) Fiber reinforced concrete
JP4468198B2 (en) Centrifugal force forming aid, concrete, and method for producing fume tube using the same
JP7460065B2 (en) Coating material, tubular molded body, manufacturing method for tubular molded body, and coating method
JP4607051B2 (en) Method for producing centrifugally formed concrete pipe and centrifugally formed concrete pipe
JP2003012361A (en) Instant stripping porous concrete compact
JP2011207634A (en) Acid-proof cement composition
JP6670187B2 (en) Sulfuric acid resistant cement composition, sulfuric acid resistant mortar, and cured sulfuric acid resistant mortar
JP4225873B2 (en) Polymer cement acid-resistant repair material
JP4113144B2 (en) Hume tube manufacturing method
JP3417700B2 (en) Lightweight body composition for thickening decorative pattern formation
JP2007238439A (en) Cement composition, concrete and method of producing concrete hardened body using the same
JP2002097045A (en) Aggregate for cement hardened product and cement hardened product
JP2002249368A (en) Calcium aluminate mortar used in spraying concrete dry process
JP4108165B2 (en) Resin mortar composition
JP3454324B2 (en) Slag reduction material, centrifugal force molded article using the same, and method of manufacturing the same
JP2010083698A (en) Method for producing hardened cement body, and hardened cement body
JPH1160312A (en) Production of cement composition for centrifugal forming and centrifugal formed body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091102

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120508

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120509

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4994818

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250