JP4667930B2 - Optical element manufacturing method - Google Patents

Optical element manufacturing method Download PDF

Info

Publication number
JP4667930B2
JP4667930B2 JP2005102618A JP2005102618A JP4667930B2 JP 4667930 B2 JP4667930 B2 JP 4667930B2 JP 2005102618 A JP2005102618 A JP 2005102618A JP 2005102618 A JP2005102618 A JP 2005102618A JP 4667930 B2 JP4667930 B2 JP 4667930B2
Authority
JP
Japan
Prior art keywords
glass material
carbon
glass
film
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005102618A
Other languages
Japanese (ja)
Other versions
JP2006282431A (en
Inventor
隆 猪狩
英明 山本
成明 近江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP2005102618A priority Critical patent/JP4667930B2/en
Publication of JP2006282431A publication Critical patent/JP2006282431A/en
Application granted granted Critical
Publication of JP4667930B2 publication Critical patent/JP4667930B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Description

本発明は、加熱軟化したガラス素材を成形型内でプレス成形するガラス製品、特に光学素子の製造方法に関するものである。 The present invention, glassware press molding a heated and softened glass material in a mold, in particular relates to the production how the optical element.

精密光学ガラス素子を簡便に生産性よく成形する方法として、モールドプレス法がある。モールドプレス法は、予めガラスを溶融固化もしくは冷間加工して所定の形状にした成形用ガラス素材を成形用型内に供給し、加熱軟化により成形可能になった状態でこのガラス素材を成形型で押圧し、成形されたガラス素子が型内に保持された状態でこれを冷却してガラス素子を得る方法である。精密加工された成形型を用いるため、この方法によれば、成形後のガラス素子の被成形面に対する研磨加工を不要とすることができる。   There is a mold press method as a method for forming a precision optical glass element simply and with high productivity. In the mold press method, a glass material for molding, which has been preliminarily melted or solidified or cold processed into a predetermined shape, is supplied into the molding die, and this glass material is molded into a mold that can be molded by heat softening. In this method, the glass element is pressed and cooled in a state where the molded glass element is held in the mold. Since a precision-worked mold is used, according to this method, it is possible to eliminate the need to polish the molded surface of the glass element after molding.

ここで、成形型とガラス素材との間の融着や、それに起因するクモリやワレ等の欠陥の問題に対し、成形用ガラス素材の表面に様々な膜を形成することが提案されている。   Here, it has been proposed to form various films on the surface of the glass material for molding, in order to solve the problem of fusing between the mold and the glass material and defects such as spiders and cracks.

例えば、成形用ガラス素材表面に炭化水素膜を形成することにより、離型を向上することが提案されている(例えば、特許文献1参照)。   For example, it has been proposed to improve mold release by forming a hydrocarbon film on the surface of a forming glass material (see, for example, Patent Document 1).

また、炭化水素の熱分解によって薄い炭素膜をガラス素材の表面に形成することが提案されている(例えば、特許文献2参照)。   In addition, it has been proposed to form a thin carbon film on the surface of a glass material by thermal decomposition of hydrocarbons (see, for example, Patent Document 2).

さらに、メタンプラズマ処理により、膜厚5nm未満、好ましくは1nm未満の炭素膜を成形用ガラス素材表面に形成することにより、離型を向上することが提案されている(例えば、特許文献3参照)。
特公平7−45329号公報 特開平8−217468号公報 特開平9−286625号公報
Furthermore, it has been proposed to improve mold release by forming a carbon film having a film thickness of less than 5 nm, preferably less than 1 nm, on the surface of the glass material for molding by methane plasma treatment (see, for example, Patent Document 3). .
Japanese Examined Patent Publication No. 7-45329 JP-A-8-217468 Japanese Patent Laid-Open No. 9-286625

これらの特許文献に開示の技術によれば、一定の効果が見られるものの、同一金型で繰り返し成形、例えば、1000回以上の連続成形を行うと、徐々に、又は突発的に成形後の光学ガラス素子表面のクモリ、ワレや形状不良が発生し、十分に満足のいくものではなかった。すなわち、膜質が不十分な状態のガラス素材をプレス成形に供し、連続成形を行うと、ガラス素材と成形型との融着が生じ、その後の成形品(ガラス素子)の表面にクモリ、ワレや形状不良が連続して発生する。特に、同一の成形型を用いて数百回ないし数千回にわたって連続成形を行う、高効率の生産においては、歩留まり低下の要因となっている。   According to the technologies disclosed in these patent documents, although a certain effect is seen, if the molding is repeated in the same mold, for example, 1000 times or more of continuous molding, the optical after molding is formed gradually or suddenly. The surface of the glass element was spoiled, cracked and poor in shape, which was not satisfactory. That is, when a glass material with insufficient film quality is subjected to press molding and continuous molding is performed, fusion between the glass material and the mold occurs, and the surface of the subsequent molded product (glass element) is spoiled, cracked, Form defects occur continuously. In particular, in high-efficiency production where continuous molding is performed hundreds or thousands of times using the same mold, this is a factor in yield reduction.

また、ガラス表面に成形型との融着を抑止する所定の薄膜を形成した成形用ガラス素材を用いてガラス素子を成形した場合であっても、ガラスが金型表面から離れるタイミングが不均一になり成形したガラス素子の形状不良が発生しやすく、形状歩留が悪化する問題があった。すなわち、モールドプレス法によってガラス素子を成形する場合、成形用ガラス素材と金型とをプレス成形において密着して、金型の形状がガラスに正確に転写する。プレス成形はガラスの軟化点以上の高温で行うため、ガラスの熱収縮が金型の熱収縮よりも大きいので、成形後の冷却過程において、ガラスは金型表面から離れる。このガラスが金型表面から離れるタイミングが不均一になり成形したガラス素子の形状が不良になり易い。また、高温でのガラスと金型表面との密着において、ガラスと型の界面で反応が生じてガラスの一部が金型表面に融着してガラス素子の表面にクモリやワレ等の欠陥が発生したりして、良好なガラスレンズを得るには困難があった。   In addition, even when a glass element is molded using a glass material for molding in which a predetermined thin film that suppresses fusion with the mold is formed on the glass surface, the timing at which the glass leaves the mold surface is uneven. Therefore, there is a problem that shape defects of the formed glass element are likely to occur, and the shape yield deteriorates. That is, when a glass element is molded by the mold press method, the glass material for molding and the mold are brought into close contact with each other in the press molding, and the shape of the mold is accurately transferred to the glass. Since press molding is performed at a temperature higher than the softening point of the glass, the heat shrinkage of the glass is larger than the heat shrinkage of the mold, so that the glass separates from the mold surface in the cooling process after the molding. The timing at which the glass leaves the mold surface is non-uniform and the shape of the molded glass element tends to be poor. In addition, in the adhesion between the glass and the mold surface at a high temperature, a reaction occurs at the interface between the glass and the mold, and a part of the glass is fused to the mold surface, and defects such as spiders and cracks are formed on the surface of the glass element. It has been difficult to obtain a good glass lens.

さらに、従来から知られている炭化水素の熱分解法、真空蒸着法、スパッタ法、プラズマCVD法等を利用した場合、同じ成膜原理を利用した装置であっても、装置間の成膜条件の微差や成形装置内の被成膜物の配置位置などによって成膜条件を完全に均一とすることは困難であり、ガラス素材表面の膜質が変動する可能性を予め考慮しなければならない。それ故、こうした変動要因の発生如何を、成膜されたガラス素材の膜質から評価、選別する必要性もある。   Furthermore, when using a conventionally known hydrocarbon pyrolysis method, vacuum deposition method, sputtering method, plasma CVD method, etc., even if the device uses the same film formation principle, the film formation conditions between the devices It is difficult to make the film forming conditions completely uniform depending on the slight difference between the two and the position of the film forming object in the molding apparatus, and the possibility that the film quality on the surface of the glass material fluctuates must be considered in advance. Therefore, it is necessary to evaluate and select whether or not such a fluctuation factor is generated based on the film quality of the formed glass material.

このように、従来から知られている成膜方法では、必ずしも成形に適した(質の良い)膜のみをガラス素材に成膜することができない。また、成膜された膜の膜厚や色、外観を検査することで、ある程度の良否の判別はできるが、膜の性質の良否を簡便、かつ、確実に判別する手法が見出されていない。   As described above, with the conventionally known film forming methods, it is not always possible to form only a film suitable for molding (good quality) on a glass material. In addition, it is possible to determine the quality of the film to some extent by inspecting the film thickness, color, and appearance of the film formed, but no method has been found to easily and reliably determine the quality of the film. .

上記問題点に鑑みて、本発明の課題は、プレス成形の際の融着、及びそれに起因するガラス成形体表面のクモリもしくはワレを抑止するとともに、ガラスが金型表面から離れるタイミングが不均一になることにより生じるガラス素子の形状不良を防止し、良質なガラス製品を高い歩留で得ることができる光学素子の製造方法を提供することにある。 In view of the above-mentioned problems, the problem of the present invention is to suppress fusion during press molding, and the spider or crack on the surface of the glass molded body resulting from it, and the timing at which the glass leaves the mold surface is uneven. becomes the shape of the glass element failure prevented caused by, is to provide a manufacturing how optical elements can be obtained in high yield and good quality glass products.

上記課題を解決するために、本発明では、ガラス素材を加熱により軟化させ、プレス成形する光学素子の製造方法において、予備成形後、表面に炭素系膜を成膜したガラス素材を用意し、当該炭素系膜を成膜したガラス素材表面の表面自由エネルギーの分散項成分と、前記炭素系膜を成膜したガラス素材をプレス成形したときの形状不良率との相関関係を予め求め、当該相関関係に基づき、前記炭素系膜を成膜した後のガラス素材表面の表面自由エネルギーにおける分散項成分が85%以上のものを選別して連続プレス成形することを特徴とする。 In order to solve the above-mentioned problem, in the present invention, in a method of manufacturing an optical element that softens a glass material by heating and press-molds, a glass material having a carbon-based film formed on the surface is prepared after preforming. The correlation between the dispersion term component of the surface free energy on the surface of the glass material on which the carbon-based film is formed and the shape defect rate when press-molding the glass material on which the carbon-based film is formed is obtained in advance, and the correlation On the basis of the above, a material having a dispersion term component of 85% or more in the surface free energy on the surface of the glass material after forming the carbon-based film is selected and continuously press-molded.

ここで、物体表面における表面自由エネルギーは、分散力成分(分散項成分)と極性力成分との和に相当する。従って、本発明において、分散項成分を基準とするという構成は、極性力成分を基準とする意味を含む意味である。   Here, the surface free energy on the surface of the object corresponds to the sum of the dispersion force component (dispersion term component) and the polar force component. Therefore, in the present invention, the configuration based on the dispersion term component includes the meaning based on the polar force component.

本発明では、炭素系膜を成膜した後のガラス素材として、表面自由エネルギーにおける分散項成分が85%以上のものを選別して連続プレス成形する。従って、クモリ、ワレ、や成形品の形状不良を生じることなく安定して光学素子を生産することができる。 In the present invention, a glass material having a dispersion term component in the surface free energy of 85% or more is selected and continuously press-molded as a glass material after the carbon-based film is formed. Therefore, an optical element can be produced stably without causing spoilage, cracks, or defective shape of the molded product.

本発明者らは、純水、CHWe have purified water, CH 22 II 22 、グリセリン、イソペンタン、パーフルオロヘキサン等を用いた、接触角測定よりOwens-Wendt-Kaelble法を用いて解析される、膜の表面自由エネルギーの分散項成分により、膜の良否(プレス成形に対する適否)を定量的に評価できることを見出した。, By using the Owens-Wendt-Kaelble method from contact angle measurement using glycerin, isopentane, perfluorohexane, etc., due to the dispersion term component of the surface free energy of the film, the film quality (appropriateness for press molding) It was found that can be quantitatively evaluated.

そこで、成形用ガラス素材の表面に形成した炭素を主成分とする薄膜の分散項比と形状不良率との相関について調べ、成形レンズの歩留まりが良好となる分散力成分の割合の好ましい値を探究した結果、分散項比が85%未満であるガラス素材をプレス成形に供給し続けると、金型成形面での離型タイミングが不均一になるなどして、成形品(光学レンズ等)の不良率が顕著に高くなり、歩留が低下することを見出した。本発明は、この結果をもとになされたものである。Therefore, we investigated the correlation between the dispersion term ratio of the carbon-based thin film formed on the surface of the molding glass material and the shape defect rate, and searched for the preferred value of the ratio of the dispersion force component that would improve the yield of the molded lens. As a result, if glass materials with a dispersion term ratio of less than 85% are continuously supplied to press molding, the mold release timing on the mold molding surface will be non-uniform and the molded product (optical lens, etc.) will be defective. It was found that the rate was significantly increased and the yield decreased. The present invention has been made based on this result.

本発明において、前記分散項成分は、成膜後のガラス素材の表面に対する、所定物質の接触角を測定することによって求めることができる。   In the present invention, the dispersion term component can be obtained by measuring a contact angle of a predetermined substance with respect to the surface of the glass material after film formation.

本発明において、前記ガラス素材への炭素系膜の成膜は複数のガラス素材に対して同時に行い、前記ガラス素材の選別は成膜したロット毎に行い、前記分散項成分が85%以上のロットのみを選別して連続プレス成形を行うことが好ましい。In the present invention, the formation of the carbon-based film on the glass material is simultaneously performed on a plurality of glass materials, and the glass material is selected for each lot formed, and the dispersion term component is 85% or more. It is preferable to carry out continuous press molding by selecting only those.

本発明では、ガラス素材を成形用型でプレス成形し、光学素子を製造するに際して、炭素系膜(炭素を主成分とする膜)を形成したガラス素材として、予め、炭素系膜を成膜したガラス素材表面の表面自由エネルギーの分散項成分と、前記炭素系膜を成膜したガラス素材をプレス成形したときの形状不良率との相関関係を求め、当該相関関係に基づき、表面自由エネルギーの分散項成分が85%以上のものを選別して連続プレス成形するため、クモリ、ワレ、や成形品の形状不良を生じることなく安定して光学素子を生産することができる。 In the present invention, when a glass material is press-molded with a molding die to produce an optical element, a carbon-based film is formed in advance as a glass material on which a carbon-based film (a film containing carbon as a main component) is formed . Find the correlation between the dispersion term component of the surface free energy on the surface of the glass material and the shape defect rate when the glass material on which the carbon-based film is formed is press-molded. Based on the correlation, the dispersion of the surface free energy Since the component having a term component of 85% or more is selected and continuously press-molded, an optical element can be produced stably without causing defects in the shape of the spider, crack, or molded product.

(表面自由エネルギーについて)
本発明者らは、成形用ガラス素材が成形型の表面から離れるタイミング(離型性)は、成形用ガラス素材の表面に形成した薄膜の表面特性に大きく依存することを探求した。離型性を支配する表面特性を評価することは困難であるが、本発明者らは、純水、CH2I2、グリセリン、イソペンタン、パーフルオロヘキサン等を用いた、接触角測定よりOwens-Wendt-Kaelble法を用いて解析される、膜の表面自由エネルギーの分散項成分(後述の方法により分散項比として算出される)により、膜の良否(プレス成形に対する適否)を定量的に評価できることを見出した。
(About surface free energy)
The present inventors have sought that the timing at which the forming glass material is separated from the surface of the forming mold (releasing property) greatly depends on the surface characteristics of the thin film formed on the surface of the forming glass material. Although it is difficult to evaluate the surface characteristics governing the releasability, the present inventors have used Owens- from the contact angle measurement using pure water, CH 2 I 2 , glycerin, isopentane, perfluorohexane and the like. The film quality (appropriate for press molding) can be quantitatively evaluated by the dispersion term component of the surface free energy of the film (calculated as the dispersion term ratio by the method described later) analyzed using the Wendt-Kaelble method. I found.

分散項比が大きい表面は表面における相互作用における分散成分の構成比が高く、融着やガラスの反応性の要因となる極性作用が弱い。離型は、表面における極性作用に依存し、この作用が小さいと離型は安定する。逆に、極性作用が大きくなると、離型性が不安定になり、面不、アスやクセなどの形状不良が発生する。成形用ガラス素材の表面に形成した炭素を主成分とする薄膜の分散項比と形状不良率との相関について調べた。 A surface having a large dispersion term ratio has a high component ratio of the dispersion term component in the interaction on the surface, and has a weak polar action that causes fusion and glass reactivity. The mold release depends on the polar action on the surface. If this action is small, the mold release is stable. On the contrary, when the polar action is increased, the releasability becomes unstable, and surface defects, shape defects such as asses and peculiarities occur. The correlation between the dispersion term ratio of the thin film mainly composed of carbon formed on the surface of the forming glass material and the shape defect rate was investigated.

なお、物体表面における表面自由エネルギーは、分散力成分γsdと極性力成分γshに分解される。表面自由エネルギーの分散力成分γsdは、ファンデルワールス力すなわち分子間に働く弱い引力の中核をなす力で、無極性分子を含むすべての分子間に働く。一方、表面自由エネルギーの極性力成分γshは、水素結合に代表される極性基間の強い相互作用力のことである。 The surface free energy on the object surface is decomposed into the dispersion force component gamma] s d and the polar force component gamma] s h. The dispersion force component γs d of the surface free energy is a van der Waals force, that is, a force that forms the core of a weak attractive force acting between molecules, and acts between all molecules including nonpolar molecules. On the other hand, polar force component gamma] s h in the surface free energy is that of the strong interaction forces between the polar groups represented by hydrogen bonding.

ここで「分散項比」は、表面自由エネルギーにおける分散力成分の割合であり、表面自由エネルギーは公知の接触角測定器を用いて測定することができる。即ち、上記液体の中から2種類の異なるものを用いて、測定対象の表面の濡れ角(接触角)を測定し、算定できる。   Here, the “dispersion term ratio” is the ratio of the dispersion force component in the surface free energy, and the surface free energy can be measured using a known contact angle measuring device. That is, it is possible to measure and calculate the wetting angle (contact angle) of the surface to be measured using two different types of liquids.

例えば、純水およびCH2I2の濡れ角測定よりOwens-Wendt-Kaelble法を用いた表面自由エネルギーの評価を以下のように行うことができる。表面自由エネルギー(γ)は、式(1)に示すように、固体又は液体の分散力(Dispersion Force)γdと固体又は液体の極性相互作用力(Polar Interaction Force)γpとの和で与えられる。(1)式を固体の表面自由エネルギー(γs)で考えると式(2)となる。ここで添字のsはSolidを表わす。 For example, the surface free energy can be evaluated using the Owens-Wendt-Kaelble method from the measurement of the wetting angle of pure water and CH 2 I 2 as follows. The surface free energy (γ) is given by the sum of solid or liquid dispersion force γ d and solid or liquid polar interaction force γ p as shown in equation (1). It is done. Considering equation (1) with the surface free energy (γ s ) of the solid, equation (2) is obtained. Here, the subscript s represents Solid.

Figure 0004667930
Figure 0004667930

Figure 0004667930
Figure 0004667930

同様に液体では、式(3)で示され、添字LはLiquidを表す。   Similarly, in the case of a liquid, it is represented by the formula (3), and the subscript L represents Liquid.

Figure 0004667930
Figure 0004667930

膜の表面自由エネルギーは、水とCH2I2(ジヨードメタン)の2種類の液体を用い、それぞれを固体上に同量滴下し、求めた接触角から表面自由エネルギーを算出する。すなわち、Owens-Wendt-Kaelble法により、式(4)の計算式を用いた。なお、2種類の液体のγL d及びγL pはそれぞれ表1の文献値を使用し、(3)式より2種類の液体それぞれのγLを求める。 As the surface free energy of the film, two kinds of liquids, water and CH 2 I 2 (diiodomethane), are dropped on the solid in the same amount, and the surface free energy is calculated from the obtained contact angle. That is, the calculation formula (4) was used by the Owens-Wendt-Kaelble method. The γ L d and γ L p of the two types of liquid use the literature values in Table 1, respectively, and γ L of each of the two types of liquid is obtained from the equation (3).

Figure 0004667930
Figure 0004667930

Figure 0004667930
Figure 0004667930

表1に示すように、例えば、水の接触角が104.9°、ジヨードメタンの接触角は72.0°であれば、(4)式のθに代入し、その他のエネルギー値は表1の値を用いる。その結果、式(5)、(6)で示す結果が得られる。   As shown in Table 1, for example, if the contact angle of water is 104.9 ° and the contact angle of diiodomethane is 72.0 °, the values in Table 1 are used for other energy values. As a result, the results represented by the equations (5) and (6) are obtained.

Figure 0004667930
Figure 0004667930

Figure 0004667930
Figure 0004667930

そこで、上式(6)によって得られたγs dを(5)式に代入すると、式(7)に示す結果となる。 Therefore, when γ s d obtained by the above equation (6) is substituted into the equation (5), the result shown in the equation (7) is obtained.

Figure 0004667930
Figure 0004667930

従ってこれら(6)及び(7)式の値を(2)式に代入することにより、
γs=21.76+0.59=22.35
固体の表面自由エネルギーγsが22.35mJ/m2と求められ、分散項比(γs d/γs)は、下記
γs=22.35mJ/m2、γs d=21.76mJ/m2
∴γs d/γs=97.36%
のとおり、97.36%と求められる。
Therefore, by substituting the values of these equations (6) and (7) into equation (2),
γ s = 21.76 + 0.59 = 22.35
The surface free energy γ s of the solid is determined to be 22.35 mJ / m 2, and the dispersion term ratio (γ s d / γ s ) is as follows: γ s = 22.35 mJ / m 2 , γ s d = 21.76 mJ / m 2
∴γ s d / γ s = 97.36%
As shown, 97.36% is required.

(ガラス素材の選別方法)
炭素を主成分とする炭素系膜の成膜(形成)は、後述する蒸着法、スパッタ法、CVD法、プラズマ法またはイオンプレーティング法等の手法によって形成されるが、これらの手法によって炭素系膜が成膜されたガラス素材をそのままプレス成形工程に投じると、成膜装置、又は成膜環境の相違によって、プレス成形後の成形レンズの歩留まりに差を生じることから、上述のように、成膜後のガラス素材の表面自由エネルギーにおける分散項成分の割合に着目し、成形レンズの歩留まりが良好となる分散成分の割合の好ましい値を以下のようにして探究した。
(Glass material sorting method)
The formation (formation) of a carbon-based film containing carbon as a main component is formed by a technique such as a vapor deposition method, a sputtering method, a CVD method, a plasma method, or an ion plating method, which will be described later. If the glass material on which the film is formed is directly applied to the press molding process, the yield of molded lenses after press molding will vary due to differences in the film forming apparatus or film forming environment. focusing on the rate of dispersion KoNaru content in the surface free energy of the glass material after film was the yield of the molded lens is explored in the following preferred values of the proportion of dispersion term component becomes good.

表2に、ホウ酸塩光学ガラスからなるガラスAの成形用ガラス素材について、成形用ガラス素材表面に形成した炭素を主成分とする薄膜の分散項比とプレス成形して得たレンズを検査した結果を示す。炭素を主成分とする薄膜はアセチレンガスの熱分解CVDで形成した。膜厚は、2±1nmである。また、レンズは凸メニスカスレンズ(径φ12.2mm、コバ厚0.4mm)である。   Table 2 shows the dispersion ratio of a thin film mainly composed of carbon formed on the surface of the molding glass material and the lens obtained by press molding for the molding glass material of glass A made of borate optical glass. Results are shown. The thin film mainly composed of carbon was formed by pyrolysis CVD of acetylene gas. The film thickness is 2 ± 1 nm. The lens is a convex meniscus lens (diameter φ 12.2 mm, edge thickness 0.4 mm).

Figure 0004667930
Figure 0004667930

表2において、「分散項比*1」は、同一ロット1000ケの各トレーから5個ずつ、合計25ケをサンプリングした試料の分散項比を示し、「不良率*2」は、同一ロット毎にプレス成形した500ケを全数検査して規格値から外れた形状不良数の割合を示す。   In Table 2, “dispersion term ratio * 1” indicates the dispersion term ratio of samples obtained by sampling a total of 25 samples from five trays of the same lot of 1000, and “defective rate * 2” is calculated for each lot. Fig. 5 shows the ratio of the number of defective shapes that are out of the standard value after 100 pieces of all press-formed products are inspected.

なお、表2において、アセチレンガスの熱分解CVDで炭素を主成分とする薄膜を同一の装置で同時に形成した単位をロット1〜4とし、各ロットは、200個の素材を載置できるトレーを5個用いて1000個のガラス素材からなる。   In Table 2, the units in which the thin film mainly composed of carbon by acetylene gas pyrolysis CVD is simultaneously formed with the same apparatus are set as lots 1 to 4, and each lot is a tray on which 200 materials can be placed. Using 5 pieces, it consists of 1000 glass materials.

成形されたレンズの評価項目は、クモリ、ワレ等の外観評価、およびレンズ形状評価とし、レンズ形状評価は、球面干渉計を用いて凸−球面(R=19.92mm、規格:19.8862〜19.9539)のR値を評価した。   The evaluation items of the molded lens are appearance evaluation such as spider and crack, and lens shape evaluation. The lens shape evaluation is a convex-spherical surface using a spherical interferometer (R = 19.92 mm, standard: 19.8862 to 19.9539). R value was evaluated.

この結果から、成形用ガラス素材の表面に形成した炭素質薄膜の分散項比が85%以上において、形状不良が飛躍的に低減することがわかる。逆に、分散項比が85%未満であるガラス素材をプレス成形に供給し続けると、金型成形面での離型タイミングが不均一になるなどして、成形品(光学レンズ等)の不良率が顕著に高くなり、歩留が低下する。   From this result, it can be seen that when the dispersion term ratio of the carbonaceous thin film formed on the surface of the forming glass material is 85% or more, the shape defect is drastically reduced. Conversely, if glass materials with a dispersion term ratio of less than 85% continue to be supplied to press molding, the mold release surface on the mold molding surface will become non-uniform and the molded product (optical lens, etc.) will be defective. The rate is significantly higher and the yield is reduced.

本発明は、この究明された結果をもとになされたものであり、ガラス素材表面に形成した炭素系膜(炭素を主成分とした膜)の分散項比が85%以上であるガラス素材を選別し、この選別したガラス素材を用いてプレス成形することで、成形品(光学レンズ等)の形状不良やクモリ、ワレの発生を低減することができる。すなわち、予備成形されたガラス素材の表面に炭素を主成分とする炭素系膜を成膜し、当該ガラス素材を成形型により加圧成形してガラス製品を成形するにあたり、ガラス素材の炭素系膜における表面エネルギーの分散項成分が85%以上であることを満足するか否かを判定し、満足したガラス素材のみを選別してガラス成形に供する。より具体的には、予備成形後、表面に炭素系膜を成膜したガラス素材を用意し、当該炭素系膜を成膜したガラス素材の表面自由エネルギーの分散項成分と、前記炭素系膜を成膜したガラス素材をプレス成形したときの形状不良率との相関関係を予め求め、当該相関関係に基づき、前記炭素系膜を成膜したガラス素材の表面自由エネルギー分散項成分が所定の比率以上のものを選別して連続プレス成形を行う。それ故、本発明によれば、クモリ、ワレや形状不良の発生が極めて少なく、所望の光学素子などのガラス製品を得ることができる。   The present invention has been made on the basis of the results of this investigation, and a glass material having a dispersion term ratio of a carbon-based film (film containing carbon as a main component) formed on the surface of the glass material is 85% or more. By selecting and press-molding using the selected glass material, it is possible to reduce the shape defect of the molded product (such as an optical lens), the occurrence of spiders and cracks. That is, when forming a carbon-based film containing carbon as a main component on the surface of a preformed glass material, and molding the glass material by pressing the glass material with a mold, the carbon-based film of the glass material It is determined whether or not the dispersion component of the surface energy at 85% or more is satisfied, and only the satisfied glass material is selected and subjected to glass forming. More specifically, after preforming, a glass material having a carbon-based film formed on the surface is prepared, and a dispersion term component of the surface free energy of the glass material on which the carbon-based film is formed, and the carbon-based film A correlation with the shape defect rate when the formed glass material is press-molded is obtained in advance, and based on the correlation, the surface free energy dispersion term component of the glass material on which the carbon-based film is formed is a predetermined ratio or more. Are selected and continuous press molding is performed. Therefore, according to the present invention, generation of spiders, cracks and shape defects is extremely small, and a glass product such as a desired optical element can be obtained.

ガラス素材の分散項比は、例えば、水とCH2I2(ジヨードメタン)の2種類の液体を用い、それぞれを固体上に同量滴下し、求めた接触角から表面自由エネルギーを算出し、この表面自由エネルギーから分散項比を求めることができる。 The dispersion ratio of the glass material is, for example, using two types of liquid, water and CH 2 I 2 (diiodomethane), dropping the same amount on each solid, and calculating the surface free energy from the calculated contact angle. The dispersion term ratio can be obtained from the surface free energy.

(炭素系膜について)
本発明で、炭素系膜とは、炭素を主成分とする薄膜であり、炭素以外の成分(水素など)を含有しているものを含む。
(About carbon film)
In the present invention, the carbon-based film is a thin film mainly composed of carbon, and includes a film containing a component other than carbon (such as hydrogen).

成形素材は、ガラス素材の表面に85%以上の分散項比を有する炭素を主成分とする薄膜を形成したガラス素材である。なお、炭素を主成分とする薄膜の表面自由エネルギーは60mJ/m2以下、その膜厚は0.1nm以上1μm以下、また、成膜前のガラス素材の表面自由エネルギーが60mJ/m2以上であることが好ましい。 The molding material is a glass material in which a thin film mainly composed of carbon having a dispersion term ratio of 85% or more is formed on the surface of the glass material. The surface free energy of a thin film mainly composed of carbon is 60 mJ / m 2 or less, the film thickness is 0.1 nm or more and 1 μm or less, and the surface free energy of the glass material before film formation is 60 mJ / m 2 or more. It is preferable.

予備成形後(成膜前)のガラス素材の表面自由エネルギーは有機系汚れの尺度となる。表面自由エネルギーが高いと有機系汚れが少なく、逆に、表面自由エネルギーが低いと有機系汚れが多い。有機系汚染が多いと、この有機系汚れを基点にして界面で反応が起こり、ガラス素材の型表面または離型膜表面への融着、特にサブμmサイズの微小な融着が多数発生し、このため、光学的な鏡面仕上を施した型表面又は離型膜表面が粗れ、凹凸が生じる。これを転写することにより、成形された光学素子にクモリなどの外観不良が生じる。また、融着した部位を基点として、光学素子のワレが生じる。したがって、炭素を形成する成形用ガラス素材の有機系汚れは少ないこと、具体的には、表面自由エネルギーが60mJ/m2以上にした成形用ガラス素材に成膜することが好ましい。 The surface free energy of the glass material after preforming (before film formation) is a measure of organic contamination. When the surface free energy is high, there is little organic stain, and conversely, when the surface free energy is low, there is much organic stain. When there is a lot of organic contamination, reaction occurs at the interface based on this organic contamination, and many fusions of glass material to the mold surface or release film surface, especially sub-μm size fine fusion occur, For this reason, the mold surface or release film surface that has been subjected to optical mirror finish is rough and uneven. By transferring this, an appearance defect such as a spider is generated in the molded optical element. Further, cracking of the optical element occurs with the fused portion as a base point. Therefore, it is preferable that the forming glass material for forming carbon has a small amount of organic contamination, and specifically, the film is formed on the forming glass material having a surface free energy of 60 mJ / m 2 or more.

表面自由エネルギーが60mJ/m2以上である成形用ガラス素材は、上述のように精密洗浄し、有機物の汚染の少ないクリーン環境で保管し、さらには、成形用ガラス素材に表面層を形成する前に、成形用ガラス素材のロット毎に表面自由エネルギーの抜き取り検査をする。そして、表面自由エネルギーの最低値が60mJ/m2以上のロットの成形用ガラス素材のみを表面層形成工程に供する。表面自由エネルギーの最低値が60mJ/m2未満のロットの成形用ガラス素材は、再度、精密洗浄に供する。上記と同様に、あらかじめ、ロット内の表面自由エネルギーのバラツキが中央値±5mJ/m2以下、好ましくは±2mJ/m2以下であるときに、表面層を形成することが好ましい。 Molding glass materials with a surface free energy of 60 mJ / m 2 or more must be precisely cleaned as described above, stored in a clean environment with little organic contamination, and before forming a surface layer on the molding glass material. In addition, the surface free energy is inspected for each lot of forming glass material. Only the glass material for molding having a minimum surface free energy of 60 mJ / m 2 or more is subjected to the surface layer forming step. The glass material for molding with a minimum surface free energy of less than 60 mJ / m 2 is again subjected to precision cleaning. Similarly to the above, it is preferable to form the surface layer in advance when the variation of the surface free energy in the lot is a median value ± 5 mJ / m 2 or less, preferably ± 2 mJ / m 2 or less.

ガラス素材に設ける炭素を主成分とする薄膜は、ダイヤモンド、ダイヤモンド状炭素膜(以下、DLC)、水素化ダイヤモンド状炭素膜(以下、DLC:H)、テトラヘドラルアモルファス炭素膜(以下、ta-C)水素化テトラヘドラルアモルファス炭素膜(以下、ta-C:H)、アモルファス炭素膜(以下、a-C)、水素化アモルファス炭素膜(以下、a-C:H)等から選ばれる。   Thin films mainly composed of carbon provided on glass materials are diamond, diamond-like carbon film (hereinafter DLC), hydrogenated diamond-like carbon film (hereinafter DLC: H), tetrahedral amorphous carbon film (hereinafter ta- C) A hydrogenated tetrahedral amorphous carbon film (hereinafter referred to as ta-C: H), an amorphous carbon film (hereinafter referred to as aC), a hydrogenated amorphous carbon film (hereinafter referred to as aC: H) or the like.

また、炭素を主成分とする薄膜の成膜(形成)は、蒸着法、スパッタ法、CVD法、プラズマ法またはイオンプレーティング法等の手法によって形成される。炭素を主成分とする薄膜の膜厚は、0.1nm〜1μm程度であれば良く、特に0.5nm〜100nmが好適である。膜厚が薄すぎると離型性が低下する傾向があり、膜厚が厚過ぎると融着、クモリやワレの防止効果が飽和する傾向があったり、成形用ガラス素材の表面層状態が不均一になり、バラツキが大きくなり易い。   Further, the formation (formation) of a thin film containing carbon as a main component is formed by a technique such as vapor deposition, sputtering, CVD, plasma, or ion plating. The film thickness of the carbon-based thin film may be about 0.1 nm to 1 μm, and 0.5 nm to 100 nm is particularly preferable. If the film thickness is too thin, the releasability tends to decrease. If the film thickness is too thick, the effect of preventing fusion, spiders and cracks tends to be saturated, or the surface layer state of the glass material for molding is not uniform. And variations tend to increase.

蒸着法による炭素膜の形成は、具体的には、公知の蒸着装置を用いて、10-4Torr程度の真空雰囲気中で、炭素材料を電子ビーム、直接通電もしくはアークにより加熱し、材料から蒸発および昇華により発生する炭素蒸気を基材の上に輸送し凝縮・析出させることにより行うことができる。例えば、直接通電の場合、断面積0.1cm2程度の炭素材料に100V-50A程度の電気を通電し、炭素材料を通電加熱することができる。基材加熱温度は室温〜400℃程度が好ましい。ただし、基材のガラス転移温度(Tg)が450℃以下の場合、基材加熱の上限温度はTg-50℃とすることが好適である。 Specifically, the carbon film is formed by vapor deposition using a known vapor deposition device, and the carbon material is heated by electron beam, direct current or arc in a vacuum atmosphere of about 10 -4 Torr, and evaporated from the material. In addition, carbon vapor generated by sublimation can be transported onto a substrate, condensed and deposited. For example, in the case of direct energization, a carbon material having a cross-sectional area of approximately 0.1 cm 2 can be energized and heated by energizing approximately 100 V-50A. The substrate heating temperature is preferably about room temperature to 400 ° C. However, when the glass transition temperature (Tg) of the substrate is 450 ° C. or lower, the upper limit temperature for heating the substrate is preferably Tg-50 ° C.

この場合、所定の膜厚に制御するためには、以下のようにすることができる。炭素膜の膜厚は、通常の光学薄膜と同様に、モニターガラス上の蒸着膜の反射率変化、透過率変化もしくはQCMによる実測から測定し、シャッターの開閉により炭素膜厚を制御することができる。   In this case, in order to control to a predetermined film thickness, the following can be performed. The film thickness of the carbon film can be measured from the reflectance change, transmittance change of the deposited film on the monitor glass or the actual measurement by QCM, and the carbon film thickness can be controlled by opening and closing the shutter, as with the normal optical thin film. .

CVD法による場合には、市販の熱分解CVD装置を用いて、10-1Torr程度まで排気した反応容器内を500℃程度まで加熱し、この容器内にアセチレンガス等の炭化水素ガスを20分間〜2時間程度かけて数10Torr程度まで導入することにより、ガラス素材表面に炭素を凝縮・析出させることにより炭素系薄膜を形成することができる。 In the case of the CVD method, a commercially available thermal decomposition CVD apparatus is used to heat the inside of a reaction vessel evacuated to about 10 −1 Torr to about 500 ° C., and hydrocarbon gas such as acetylene gas is put into this vessel for 20 minutes. By introducing up to about several tens of Torr over about 2 hours, a carbon-based thin film can be formed by condensing and precipitating carbon on the surface of the glass material.

前記炭化水素ガスとしては、メタン、エタン、エチレン、アセチレン、プロピレン、ベンゼン蒸気、ヘキサン蒸気などを用いることができる。   As the hydrocarbon gas, methane, ethane, ethylene, acetylene, propylene, benzene vapor, hexane vapor or the like can be used.

プラズマ法による場合には、市販のプラズマ分解CVD装置を用いて、10-1Torr程度まで排気した反応容器に、Arガス等の不活性ガスで希釈したアセチレンガス等の炭化水素ガスを導入し、500W程度の高周波パワー(13.56MHz)を反応容器に印加することにより、炭化水素分子を炭素と水素のプラズマに分解し、ガラス素材表面に炭素を凝縮・析出させることにより炭素系薄膜を形成することができる。 In the case of the plasma method, a hydrocarbon gas such as acetylene gas diluted with an inert gas such as Ar gas is introduced into a reaction vessel evacuated to about 10 −1 Torr using a commercially available plasma decomposition CVD apparatus. By applying high frequency power (13.56MHz) of about 500W to the reaction vessel, hydrocarbon molecules are decomposed into carbon and hydrogen plasma, and carbon is condensed and deposited on the surface of the glass material to form a carbon-based thin film. Can do.

前記炭化水素ガスとしては、メタン、エタン、エチレン、アセチレン、プロピレン、ベンゼン蒸気、ヘキサン蒸気などを用いることができる。   As the hydrocarbon gas, methane, ethane, ethylene, acetylene, propylene, benzene vapor, hexane vapor or the like can be used.

スパッタ法による場合には、公知のスパッタ装置を用いて、10-2〜10-3Torr程度のアルゴン雰囲気中で、炭素ターゲット材料をアルゴンイオンでスパッタリングし、スパッタされた炭素粒子を輸送し、基材表面上に炭素粒子を析出して炭素薄膜を形成することができる。基材加熱温度は室温〜400℃程度が好ましい。ただし、基材のガラス転移温度(Tg)が450℃以下の場合、基材加熱の上限温度はTg-50℃とすることが好適である。炭素の膜厚は、通常の光学薄膜と同様に、モニターガラス上のスパッタ膜の反射率もしくは透過率の変化から測定し、シャッターの開閉により炭素膜厚を制御することができる。 In the case of the sputtering method, using a known sputtering apparatus, a carbon target material is sputtered with argon ions in an argon atmosphere of about 10 −2 to 10 −3 Torr, the sputtered carbon particles are transported, Carbon particles can be deposited on the surface of the material to form a carbon thin film. The substrate heating temperature is preferably about room temperature to 400 ° C. However, when the glass transition temperature (Tg) of the substrate is 450 ° C. or lower, the upper limit temperature for heating the substrate is preferably Tg-50 ° C. The film thickness of carbon can be measured from the change in reflectance or transmittance of the sputtered film on the monitor glass in the same manner as a normal optical thin film, and the carbon film thickness can be controlled by opening and closing the shutter.

イオンプレーティング法による場合には、例えば、公知のイオンプレーティング装置を用いて、10-2〜10-4Torr程度のアルゴン雰囲気中で、炭素材料を電子ビームにより加熱し、材料から蒸発および昇華により発生する炭素蒸気を、負にバイアスされた基材上に蒸着させることにより炭素薄膜を形成することができる。フィラメントと基板電極との間のグロー放電により、蒸着の付着強度や均一性が向上する。基材加熱温度は室温〜400℃程度が好ましい。ただし、基材のガラス転移温度(Tg)が450℃以下の場合、基材加熱の上限温度はTg-50℃とすることが好適である。この場合、所定の膜厚の制御は、上記蒸着法と同様に行うことができる。 In the case of the ion plating method, for example, using a known ion plating apparatus, a carbon material is heated by an electron beam in an argon atmosphere of about 10 −2 to 10 −4 Torr, and evaporated and sublimated from the material. A carbon thin film can be formed by vapor-depositing the carbon vapor generated by the above process on a negatively biased substrate. The glow discharge between the filament and the substrate electrode improves the adhesion strength and uniformity of the deposition. The substrate heating temperature is preferably about room temperature to 400 ° C. However, when the glass transition temperature (Tg) of the substrate is 450 ° C. or lower, the upper limit temperature for heating the substrate is preferably Tg-50 ° C. In this case, the control of the predetermined film thickness can be performed in the same manner as the above evaporation method.

(光学素子の製造方法)
本発明のガラス製品の製造方法は、上記で説明した予備成形されたガラス素材を加熱軟化し、次いで成形型により加圧成形する。ガラス素材の加圧成形は、公知の手段で行うことができる。例えば、ガラス素材を精密に形状加工した成形型に導入し、その粘度が108〜1012ポイズ相当となる温度に加熱、軟化し、これを、押圧することによって、型の成形面をガラス素材に転写する。もしくは、あらかじめ、その粘度が108〜1012ポイズ相当の温度に昇温したガラス素材を、精密に形状加工した成形型に導入し、これを、押圧することによって、型の成形面をガラス素材に転写する。成形時の雰囲気は、非酸化性とすることが好ましい。この後、型とガラス素材を、冷却し、好ましくはTg以下の温度となったところで、離型し、成形された光学素子を取出す。
(Manufacturing method of optical element)
In the method for producing a glass product of the present invention, the preformed glass material described above is heated and softened, and then pressure-molded with a mold. The pressure molding of the glass material can be performed by a known means. For example, when a glass material is introduced into a precisely shaped mold, the viscosity is heated to a temperature equivalent to 10 8 to 10 12 poise, softened, and pressed to make the molding surface of the mold a glass material. Transcript to. Alternatively, a glass material whose viscosity has been raised to a temperature equivalent to 10 8 to 10 12 poise in advance is introduced into a precisely shaped mold and pressed to make the molding surface of the mold a glass material. Transcript to. The atmosphere during molding is preferably non-oxidizing. Thereafter, the mold and the glass material are cooled, and when the temperature is preferably equal to or lower than Tg, the mold is released and the molded optical element is taken out.

成形型の型母材としては、SiCのほか、WC、TiC、TaC、BN、TiN、AlN、Si34、SiO2 、Al23 、ZrO2 、W、Ta、Mo、サーメット、サイアロン、ムライト、カーボン・コンポジット(C/C)、カーボンファイバー(CF)、WC−Co合金等から選ばれた材料等を用いることができる。 As the mold base material of the mold, in addition to SiC, WC, TiC, TaC, BN, TiN, AlN, Si 3 N 4 , SiO 2 , Al 2 O 3 , ZrO 2 , W, Ta, Mo, cermet, sialon A material selected from mullite, carbon composite (C / C), carbon fiber (CF), WC-Co alloy, and the like can be used.

さらに用いる成形型の成形面には、離型膜が形成されていることが好ましい。例えば、ダイヤモンド状炭素膜(以下、DLC)、水素化ダイヤモンド状炭素膜(以下、DLC:H)、テトラヘドラルアモルファス炭素膜(以下、ta-C)水素化テトラヘドラルアモルファス炭素膜(以下、ta-C:H)、アモルファス炭素膜(以下、a-C)、水素化アモルファス炭素膜(以下、a-C:H)等から選ばれる炭素系被膜、Si3N4,TiAlN,TiCrN,CrN,CrXNY,AlN,TiN等の窒化物被膜もしくは複合多層膜または積層膜(AlN/CrN,TiN/CrN等)、Pt-Au,Pt-Ir-Au,Pt-Rh-Auなど白金を主成分とする貴金属合金被膜などの膜を用いることもできる。 Further, a mold release film is preferably formed on the molding surface of the mold to be used. For example, diamond-like carbon film (hereinafter referred to as DLC), hydrogenated diamond-like carbon film (hereinafter referred to as DLC: H), tetrahedral amorphous carbon film (hereinafter referred to as ta-C) hydrogenated tetrahedral amorphous carbon film (hereinafter referred to as ta-C: H), amorphous carbon film (hereinafter aC), hydrogenated amorphous carbon film (hereinafter aC: H), etc., carbon-based coating, Si 3 N 4 , TiAlN, TiCrN, CrN, Cr X N Y , AlN, TiN, etc. nitride coating or composite multilayer film or laminated film (AlN / CrN, TiN / CrN, etc.), Pt—Au, Pt—Ir—Au, Pt—Rh—Au, etc. A film such as a noble metal alloy film can also be used.

離型膜の成膜は、DC−プラズマCVD法、RF−プラズマCVD法、マイクロ波プラズマCVD法、ECR−プラズマCVD法、光CVD法、レーザーCVD法等のプラズマCVD法、イオンプレーティング法などのイオン化蒸着法、スパッタ法、蒸着法やFCA(Filtered Cathodic Arc)法等の手法によっても良い。   The release film is formed by DC-plasma CVD method, RF-plasma CVD method, microwave plasma CVD method, ECR-plasma CVD method, plasma CVD method such as photo CVD method, laser CVD method, ion plating method, etc. Alternatively, a method such as ionized vapor deposition, sputtering, vapor deposition, or FCA (Filtered Cathodic Arc) may be used.

本発明を適用して製造されるガラス製品は、例えば、レンズ、ミラー、グレーティング、プリズム、マイクロレンズ、積層型回折光学素子等の光学素子であることができ、光学素子以外のガラス成形品であることもできる。   The glass product produced by applying the present invention can be, for example, an optical element such as a lens, mirror, grating, prism, microlens, laminated diffractive optical element, and is a glass molded product other than the optical element. You can also.

以下、本発明を実施例によりさらに詳細に説明する。表3には、以下の評価に用いた実施例および比較例の条件、およびその評価結果を示してある。なお、表3中、「分散項比の値」とは、作成した試料の集合全体における分散項比の最低値を意味し、「分散項比の最高値が85%未満のロット割合」は、作成した試料において、分散項比の最高値が85%未満のロットが発生した割合を示してある。以下の評価では、実施例として、このような試料(ロット)から、分散項比が85%以上のもののみを選び出して用いた場合であり、比較例は、作成した試料(ロット)を選別せず、そのまま用いた場合である。   Hereinafter, the present invention will be described in more detail with reference to examples. Table 3 shows the conditions of the examples and comparative examples used in the following evaluations and the evaluation results. In Table 3, “dispersion term ratio value” means the minimum value of the dispersion term ratio in the entire set of samples prepared, and “lot ratio where the maximum value of the dispersion term ratio is less than 85%” In the prepared sample, the ratio of occurrence of lots with a maximum dispersion term ratio of less than 85% is shown. In the following evaluation, as an example, only a sample having a dispersion term ratio of 85% or more was selected from such a sample (lot) and used, and in the comparative example, the prepared sample (lot) was selected. It is a case where it uses as it is.

Figure 0004667930
Figure 0004667930

[実施例1]
光学素子成形素材のガラス素材として、ホウ酸塩ガラスA(ガラス転移温度が520℃、屈折率が1.69350、線膨張係数が69×10-7/℃である光学ガラス)を用いて、市販の光学用精密洗浄機により、湿式洗浄法にてガラス素材を高精度に洗浄した。
[Example 1]
As a glass material of the optical element molding material, borate glass A (optical glass having a glass transition temperature of 520 ° C., a refractive index of 1.69350, and a linear expansion coefficient of 69 × 10 −7 / ° C.) is used. The glass material was cleaned with high precision by a wet cleaning method using a precision cleaning machine.

このガラス素材を1トレーに100個ずつ載置し、15トレー(合計1500個のガラス素材)を同一の成膜装置内に設置し、この成形素材の表面に、アセチレンガスの熱分解CVD法にてa-C:Hを膜厚2±1nm成膜した。   100 glass materials are placed on each tray, and 15 trays (total of 1500 glass materials) are installed in the same film deposition system. The surface of this molding material is subjected to acetylene gas pyrolysis CVD. AC: H was deposited to a thickness of 2 ± 1 nm.

アセチレンガスの熱分解によるCVD法は、以下のように行った。石英製のトレーにガラス素材を載せ、ベルジャー(反応容器)内に配置した。ベルジャー内を真空ポンプにより0.5torr以下に排気した後、加熱し480℃に維持した。ベルジャー内に窒素ガスを導入しながら真空ポンプにより排気を行うことにより、160torrに保ち、30分間パージを行った後、窒素ガスの導入を止めた。更に、ベルジャー内を真空ポンプで0.5torr以下に排気した後、アセチレンガスを20分間で40torr導入し、導入を止めた。そして冷却した後、窒素ガスで希釈しながら大気圧に戻し、ガラス素材を取り出した。   The CVD method by thermal decomposition of acetylene gas was performed as follows. A glass material was placed on a quartz tray and placed in a bell jar (reaction vessel). The inside of the bell jar was evacuated to 0.5 torr or less by a vacuum pump, and then heated and maintained at 480 ° C. The introduction of nitrogen gas was stopped after purging for 30 minutes while maintaining the pressure at 160 torr by exhausting with a vacuum pump while introducing nitrogen gas into the bell jar. Further, after the inside of the bell jar was evacuated to 0.5 torr or less by a vacuum pump, acetylene gas was introduced at 40 torr in 20 minutes and the introduction was stopped. And after cooling, it returned to atmospheric pressure, diluting with nitrogen gas, and took out the glass raw material.

純水およびCH2I2の濡れ角測定よりOwens-Wendt-Kaelbleを用いて行った表面自由エネルギーの評価を行った。すなわち、15枚のトレーからそれぞれ任意に5個ずつガラス素材をサンプリングし、各ガラス素材の表面自由エネルギーに基づいて分散項比を求めた結果、13枚のトレーについては分散項比の最低値は91%以下であり、2枚のトレーについては分散項比が85%未満のガラス素材(最低値:81%)を含んでいたため、これら2枚のトレーのガラス素材は次のプレス成形工程への投入を中止し、上記13枚のトレーのガラス素材のみを次工程へ投入した。 The surface free energy was evaluated using Owens-Wendt-Kaelble from the measurement of pure water and CH 2 I 2 wetting angles. In other words, as a result of sampling 5 glass materials from each of 15 trays and calculating the dispersion term ratio based on the surface free energy of each glass material, the minimum value of the dispersion term ratio for 13 trays is 91% or less, and the two trays contained a glass material (minimum value: 81%) with a dispersion ratio of less than 85%. Was stopped, and only the glass material of the 13 trays was added to the next process.

続いて、前記のように選別したガラス素材を、窒素ガス雰囲気中で610℃まで加熱して成形型により150kg/cm2の圧力で1分間加圧する。圧力を解除した後、冷却速度を−50℃/minで480℃になるまで冷却し、その後は−200℃/min以上の速度で冷却を行い、プレス成形物の温度が200℃以下に下がった後、成形物を取り出した。なお、成形型として、CVD法により作製した多結晶SiCの成形面をRmax=18nmに鏡面研磨したものを用いた後、成形面に離型膜として、イオンプレーティング法成膜装置を用いて、DLC:H膜を成膜したものを用いた。 Subsequently, the glass material selected as described above is heated to 610 ° C. in a nitrogen gas atmosphere and pressurized with a mold at a pressure of 150 kg / cm 2 for 1 minute. After releasing the pressure, the cooling rate was decreased to 480 ° C at -50 ° C / min, and then cooled at a rate of -200 ° C / min or more, and the temperature of the press molded product was lowered to 200 ° C or less. Thereafter, the molded product was taken out. As the mold, after using a polycrystalline SiC mold surface prepared by CVD method mirror-polished to Rmax = 18 nm, as a mold release film on the molding surface, using an ion plating film forming apparatus, A DLC: H film was used.

同一型で径16mmφ、コバ厚0.5mmの凸メニスカスレンズを連続プレスし、プレス回数1000回までのレンズのクモリ、ワレ等の外観は拡大鏡により、形状は第1面(球面)を干渉計、第2面(非球面)を触針式の形状測定器により検査した。外観検査では限度サンプルと比較し、形状検査では干渉縞の形状や、測定器による測定値により良否を評価したが、外観および形状についていずれも許容範囲内にあり、不良は検出されなかった。   Convex meniscus lens of the same type with a diameter of 16mmφ and edge thickness of 0.5mm is continuously pressed, and the appearance of the spider, crack, etc. of the lens up to 1000 times is magnified, and the first surface (spherical surface) is an interferometer. The second surface (aspheric surface) was inspected with a stylus type shape measuring instrument. The appearance inspection compared with the limit sample, and the shape inspection evaluated the quality based on the shape of the interference fringes and the measurement value by the measuring instrument. However, both the appearance and the shape were within the allowable range, and no defect was detected.

[比較例1]
上記実施例1において、ガラス素材の表面自由エネルギーに基づいて分散項比を求め、この分散項比が85%未満のガラス素材を含んだ2枚のトレーに置かれた全てのガラス素材について、プレス成形工程への投入を中止したが、比較例1では、選別によってプレス成形に不適とした2枚のトレーから選んだ150個のガラス素材を、上記実施例1と同条件で連続プレス成形して、150個の凸メニスカスレンズを得た。なお、これらのガラス素材について、プレス成形前に、各トレーから20個ずつ表面自由エネルギーに基づいて分散項比を求めたところ、6個(30%)のガラス素材が85%未満の分散項比(最低値は78%)であった。
[Comparative Example 1]
In Example 1 above, the dispersion term ratio is obtained based on the surface free energy of the glass material, and all the glass materials placed on the two trays including the glass material having the dispersion term ratio of less than 85% are pressed. In Comparative Example 1, 150 glass materials selected from two trays that were unsuitable for press molding were subjected to continuous press molding under the same conditions as in Example 1 above. 150 convex meniscus lenses were obtained. For these glass materials, before press molding, 20 dispersion ratios were obtained from each tray based on the surface free energy, and 6 (30%) glass materials had a dispersion term ratio of less than 85%. (The lowest value was 78%).

次いで、成形後のレンズについて、上記実施例1と同様の検査を全てのレンズに対して行ったところ、42個(外観不良が17個、形状不良が25個)の不良(不良率28%)が検出された。   Next, with respect to the molded lens, the same inspection as in Example 1 was performed on all the lenses. As a result, there were 42 defects (17 appearance defects and 25 shape defects) (defective rate 28%). Was detected.

[実施例2]
アセチレンガスの熱分解によるCVD法を、ベルジャー内を真空ポンプにより20torrに排気した後、加熱し440℃に維持しておこなった。実施例1と同様に、CVD法成膜後のガラス素材について、純水およびCH2I2の濡れ角測定よりOwens-Wendt-Kaelble法を用いて表面自由エネルギーを評価したところ、表面自由エネルギーの最高値は60mJ/m2以下であり、分散項比の最低値は80%であり、本請求範囲である85%以上からはずれる85%未満のロットは22%あった。そこで、これらの分散項比が85%未満のガラス素材を含むトレーの全てのガラス素材を除き、実施例1と同様に、連続プレスした。1000回の連続プレスを行った結果、形状不良の発生率は2%であった。
[Example 2]
A CVD method based on the thermal decomposition of acetylene gas was performed by evacuating the bell jar to 20 torr with a vacuum pump and then heating and maintaining at 440 ° C. As in Example 1, when the surface free energy of the glass material after film formation by CVD was evaluated using the Owens-Wendt-Kaelble method from the wetting angle measurement of pure water and CH 2 I 2 , the surface free energy was The maximum value was 60 mJ / m 2 or less, the minimum value of the dispersion term ratio was 80%, and there were 22% of lots less than 85% that deviated from the claimed range of 85% or more. Therefore, continuous pressing was performed in the same manner as in Example 1 except for all the glass materials of the tray including the glass material having a dispersion term ratio of less than 85%. As a result of 1000 continuous presses, the incidence of shape defects was 2%.

[実施例3〜4]
実施例2と同様に、炭素を主成分とする薄膜を形成したガラス素材の分散項比の最低値が85%以上であるトレー(ロット)のみを選別して、同一条件で連続プレスした。プレス回数1000回までの光学素子の形状を評価した結果、表3のとおり、形状不良の発生率は5%未満と良好もしくは極めて良好であった。
[Examples 3 to 4]
In the same manner as in Example 2, only the tray (lot) having a minimum dispersion term ratio of 85% or more of the glass material on which the carbon-based thin film was formed was selected and continuously pressed under the same conditions. As a result of evaluating the shape of the optical element up to 1000 presses, as shown in Table 3, the occurrence rate of the shape defect was good or extremely good at less than 5%.

上記実施例では、同一装置内に複数のトレーをセットし、各トレーごとのガラス素材をサンプリングして、それらの表面自由エネルギーから分散項比を求め、その分散項比が85%以上であるか否かの判別を実施し、85%以上のトレー上のガラス素材をプレス成形に適するとみなして、プレス成形工程に供する例を示したが、トレーごと分散項比の大差が生じないことが検証できた場合は、各処理単位(ロット)ごとのガラス素材をサンプリングして、測定値が上記条件を満たすロットはすべてプレス成形に適するとみなすこともできる。   In the above embodiment, a plurality of trays are set in the same apparatus, the glass material for each tray is sampled, the dispersion term ratio is obtained from the surface free energy, and the dispersion term ratio is 85% or more. In this example, 85% or more of the glass material on the tray is considered to be suitable for press molding, and it is used for the press molding process. If it is possible, the glass material for each processing unit (lot) can be sampled, and all the lots whose measured values satisfy the above conditions can be regarded as suitable for press forming.

Claims (3)

ガラス素材を加熱により軟化させ、プレス成形する光学素子の製造方法において、
予備成形後、表面に炭素系膜を成膜したガラス素材を用意し、
当該炭素系膜を成膜したガラス素材表面の表面自由エネルギーの分散項成分と、前記炭素系膜を成膜したガラス素材をプレス成形したときの形状不良率との相関関係を予め求め、
当該相関関係に基づき、前記炭素系膜を成膜したガラス素材の表面自由エネルギーにおける分散項成分が85%以上のものを選別して連続プレス成形を行うことを特徴とする光学素子の製造方法。
In the manufacturing method of the optical element that softens the glass material by heating and press-molds,
After preforming, prepare a glass material with a carbon-based film on the surface,
The correlation between the dispersion term component of the surface free energy on the surface of the glass material on which the carbon-based film is formed and the shape defect rate when the glass material on which the carbon-based film is formed is press-molded is obtained in advance.
Based on the correlation, optical elements dispersed term component in the surface free energy of the glass-containing material was deposited the carbon-based film is characterized in that a continuous press forming were selected more than 85% Production method.
請求項1において、
前記分散項成分は、成膜後のガラス素材の表面に対する、所定物質の接触角を測定することによって求めることを特徴とする光学素子の製造方法。
In claim 1,
The dispersion element component is obtained by measuring a contact angle of a predetermined substance with respect to the surface of the glass material after film formation .
請求項1または2において、
前記ガラス素材への炭素系膜の成膜は複数のガラス素材に対して同時に行い、前記ガラス素材の選別は成膜したロット毎に行い、前記分散項成分が85%以上のロットのみを選別して連続プレス成形を行うことを特徴とする光学素子の製造方法。
In claim 1 or 2,
The carbon-based film is formed on the glass material at the same time for a plurality of glass materials, and the glass material is selected for each lot formed, and only the lot having the dispersion term component of 85% or more is selected. An optical element manufacturing method comprising performing continuous press molding .
JP2005102618A 2005-03-31 2005-03-31 Optical element manufacturing method Expired - Fee Related JP4667930B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005102618A JP4667930B2 (en) 2005-03-31 2005-03-31 Optical element manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005102618A JP4667930B2 (en) 2005-03-31 2005-03-31 Optical element manufacturing method

Publications (2)

Publication Number Publication Date
JP2006282431A JP2006282431A (en) 2006-10-19
JP4667930B2 true JP4667930B2 (en) 2011-04-13

Family

ID=37404732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005102618A Expired - Fee Related JP4667930B2 (en) 2005-03-31 2005-03-31 Optical element manufacturing method

Country Status (1)

Country Link
JP (1) JP4667930B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011027993A (en) * 2009-07-24 2011-02-10 Panasonic Corp Optical component and method for producing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004123520A (en) * 2002-09-11 2004-04-22 Hoya Corp Method for manufacturing glass product
JP2005067999A (en) * 2003-08-06 2005-03-17 Hoya Corp Method for producing glass molded lens
JP4425071B2 (en) * 2004-06-29 2010-03-03 Hoya株式会社 Glass material for mold press, manufacturing method thereof, and manufacturing method of optical element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004123520A (en) * 2002-09-11 2004-04-22 Hoya Corp Method for manufacturing glass product
JP2005067999A (en) * 2003-08-06 2005-03-17 Hoya Corp Method for producing glass molded lens
JP4425071B2 (en) * 2004-06-29 2010-03-03 Hoya株式会社 Glass material for mold press, manufacturing method thereof, and manufacturing method of optical element

Also Published As

Publication number Publication date
JP2006282431A (en) 2006-10-19

Similar Documents

Publication Publication Date Title
JP5483384B2 (en) DLC film and DLC coated mold
JP5669117B2 (en) Method for manufacturing DLC film
JP3231165B2 (en) Optical element molding die and method of manufacturing the same
CN110777335B (en) Temperature resistant carbon coating
JP5294938B2 (en) Film thickness measuring method and glass optical element manufacturing method
JP4667930B2 (en) Optical element manufacturing method
JP5713362B2 (en) DLC film and DLC coated mold
JP4072496B2 (en) Manufacturing method of glass optical element
JP4994405B2 (en) Method for determining quality of release film of press mold and method for manufacturing optical element
JP3894561B2 (en) Manufacturing method of glass products
JP4056010B2 (en) Manufacturing method of press-molding glass preform and manufacturing method of glass optical element
JP3847805B2 (en) Mold for optical element molding
JP4494913B2 (en) Optical element manufacturing method
WO2018147372A1 (en) Method for manufacturing mold for forming optical element
JP2006256884A (en) Method for production of glass optical device
CN102190421B (en) Mold for forming optical component, optical component thereof and manufacturing method of the optical component
JP6816583B2 (en) Glass mold mold and its manufacturing method
JP2007161497A (en) Method for producing molding die for optical element, and molding die for optical element
JP2830969B2 (en) Optical element molding die and method of manufacturing the same
JP2003313046A (en) Method for manufacturing glass optical element
JP4347594B2 (en) Optical element molding method
JP4256190B2 (en) Manufacturing method of glass optical element
JP3144608B2 (en) Optical element molding die and method of manufacturing the same
JP2009067607A (en) Mold for molding glass optical device, glass optical device and manufacturing process of glass optical device
JP4830882B2 (en) Mold for optical element molding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100811

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees