JP4994405B2 - Method for determining quality of release film of press mold and method for manufacturing optical element - Google Patents

Method for determining quality of release film of press mold and method for manufacturing optical element Download PDF

Info

Publication number
JP4994405B2
JP4994405B2 JP2009052023A JP2009052023A JP4994405B2 JP 4994405 B2 JP4994405 B2 JP 4994405B2 JP 2009052023 A JP2009052023 A JP 2009052023A JP 2009052023 A JP2009052023 A JP 2009052023A JP 4994405 B2 JP4994405 B2 JP 4994405B2
Authority
JP
Japan
Prior art keywords
release film
film
mold
press
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009052023A
Other languages
Japanese (ja)
Other versions
JP2010202476A (en
Inventor
隆 猪狩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP2009052023A priority Critical patent/JP4994405B2/en
Priority to CN2010101179608A priority patent/CN101823833B/en
Publication of JP2010202476A publication Critical patent/JP2010202476A/en
Application granted granted Critical
Publication of JP4994405B2 publication Critical patent/JP4994405B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Description

本発明は、ガラス素材をプレス成形してレンズ、プリズム等のガラス光学素子を製造する際に使用される成形型について、その成形面上に成膜された離型膜の良否を判定する方法に関する。
更に本発明は、前記良否判定方法により離型膜の良否判定を行うことを含む光学素子の製造方法に関する。
The present invention relates to a method for determining the quality of a release film formed on a molding surface of a molding die used for manufacturing a glass optical element such as a lens or a prism by press molding a glass material. .
Furthermore, the present invention relates to a method for manufacturing an optical element, which includes performing pass / fail determination of a release film by the pass / fail determination method.

加熱軟化したガラス素材を成形型によりプレス成形することにより、レンズなどの光学素子を得る際に、成形型の成形面とガラス素材の融着を防止し、離型性を得るために、ガラス素材表面に炭素系材料からなるコーティングを設けることや(特許文献1参照)、成形型の成形面に炭素系薄膜、金属窒化物系薄膜、金属炭化物系薄膜等の離型膜を設けることが行われている(例えば特許文献2〜6参照)。   By pressing the softened glass material with a mold, when the optical element such as a lens is obtained, the glass material is used in order to prevent the molding surface of the mold and the glass material from fusing and to obtain releasability. A coating made of a carbon-based material is provided on the surface (see Patent Document 1), and a release film such as a carbon-based thin film, a metal nitride-based thin film, or a metal carbide-based thin film is provided on the molding surface of the mold. (For example, see Patent Documents 2 to 6).

特開2004−231505号公報JP 2004-231505 A 特開平3−50127号公報Japanese Patent Laid-Open No. 3-50127 特開2003−313046号公報JP 2003-313046 A 特開2008−1572号公報JP 2008-1572 A 特開平7−138033号公報Japanese Patent Laid-Open No. 7-138033 特開2001−335331号公報JP 2001-335331 A

成形型上に設けられる離型膜には、プレス成形時にワレ(プレス成形時に生じる成形品の割れ)を抑制する効果が求められる。例えば特許文献5および6には、原子間力顕微鏡または触針式形状測定器によって離型膜の面形状を測定することが記載されているが、面形状の測定のみでは、離型膜が前記望ましい性能を有するか否かを判定することは困難である。   The release film provided on the molding die is required to have an effect of suppressing cracking (cracking of a molded product that occurs during press molding) during press molding. For example, Patent Documents 5 and 6 describe that the surface shape of a release film is measured by an atomic force microscope or a stylus-type shape measuring instrument. It is difficult to determine whether it has the desired performance.

そこで本発明は、プレス成形型上の離型膜の良否判定を行うための手段を提供することを目的とする。   Therefore, an object of the present invention is to provide a means for determining the quality of a release film on a press mold.

本発明者は、上記目的を達成するために鋭意検討を重ねた結果、以下の知見を得た。
プレス成形型と被成形素材(ガラス素材)との間に働く摩擦力が小さいほど、プレス成形時に型と成形素材との間にかかる変形応力が小さくなるため、プレス成形される光学素子のワレは抑制されると考えられる。そこで本発明者は、市販されている一般的な摩擦係数測定装置により摩擦係数を測定し、光学素子のワレの発生頻度との相関を取ろうとしたが、良好な相関関係を得ることはできなかった。この点について本発明者は、一般的な摩擦係数測定装置における測定条件が、プレス成形時に離型膜が置かれる条件と著しく異なることが、一般的な摩擦係数測定装置ではワレの発生頻度と摩擦係数との間に良好な相関関係が得られない理由であると推察した。
本発明者は、上記知見に基づき更に検討を重ねた結果、摩擦係数測定時、測定対象の膜に加わる圧縮応力を、プレス成形時に離型膜上に生じる面圧に基づき決定し、かつ測定対象の膜と測定子との摺動時の相対移動速度を、プレス成形時に離型膜と被成形ガラス素材との界面に生じるせん断速度に基づき決定することにより、測定される摩擦係数の値とワレの発生との間に良好な相関関係が成立することを新たに見出し、本発明を完成するに至った。
As a result of intensive studies to achieve the above object, the present inventor has obtained the following knowledge.
The smaller the frictional force acting between the press mold and the material to be molded (glass material), the smaller the deformation stress applied between the mold and the molding material during press molding. It is thought to be suppressed. Therefore, the present inventor tried to obtain a correlation with the occurrence frequency of cracking of the optical element by measuring the friction coefficient with a general commercially available friction coefficient measuring device, but could not obtain a good correlation. It was. In this regard, the present inventor has found that the measurement conditions in a general friction coefficient measurement apparatus are significantly different from the conditions in which a release film is placed during press molding. The reason is that a good correlation cannot be obtained with the coefficient.
As a result of further studies based on the above knowledge, the present inventor determined the compressive stress applied to the film to be measured at the time of measuring the friction coefficient based on the surface pressure generated on the release film at the time of press molding, and the object to be measured By determining the relative movement speed between the film and the probe on the basis of the shear rate generated at the interface between the release film and the glass material during press molding, the measured friction coefficient value and crack The inventors have newly found that a good correlation is established with the occurrence of the above, and have completed the present invention.

即ち、上記目的は、下記手段により達成された。
[1]被成形ガラス素材をプレス成形するために使用されるプレス成形型の成形面上に成膜された離型膜の良否判定方法であって、
前記離型膜または前記離型膜と同一条件で成膜された膜に測定子を押圧した状態で、該膜または該測定子のいずれか一方を他方に対して摺動させることにより摩擦係数を測定すること、および、測定された摩擦係数が予め設定した基準値以下であれば前記離型膜を良品と判定し、該基準値を超える値であれば前記離型膜を不良品と判定することにより、前記離型膜の良否を判定すること、ならびに、
前記押圧時に前記膜に加わる圧縮応力を5〜80MPaの範囲に設定し、かつ前記膜と前記測定子との摺動時の相対移動速度を0.2mm/sec以下に設定すること、
を特徴とする、プレス成形型の離型膜の良否判定方法。
[2]前記押圧時に前記膜に加わる圧縮応力を、プレス成形時に前記離型膜上に生じる面圧に基づき決定し、かつ前記膜と前記測定子との摺動時の相対移動速度を、プレス成形時に前記離型膜と前記被成形ガラス素材との界面に生じるせん断速度に基づき決定することを含む、[1]に記載のプレス成形型の離型膜の良否判定方法。
]前記測定子は、前記押圧時に前記膜に当接する部分が前記被成形ガラス素材と同じ素材からなる[1]に記載の方法。
]前記良否判定を、繰り返し摺動後の摩擦係数の測定値、繰り返し摺動中の摩擦係数の最小値、繰り返し摺動中の摩擦係数の経時変化量が予め設定した基準値以下であるものを良品と判定し、該値を超えるものを不良品と判定することにより行う[1]〜[]のいずれかに記載の方法。
]前記繰り返し摺動の摺動回数を、前記プレス成形型の所望の使用回数に基づき決定する[]に記載の方法。
]被成形ガラス素材を成形型に供給し、次いで供給された被成形ガラス素材を前記成形型によりプレス成形することを含むガラス光学素子の製造方法であって、
[1]〜[]のいずれかに記載の方法により前記成形型の成形面上に成膜された離型膜の良否判定を行うこと、
前記判定により離型膜が良品と判定された成形型を、前記プレス成形に使用すること、
を特徴とする、ガラス光学素子の製造方法。
That is, the above object was achieved by the following means.
[1] A method for determining pass / fail of a release film formed on a molding surface of a press mold used for press-molding a glass material to be molded,
The friction coefficient is obtained by sliding either the film or the measuring element against the other in a state where the measuring element is pressed against the release film or the film formed under the same conditions as the release film. If the measured friction coefficient is less than or equal to a preset reference value, the release film is determined as a non-defective product, and if the measured value exceeds the reference value, the release film is determined as a defective product. Determining the quality of the release film, and
Setting the compressive stress applied to the film at the time of pressing in the range of 5 to 80 MPa, and setting the relative movement speed when sliding between the film and the probe to 0.2 mm / sec or less,
A quality determination method for a release film of a press mold, characterized by
[2] A compressive stress applied to the film at the time of pressing is determined based on a surface pressure generated on the release film at the time of press molding, and a relative moving speed at the time of sliding between the film and the measuring element is determined by pressing The quality determination method for a release film of a press mold according to [1], including determining based on a shear rate generated at an interface between the release film and the glass material to be molded at the time of molding.
[ 3 ] The method according to [1], wherein the measuring element is made of the same material as that of the glass material to be formed in a portion that contacts the film when the pressing is performed.
[ 4 ] For the pass / fail judgment, the measured value of the friction coefficient after repeated sliding, the minimum value of the friction coefficient during repeated sliding, and the amount of change over time of the friction coefficient during repeated sliding are below a preset reference value. The method according to any one of [1] to [ 3 ], which is performed by determining a product as a non-defective product and determining a product exceeding the value as a defective product.
[ 5 ] The method according to [ 4 ], wherein the number of times of repeated sliding is determined based on a desired number of times of use of the press mold.
[ 6 ] A method for producing a glass optical element, comprising supplying a glass material to be molded to a mold, and then press-molding the supplied glass material to be molded with the mold.
Performing pass / fail judgment of the release film formed on the molding surface of the mold by the method according to any one of [1] to [ 5 ],
Using the mold in which the release film is determined to be non-defective by the determination, for the press molding,
A method for producing a glass optical element.

本発明のプレス成形型の離型膜の良否判定方法によれば、離型膜の良否を高い信頼性をもって判定することができる。
本発明のガラス光学素子の製造方法によれば、良否判定の結果、良品と判定された良好な離型膜を有するプレス成形型を使用することにより、プレス成形による生産性向上および不良品率低減による生産コストの抑制を達成することができる。
According to the method of determining the quality of the release film of the press mold of the present invention, the quality of the release film can be determined with high reliability.
According to the method for producing a glass optical element of the present invention, by using a press mold having a good release film determined to be non-defective as a result of pass / fail judgment, productivity improvement by press molding and defective product rate reduction are achieved. The production cost can be suppressed by the above.

プレス成形型および被成形ガラス素材の斜視図である。It is a perspective view of a press mold and a glass material to be molded. 成膜装置の説明図である。It is explanatory drawing of the film-forming apparatus. プレス成形型および試料へ同時成膜する態様の説明図である。It is explanatory drawing of the aspect simultaneously formed into a press mold and a sample. 離型膜に印加する圧縮荷重および摩擦力の説明図である。It is explanatory drawing of the compressive load and frictional force which are applied to a release film. 摩擦係数測定装置の構成を示す斜視図である。It is a perspective view which shows the structure of a friction coefficient measuring apparatus. 実施例1における摩擦係数とワレの発生率との対応を示すグラフである。It is a graph which shows a response | compatibility with the friction coefficient in Example 1, and the incidence rate of crack. 比較例1における摩擦係数とワレの発生率との対応を示すグラフである。It is a graph which shows a response | compatibility with the friction coefficient in the comparative example 1, and the incidence rate of crack. 実施例2における摩擦係数とワレの発生率との関係を示すグラフである。It is a graph which shows the relationship between the friction coefficient in Example 2, and the incidence rate of cracking. 参考例の測定結果を示すグラフである。It is a graph which shows the measurement result of a reference example.

[プレス成形型の離型膜の良否判定方法]
本発明は、
被成形ガラス素材をプレス成形するために使用されるプレス成形型の成形面上に成膜された離型膜の良否判定方法であって、
前記離型膜または前記離型膜と同一条件で成膜された膜に測定子を押圧した状態で、該膜または該測定子のいずれか一方を他方に対して摺動させることにより摩擦係数を測定すること、および、測定された摩擦係数が予め設定した基準値以下であれば前記離型膜を良品と判定し、該基準値を超える値であれば前記離型膜を不良品と判定することにより、前記離型膜の良否を判定すること、ならびに、
前記押圧時に前記膜に加わる圧縮応力を、プレス成形時に前記離型膜上に生じる面圧に基づき決定し、かつ前記膜と前記測定子との摺動時の相対移動速度を、プレス成形時に前記離型膜と前記被成形ガラス素材との界面に生じるせん断速度に基づき決定すること、
を特徴とする、プレス成形型の離型膜の良否判定方法(以下、「良否判定方法1」という)に関する。以下において、良否判定方法1と後述する良否判定方法2をまとめて、本発明の良否判定方法ということもある。
[How to judge the quality of the release film of a press mold]
The present invention
A method for determining the quality of a release film formed on a molding surface of a press mold used for press molding a glass material to be molded,
The friction coefficient is obtained by sliding either the film or the measuring element against the other in a state where the measuring element is pressed against the release film or the film formed under the same conditions as the release film. If the measured friction coefficient is less than or equal to a preset reference value, the release film is determined as a non-defective product, and if the measured value exceeds the reference value, the release film is determined as a defective product. Determining the quality of the release film, and
The compressive stress applied to the film at the time of pressing is determined based on the surface pressure generated on the release film at the time of press molding, and the relative moving speed at the time of sliding between the film and the probe is determined at the time of press molding. Determining based on the shear rate generated at the interface between the release film and the glass material to be molded,
And a quality determination method for a release film of a press mold (hereinafter referred to as “quality determination method 1”). Hereinafter, the quality determination method 1 and the quality determination method 2 described later may be collectively referred to as the quality determination method of the present invention.

図1に、プレス成形型および被成形ガラス素材の斜視図を示す。図1に示すように、プレス成形時には被成形ガラス素材と成形型の成形面とが直接接触する。ここで被成形ガラス素材と成形型成形面との界面で化学反応が起こると融着や高い変形応力によるガラスのワレが発生するため、化学反応を抑制し、変形応力を緩和するために炭素膜等の離型膜を成形型の成形面上に設けることが広く行われている。本発明の良否判定方法は、このように被成形ガラス素材をプレス成形するために使用されるプレス成形型の成形面上に成膜された離型膜の良否を判定するものである。   FIG. 1 shows a perspective view of a press mold and a glass material to be molded. As shown in FIG. 1, the glass material to be molded and the molding surface of the mold are in direct contact during press molding. Here, when a chemical reaction occurs at the interface between the glass material to be molded and the molding surface, glass cracking occurs due to fusion or high deformation stress. Therefore, a carbon film is used to suppress the chemical reaction and relieve the deformation stress. It is widely performed to provide a release film such as a mold on the molding surface of a mold. The quality determination method of the present invention is for determining the quality of the release film formed on the molding surface of the press mold used for press-molding the glass material to be molded.

本発明の良否判定方法は、プレス成形型の成形面上に成膜された離型膜または前記離型膜と同一条件で成膜された膜に測定子を押圧した状態で、該膜または該測定の内の一方を他方に対して摺動させることにより摩擦係数を測定すること(以下、「摩擦係数測定工程」という)、および、測定された摩擦係数が予め設定した基準値以下であれば前記離型膜を良品と判定し、該基準値を超える値であれば前記離型膜を不良品と判定することにより、前記離型膜の良否を判定すること(以下、「良否判定工程」という)を含む。
以下、前記工程の詳細を順次説明する。
The pass / fail judgment method of the present invention comprises the step of pressing the measuring element against a release film formed on a molding surface of a press mold or a film formed under the same conditions as the release film. Measuring the friction coefficient by sliding one of the measurements with respect to the other (hereinafter referred to as “friction coefficient measurement process”), and if the measured friction coefficient is less than a preset reference value The release film is determined to be a non-defective product, and if the value exceeds the reference value, the release film is determined to be a defective product, thereby determining the quality of the release film (hereinafter referred to as “good / bad determination step”). Included).
Hereinafter, the detail of the said process is demonstrated sequentially.

摩擦係数測定工程
本工程における摩擦係数測定対象は、良否判定対象となる離型膜そのものであってもよく、前記離型膜と同一条件で成膜された膜(以下、「サンプル膜」ともいう)であってもよい。前記離型膜としては特に制限はなく、プレス成形型の成形面上に離型性向上を目的として設けられる各種被膜を挙げることができる。そのような被膜としては、例えば、ダイヤモンド状炭素膜、水素化ダイヤモンド状炭素膜、テトラヘドラルアモルファス炭素膜、水素化テトラヘドラルアモルファス炭素膜、アモルファス炭素膜、水素化アモルファス炭素膜、窒素を含有するカーボン膜等の炭素系膜、白金(Pt)、パラジウム(Pd)、イリジウム(Ir)、ロジウム(Rh)、オスミウム(Os)、ルテニウム(Ru)、レニウム(Re)、タングステン(W)、およびタンタル(Ta)から選ばれる少なくとも一つの金属を含む合金膜等を挙げることができる。これら離型膜の膜厚は特に限定されるものではない。また、離型膜の成膜には、DC−プラズマCVD法、RF−プラズマCVD法、マイクロ波プラズマCVD法、ECR−プラズマCVD法、光CVD法、レーザーCVD法等のプラズマCVD法、イオンプレーティング法などのイオン化蒸着法、スパッタ法、イオンプレーティング法、蒸着法やFCA(Filtered Cathodic Arc)法等の手法を用いることができる。
Friction coefficient measurement process The friction coefficient measurement target in this step may be the release film itself to be a pass / fail judgment target, or a film formed under the same conditions as the release film (hereinafter also referred to as “sample film”). ). There is no restriction | limiting in particular as said mold release film, The various coating films provided for the purpose of mold release improvement on the molding surface of a press mold are mentioned. Examples of such coatings include diamond-like carbon films, hydrogenated diamond-like carbon films, tetrahedral amorphous carbon films, hydrogenated tetrahedral amorphous carbon films, amorphous carbon films, hydrogenated amorphous carbon films, and nitrogen. Carbon-based films such as carbon films, platinum (Pt), palladium (Pd), iridium (Ir), rhodium (Rh), osmium (Os), ruthenium (Ru), rhenium (Re), tungsten (W), and An alloy film containing at least one metal selected from tantalum (Ta) can be given. The thickness of these release films is not particularly limited. Further, the release film is formed by DC-plasma CVD method, RF-plasma CVD method, microwave plasma CVD method, ECR-plasma CVD method, plasma CVD method such as photo-CVD method, laser CVD method, ion plate, etc. Techniques such as ionizing vapor deposition such as a coating method, sputtering, ion plating, vapor deposition, and FCA (Filtered Cathodic Arc) can be used.

前記サンプル膜は、良否判定対象となる離型膜と同一条件で成膜された膜である。ここで「同一条件で成膜された」とは、例えば前記離型膜と同一成膜装置内で同時に成膜されたことをいい、バッチ式の成膜方法においては同一成膜ロット内で成膜されたことをいう。
例えばスパッタリング法による成膜では、図2に示すように、プレス成形型を、成膜材料(ターゲット)と対向するように成膜装置内に配置し、装置内を真空引きした後、アルゴン等のスパッタガスで装置内を所定の圧力に保持した状態で、直流または交流電場をスパッタガスに印加することでプレス成形型の成形面上に離型膜が成膜される。ここで図2に示すように、成膜装置内にプレス成形型とともにサンプル基材を配置しておくことにより、サンプル基材表面にサンプル膜を形成することができる。サンプル基材としては、プレス成形型と同一形状を有する基材であってもよく、平板等の任意形状の基材であってもよい。後述する摩擦係数測定の容易性の点からは、表面が平面であるサンプル基材を用いることが好ましい。サンプル基材表面上には、プレス成形型と被膜(離型膜)の品質、厚さ等が同等の被膜が成膜されることが、良否判定の信頼性の点から望ましい。この観点からは、実成膜に先立ち予備実験を行うことにより、図3に示すように、予めサンプル基材を配置する領域(規定成膜領域)を決定しておくことが好ましい。例えば、成膜される被膜の膜厚分布が10%以下になる領域を規定成膜領域と設定することができる。
The sample film is a film formed under the same conditions as the release film to be judged as good or bad. Here, “deposited under the same conditions” means, for example, that the films were simultaneously formed in the same film forming apparatus as the release film. In the batch type film forming method, the film was formed in the same film forming lot. Say it was filmed.
For example, in film formation by sputtering, as shown in FIG. 2, a press mold is placed in a film forming apparatus so as to face a film forming material (target), and the inside of the apparatus is evacuated, and then argon or the like is used. A release film is formed on the molding surface of the press mold by applying a DC or AC electric field to the sputtering gas in a state where the inside of the apparatus is maintained at a predetermined pressure with the sputtering gas. Here, as shown in FIG. 2, the sample film can be formed on the surface of the sample substrate by arranging the sample substrate together with the press mold in the film forming apparatus. As a sample base material, the base material which has the same shape as a press-molding die may be sufficient, and arbitrary-shaped base materials, such as a flat plate, may be sufficient. From the viewpoint of ease of measuring the coefficient of friction described later, it is preferable to use a sample base material having a flat surface. On the surface of the sample substrate, it is desirable from the viewpoint of the reliability of pass / fail judgment that a film having the same quality, thickness, etc. as the press mold and the film (release film) is formed. From this point of view, it is preferable to preliminarily determine a region (a prescribed film formation region) where the sample base material is arranged as shown in FIG. 3 by performing a preliminary experiment prior to actual film formation. For example, an area where the film thickness distribution of the film to be formed is 10% or less can be set as the prescribed film formation area.

本発明では、前記離型膜または前記サンプル膜に測定子を押圧した状態で、前記膜(離型膜もしくはサンプル膜)または該測定子の少なくとも一方を他方に対して摺動させることにより摩擦係数を測定する。例えば前記測定子に対し前記膜を摺動させてもよく、前記膜に対して前記測定子を摺動させてもよい。以下、摩擦係数の測定対象となる膜(離型膜またはサンプル膜)を、「測定対象膜」ともいう。   In the present invention, the friction coefficient is obtained by sliding at least one of the film (release film or sample film) or the measuring element with respect to the other while pressing the measuring element against the release film or the sample film. Measure. For example, the film may be slid with respect to the probe, or the probe may be slid with respect to the film. Hereinafter, the film (release film or sample film) to be measured for the friction coefficient is also referred to as “measuring film”.

図4に、摩擦係数測定の説明図を示す。摩擦係数は、図4に示すように、被押圧面に垂直方向に圧縮荷重(垂直荷重)を印加した状態で、測定子を被押圧面上で摺動させた際に生じる摩擦力から、
摩擦係数=摩擦力/圧縮荷重
として測定される。良否判定方法1では、前記押圧時に測定対象膜に加わる圧縮応力を、プレス成形時に離型膜上に生じる面圧に基づき決定し、かつ測定対象膜と前記測定子との摺動時の相対移動速度を、プレス成形時に離型膜と被成形ガラス素材との界面に生じるせん断速度に基づき決定する。以下、この点について更に詳細に説明する。
FIG. 4 is an explanatory diagram of the friction coefficient measurement. As shown in FIG. 4, the friction coefficient is determined from the frictional force generated when the probe is slid on the pressed surface in a state where a compressive load (vertical load) is applied in the vertical direction to the pressed surface.
Coefficient of friction = friction force / compressive load. In the quality determination method 1, the compressive stress applied to the measurement target film at the time of pressing is determined based on the surface pressure generated on the release film at the time of press molding, and the relative movement during sliding between the measurement target film and the measuring element is determined. The speed is determined based on the shear rate generated at the interface between the release film and the glass material to be molded during press molding. Hereinafter, this point will be described in more detail.

先に説明したように、プレス成形型と被成形ガラス素材との間に働く摩擦力が小さいほど、プレス成形時に型と成形素材との間にかかる変形応力が小さくなるため、プレス成形される光学素子のワレは抑制されると考えられる。そこで本発明者らは、市販されている一般的な摩擦係数測定装置により摩擦係数を測定し、光学素子のワレの発生頻度との相関を取ろうとしたが、良好な相関関係を得ることはできなかった。この点について本発明者は、一般的な摩擦係数測定装置における測定条件が、プレス成形時に離型膜が置かれる条件と著しく異なること、より詳しくは、
(1)一般的な摩擦係数測定装置において被測定対象物に印加される荷重によって生じる圧縮応力、即ち面圧が、プレス成形時に離型膜に生じる面圧と比べて著しく大きいこと、および、
(2)一般的な摩擦係数測定装置における被測定対象物と測定子との摺動時の相対移動速度が、プレス成形時に前記離型膜と前記被成形ガラス素材との界面に生じるせん断速度と比べて著しく大きいこと、
が、一般的な摩擦係数測定装置ではワレの発生頻度と摩擦係数との間に良好な相関関係が得られない理由であると推察した。本発明者の検討によれば、通常のプレス成形時に離型膜上に生じる面圧は5〜80MPa程度、せん断速度は0.2mm/sec以下程度であった。これに対し、一般的な摩擦係数測定装置において測定対象面に加わる垂直圧縮応力は、最小でも685MPa以上、測定対象面と測定子との摺動時の相対移動速度は最低でも10mm/sec以上であり、プレス成形時に離型膜が置かれる条件と著しく相違する。
そこで前述のように、本発明の良否判定方法では、前記押圧時に測定対象膜に加わる圧縮応力を、プレス成形時に離型膜上に生じる面圧に基づき決定し、かつ測定対象膜と前記測定子との摺動時の相対移動速度を、プレス成形時に離型膜と被成形ガラス素材との界面に生じるせん断速度に基づき決定する。こうして測定される摩擦係数とワレの発生頻度との間には良好な相関関係が成立し得るため、摩擦係数の測定結果に基づき、離型膜の良否判定を行うことが可能となる。
As described above, the smaller the frictional force acting between the press mold and the glass material to be molded, the smaller the deformation stress applied between the mold and the mold material during press molding. It is considered that cracking of the element is suppressed. Therefore, the inventors measured the coefficient of friction with a commercially available general coefficient of friction measuring device and tried to correlate it with the frequency of cracking of the optical element, but a good correlation could not be obtained. There wasn't. In this regard, the inventor of the present invention is that the measurement conditions in a general friction coefficient measuring device are significantly different from the conditions under which the release film is placed during press molding.
(1) The compression stress generated by the load applied to the object to be measured in a general friction coefficient measuring apparatus, that is, the surface pressure is significantly larger than the surface pressure generated in the release film during press molding, and
(2) The relative movement speed at the time of sliding between the object to be measured and the measuring element in a general friction coefficient measuring device is the shear rate generated at the interface between the release film and the glass material to be molded at the time of press molding. Is significantly larger than
However, it was inferred that a general coefficient of friction measurement device cannot obtain a good correlation between the occurrence frequency of cracks and the coefficient of friction. According to the study of the present inventors, the surface pressure generated on the release film during normal press molding was about 5 to 80 MPa, and the shear rate was about 0.2 mm / sec or less. On the other hand, the normal compressive stress applied to the surface to be measured in a general friction coefficient measuring apparatus is at least 685 MPa or more, and the relative movement speed when sliding between the surface to be measured and the measuring element is at least 10 mm / sec or more. Yes, it is significantly different from the conditions under which the release film is placed during press molding.
Therefore, as described above, in the quality determination method of the present invention, the compressive stress applied to the measurement target film during the pressing is determined based on the surface pressure generated on the release film during press molding, and the measurement target film and the measuring element are determined. Is determined based on the shear rate generated at the interface between the release film and the glass material to be molded during press molding. Since a good correlation can be established between the friction coefficient measured in this way and the occurrence frequency of cracks, it is possible to determine the quality of the release film based on the measurement result of the friction coefficient.

以下、本発明の良否判定方法において好適に使用される摩擦係数測定装置について説明するが、本発明は、下記態様に限定されるものではない。   Hereinafter, although the friction coefficient measuring apparatus used suitably in the quality determination method of this invention is demonstrated, this invention is not limited to the following aspect.

図5は、本発明の良否判定方法において好適に使用される摩擦係数測定装置の概略図である。図5に示す装置は、摩擦力発生手段と、圧縮荷重を発生させる圧縮荷重発生手段と、を含む。以下、各手段の詳細を説明する。   FIG. 5 is a schematic diagram of a friction coefficient measuring apparatus that is preferably used in the quality determination method of the present invention. The apparatus shown in FIG. 5 includes a frictional force generating means and a compressive load generating means for generating a compressive load. Details of each means will be described below.

(i)摩擦力発生手段
摩擦力発生手段は、最表面に測定対象膜を有する試料を固定保持する試料保持台の役割と、試料を任意方向に移動させる移動台の役割を果たす。例えば、測定対象面に測定子が押圧された状態で、試料を測定対象面に対して水平方向(図5中のY方向)に移動させることにより、摩擦力を発生させることができる。摩擦力発生手段を、任意方向、例えば図5中のY方向に往復移動可能な構成とすることにより、測定対象面上で測定子を繰り返し摺動させることができる。図5に示す装置では、試料支持体4に固定保持された離型膜成膜済み被測定物1の測定対象面に測定子3が押圧された状態で、せん断動作用Yステージ2をY方向に往復移動する動作を繰り返すことにより、測定対象面上で測定子を繰り返し摺動させることができる。または、せん断動作用Yステージ2の往復移動によらず、測定子3を往復移動させることにより、測定対象面上で測定子を繰り返し摺動させることも可能である。
(i) Friction force generating means The frictional force generating means functions as a sample holding table for fixing and holding a sample having a measurement target film on the outermost surface and as a moving table for moving the sample in an arbitrary direction. For example, the frictional force can be generated by moving the sample in the horizontal direction (Y direction in FIG. 5) with respect to the measurement target surface in a state where the measurement piece is pressed against the measurement target surface. By making the frictional force generating means reciprocally movable in an arbitrary direction, for example, the Y direction in FIG. 5, the probe can be repeatedly slid on the surface to be measured. In the apparatus shown in FIG. 5, the shearing Y stage 2 is moved in the Y direction in a state where the measuring element 3 is pressed against the surface to be measured of the measured object 1 of the release film formed fixedly held on the sample support 4. By repeating the reciprocating movement, the probe can be repeatedly slid on the measurement target surface. Alternatively, it is possible to repeatedly slide the probe on the surface to be measured by moving the probe 3 back and forth regardless of the reciprocation of the Y stage 2 for shearing operation.

(ii)圧縮荷重発生手段
圧縮荷重発生手段は、任意方向、例えば図5中のX方向に往復移動可能な構成を有することにより、測定子3を測定対象面に押圧させること、または押圧を解除することができる。測定子の位置調整のため、粗移動と微調整用の2段式の構成とすることも可能である。例えば図5に示す装置では、上方の面圧印加用Xステージ5が精動(微調整用)ステージであり、下方の面圧印加用Xステージ5が粗動(粗移動用)ステージである。
(ii) Compressive load generating means The compressive load generating means has a configuration capable of reciprocating in an arbitrary direction, for example, the X direction in FIG. can do. In order to adjust the position of the probe, a two-stage configuration for coarse movement and fine adjustment can be used. For example, in the apparatus shown in FIG. 5, the upper surface pressure application X stage 5 is a fine movement (fine adjustment) stage, and the lower surface pressure application X stage 5 is a coarse movement (rough movement) stage.

図5に示す装置中、圧縮荷重発生手段は、X方向弾性変形部材およびY方向弾性変形部材を介して測定子3を固定することができる。両弾性変形部材は、単枚構成とすることもできるが、1対の板バネからなるものを採用することが好ましい。これは、一対の板バネからなるものは、垂直圧縮応力と剪断応力とによる弾性変形部材のねじれを回避することができるからである。図5中、面圧変位板バネ6がX方向弾性変形部材としての一対の板バネに相当し、摩擦力変位板バネ8が、Y方向弾性変形部材としての一対の板バネに相当する。   In the apparatus shown in FIG. 5, the compressive load generating means can fix the measuring element 3 via the X-direction elastic deformation member and the Y-direction elastic deformation member. Although both elastic deformation members can be configured as a single sheet, it is preferable to employ a pair of leaf springs. This is because that a pair of leaf springs can avoid torsion of the elastically deformable member due to vertical compressive stress and shear stress. In FIG. 5, the surface pressure displacement leaf spring 6 corresponds to a pair of leaf springs as X-direction elastic deformation members, and the frictional force displacement leaf spring 8 corresponds to a pair of leaf springs as Y-direction elastic deformation members.

測定子としては、押圧時に測定対象膜に当接する部分が、プレス成形時に使用される被成形ガラス素材と同じ素材からなるものを使用することが、プレス成形時に離型膜が置かれる状態により近い状態で摩擦係数を測定できるため好ましい。この点からは、プレス成形時に使用される被成形ガラス素材そのものまたは被成形ガラス素材と同一素材からなる同一形状のガラス素材を、測定子として使用することが更に好ましい。   It is closer to the state where the release film is placed at the time of press molding, as the measuring element, the part that contacts the measurement target film at the time of pressing is made of the same material as the glass material to be molded used at the time of press molding. It is preferable because the friction coefficient can be measured in the state. From this point, it is more preferable to use the glass material of the same shape made of the same material as the glass material to be molded itself or the glass material to be molded used at the time of press molding.

前述のように、測定対象膜は、プレス成形に使用されるプレス成形型上に設けられた離型膜そのものであってもよく、プレス成形型と同形状のサンプル基材上に設けられたサンプル膜であってもよく、プレス成形型とは異なる任意の形状を有するサンプル基材上に設けられたサンプル膜であってもよい。摩擦係数測定の単純化(図5中、測定子のX方向における圧縮荷重の印加およびY方向への移動により発生する摩擦力の測定の単純化)の観点からは、平面上に形成されたサンプル膜の摩擦係数を測定することが好ましい。なお、成形面形状のような曲面(凹面または凸面)形状の測定対象面に対応するため、測定子の試料に対する当接位置を調整可能な当接位置調整手段(図5中のX方向、Y方向およびZ方向に移動可能な手段)を圧縮荷重発生手段に設けることもできる。図5中、測定位置変更Zステージ10および測定位置変更Yステージ11が、上記当接位置調整手段に相当する。   As described above, the measurement target film may be a release film itself provided on a press mold used for press molding, or a sample provided on a sample substrate having the same shape as the press mold. It may be a film, or may be a sample film provided on a sample base material having an arbitrary shape different from the press mold. From the viewpoint of simplification of friction coefficient measurement (in FIG. 5, simplification of measurement of frictional force generated by applying a compressive load in the X direction and movement in the Y direction of the probe), a sample formed on a plane It is preferable to measure the coefficient of friction of the film. In addition, in order to correspond to a measurement target surface having a curved surface (concave surface or convex surface) shape such as a molding surface shape, contact position adjusting means (X direction in FIG. The means capable of moving in the direction and the Z direction) can also be provided in the compression load generating means. In FIG. 5, the measurement position change Z stage 10 and the measurement position change Y stage 11 correspond to the contact position adjusting means.

圧縮荷重およびせん断応力測定手段として、XおよびY方向弾性変形部材の各々にその変位量を測定可能な変位センサーを配設することができる。変位センサーにより各弾性変形部材の変位量を検出し、検量線(変位量と応力との相関データ)によって、測定対象面に加わる垂直圧縮応力および発生したせん断応力、即ち摩擦力を測定することができる。または、前記垂直圧縮応力及び摩擦力はロードセル等の歪測定器を使用することにより測定することもできる。図5に示す装置中、面圧検出用変位センサー7および摩擦力検出用変位センサー9が、上記変位センサーに相当する。
また、測定対象膜と測定子との摺動時の相対移動速度はサーボモーター等を用いることで、その値を制御することが出来る。
以上により、摩擦係数測定装置の動作状態と、測定対象面に加わる垂直圧縮応力および発生する摩擦力との相関データを得ることができる。
As the compressive load and shear stress measuring means, a displacement sensor capable of measuring the amount of displacement can be disposed in each of the X and Y direction elastically deformable members. The displacement amount of each elastically deformable member is detected by a displacement sensor, and the vertical compressive stress applied to the surface to be measured and the generated shear stress, that is, the frictional force are measured by a calibration curve (correlation data between the displacement amount and the stress). it can. Alternatively, the vertical compressive stress and the frictional force can be measured by using a strain measuring device such as a load cell. In the apparatus shown in FIG. 5, the surface pressure detecting displacement sensor 7 and the frictional force detecting displacement sensor 9 correspond to the displacement sensor.
Moreover, the relative movement speed at the time of sliding between the measurement target film and the probe can be controlled by using a servo motor or the like.
As described above, it is possible to obtain correlation data between the operating state of the friction coefficient measuring apparatus, the vertical compressive stress applied to the measurement target surface, and the generated frictional force.

次に、得られた相関データに基づき、測定対象膜の摩擦係数を測定する方法について説明する。   Next, a method for measuring the friction coefficient of the measurement target film based on the obtained correlation data will be described.

まず図5に示す摩擦係数測定装置に、測定対象膜が最表面に配置されるように試料を固定保持する。次に、測定が試料の所望の位置に当接するように、圧縮荷重発生手段を調節する。   First, the sample is fixedly held in the friction coefficient measuring apparatus shown in FIG. 5 so that the measurement target film is disposed on the outermost surface. Next, the compression load generating means is adjusted so that the measurement comes into contact with a desired position of the sample.

良否判定方法1では、測定子が押圧された際に測定対象膜に加わる圧縮応力を、プレス成形時に離型膜上に生じる面圧に基づき決定し、かつ測定対象膜と測定子との摺動時の相対移動速度を、プレス成形時に前記離型膜と前記被成形ガラス素材との界面に生じるせん断速度、即ち、離型膜に対して被成形ガラス素材が変形する速度に基づき決定する。   In the pass / fail judgment method 1, the compressive stress applied to the measurement target film when the measurement piece is pressed is determined based on the surface pressure generated on the release film during press molding, and the sliding between the measurement target film and the measurement piece is performed. The relative movement speed at the time is determined based on the shear rate generated at the interface between the release film and the glass material to be molded during press molding, that is, the speed at which the glass material to be deformed is deformed with respect to the release film.

摩擦係数測定時の測定条件の決定のためには、実際のプレス成形と同一条件でプレス成形を行う予備実験を行うことが好ましい。予備実験で複数回のプレス成形を繰り返した結果、成形される光学素子のワレが発生しやすかった領域における面圧およびせん断速度を、前記良否判定方法に於ける条件を決定する基準値として用いることが好ましい。   In order to determine the measurement conditions when measuring the friction coefficient, it is preferable to conduct a preliminary experiment in which press forming is performed under the same conditions as actual press forming. The surface pressure and shear rate in the region where cracking of the molded optical element was likely to occur as a result of repeating the press molding multiple times in the preliminary experiment, should be used as the reference values for determining the conditions in the quality determination method. Is preferred.

良否判定結果の信頼性の観点からは、摩擦係数測定時に測定対象膜に加わる圧縮応力は、プレス成形時に離型膜上に生じる面圧の±20%程度の値に設定することが好ましく、測定対象膜と測定子との摺動時の相対移動速度は、プレス成形時に離型膜と被成形ガラス素材との界面に生じるせん断速度の±0.1mm/sec程度の値に設定することが好ましい。なお、測定対象膜と測定子との相対移動速度の設定速度としては、その上限は1mm/sec程度までが好ましく、また、その下限は摺動時の相対移動速度があれば(0でなければ)測定可能であるが、測定所要時間、すなわち、測定効率を考慮して、現実的な値として0.01mm/sec程度までが適当な設定である。また、一般的なプレス成形条件を考慮すると、前記圧縮応力は5〜80Mpaの範囲に設定することが好ましく、前記相対移動速度は0.2mm/sec以下の範囲に設定することが好ましい。   From the viewpoint of the reliability of the pass / fail judgment result, the compressive stress applied to the film to be measured at the time of measuring the friction coefficient is preferably set to a value of about ± 20% of the surface pressure generated on the release film at the time of press molding. The relative movement speed during sliding between the target film and the probe is preferably set to a value of about ± 0.1 mm / sec of the shear rate generated at the interface between the release film and the glass material to be molded during press molding. . Note that the upper limit of the relative moving speed between the measurement target film and the measuring element is preferably about 1 mm / sec, and the lower limit is that if there is a relative moving speed during sliding (if it is not 0) Although measurement is possible, considering the measurement time, that is, measurement efficiency, a practical value up to about 0.01 mm / sec is an appropriate setting. In consideration of general press molding conditions, the compressive stress is preferably set in a range of 5 to 80 Mpa, and the relative movement speed is preferably set in a range of 0.2 mm / sec or less.

摩擦係数測定時の測定条件の決定後、決定された圧縮応力が測定対象面に対して垂直方向(図5中、X方向)に加わるように、測定子を測定対象面に押圧する。そしてこの状態で、決定された相対移動速度で測定子を測定対象面上で往復移動させることによって摩擦力を(例えば図5中のY方向に)発生させる。ここで発生する摩擦力は、例えば板バネのバネ定数に変位センサーで得られた撓み量を乗ずることによって算出することができる。そして摩擦係数は、先に説明したように、下記式により算出することができる。
摩擦係数=算出された摩擦力/測定された垂直圧縮応力
After determining the measurement conditions at the time of measuring the coefficient of friction, the measuring element is pressed against the surface to be measured so that the determined compressive stress is applied in a direction perpendicular to the surface to be measured (X direction in FIG. 5). In this state, a frictional force is generated (for example, in the Y direction in FIG. 5) by reciprocating the probe on the measurement target surface at the determined relative movement speed. The frictional force generated here can be calculated, for example, by multiplying the spring constant of the leaf spring by the amount of bending obtained by the displacement sensor. The friction coefficient can be calculated by the following formula as described above.
Friction coefficient = calculated friction force / measured normal compressive stress

良否判定工程
良否判定方法1では、こうして得られた摩擦係数に基づき、プレス成形に使用されるプレス成形型の成形面上に成膜された離型膜の良否判定を行う。良否判定のために、摩擦係数の測定に先立ち、良否判定の基準値を予め設定しておく。基準値の設定のためには、例えば以下の予備実験を行うことができる。なお、摩擦係数測定時の温湿度条件が常温で相対湿度60%以下であれば、測定値に与える影響は極僅かである。したがって、本発明において、摩擦係数測定工程は、基準値設定のための予備実験と同じ温湿度環境で行うことは必須ではない。
(1)離型膜と測定子とを繰り返し摺動させた後の摩擦係数の測定値と光学素子のワレの発生頻度との相関関係を求める予備実験を行う。この予備実験の結果に基づき、繰り返し摺動後の摩擦係数の測定値について、良否判定の基準値を決定する。
(2)離型膜と測定子とを繰り返し摺動させた後に繰り返し摺動中の摩擦係数の最小値と光学素子のワレの発生頻度との相関関係を求める予備実験を行う。この予備実験の結果に基づき繰り返し摺動中の摩擦係数の最小値について、良否判定の基準値を決定する。
(3)離型膜と測定子とを繰り返し摺動させた後に繰り返し摺動中の摩擦係数の経時変化量と光学素子のワレの発生頻度との相関関係を求める予備実験を行う。この予備実験の結果に基づき繰り返し摺動の摩擦係数の経時変化量について、良否判定の基準値を決定する。
In the pass / fail judgment process 1, the pass / fail judgment of the release film formed on the molding surface of the press mold used for press molding is performed based on the friction coefficient thus obtained. In order to determine pass / fail, a reference value for pass / fail determination is set in advance prior to the measurement of the friction coefficient. For setting the reference value, for example, the following preliminary experiment can be performed. In addition, if the temperature and humidity conditions at the time of friction coefficient measurement are normal temperature and a relative humidity of 60% or less, the influence on a measured value will be very small. Therefore, in the present invention, it is not essential that the friction coefficient measurement step be performed in the same temperature and humidity environment as the preliminary experiment for setting the reference value.
(1) A preliminary experiment is performed to obtain a correlation between the measured value of the coefficient of friction after sliding the release film and the measuring element repeatedly and the frequency of cracking of the optical element. Based on the result of this preliminary experiment, a reference value for pass / fail determination is determined for the measured value of the coefficient of friction after repeated sliding.
(2) A preliminary experiment is performed to obtain a correlation between the minimum value of the coefficient of friction during repeated sliding and the frequency of cracking of the optical element after the release film and the measuring element are repeatedly slid. Based on the result of this preliminary experiment, a reference value for pass / fail judgment is determined for the minimum value of the friction coefficient during repeated sliding.
(3) After sliding the release film and the measuring element repeatedly, a preliminary experiment is performed to obtain the correlation between the amount of change in the friction coefficient with time during repeated sliding and the frequency of cracking of the optical element. Based on the result of this preliminary experiment, a reference value for pass / fail judgment is determined for the amount of change over time of the friction coefficient during repeated sliding.

なお、上記(2)における最小値は、必ずしも測定開始直後の摩擦係数とは限らない。これは、測定開始時には離型膜表面に粗さがあり、測定子の当接および摺動によりこの粗さが慣らされる(なじむ)ことにより、測定開始初期に摩擦係数の低下が見られる場合があるからである。このような場合、上記(3)の経時変化量は、前記最小値と繰り返し摺動中の摩擦係数の最大値(通常、摺動回数が増えるほど摩擦係数が増加するため最終摺動時の摩擦係数であることが多い。)との差分を取ることが、良否判定の信頼性の点から好ましい。 Note that the minimum value in the above (2) is not necessarily the friction coefficient immediately after the start of measurement. This is because there is a roughness on the surface of the release film at the start of measurement, and a decrease in the coefficient of friction may be seen at the beginning of the measurement due to the fact that this roughness is used (adapted) by contact and sliding of the probe. Because there is. In such a case, the amount of change with time in (3) above is the minimum value and the maximum value of the friction coefficient during repeated sliding (usually, the friction coefficient increases as the number of times of sliding increases so It is preferable from the point of reliability of pass / fail judgment to take a difference from the coefficient.

前記繰り返し摺動の摺動回数は、プレス成形型の所望の使用回数に基づき決定することが好ましい。本発明の良否判定方法では、プレス成形時に離型膜が置かれる状態にきわめて近い状態で測定子を測定対象面上で摺動させることができるため、例えば測定子を往復1回摺動させた測定対象面の状態は、プレス成形を2回行った離型膜の状態に近似していると考えられる。この点を考慮し、例えばプレス成形型の所望の使用回数の1/2程度の摺動回数で繰り返し摺動を行うことができる。すなわち100回のプレス成形を行う仕様のものについては、往復50回で繰り返し摺動を行うことが好ましい。なお、前記予備実験は、良否判定のための摩擦係数測定条件と同一測定条件で行うことが好ましい。また、前記予備実験は、実際にプレス成形を行う成形型上に形成された離型膜とは異なる成膜条件で成膜されたものであってもよいが、信頼性の高い良否判定結果を得る観点からは、実際にプレス成形を行う成形型上に形成された離型膜と同一条件で成膜されたものであることが好ましい。   The number of times of repeated sliding is preferably determined based on a desired number of times the press mold is used. In the quality determination method of the present invention, the measuring element can be slid on the surface to be measured in a state very close to the state where the release film is placed at the time of press molding. It is considered that the state of the measurement target surface approximates the state of the release film that has been press-molded twice. In consideration of this point, for example, the sliding can be repeatedly performed with the number of sliding times of about ½ of the desired number of times of use of the press mold. That is, it is preferable to repeatedly slide 50 times in a reciprocating manner for a specification that performs press molding 100 times. The preliminary experiment is preferably performed under the same measurement conditions as the friction coefficient measurement conditions for pass / fail judgment. In addition, the preliminary experiment may be performed under film formation conditions different from those of the release film formed on the mold that actually performs press molding. From the viewpoint of obtaining, it is preferable that the film is formed under the same conditions as the release film formed on the mold for actually performing press molding.

更に本発明は、
被成形ガラス素材をプレス成形するために使用されるプレス成形型の成形面上に成膜された離型膜の良否判定方法であって、
前記離型膜または前記離型膜と同一条件で成膜された膜に測定子を押圧した状態で、該膜または該測定子のいずれか一方を他方に対して摺動させることにより摩擦係数を測定すること、および、測定された摩擦係数が予め設定した基準値以下であれば前記離型膜を良品と判定し、該基準値を超える値であれば前記離型膜を不良品と判定することにより、前記離型膜の良否を判定すること、ならびに、
前記押圧時に前記膜に加わる圧縮応力を5〜80MPaの範囲に設定し、かつ前記膜と前記測定子との摺動時の相対移動速度を0.2mm/sec以下に設定すること、
を特徴とする、プレス成形型の離型膜の良否判定方法(以下、「良否判定方法2」という)
に関する。
Furthermore, the present invention provides
A method for determining the quality of a release film formed on a molding surface of a press mold used for press molding a glass material to be molded,
The friction coefficient is obtained by sliding either the film or the measuring element against the other in a state where the measuring element is pressed against the release film or the film formed under the same conditions as the release film. If the measured friction coefficient is less than or equal to a preset reference value, the release film is determined as a non-defective product, and if the measured value exceeds the reference value, the release film is determined as a defective product. Determining the quality of the release film, and
Setting the compressive stress applied to the film at the time of pressing in the range of 5 to 80 MPa, and setting the relative movement speed when sliding between the film and the probe to 0.2 mm / sec or less,
A quality determination method for a release film of a press mold (hereinafter referred to as “quality determination method 2”)
About.

前述の良否判定方法1は、実際のプレス成形条件に基づき摩擦係数の測定条件を決定するものである。これに対し、本発明者の検討によれば、通常のガラス光学素子のプレス成形において、成形型の離型膜上に生じる面圧は5〜80MPa程度、せん断速度は0.2mm/sec以下程度であった。そこで良否判定方法2では、上記通常のプレス成形での面圧およびせん断速度を、前記摩擦係数測定時の条件として採用して離型膜の良否判定を行う。良否判定方法1は、実際のプレス成形条件により近い条件で摩擦係数測定を行うことができるため、良否判定の信頼性の点で有利である。一方、良否判定方法2は、摩擦係数の測定条件の決定が容易であるため、簡便性の点で有利である。良否判定方法2において採用される摩擦係数測定条件は、一般的な摩擦係数測定装置で採用されない条件であるが、プレス成形時に離型膜が置かれる条件に近似している。良否判定方法2によれば、上記測定条件で得た値に基づき良否判定を行うことにより、ワレを発生しやすい離型膜であることを精度よく判定することが可能である。良否判定方法2における前記圧縮応力は、5〜80MPaの範囲であり、好ましくは10〜60MPaの範囲である。また、良否判定方法2における前記相対移動速度は0.2mm/sec以下であり、好ましくは0.1〜0.2mm/secの範囲である。その他の良否判定方法2の詳細は、先に良否判定方法1について述べた通りである。   The quality determination method 1 described above determines the measurement conditions for the friction coefficient based on the actual press forming conditions. On the other hand, according to the study of the present inventor, the surface pressure generated on the mold release film is about 5 to 80 MPa and the shear rate is about 0.2 mm / sec or less in the press molding of a normal glass optical element. Met. Therefore, in the quality determination method 2, the surface pressure and the shear rate in the normal press molding are adopted as the conditions for measuring the friction coefficient, and the quality of the release film is determined. The quality determination method 1 is advantageous in terms of the reliability of the quality determination because the friction coefficient can be measured under conditions closer to the actual press molding conditions. On the other hand, the quality determination method 2 is advantageous in terms of simplicity because it is easy to determine the measurement conditions for the friction coefficient. The friction coefficient measurement conditions employed in the pass / fail judgment method 2 are conditions that are not employed by a general friction coefficient measurement apparatus, but are approximate to the conditions under which a release film is placed during press molding. According to the pass / fail determination method 2, it is possible to accurately determine that the release film is likely to crack by performing pass / fail determination based on the values obtained under the above measurement conditions. The compressive stress in the pass / fail judgment method 2 is in the range of 5 to 80 MPa, and preferably in the range of 10 to 60 MPa. The relative movement speed in the pass / fail judgment method 2 is 0.2 mm / sec or less, and preferably in the range of 0.1 to 0.2 mm / sec. The other details of the quality determination method 2 are as described above for the quality determination method 1.

成形型の成形面上に形成される離型膜は、バッチ式の成膜装置内で成膜を行う場合、成膜条件を同一に設定しても成膜ロット間で離型膜の性能にバラつきが生じることがある。これは、例えばスパッタ法において、成膜原料の新品使用開始時には、成膜原料表面に不純物が存在するため、この不純物を含んだものが飛ばされて離型膜に不純物が混入すること、同じ成膜原料の使用を継続していくと成膜原料を保持する基板材が飛ばされ始めてやはり離型膜に不純物が混入することなど、ターゲット(成膜原料)の変化に起因すると考えられる。このような成膜結果のバラつきは、成形される光学素子のワレの発生しやすさに影響すると考えられるが、離型膜を目視で観察することでは判別困難である。高価なスパッタ装置であれば成膜条件を一定に管理することも可能であるが、安価なスパッタ装置においては、装置冷却水の季節による温度変化等の影響により、成膜条件を一定に管理することが困難な場合がある。また、安価なスパッタ装置を使用して所望の仕様の離型膜を成膜するためには、不純物混入を回避するため、使用開始時に成膜原料を浪費させて安定化を図り、成膜終盤は成膜原料がまだ存在しているにもかかわらず次のものに交換することで対応しているが、本対応では未使用成膜原料が多くなりコスト面で不利である。
これに対し、本発明の良否判定方法によれば、成形型の成形面上に形成された離型膜が、成形される光学素子のワレが発生しやすい離型膜であることを、実際にプレス成形を行うことなく判定することができるため、ワレの発生しやすい離型膜を有する成形型を不良品として実成形から排除することができる。これにより本発明によれば、成膜原料の有効活用、成膜ロット間の不具合を簡便かつ確実に解消することができる。
When the release film formed on the molding surface of the mold is formed in a batch-type film forming apparatus, the performance of the release film is improved between the film forming lots even if the film forming conditions are set the same. Variations may occur. This is because, for example, in sputtering, when a new film-forming raw material is used, impurities are present on the surface of the film-forming raw material. If the use of the film material is continued, it is considered that the substrate material holding the film formation material starts to be blown off and impurities are mixed into the release film. Such variations in the film formation results are thought to affect the ease of cracking of the molded optical element, but it is difficult to determine by visually observing the release film. If it is an expensive sputtering device, it is possible to manage the film forming conditions to be constant, but in an inexpensive sputtering device, the film forming conditions are managed to be constant due to the influence of temperature change depending on the season of the device cooling water. It can be difficult. In addition, in order to form a release film having a desired specification using an inexpensive sputtering apparatus, in order to avoid contamination with impurities, the film forming raw material is wasted at the start of use for stabilization, and at the end of film formation Although the film forming raw material still exists, it is possible to cope with the problem by exchanging it with the following, but this method is disadvantageous in terms of cost because the number of unused film forming raw materials increases.
On the other hand, according to the quality determination method of the present invention, it is actually confirmed that the release film formed on the molding surface of the mold is a release film that is likely to crack the optical element to be molded. Since determination can be made without performing press molding, a molding die having a release film that is easily cracked can be excluded from actual molding as a defective product. Thereby, according to this invention, the effective utilization of the film-forming raw material and the trouble between the film-forming lots can be solved easily and reliably.

[ガラス光学素子の製造方法]
本発明のガラス光学素子の製造方法は、
被成形ガラス素材を成形型に供給し、次いで供給された被成形ガラス素材を前記成形型によりプレス成形することを含むガラス光学素子の製造方法であって、
本発明の良否判定方法により前記成形型の成形面上に成膜された離型膜の良否判定を行うこと、
前記判定により離型膜が良品と判定された成形型を、前記プレス成形に使用すること、
を特徴とする。
[Method for producing glass optical element]
The method for producing the glass optical element of the present invention comprises:
A glass optical element manufacturing method comprising supplying a glass material to be molded to a mold and then press-molding the supplied glass material to be molded with the mold,
Performing pass / fail determination of a release film formed on the molding surface of the mold by the pass / fail determination method of the present invention,
Using the mold in which the release film is determined to be non-defective by the determination, for the press molding,
It is characterized by.

本発明のガラス光学素子の製造方法では、本発明の良否判定方法により良品と判定された成形型を使用することにより、プレス成形されるガラス光学素子のワレの発生を抑制することができる。従来、繰り返しプレス成形を行う際の光学素子のワレの発生しやすさは事前に判定することが困難であったため、実際にプレス成形を行い不良品が発生した場合には不良品を製品素子から排除することにより対応していた。しかし本対応ではガラス光学素子の不良品率を低減することは困難である。これに対し本発明によれば、プレス成形前にワレの発生しやすい成形型を排除することができるため、ガラス光学素子の不良品率を低減することが可能となる。   In the manufacturing method of the glass optical element of the present invention, the occurrence of cracking of the press-molded glass optical element can be suppressed by using the molding die determined to be non-defective by the quality determination method of the present invention. Conventionally, it has been difficult to determine in advance the ease of cracking of optical elements during repeated press molding, so if a defective product is actually generated by press molding, the defective product is removed from the product element. It was dealt with by eliminating. However, it is difficult to reduce the defective product rate of the glass optical element in this correspondence. On the other hand, according to the present invention, it is possible to eliminate molds that are prone to cracking before press molding, and therefore it is possible to reduce the defective rate of glass optical elements.

前記被成形ガラス素材は、球形状、扁平な球形状、平板状等の形状に予備成形されたものであることができる。但し、本発明の製造方法で用いるガラス素材はこれら形状に限定されることはない。また、熔融ガラスから所定重量を流出させて熱間成形された上記形状のガラス素材をそのままプレス成形に供することが、簡便であり経済的であるため好ましい。なお、本発明のガラス光学素子の製造方法は、成形されるガラス光学素子の形状に近似させる研磨工程などを設けることなくガラス光学素子を得る精密プレス成形法として好適であるが、プレス成形後に研削、研磨等の後工程を行いガラスガラス光学素子を得ることも可能である。   The glass material to be molded may be preformed into a shape such as a spherical shape, a flat spherical shape, or a flat plate shape. However, the glass material used in the production method of the present invention is not limited to these shapes. In addition, it is preferable that the glass material having the above-mentioned shape that is hot-formed by flowing a predetermined weight out of the molten glass is directly subjected to press-molding because it is simple and economical. The method for producing a glass optical element of the present invention is suitable as a precision press molding method for obtaining a glass optical element without providing a polishing step that approximates the shape of the glass optical element to be molded. It is also possible to obtain a glass glass optical element by performing post-processing such as polishing.

成形型の母材としては、例えば、SiC、WC、TiC、TaC、BN、TiN、AlN、Si34、SiO2、Al23 、ZrO2 、W、Ta、Mo、サーメット、サイアロン、ムライト、カーボン・コンポジット(C/C)、カーボンファイバー(CF)、WC−Co合金、結晶化ガラスを含むガラス素材、ステンレス系高耐熱性金属等から選ばれる材料が有用に使用できる。成形型の成形面に設けられる離型膜については、先に説明した通りである。 As the base material of the molding die, for example, SiC, WC, TiC, TaC, BN, TiN, AlN, Si 3 N 4 , SiO 2 , Al 2 O 3 , ZrO 2 , W, Ta, Mo, cermet, sialon, A material selected from mullite, carbon composite (C / C), carbon fiber (CF), WC-Co alloy, glass material including crystallized glass, stainless steel, and high heat-resistant metal can be used effectively. The release film provided on the molding surface of the mold is as described above.

本発明のガラス光学素子の製造方法では、本発明の良否判定方法により成形型の成形面上に成膜された離型膜の良否判定を行い、前記判定により離型膜が良品と判定された成形型を被成形ガラス素材のプレス成形に使用する。前記離型膜の良否判定の詳細は、先に説明した通りである。   In the manufacturing method of the glass optical element of the present invention, the quality of the release film formed on the molding surface of the mold is determined by the quality determination method of the present invention, and the release film is determined to be non-defective by the determination. A mold is used for press molding of a glass material to be molded. The details of the quality determination of the release film are as described above.

前記良否判定により良品と判定された離型膜を有する成形型を使用したプレス成形は、公知の手段で行うことができる。例えば、被成形ガラス素材を成形型の上型と下型の間に導入し、被成形ガラス素材の粘度が108〜1012ポイズ相当の粘度となる温度に加熱、軟化し、これを、上下型により押圧することによって、上下型の成形面を被成形ガラス素材に転写する。または、あらかじめ、その粘度が108〜1012ポイズ相当の温度に昇温した被ガラス素材を、成形型の上型と下型の間に導入し、これを、上下型により押圧することによって、上下型の成形面を被成形ガラス素材に転写する。離型膜の酸化を防ぐため、成形時の雰囲気は、非酸化性とすることが好ましい。この後、成形型とガラス素材を冷却し、好ましくはTg以下の温度となったところで、離型し、成形された光学素子を取出すことができる。 Press molding using a mold having a release film determined to be non-defective by the quality determination can be performed by a known means. For example, a glass material to be molded is introduced between an upper mold and a lower mold of a mold, and the glass material to be molded is heated and softened to a temperature corresponding to a viscosity equivalent to 10 8 to 10 12 poise. By pressing with a mold, the molding surfaces of the upper and lower molds are transferred to the glass material to be molded. Or, by introducing a glass material whose viscosity has been raised to a temperature corresponding to 10 8 to 10 12 poises in advance between the upper mold and the lower mold of the mold, and pressing it with the upper and lower molds, The upper and lower mold surfaces are transferred to the glass material to be molded. In order to prevent the release film from being oxidized, the molding atmosphere is preferably non-oxidizing. Thereafter, the mold and the glass material are cooled, and when the temperature is preferably Tg or less, the mold is released and the molded optical element can be taken out.

本発明のガラス光学素子の製造方法は、レンズ、ミラー、グレーティング、プリズム、マイクロレンズ、積層型回折光学素子等の光学素子の製造に有効に適用できる。また、本発明に適用できるガラスの硝種には特に制限はない。特に、割れやすい、ホウ酸塩系ガラス、リン酸塩系ガラス、ホウリン酸塩系ガラス、フツリン酸塩系ガラスなどに本発明の適用が有効である。   The glass optical element manufacturing method of the present invention can be effectively applied to the manufacture of optical elements such as lenses, mirrors, gratings, prisms, microlenses, and laminated diffractive optical elements. Moreover, there is no restriction | limiting in particular in the glass type of glass applicable to this invention. In particular, the application of the present invention is effective for borate-based glasses, phosphate-based glasses, borophosphate-based glasses, fluorophosphate-based glasses, and the like that are easily broken.

以下、本発明を実施例により更に説明するが、本発明は実施例に示す態様に限定されるものではない。なお、以下に記載の摩擦係数測定は、特に断りのない限り常温(20〜25℃程度)で相対湿度60%以下の環境にて行った。   EXAMPLES Hereinafter, although an Example demonstrates this invention further, this invention is not limited to the aspect shown in an Example. In addition, the friction coefficient measurement described below was performed in an environment having a relative humidity of 60% or less at normal temperature (about 20 to 25 ° C.) unless otherwise specified.

[実施例1]
(1)プレス成形時の面圧およびせん断速度の測定
凸メニスカス形状のガラスレンズを得るための成形面形状を有する成形型を使用し、予備実験として繰り返しプレス成形を行い、離型膜上で、成形された光学素子において最もワレが生じやすかった領域に対応する部分のプレス成形時の面圧を、プレス荷重をワレの発生した部位のレンズ中心からの距離から算出した面積で除することにより求め、せん断速度を、プレス軸の変位速度から算出した。その結果、面圧37MPa、せん断速度0.2mm/secであった。
[Example 1]
(1) Measurement of surface pressure and shear rate during press molding Using a mold having a molding surface shape to obtain a convex meniscus glass lens, repeated press molding as a preliminary experiment, on the release film, Calculate the surface pressure at the time of press molding of the part corresponding to the area where cracks are most likely to occur in the molded optical element by dividing the press load by the area calculated from the distance from the lens center of the cracked part. The shear rate was calculated from the displacement rate of the press shaft. As a result, the surface pressure was 37 MPa and the shear rate was 0.2 mm / sec.

(2)摩擦係数測定試料の作製
前記予備実験に使用した成形型と同一の形状を有する成形型を10個準備し、同一条件でスパッタを行い各成形型の成形面上に離型膜として炭素膜を成膜した。ただし成膜時間を変えることにより成膜される炭素膜の膜厚を変化させた。
(2) Preparation of friction coefficient measurement sample Ten molds having the same shape as the mold used in the preliminary experiment were prepared, sputtered under the same conditions, and carbon as a release film on the molding surface of each mold. A film was formed. However, the film thickness of the carbon film formed was changed by changing the film formation time.

(3)摩擦係数の測定
図5に示す摩擦係数測定装置に上記(2)で作製した試料を配置し、測定子として上記(1)でプレス成形を行った被成形ガラス素材と同一素材からなる同一形状のガラス素材を配置した。摩擦係数測定時の試料表面と測定子との相対移動速度を0.16mm/secとし、Y方向に50回繰り返し摺動した後の摩擦係数を測定することを、各試料について垂直圧縮応力を7MPa、25MPa、33MPa、50MPaまたは75MPaと変化させて行い、平均摩擦係数を算出した。各試料と同一条件で作製した成形型を使用し、測定子として使用したガラス素材と同一素材からなる同一形状のガラス素材をプレス成形する工程を100回行い凸メニスカスレンズを得た。得られたレンズにおけるワレ発生を目視で観察し、(ワレが確認されたレンズ/全レンズ)×100として、ワレ発生率を算出した。ワレの発生率と平均摩擦係数との関係を、図6に示す。
(3) Measurement of friction coefficient The sample prepared in (2) above is placed in the friction coefficient measuring apparatus shown in FIG. 5 and is made of the same material as the glass material to be molded that was press-molded in (1) above as a measuring element Glass materials with the same shape were placed. The relative moving speed between the sample surface and the probe at the time of measuring the friction coefficient is 0.16 mm / sec, and the friction coefficient after 50 times sliding in the Y direction is measured. , 25 MPa, 33 MPa, 50 MPa or 75 MPa, and the average friction coefficient was calculated. Using a mold produced under the same conditions as each sample, a step of press-molding a glass material having the same shape as the glass material used as the measuring element was performed 100 times to obtain a convex meniscus lens. Crack generation in the obtained lens was visually observed, and the crack generation rate was calculated as (lens confirmed crack / all lenses) × 100. FIG. 6 shows the relationship between crack occurrence rate and average friction coefficient.

[比較例1]
市販の摩擦係数測定装置を使用した点以外は実施例1と同様の方法で、ワレの発生率と平均摩擦係数との関係を求めた。結果を図7に示す。市販の摩擦係数測定装置における試料表面と測定子との相対移動速度は10mm/secであった。垂直圧縮応力は685MPa、720MPa、1000MPaの3段階に設定可能であったため、垂直圧縮応力を685MPa、720MPaまたは1000MPaに変化させ、各試料について3回測定し平均摩擦係数を算出した。
[Comparative Example 1]
Except for using a commercially available friction coefficient measuring device, the relationship between the crack occurrence rate and the average friction coefficient was determined in the same manner as in Example 1. The results are shown in FIG. The relative moving speed between the sample surface and the measuring element in a commercially available friction coefficient measuring apparatus was 10 mm / sec. Since the vertical compressive stress could be set in three stages of 685 MPa, 720 MPa, and 1000 MPa, the vertical compressive stress was changed to 685 MPa, 720 MPa, or 1000 MPa, and each sample was measured three times to calculate the average friction coefficient.

評価結果
図6に示すように、プレス成形時の面圧およびせん断速度に基づき、面圧に近似した垂直応力およびせん断速度に近似した相対移動速度にて測定した摩擦係数は、ワレ発生率と良好な相関関係を示した。図6の結果から、例えばワレ発生率40%以下でガラスレンズを製造するために、摩擦係数0.2を基準値とし、摩擦係数0.2以下の離型膜を良品と判定することができる。
これに対し図7に示すように市販の摩擦係数測定装置では、摩擦係数の値とワレ発生率との間には相関関係が見られなかった。
以上の結果から、本発明によれば、プレス成形時の面圧およびせん断速度に基づき設定した条件により測定された摩擦係数の値を使用することにより離型膜の良否判定を行うことができることが示された。
Evaluation results As shown in FIG. 6, the friction coefficient measured at normal stress approximated to the surface pressure and relative movement speed approximated to the shear rate based on the surface pressure and shear rate at the time of press forming was good with the crack generation rate. Showed a good correlation. From the result of FIG. 6, in order to manufacture a glass lens with a crack occurrence rate of 40% or less, for example, a release film having a friction coefficient of 0.2 or less can be determined as a non-defective product with a friction coefficient of 0.2 as a reference value. .
On the other hand, as shown in FIG. 7, in the commercially available friction coefficient measuring device, no correlation was found between the value of the friction coefficient and the crack occurrence rate.
From the above results, according to the present invention, it is possible to determine the quality of the release film by using the value of the coefficient of friction measured under the conditions set based on the surface pressure and shear rate during press molding. Indicated.

[実施例2]
実施例1と同一ロット内で成膜を行った離型膜を有する成形型を複数準備し、実施例1と同様の方法で離型膜の摩擦係数を測定した。その後、各成形型を使用し、実施例1と同一の成形条件でプレス成形を100回行った結果、各成形型について100個のガラスレンズが得られた。得られたガラスレンズを目視で観察し、ワレの有無を判定した。ワレの発生率と離型膜の摩擦係数の値との関係を図8に示す。図8の棒グラフは平均値を表すものであり、棒グラフ先端の幅を示す線はエラーバー(誤差範囲)を示す。図8の結果から、本発明において測定される摩擦係数の値は、ワレの発生率と良好な相関関係を示すこと、実施例1で設定した摩擦係数の基準値0.2を採用して良否判定を行えばワレ発生率の低い成形型を選別できることが確認できる。
[Example 2]
A plurality of molds having a release film formed in the same lot as in Example 1 were prepared, and the friction coefficient of the release film was measured in the same manner as in Example 1. Thereafter, each mold was used and press molding was performed 100 times under the same molding conditions as in Example 1. As a result, 100 glass lenses were obtained for each mold. The obtained glass lens was observed visually to determine the presence or absence of cracks. FIG. 8 shows the relationship between the crack occurrence rate and the value of the friction coefficient of the release film. The bar graph in FIG. 8 represents an average value, and a line indicating the width of the bar graph tip indicates an error bar (error range). From the results of FIG. 8, the friction coefficient value measured in the present invention shows a good correlation with the crack occurrence rate, and the reference value 0.2 of the friction coefficient set in Example 1 is adopted. If it determines, it can confirm that a shaping | molding die with a low crack incidence can be selected.

[参考例]
繰り返し摺動による摩擦係数の経時変化
同一成膜装置を使用してスパッタ法により、SiC基板上に厚さ約40nmのアモルファス炭素膜を成膜したサンプルを3つ(サンプル1〜3)、作製した。
各サンプルについて、下記条件で測定子とアモルファス炭素膜を繰り返し摺動させ摩擦係数を測定した。測定結果を図9に示す。
測定条件
圧縮応力:30MPa、せん断速度:0.16mm/sec
測定子:光学レンズ材料(ホウ酸シリケート系ガラス(HOYA(株)製硝種BACD12)
測定環境:大気下(室温、湿度約50%RH)
[Reference example]
Change with time of friction coefficient due to repeated sliding Three samples (samples 1 to 3) in which an amorphous carbon film having a thickness of about 40 nm was formed on a SiC substrate by sputtering using the same film forming apparatus were prepared. .
For each sample, the friction coefficient was measured by repeatedly sliding the measuring element and the amorphous carbon film under the following conditions. The measurement results are shown in FIG.
Measurement conditions Compressive stress: 30 MPa, Shear rate: 0.16 mm / sec
Measuring element: Optical lens material (borate silicate glass (HOYA Co., Ltd. glass type BACD12)
Measurement environment: In the atmosphere (room temperature, humidity about 50% RH)

サンプル1〜3は、成膜ロットは異なるが同じ成膜厚さになるように同条件で成膜したサンプルである。図9に示すように各サンプルにおける摩擦係数の測定結果が異なった原因としては、成膜原料の成膜時の経時変化等が考えられる。また、各サンプルにおいて、上述したとおり、測定開始初期に摩擦係数の低下が見られる。この繰り返し摺動は、プレス成形回数に準じて設定することが好ましく、例えば、100回のプレス成形を行う仕様のものについては、少なくとも往復50回、すなわち100回の摩擦係数の測定を行なうことが好ましい。摩擦係数の測定結果においてその良否判定の基準値は、その成形型に求められる仕様に応じて設定すればよい。例えば図9に示すサンプルについては、所望のプレス回数を100回とし、最終摺動時の摩擦係数が0.2以下のものを良品と判定することが考えられる。上記判定基準によれば、図9中、サンプル1は不良品、サンプル2は実用上使用可能な良品、そして、サンプル3はきわめて良好な品質を有する良品と判定することができる。または、測定開始初期の摩擦係数の低下後の摩擦係数が0.1以下となり、それ以降の往復50回における摩擦係数の変化量(増加量)が0.1以下となるものが良品と判定することも可能である。   Samples 1 to 3 are samples formed under the same conditions so as to have the same film thickness although the film formation lots are different. As shown in FIG. 9, the cause of the difference in the measurement result of the coefficient of friction in each sample may be a change over time in the deposition of the deposition material. In each sample, as described above, a decrease in the coefficient of friction is seen at the beginning of measurement. This repeated sliding is preferably set according to the number of press moldings. For example, in the case of a specification that performs 100 press moldings, it is possible to measure the friction coefficient at least 50 reciprocations, that is, 100 times. preferable. In the measurement result of the friction coefficient, the reference value for the quality determination may be set according to the specifications required for the mold. For example, with respect to the sample shown in FIG. 9, it is conceivable that the desired number of presses is set to 100 and that the coefficient of friction at the final sliding is 0.2 or less is determined as a non-defective product. According to the above criteria, in FIG. 9, sample 1 can be determined to be a defective product, sample 2 can be determined to be a good product that can be used in practice, and sample 3 can be determined to be a good product having extremely good quality. Or, when the coefficient of friction after the decrease of the coefficient of friction at the beginning of the measurement is 0.1 or less, and the amount of change (increase) of the coefficient of friction after 50 reciprocations thereafter is 0.1 or less, it is determined as a non-defective product. It is also possible.

本発明は、ガラスレンズ等のガラス光学素子の製造分野において有用である。   The present invention is useful in the field of manufacturing glass optical elements such as glass lenses.

1 離型膜成膜済み被測定物
2 せん断動作用Yステージ
3 測定子
4 試料支持体
5 面圧印加用Xステージ(2種/粗動、精動)
6 面圧変位板バネ
7 面圧検出用変位センサー
8 摩擦力変位板バネ
9 摩擦力検出用変位センサー
10 測定位置変更Zステージ
11 測定位置変更Yステージ
1 DUT film-formed object 2 Y stage for shearing action 3 Measuring element 4 Sample support 5 X stage for surface pressure application (2 types / coarse movement, fine movement)
6 Surface pressure displacement leaf spring 7 Surface pressure detection displacement sensor 8 Friction force displacement leaf spring 9 Friction force detection displacement sensor 10 Measurement position change Z stage 11 Measurement position change Y stage

Claims (6)

被成形ガラス素材をプレス成形するために使用されるプレス成形型の成形面上に成膜された離型膜の良否判定方法であって、A method for determining the quality of a release film formed on a molding surface of a press mold used for press molding a glass material to be molded,
前記離型膜または前記離型膜と同一条件で成膜された膜に測定子を押圧した状態で、該膜または該測定子のいずれか一方を他方に対して摺動させることにより摩擦係数を測定すること、および、測定された摩擦係数が予め設定した基準値以下であれば前記離型膜を良品と判定し、該基準値を超える値であれば前記離型膜を不良品と判定することにより、前記離型膜の良否を判定すること、ならびに、The friction coefficient is obtained by sliding either the film or the measuring element against the other in a state where the measuring element is pressed against the release film or the film formed under the same conditions as the release film. If the measured friction coefficient is less than or equal to a preset reference value, the release film is determined as a non-defective product, and if the measured value exceeds the reference value, the release film is determined as a defective product. Determining the quality of the release film, and
前記押圧時に前記膜に加わる圧縮応力を5〜80MPaの範囲に設定し、かつ前記膜と前記測定子との摺動時の相対移動速度を0.2mm/sec以下に設定すること、Setting the compressive stress applied to the film at the time of pressing in the range of 5 to 80 MPa, and setting the relative movement speed when sliding between the film and the probe to 0.2 mm / sec or less,
を特徴とする、プレス成形型の離型膜の良否判定方法。A quality determination method for a release film of a press mold, characterized by
前記押圧時に前記膜に加わる圧縮応力を、プレス成形時に前記離型膜上に生じる面圧に基づき決定し、かつ前記膜と前記測定子との摺動時の相対移動速度を、プレス成形時に前記離型膜と前記被成形ガラス素材との界面に生じるせん断速度に基づき決定することを含む、請求項1に記載のプレス成形型の離型膜の良否判定方法。The compressive stress applied to the film at the time of pressing is determined based on the surface pressure generated on the release film at the time of press molding, and the relative moving speed at the time of sliding between the film and the probe is determined at the time of press molding. The quality determination method of the release film of the press mold of Claim 1 including determining based on the shear rate which arises in the interface of a release film and the said to-be-molded glass raw material. 前記測定子は、前記押圧時に前記膜に当接する部分が前記被成形ガラス素材と同じ素材からなる請求項1または2に記載の方法。 3. The method according to claim 1, wherein the measuring element is made of the same material as the glass material to be molded at a portion that abuts on the film at the time of pressing. 4. 前記良否判定を、繰り返し摺動後の摩擦係数の測定値、繰り返し摺動中の摩擦係数の最小値、繰り返し摺動中の摩擦係数の経時変化量が予め設定した基準値以下であるものを良品と判定し、該値を超えるものを不良品と判定することにより行う請求項1〜のいずれか1項に記載の方法。 For the above pass / fail judgment, the measured value of the coefficient of friction after repeated sliding, the minimum value of the coefficient of friction during repeated sliding, and the amount of change over time of the coefficient of friction during repeated sliding are less than a preset reference value. The method according to any one of claims 1 to 3 , wherein the method is performed by determining that a value exceeding the value is a defective product. 前記繰り返し摺動の摺動回数を、前記プレス成形型の所望の使用回数に基づき決定する請求項に記載の方法。 The method according to claim 4 , wherein the number of sliding times of the repeated sliding is determined based on a desired number of times the press mold is used. 被成形ガラス素材を成形型に供給し、次いで供給された被成形ガラス素材を前記成形型によりプレス成形することを含むガラス光学素子の製造方法であって、
請求項1〜のいずれか1項に記載の方法により前記成形型の成形面上に成膜された離型膜の良否判定を行うこと、
前記判定により離型膜が良品と判定された成形型を、前記プレス成形に使用すること、
を特徴とする、ガラス光学素子の製造方法。
A glass optical element manufacturing method comprising supplying a glass material to be molded to a mold and then press-molding the supplied glass material to be molded with the mold,
Performing pass / fail judgment of a release film formed on the molding surface of the mold by the method according to any one of claims 1 to 5 .
Using the mold in which the release film is determined to be non-defective by the determination, for the press molding,
A method for producing a glass optical element.
JP2009052023A 2009-03-05 2009-03-05 Method for determining quality of release film of press mold and method for manufacturing optical element Expired - Fee Related JP4994405B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009052023A JP4994405B2 (en) 2009-03-05 2009-03-05 Method for determining quality of release film of press mold and method for manufacturing optical element
CN2010101179608A CN101823833B (en) 2009-03-05 2010-03-05 Method for judging quality of release film of punch forming mold and method for manufacturing optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009052023A JP4994405B2 (en) 2009-03-05 2009-03-05 Method for determining quality of release film of press mold and method for manufacturing optical element

Publications (2)

Publication Number Publication Date
JP2010202476A JP2010202476A (en) 2010-09-16
JP4994405B2 true JP4994405B2 (en) 2012-08-08

Family

ID=42688034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009052023A Expired - Fee Related JP4994405B2 (en) 2009-03-05 2009-03-05 Method for determining quality of release film of press mold and method for manufacturing optical element

Country Status (2)

Country Link
JP (1) JP4994405B2 (en)
CN (1) CN101823833B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10606166B2 (en) 2015-06-17 2020-03-31 Hoya Corporation Substrate with electrically conductive film, substrate with multilayer reflective film, reflective mask blank, reflective mask, and method of manufacturing semiconductor device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102944513B (en) * 2012-11-23 2014-09-17 浙江大学 Friction factor measuring and calculating method during metal plastic forming

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2572438B2 (en) * 1989-01-30 1997-01-16 ホーヤ株式会社 Manufacturing method of glass press mold
JPH11171563A (en) * 1997-12-16 1999-06-29 Ueno Hiroshi Lubricative film having excellent heat resistance and metal mold for forming glass bottle
KR20010085221A (en) * 1999-01-05 2001-09-07 모리시타 요이찌 Die for forming optical device, method for manufacturing the same, and optical device
JP2000327344A (en) * 1999-05-17 2000-11-28 Olympus Optical Co Ltd Method for producing mold for molding optical element and mold for molding optical element
TW486438B (en) * 2000-03-09 2002-05-11 Sumitomo Rubber Ind Device and method for determining coefficient of road surface friction
JP2003104737A (en) * 2001-09-28 2003-04-09 Olympus Optical Co Ltd Mold for forming optical element and method for manufacturing the same
JP2005239435A (en) * 2004-02-12 2005-09-08 Hoya Corp Mold press molding apparatus and method for production of glass optical element
JP4502728B2 (en) * 2004-07-01 2010-07-14 日本山村硝子株式会社 Method for producing molding die having seizure lubricant release agent layer
JP4490205B2 (en) * 2004-08-10 2010-06-23 日本山村硝子株式会社 COATING COMPOSITION FOR FORMING SOLID LUBRICATION FILM AND METAL PRODUCT COATED WITH THE COATING COMPOSITION
JP2006089313A (en) * 2004-09-22 2006-04-06 Olympus Corp Method of molding plastic material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10606166B2 (en) 2015-06-17 2020-03-31 Hoya Corporation Substrate with electrically conductive film, substrate with multilayer reflective film, reflective mask blank, reflective mask, and method of manufacturing semiconductor device
US10996554B2 (en) 2015-06-17 2021-05-04 Hoya Corporation Substrate with an electrically conductive film, substrate with a multilayer reflective film, reflective mask blank, reflective mask and method of manufacturing semiconductor device

Also Published As

Publication number Publication date
CN101823833A (en) 2010-09-08
CN101823833B (en) 2013-08-14
JP2010202476A (en) 2010-09-16

Similar Documents

Publication Publication Date Title
US4842633A (en) Method of manufacturing molds for molding optical glass elements and diffraction gratings
JP7484712B2 (en) Composite member and molding die, manufacturing method of composite member, molding method of glass material, manufacturing method of optical element, manufacturing method of optical system, and manufacturing method of imaging device
JP4994405B2 (en) Method for determining quality of release film of press mold and method for manufacturing optical element
JP5294938B2 (en) Film thickness measuring method and glass optical element manufacturing method
EP0733598B1 (en) Method and apparatus for producing optical element
JP3206845B2 (en) Method for producing optical glass element and press mold for optical glass element used in the method
Zhao et al. Wear of mold surfaces: Interfacial adhesion in precision glass molding
JP4072496B2 (en) Manufacturing method of glass optical element
JP2005213091A (en) Method for manufacturing glass optical element
JP2001302273A (en) Mold for molding optical glass element
JP4667930B2 (en) Optical element manufacturing method
JP2009161402A (en) Mold for forming optical element and manufacture method of optical element
JP4056010B2 (en) Manufacturing method of press-molding glass preform and manufacturing method of glass optical element
JP4692500B2 (en) Method for producing optical glass element and method for fine adjustment of refractive index of glass molded article
JP4347594B2 (en) Optical element molding method
JP2003048723A (en) Press forming method and press formed equipment
JPH08143320A (en) Forming die for glass formed article
JP2011201738A (en) Mold for molding optical element, optical element, and method for manufacturing optical element
JP4494913B2 (en) Optical element manufacturing method
JP2009067607A (en) Mold for molding glass optical device, glass optical device and manufacturing process of glass optical device
JP2003146669A (en) Mold for forming glass for information recording disk and method of manufacturing glass substrate for information recording disk using the same
JP4256190B2 (en) Manufacturing method of glass optical element
JP2006256884A (en) Method for production of glass optical device
JPS61242922A (en) Pressing mold for optical glass element
JP6406939B2 (en) Amorphous alloy, mold for molding, and method of manufacturing optical element

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120424

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120508

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees