JP4994047B2 - Magnetic bearing device - Google Patents

Magnetic bearing device Download PDF

Info

Publication number
JP4994047B2
JP4994047B2 JP2007005521A JP2007005521A JP4994047B2 JP 4994047 B2 JP4994047 B2 JP 4994047B2 JP 2007005521 A JP2007005521 A JP 2007005521A JP 2007005521 A JP2007005521 A JP 2007005521A JP 4994047 B2 JP4994047 B2 JP 4994047B2
Authority
JP
Japan
Prior art keywords
magnetic
bearing
rotor
radial
magnetic pole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007005521A
Other languages
Japanese (ja)
Other versions
JP2008169965A (en
Inventor
功 田代
亨 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2007005521A priority Critical patent/JP4994047B2/en
Publication of JP2008169965A publication Critical patent/JP2008169965A/en
Application granted granted Critical
Publication of JP4994047B2 publication Critical patent/JP4994047B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、回転体を磁気吸引力により磁気浮上させて支持する磁気軸受装置において、特に、回転体の半径方向への振動に対して振動の減衰を促進する磁気軸受装置に関するものである。   The present invention relates to a magnetic bearing device that supports a rotating body that is magnetically levitated by a magnetic attraction force, and more particularly to a magnetic bearing device that promotes damping of vibration with respect to vibration in the radial direction of the rotating body.

従来の磁気軸受装置としては、固定子側磁極に電気良導体材料からなるダンパリングを組み込み、回転軸に一体となった回転子側磁極の歯の先端角を90度と異なった角度にし、歯の両側の側面を回転軸に対して傾斜を持たせることにより、回転軸に振動が発生したとき、磁束の変化に基づくダンパリングの内部に発生する渦電流が振動エネルギーを吸収し、振動の減衰を促進するものがあった(例えば特許文献1参照)。図25は、前記特許文献1に記載された従来の磁気軸受装置を示すものである。   As a conventional magnetic bearing device, a damper ring made of a good electrical conductor material is incorporated in the stator side magnetic pole, and the tip angle of the teeth of the rotor side magnetic pole integrated with the rotating shaft is set to an angle different from 90 degrees. By tilting the sides on both sides with respect to the rotation axis, when vibration occurs on the rotation axis, the eddy current generated inside the damper ring based on the change in magnetic flux absorbs vibration energy and attenuates vibration. Some have been promoted (see, for example, Patent Document 1). FIG. 25 shows a conventional magnetic bearing device described in Patent Document 1. In FIG.

図25において、回転軸101に一体となった磁性の回転子側磁極102とそれに対向する軸受の固定子側磁極103があり、磁極102及び103にはそれぞれ溝107a,107b,107c…及び108a,108b,108c…があり、励磁巻線104の電流で磁束が誘起されて磁気回路(以下、磁路という)が形成される。この磁束により、磁極102と103との間に軸方向の磁気吸引力に基づく推力が発生するとともに、半径方向への軸101の移動に対して歯111a,111b…と歯112a,112b…との対向面積の減少に伴う磁気抵抗の減少に基づく磁気エネルギーの減少に逆らう半径方向の力が発生して軸101の半径方向への移動を押し戻そうとする。   In FIG. 25, there are a magnetic rotor side magnetic pole 102 integrated with the rotating shaft 101 and a stator side magnetic pole 103 of a bearing facing the magnetic rotor side magnetic pole 102. The magnetic poles 102 and 103 have grooves 107a, 107b, 107c,. 108b, 108c,..., Magnetic flux is induced by the current of the excitation winding 104 to form a magnetic circuit (hereinafter referred to as a magnetic path). This magnetic flux generates a thrust based on the magnetic attractive force in the axial direction between the magnetic poles 102 and 103, and the teeth 111a, 111b... And the teeth 112a, 112b. A radial force against the decrease in magnetic energy based on the decrease in magnetoresistance associated with the decrease in opposing area is generated to try to push back the movement of the shaft 101 in the radial direction.

また、電気良導体の材料からなり、リング状の制動巻線として作用するダンパリング105及び106が磁極103の歯部112a,112b…に組み込まれる。これは、軸101に振動が生じたとき、磁束の変化に基づくダンパリング105と106の内部に発生する渦電流が振動のエネルギーを吸収し、振動の減衰を促進する作用すなわちダンパ効果の機能を有するものである。   Further, damper rings 105 and 106 made of a good electric conductor material and acting as a ring-shaped braking winding are incorporated in the tooth portions 112a, 112b. This is because the eddy current generated inside the damper rings 105 and 106 based on the change of magnetic flux absorbs the vibration energy when the shaft 101 vibrates, thereby promoting the damping of the vibration, that is, the function of the damper effect. It is what you have.

このダンパ効果を説明するための図25において、紙面に垂直な方向である円周方向の単位長さ当りの歯112bから111bへ通る磁束をφとすると、歯112bに働く半径方向の磁気力は、この磁束φの座標rに関する導関数(−dφ/dr)に比例する。   In FIG. 25 for explaining the damper effect, if the magnetic flux passing from the teeth 112b to 111b per unit length in the circumferential direction, which is a direction perpendicular to the paper surface, is φ, the radial magnetic force acting on the teeth 112b is , Which is proportional to the derivative (−dφ / dr) of the magnetic flux φ with respect to the coordinate r.

ダンパ作用は磁束の時間変化(dφ/dt)に比例する誘起起電力によって生じたダンパリング内に流れる渦電流のジュール損失によって現れる。磁束の変化はラジアル方向の振動による座標rの時間変化によって表すことができ、(数1)の式にて表される。   The damper action appears due to the Joule loss of the eddy current flowing in the damper ring caused by the induced electromotive force proportional to the time change (dφ / dt) of the magnetic flux. The change of the magnetic flux can be expressed by the time change of the coordinate r due to the vibration in the radial direction, and is expressed by the equation (Equation 1).

Figure 0004994047
ダンパリング内に流れる渦電流はこの磁束の時間変化で表されるダンパリング内の誘起電圧に基づいて流れるので、この渦電流に基づくジュール損失Wは(数2)の式にて表される。ここで、Kは比例定数である。
Figure 0004994047
Since the eddy current flowing in the damper ring flows based on the induced voltage in the damper ring represented by the time change of the magnetic flux, the Joule loss W based on the eddy current is expressed by the equation (Equation 2). Here, K is a proportionality constant.

Figure 0004994047
そして、ダンパ効果を表すダンパ定数Kdは(数3)の式にて表される。
Figure 0004994047
A damper constant Kd representing the damper effect is expressed by the equation (Equation 3).

Figure 0004994047
すなわち、ダンパ効果は磁束φの座標rに関する導関数(dφ/dr)の2乗に比例している。
Figure 0004994047
That is, the damper effect is proportional to the square of the derivative (dφ / dr) with respect to the coordinate r of the magnetic flux φ.

そして、歯111bと歯112bの径をあらかじめ若干違え、さらに歯の両側の側面を回転軸に対して傾斜を持たせることにより−(dφ/dt)の値を大きくし、ダンパ効果を大きくすることができる磁気軸受装置となっていた。
特公昭52−26293号公報
The diameters of the teeth 111b and the teeth 112b are slightly different from each other in advance, and the side surfaces on both sides of the teeth are inclined with respect to the rotation axis, thereby increasing the value of − (dφ / dt) and increasing the damper effect. It was a magnetic bearing device that can.
Japanese Patent Publication No.52-26293

例えば、磁気軸受装置を加工用の主軸として使用した場合、加工負荷に耐えうる軸受剛性と加工による振動を減衰させるダンピング特性が必要である。しかしながら、従来の磁気軸受装置は、ラジアル方向の変化による磁束の変化に基づく磁気ダンパの内部に発生する渦電流のみにより減衰力を得ているため、加工による振動を減衰させるために十分なダンピング特性のダンパ効果を確保することが困難であるという課題を有していた。   For example, when a magnetic bearing device is used as a main spindle for machining, a bearing rigidity capable of withstanding the machining load and a damping characteristic that attenuates vibration caused by machining are required. However, since the conventional magnetic bearing device obtains damping force only by the eddy current generated inside the magnetic damper based on the change of magnetic flux due to the change in the radial direction, it has sufficient damping characteristics to attenuate the vibration caused by machining. It had the subject that it was difficult to ensure the damper effect of.

本発明は、前記従来技術の問題を解決することに指向するものであり、ダンパ効果を飛躍的に向上させた磁気軸受装置を提供することを目的とする。   The present invention is directed to solving the problems of the prior art, and an object thereof is to provide a magnetic bearing device in which the damper effect is dramatically improved.

前記の目的を達成するために、本発明に係る磁気軸受装置は、固定子側と回転子側の第1軸受磁極を、空隙を介してスラスト方向に対向させ、空隙に面するそれぞれの第1軸受磁極に回転子の回転中心を中心とする同心円状に複数の溝を有し、固定子側で第1軸受磁極の溝の少なくとも1つに電磁石巻線を設置することにより固定子と回転子とに磁気回路を形成したラジアルスラスト軸受と、固定子側と回転子側の第2軸受磁極を、空隙を介してスラスト方向に対向させ、空隙に面するそれぞれの第2軸受磁極に回転子の回転中心を中心とする同心円状に複数の溝を有し、固定子側で第2軸受磁極の溝の少なくとも1つに永久磁石を設置することにより固定子と回転子とに磁気回路を形成したラジアル軸受と、固定子側のダンパ磁極としてラジアル方向に空隙を介して回転子に対向させ、ダンパ磁極に有する溝に永久磁石を設置することにより、固定子と回転子とに磁気回路を形成した磁気ダンパと、により構成するとともに、前記ラジアルスラスト軸受における複数の磁極歯のうち最小の磁極歯の幅をrg、複数ある磁極歯を4つの磁極歯としてモデル化して、回転子の回転中心からそれぞれの磁極歯が内径rf,外径rf,幅rg、内径rf,外径rf,幅rg、内径rf,外径rf,幅rg、内径rf,外径rf,幅rg、ラジアルスラスト軸受で回転子と固定子とのスラスト方向のギャップをg、電磁石巻線の巻線に流す電流をI、巻線の巻き数をNとし、ラジアル軸受における複数の磁極歯のうち最小の磁極歯の幅をrg、複数ある磁極歯を4つの磁極歯としてモデル化して、回転子の回転中心からそれぞれの磁極歯が内径rr,外径rr,幅rg、内径rr,外径rr,幅rg、内径rr,外径rr,幅rg、内径rr,外径rr,幅rg、ラジアル軸受で回転子と固定子とのスラスト方向のギャップをg、永久磁石の磁気回路方向の長さをlp、永久磁石の内径をRe、永久磁石のスラスト方向の高さをre、永久磁石の保持力をHcとし、磁気ダンパのダンパ磁極と固定子の中心からの半径をR、ダンパ磁極と回転子のラジアル方向のギャップをg、ダンパ磁極のスラスト方向の高さをh、永久磁石の磁気回路方向の長さをlp、永久磁石のラジアル方向の幅をre、永久磁石の外径をRe、永久磁石の保持力をHcとし、回転子のラジアル方向の変位をx、外径rfを半径とした円と該半径rfの円をラジアル方向に変位x移動させたときの元の半径rfの円との交点で回転中心における角度をα、外径rrを半径とした円と該半径rrの円をラジアル方向に変位x移動させたときの元の半径rrの円との交点で回転中心における角度をα、スラスト軸まわりの回転角度をθ、ラジアルスラスト軸受の設置数をm、ラジアル軸受の設置数をn、磁気ダンパの設置数をkとするとき、(数4) In order to achieve the above-described object, the magnetic bearing device according to the present invention is configured so that the first bearing magnetic poles on the stator side and the rotor side are opposed to each other in the thrust direction through the air gap, and the first bearings facing the air gap are provided. The stator magnetic pole has a plurality of concentric grooves centered on the rotation center of the rotor in the bearing magnetic pole, and an electromagnetic winding is installed in at least one of the grooves of the first bearing magnetic pole on the stator side. A radial thrust bearing having a magnetic circuit formed thereon and a second bearing magnetic pole on the stator side and the rotor side are opposed to each other in the thrust direction through a gap, and the rotor is placed on each second bearing magnetic pole facing the gap. A magnetic circuit is formed on the stator and the rotor by having a plurality of grooves concentrically centered on the center of rotation and installing a permanent magnet in at least one of the grooves of the second bearing magnetic pole on the stator side. Radial bearings and radial Al direction so as to face the rotor with a gap, by placing a permanent magnet in the groove with the damper poles, and a magnetic damper which is formed a magnetic circuit in the stator and the rotor, as well as constituted by the radial The minimum magnetic pole tooth width among the plurality of magnetic pole teeth in the thrust bearing is modeled as rg 1 , and the plurality of magnetic pole teeth are modeled as four magnetic pole teeth, and each magnetic pole tooth has an inner diameter rf 1 and an outer diameter from the rotation center of the rotor. rf 2 , width rg 1 , inner diameter rf 3 , outer diameter rf 4 , width rg 1 , inner diameter rf 5 , outer diameter rf 6 , width rg 1 , inner diameter rf 7 , outer diameter rf 8 , width rg 1 , radial thrust bearing The gap between the rotor and the stator in the thrust direction is g 1 , the current flowing through the winding of the electromagnetic winding is I 1 , and the number of turns of the winding is N 1, and the smallest magnetic pole among the plurality of magnetic pole teeth in the radial bearing tooth The rg 2, by modeling the plurality of magnetic pole teeth as four magnetic pole teeth, each of the pole teeth inside diameter rr 1 from the rotational center of the rotor, the outer diameter rr 2, the width rg 2, inner diameter rr 3, the outer diameter rr 4 , Width rg 2 , inner diameter rr 5 , outer diameter rr 6 , width rg 2 , inner diameter rr 7 , outer diameter rr 8 , width rg 2 , a radial bearing with a gap in the thrust direction between the rotor and stator g 2 , permanent The length of the magnet in the magnetic circuit direction is lp 2 , the inner diameter of the permanent magnet is Re 2 , the height of the permanent magnet in the thrust direction is re 2 , and the holding force of the permanent magnet is Hc 2. R 0 radius from the center of, g 0 gap damper pole and the rotor in the radial direction, h 0 in the thrust direction of the height of the damper pole, lp 0 the length of the magnetic circuit direction of the permanent magnet, the permanent magnet The radial width of 0 , the outer diameter of the permanent magnet is Re 0 , the holding force of the permanent magnet is Hc 0 , the displacement of the rotor in the radial direction is x, the circle having the radius of the outer diameter rf 8 and the circle of the radius rf 8 are in the radial direction When the displacement x is moved to the circle of the original radius rf 8 , the circle with the angle at the center of rotation α 1 and the outer diameter rr 8 as the radius and the circle with the radius rr 8 are displaced x in the radial direction. The angle at the center of rotation at the intersection with the circle of the original radius rr 8 when α 2 , the rotation angle around the thrust axis θ, m the number of radial thrust bearings installed, n the number of radial bearings installed, magnetic When the number of dampers is k, (Equation 4)

Figure 0004994047
を満たすことを特徴とする。
Figure 0004994047
It is characterized by satisfying.

また、請求項に記載した磁気軸受装置は、請求項1の磁気軸受装置であって、電磁石巻線に流す電流を変化させることによって、軸受剛性,ダンピング特性を調整することを特徴とする。 According to a second aspect of the present invention, there is provided the magnetic bearing device according to the first aspect , wherein the bearing rigidity and damping characteristics are adjusted by changing a current flowing through the electromagnet winding.

前記構成によれば、回転子をラジアル方向に変位させたとき、ラジアルスラスト軸受とラジアル軸受に発生するラジアル方向の変位と逆向きに発生するラジアル方向の復元力の合力が磁気ダンパにより発生するラジアル方向の吸引力よりも大きくすることにより、高い剛性を有しかつダンピング性能の増大を図ることができ、ラジアル軸受により高い剛性を有し、かつラジアル方向への加工による振動が発生した場合、磁気ダンパによりダンピング性能を確保することができる。   According to the above configuration, when the rotor is displaced in the radial direction, the radial damper generates a resultant force of the restoring force in the radial direction opposite to the radial thrust generated in the radial thrust bearing and the radial bearing by the magnetic damper. By increasing the suction force in the direction, the rigidity can be increased and the damping performance can be increased. When the radial bearing has higher rigidity and vibrations due to processing in the radial direction occur, Damping performance can be secured by the damper.

本発明によれば、回転子にラジアル方向の振動が発生したときに、速やかに振動を低減する磁気軸受装置を提供できるという効果を奏する。   According to the present invention, it is possible to provide a magnetic bearing device that can quickly reduce vibration when radial vibration is generated in the rotor.

以下、図面を参照して本発明における実施の形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

(実施形態1)
図1は本発明の実施形態1における磁気軸受装置を示す構造図である。図1において、17は回転体である回転子で、複数の磁極歯(以下、磁歯という)が設けられた軸受磁極11,12に、工具16が取り付けられている。この回転子17側の軸受磁極11,12から微小間隔の距離をおいて固定子側の軸受磁極1,3,5,7、回転子17から微小間隔の距離をおいて回転子17のスラスト方向の変位を検出する変位センサ13,14が配置され、回転子17とは非接触で支持されている。
(Embodiment 1)
FIG. 1 is a structural diagram showing a magnetic bearing device according to Embodiment 1 of the present invention. In FIG. 1, reference numeral 17 denotes a rotor which is a rotating body, and a tool 16 is attached to bearing magnetic poles 11 and 12 provided with a plurality of magnetic pole teeth (hereinafter referred to as magnetic teeth). Thrust direction of the rotor 17 at a minute distance from the bearing magnetic poles 11, 12, 12 at the stator side and a distance from the rotor 17 at a minute distance from the bearing magnetic poles 11, 12 at the rotor 17 side Displacement sensors 13 and 14 for detecting the displacement of the rotor 17 are disposed, and are supported in a non-contact manner with the rotor 17.

固定子側の軸受磁極1,3,5,7には、回転子17側の軸受磁極11,12に対応した複数の磁歯が設けられ、回転子17を取り巻くリング状に配置されている。固定子側の軸受磁極1,3には回転子17の回転中心を中心とする同心円状に複数の溝を有し、少なくとも1つに電磁石巻線2,4が設置されている。   The stator-side bearing magnetic poles 1, 3, 5, 7 are provided with a plurality of magnetic teeth corresponding to the bearing magnetic poles 11, 12 on the rotor 17 side, and are arranged in a ring shape surrounding the rotor 17. The stator-side bearing magnetic poles 1 and 3 have a plurality of concentric grooves centering on the rotation center of the rotor 17, and at least one of the electromagnet windings 2 and 4 is installed.

固定子側の軸受磁極5,7には回転子17の回転中心を中心とするリング状の永久磁石6,8が設置されている。永久磁石6,8は高い吸引力を得るために希土類鉄系磁石などを使用する。   Ring-shaped permanent magnets 6 and 8 centering on the rotation center of the rotor 17 are provided on the bearing magnetic poles 5 and 7 on the stator side. The permanent magnets 6 and 8 use rare earth iron-based magnets or the like in order to obtain a high attractive force.

また、回転子17からラジアル方向に微小間隔の距離をおいて磁気ダンパのダンパ磁極9が設けられ、回転子17を取り巻くリング状に配置されている。磁気ダンパのダンパ磁極9の溝にはリング状の永久磁石10が設置されている。この永久磁石10も高い磁束を得るために希土類鉄系磁石などを使用する。   Further, a damper magnetic pole 9 of a magnetic damper is provided at a small distance in the radial direction from the rotor 17, and is arranged in a ring shape surrounding the rotor 17. A ring-shaped permanent magnet 10 is installed in the groove of the damper magnetic pole 9 of the magnetic damper. The permanent magnet 10 also uses a rare earth iron magnet or the like in order to obtain a high magnetic flux.

変位センサ13,14としては、よく知られた渦電流形センサ、静電容量形センサ、光センサなどが用いられる。19はケーシングであり、固定子側の軸受磁極1,3,5,7、変位センサ13,14などの固定子側部材が取り付けられている。15はアクチュエータであり、回転子17を回転させるためのモータなどが用いられる。   As the displacement sensors 13 and 14, well-known eddy current type sensors, capacitance type sensors, optical sensors, and the like are used. Reference numeral 19 denotes a casing, to which stator side members such as stator side bearing magnetic poles 1, 3, 5, and 7 and displacement sensors 13 and 14 are attached. Reference numeral 15 denotes an actuator, for which a motor for rotating the rotor 17 is used.

ラジアル方向の磁気浮上による支持について説明する。固定子側の軸受磁極1,3に取り付けられている電磁石巻線2,4に電流を流して磁束を発生させ、対向する回転子側の軸受磁極11とで磁路が形成される。この磁束により、固定子側の軸受磁極1,3と回転子17側の軸受磁極11との間にスラスト方向の磁気吸引力が発生する。また、ラジアル方向への変位に対しては、固定子側の軸受磁極1,3に形成されている磁歯と回転子側の軸受磁極11との対向面積の減少に伴う磁気エネルギーの減少に逆らうラジアル方向の復元力が発生して、回転子17のラジアル方向の移動を押し戻す。この軸受をラジアルスラスト軸受と呼ぶことにする。   The support by magnetic levitation in the radial direction will be described. A current is passed through the electromagnet windings 2 and 4 attached to the stator-side bearing magnetic poles 1 and 3 to generate a magnetic flux, and a magnetic path is formed by the opposing bearing-side bearing magnetic poles 11. This magnetic flux generates a magnetic attractive force in the thrust direction between the bearing magnetic poles 1 and 3 on the stator side and the bearing magnetic pole 11 on the rotor 17 side. Further, the radial displacement is countered by a decrease in magnetic energy accompanying a decrease in the facing area between the magnetic teeth formed on the stator-side bearing magnetic poles 1 and 3 and the rotor-side bearing magnetic pole 11. A radial restoring force is generated to push back the movement of the rotor 17 in the radial direction. This bearing will be referred to as a radial thrust bearing.

固定子側の軸受磁極5,7に対向する回転子側の軸受磁極12においては、固定子側の軸受磁極5,7に取り付けられている永久磁石6,8により発生する磁束により、対向する回転子17側の軸受磁極12とで磁路が形成される。この磁束により、固定子側の軸受磁極5,7と回転子17側の軸受磁極12との間にスラスト方向の磁気吸引力が発生する。また、ラジアル方向への変位に対しては、固定子側の軸受磁極5,7に形成されている磁歯と回転子17側の軸受磁極12との対向面積の減少に伴う磁気エネルギーの減少に逆らうラジアル方向の力が発生して、回転子17のラジアル方向の移動を押し戻す。この軸受をラジアル軸受と呼ぶことにする。   In the rotor-side bearing magnetic pole 12 facing the stator-side bearing magnetic poles 5, 7, the opposing rotation is caused by the magnetic flux generated by the permanent magnets 6, 8 attached to the stator-side bearing magnetic poles 5, 7. A magnetic path is formed by the bearing magnetic pole 12 on the child 17 side. This magnetic flux generates a magnetic attractive force in the thrust direction between the bearing magnetic poles 5 and 7 on the stator side and the bearing magnetic pole 12 on the rotor 17 side. Further, with respect to the displacement in the radial direction, the magnetic energy is reduced due to the reduction of the facing area between the magnetic teeth formed on the stator magnetic poles 5 and 7 and the bearing magnetic pole 12 on the rotor 17 side. A counter radial force is generated to push back the movement of the rotor 17 in the radial direction. This bearing will be referred to as a radial bearing.

スラスト方向の磁気浮上による支持について説明する。制御回路の構成は図示していないが、変位センサ13,14の信号と目標位置との偏差を求め、偏差をなくすように電磁石巻線2,4に電流を流し、固定子側の軸受磁極1,3と回転子17側の軸受磁極11との間に生じる磁気吸引力を制御することによって回転子17のスラスト方向の位置を浮上制御する。   The support by magnetic levitation in the thrust direction will be described. Although the configuration of the control circuit is not shown, a deviation between the signals of the displacement sensors 13 and 14 and the target position is obtained, a current is passed through the electromagnet windings 2 and 4 so as to eliminate the deviation, and the bearing magnetic pole 1 on the stator side. , 3 and the magnetic attraction force generated between the bearing magnetic pole 11 on the rotor 17 side and the position of the rotor 17 in the thrust direction is controlled to fly.

磁気ダンパについて説明する。回転子17がラジアル方向に変位すると、磁束の変化を打ち消す方向に回転子17及び磁気ダンパのダンパ磁極9に渦電流が発生し、この渦電流により運動を制動する力が発生する。この磁気ダンパは平衡点からずれると、回転子17が磁気ダンパのダンパ磁極9に吸引されるので、回転子17をバネ要素で支持しておく必要がある。   The magnetic damper will be described. When the rotor 17 is displaced in the radial direction, an eddy current is generated in the rotor 17 and the damper magnetic pole 9 of the magnetic damper in a direction to cancel the change of the magnetic flux, and a force for braking the motion is generated by the eddy current. When this magnetic damper deviates from the equilibrium point, the rotor 17 is attracted to the damper magnetic pole 9 of the magnetic damper, and therefore it is necessary to support the rotor 17 with a spring element.

本実施形態1ではラジアルスラスト軸受及びラジアル軸受の磁気吸引力により非接触でバネ要素を構成している。したがって、非接触浮上をさせるためには、ラジアルスラスト軸受とラジアル軸受のラジアル方向の復元力の和を磁気ダンパの吸引力よりも大きくする必要がある。回転中心からラジアル方向にずれたときの回転子17が磁気ダンパのダンパ磁極9に吸引される方向と、ラジアルスラスト軸受、ラジアル軸受の復元力は逆向きの力である。   In the first embodiment, the spring element is configured in a non-contact manner by the magnetic thrust force of the radial thrust bearing and the radial bearing. Therefore, in order to make non-contact levitation, it is necessary to make the sum of the radial restoring force of the radial thrust bearing and the radial bearing larger than the attractive force of the magnetic damper. The restoring force of the radial thrust bearing and the radial bearing is opposite to the direction in which the rotor 17 is attracted to the damper magnetic pole 9 of the magnetic damper when shifted from the center of rotation in the radial direction.

次に、ラジアルスラスト軸受、ラジアル軸受の復元力と回転子17が磁気ダンパのダンパ磁極9に吸引される力を定式化する。また図2はラジアルスラスト軸受の構造を示している。   Next, the radial thrust bearing, the restoring force of the radial bearing and the force with which the rotor 17 is attracted to the damper magnetic pole 9 of the magnetic damper are formulated. FIG. 2 shows the structure of a radial thrust bearing.

図2に示す第1磁歯51の断面積をS、第2磁歯52の断面積をS、第3磁歯53の断面積をS、第4磁歯54の断面積をS、電磁石巻線の巻数をN、巻線に流す電流をI、軸受磁極の回転子と固定子とのギャップをgとすると、磁路の磁束Φは(数9) The cross-sectional area of the first magnetic tooth 51 shown in FIG. 2 is S 1 , the cross-sectional area of the second magnetic tooth 52 is S 2 , the cross-sectional area of the third magnetic tooth 53 is S 3 , and the cross-sectional area of the fourth magnetic tooth 54 is S 4. If the number of turns of the electromagnet winding is N 1 , the current flowing through the winding is I 1 , and the gap between the rotor and the stator of the bearing magnetic pole is g 1 , the magnetic flux Φ of the magnetic path is (Equation 9)

Figure 0004994047
にて表される。μは真空の透磁率である。
Figure 0004994047
It is represented by μ 0 is the vacuum permeability.

断面積S,S,S,Sはラジアル方向の変位xの関数なので、磁束Φを変位xで微分すると(数10) Since the cross-sectional areas S 1 , S 2 , S 3 , S 4 are functions of the displacement x in the radial direction, the magnetic flux Φ is differentiated by the displacement x (Equation 10)

Figure 0004994047
にて表される。
Figure 0004994047
It is represented by

また、図3に示す半径rの円がラジアル方向に変位xずれたときの元の円の中心からの距離rθを求めると、角度θにおいて、(数11)   Further, when the distance rθ from the center of the original circle when the circle with the radius r shown in FIG. 3 is displaced by x in the radial direction is obtained at the angle θ, (Equation 11)

Figure 0004994047
にて表されて近似できる。
Figure 0004994047
It can be approximated by

複数ある磁歯を4つの磁歯としてモデル化する。ラジアルスラスト軸受の複数の磁歯のうち最小の磁歯の幅をrgとし、第1磁歯51の内径をrf、外径をrf、第2磁歯52の内径をrf、外径をrf、第3磁歯53の内径をrf、外径をrf、第4磁歯54の内径をrf、外径をrfとする。 A plurality of magnetic teeth are modeled as four magnetic teeth. The width of the smallest magnetic tooth among the plurality of magnetic teeth of the radial thrust bearing is rg 1 , the inner diameter of the first magnetic tooth 51 is rf 1 , the outer diameter is rf 2 , the inner diameter of the second magnetic tooth 52 is rf 3 , The diameter is rf 4 , the inner diameter of the third magnetic tooth 53 is rf 5 , the outer diameter is rf 6 , the inner diameter of the fourth magnetic tooth 54 is rf 7 , and the outer diameter is rf 8 .

図3に示すように外径rfを半径とした円と半径rfの円をラジアル方向に変位x移動させたときの元の半径rfの円との交点の回転中心における角度をα1、第1〜第4磁歯51〜54の幅は等しくrgとする。図4に示すように、例えば内径をrf、外径をrfの磁歯がラジアル方向に変位xずれたとき、微小区間dθにおける面積dS及び面積の変位xの微分は(数12) As shown in FIG. 3, the angle at the rotation center at the intersection of the circle having the radius of the outer diameter rf 8 and the circle of the radius rf 8 displaced by x in the radial direction and the original circle of the radius rf 8 is α1, The widths of the first to fourth magnetic teeth 51 to 54 are equal to rg 1 . As shown in FIG. 4, for example, when a magnetic tooth having an inner diameter of rf 1 and an outer diameter of rf 2 is displaced by a displacement x in the radial direction, the differential of the area dS and the displacement x of the area in the minute section dθ is (Equation 12)

Figure 0004994047
にて表される。
また(数10),(数12)の式より、(数13)
Figure 0004994047
It is represented by
From the formulas (10) and (12), (13)

Figure 0004994047
で表される。
Figure 0004994047
It is represented by

この区間での磁路の磁気エネルギーをWとすると、変位xに対する復元力Ff1は(数14) When the magnetic energy of the magnetic path in this section is W m , the restoring force Ff1 with respect to the displacement x is (Expression 14)

Figure 0004994047
にて表される。
Figure 0004994047
It is represented by

また、角度α1からπradまでの範囲では、微小区間dθにおける面積dS及び面積の変位xの微分は(数15)   Further, in the range from the angle α1 to πrad, the differential of the area dS and the displacement x of the area in the minute section dθ is (Equation 15)

Figure 0004994047
にて表される。
Figure 0004994047
It is represented by

この区間での変位xに対する復元力をFf2とすると(数16)   If the restoring force for the displacement x in this section is Ff2, (Equation 16)

Figure 0004994047
にて表される。
Figure 0004994047
It is represented by

次に、ラジアル軸受の復元力を求める。図5はラジアル軸受の構造図である。図5において、第5磁歯55の断面積をS、第6磁歯56の断面積をS、第7磁歯57の断面積をS、第8磁歯58の断面積をS、軸受磁極の回転子17と固定子とのギャップをg、永久磁石の磁路方向の長さをlp、永久磁石の内径をRe、永久磁石のスラスト方向の高さをre、永久磁石の保持力をHc、永久磁石の断面積をSとすると、磁路の磁束Φは(数17) Next, the restoring force of the radial bearing is obtained. FIG. 5 is a structural diagram of a radial bearing. In FIG. 5, the sectional area of the fifth magnetic tooth 55 is S 1 , the sectional area of the sixth magnetic tooth 56 is S 2 , the sectional area of the seventh magnetic tooth 57 is S 3 , and the sectional area of the eighth magnetic tooth 58 is S. 4. The gap between the rotor 17 and the stator of the bearing magnetic pole is g 2 , the length of the permanent magnet in the magnetic path direction is lp 2 , the inner diameter of the permanent magnet is Re 2 , and the height of the permanent magnet in the thrust direction is re 2. When the holding force of the permanent magnet is Hc 2 and the cross-sectional area of the permanent magnet is S 5 , the magnetic flux Φ of the magnetic path is (Equation 17)

Figure 0004994047
にて表される。
Figure 0004994047
It is represented by

断面積S,S,S,Sはラジアル方向の変位xの関数なので、磁束Φを変位xで微分すると(数18) Since the cross-sectional areas S 1 , S 2 , S 3 and S 4 are functions of the displacement x in the radial direction, the magnetic flux Φ is differentiated by the displacement x (Equation 18)

Figure 0004994047
にて表される。
Figure 0004994047
It is represented by

複数ある磁歯を4つの磁歯としてモデル化する。ラジアル軸受の複数の磁歯のうち最小の磁歯の幅をrgとし、第5磁歯55の内径をrr、外径をrr、第6磁歯56の内径をrr、外径をrr、第7磁歯57の内径をrr、外径をrr、第8磁歯58の内径をrr、外径をrrとする。外径rrを半径とした円と半径rrの円をラジアル方向に変位x移動させたときの元の半径rrの円との交点の回転中心における角度をα2とし、第5〜第8磁歯55〜58の幅は等しくrgとする。ラジアル方向に変位xずれたとき、微小区間dθにおける面積dS及び面積の変位xの微分は(数19) A plurality of magnetic teeth are modeled as four magnetic teeth. The width of the smallest magnetic tooth among the plurality of magnetic teeth of the radial bearing is rg 2 , the inner diameter of the fifth magnetic tooth 55 is rr 1 , the outer diameter is rr 2 , the inner diameter of the sixth magnetic tooth 56 is rr 3 , and the outer diameter. Rr 4 , the inner diameter of the seventh magnetic tooth 57 is rr 5 , the outer diameter is rr 6 , the inner diameter of the eighth magnetic tooth 58 is rr 7 , and the outer diameter is rr 8 . The angle at the rotation center of the intersection of the circle of the original radius rr 8 when the circle of the circle and the radius rr 8 in which the outer diameter rr 8 the radius is displaced x moved in the radial direction and [alpha] 2, fifth to eighth the width of magnetic teeth 55 to 58 and equal rg 2. When the displacement x is shifted in the radial direction, the differential of the area dS and the area displacement x in the minute section dθ is (Equation 19)

Figure 0004994047
にて表される。また図6にdSの説明図を示す。
(数18),(数19)の式より、(数20)
Figure 0004994047
It is represented by Further illustrative of the dS 5 in FIG.
From the equations of (Equation 18) and (Equation 19), (Equation 20)

Figure 0004994047
で表される。
Figure 0004994047
It is represented by

この区間での変位xに対する復元力Fr1は(数21)   The restoring force Fr1 with respect to the displacement x in this section is (Expression 21)

Figure 0004994047
にて表される。
Figure 0004994047
It is represented by

また、角度α2からπradまでの範囲では、微小区間dθにおける面積dS及び面積の変位xの微分は(数22)   In the range from the angle α2 to πrad, the differential of the area dS and the displacement x of the area in the minute section dθ is (Equation 22)

Figure 0004994047
にて表される。
Figure 0004994047
It is represented by

この区間での変位xに対する復元力をFr2とすると(数23)   When the restoring force for the displacement x in this section is Fr2, (Equation 23)

Figure 0004994047
にて表される。
Figure 0004994047
It is represented by

次に、磁気ダンパの吸引力を求める。図7に磁気ダンパの構造図を示す。磁気ダンパのダンパ磁極9(磁歯)の面積をS、磁気ダンパのダンパ磁極9と固定子の中心からの半径をR、回転子17の半径をr、固定子と回転子17のラジアル方向のギャップをge、ダンパ磁極9(磁歯)のスラスト方向の高さをh、永久磁石の磁路方向の長さをlp、永久磁石のラジアル方向の幅をre、永久磁石の外径をRe、永久磁石の保持力をHc、永久磁石の断面積をSとすると、磁気ダンパの吸引力Fd1は(数24) Next, the attractive force of the magnetic damper is obtained. FIG. 7 shows a structural diagram of the magnetic damper. The area of the damper magnetic pole 9 (magnetic tooth) of the magnetic damper is S 0 , the radius from the center of the damper magnetic pole 9 and the stator of the magnetic damper is R 0 , the radius of the rotor 17 is r 0 , and the stator and rotor 17 The gap in the radial direction is ge 0 , the height of the damper magnetic pole 9 (magnetic tooth) in the thrust direction is h 0 , the length of the permanent magnet in the magnetic path direction is lp 0 , the width of the permanent magnet in the radial direction is re 0 , When the outer diameter of the magnet is Re 0 , the holding force of the permanent magnet is Hc 0 , and the sectional area of the permanent magnet is S 6 , the attractive force Fd1 of the magnetic damper is (Equation 24)

Figure 0004994047
にて表される。
Figure 0004994047
It is represented by

ダンパ磁極9の磁歯の面積S、永久磁石の断面積S、ギャップgeは(数25) The area S 0 of the magnetic teeth of the damper magnetic pole 9, the sectional area S 6 of the permanent magnet, and the gap ge 0 are (Equation 25)

Figure 0004994047
にて表される。
Figure 0004994047
It is represented by

したがって、変位xに対する力Fd1は(数26) Therefore, the force Fd1 x with respect to the displacement x is (number 26)

Figure 0004994047
にて表される。
Figure 0004994047
It is represented by

ここで、ラジアルスラスト軸受の設置数をm、ラジアル軸受の設置数をn、磁気ダンパの設置数をkとするとき、非接触浮上をさせるために、ラジアルスラスト軸受とラジアル軸受のラジアル方向の復元力の和を磁気ダンパの吸引力よりも大きくするための条件は(数27)   Here, when the number of radial thrust bearings is m, the number of radial bearings is n, and the number of magnetic dampers is k, the radial thrust bearing and the radial bearing are restored in the radial direction in order to achieve non-contact levitation. The condition for making the sum of forces larger than the attractive force of the magnetic damper is (Equation 27)

Figure 0004994047
にて表される。
Figure 0004994047
It is represented by

ラジアルスラスト軸受はスラスト方向の軸受を兼用しているため、スラスト方向の吸引力を線形化するために、対向させて設置する(m=2)ことが望ましい。   Since radial thrust bearings also serve as thrust direction bearings, it is desirable that they be installed facing each other (m = 2) in order to linearize the thrust force in the thrust direction.

次に、本実施形態1の具体的な設計例を示す。前述したラジアルスラスト軸受の複数の磁歯のうち最小の磁歯の幅をrg=0.4mm、回転子17の中心からそれぞれ内径rf=9.5mm、外径rf=9.9mm、内径rf=10.3mm、外径rf=10.7mm、内径rf=11.1mm、外径rf=11.5mm、内径rf=11.9mm、外径rf=12.3mm、ラジアルスラスト軸受と回転子17とのスラスト方向のギャップをg=0.025mm、電磁石巻線に流す電流をI=0.15A、巻線の巻き数をN=300ターンとする。 Next, a specific design example of the first embodiment will be shown. The minimum magnetic tooth width among the plurality of magnetic teeth of the radial thrust bearing described above is rg 1 = 0.4 mm, the inner diameter rf 1 = 9.5 mm, the outer diameter rf 2 = 9.9 mm from the center of the rotor 17, respectively. Inner diameter rf 3 = 10.3 mm, outer diameter rf 4 = 10.7 mm, inner diameter rf 5 = 11.1 mm, outer diameter rf 6 = 11.5 mm, inner diameter rf 7 = 11.9 mm, outer diameter rf 8 = 12.3 mm The gap in the thrust direction between the radial thrust bearing and the rotor 17 is g 1 = 0.025 mm, the current passed through the electromagnet winding is I 1 = 0.15 A, and the number of turns of the winding is N 1 = 300 turns.

また、ラジアル軸受の複数の磁歯のうち最小の磁歯の幅をrg、複数ある磁歯を4つの磁歯としてモデル化し、回転子17の中心から内径rr=9.5mm、外径rr=9.9mm、内径rr=10.3mm、外径rr=10.7mm、内径rr=11.1mm、外径rr=11.5mm、内径rr=11.9mm、外径rr=12.3mm、ラジアル軸受と回転子17とのスラスト方向のギャップをg=0.025mm、永久磁石の磁路方向の長さをlp=3mm、永久磁石の内径をRe=10.7mm、永久磁石のスラスト方向の高さをre=1.2mm、永久磁石の保持力をHc=891×10A/mとする。 Further, the minimum magnetic tooth width among the plurality of magnetic teeth of the radial bearing is modeled as rg 1 , and the plurality of magnetic teeth are modeled as four magnetic teeth, and the inner diameter rr 1 = 9.5 mm from the center of the rotor 17 and the outer diameter. rr 2 = 9.9 mm, inner diameter rr 3 = 10.3 mm, outer diameter rr 4 = 10.7 mm, inner diameter rr 5 = 11.1 mm, outer diameter rr 6 = 11.5 mm, inner diameter rr 7 = 11.9 mm, outer The diameter rr 8 = 12.3 mm, the radial gap between the radial bearing and the rotor 17 is g 2 = 0.025 mm, the length of the permanent magnet in the magnetic path direction is lp 2 = 3 mm, and the inner diameter of the permanent magnet is Re 2 = 10.7 mm, the height of the permanent magnet in the thrust direction is re 2 = 1.2 mm, and the holding force of the permanent magnet is Hc 2 = 891 × 10 3 A / m.

そして、磁気ダンパのダンパ磁極と固定子の中心からの半径をR=12.4mm、ダンパ磁極(磁歯)のスラスト方向の高さをh=1mm、永久磁石の磁路方向の長さをlp=3mm、永久磁石のラジアル方向の幅をre=1.3mm、外径をRe=15mm、永久磁石の保持力をHc=891×10A/m、回転子17のラジアル方向の変位をx=0.05mm、スラスト軸まわりの回転角度をθ、ラジアルスラスト軸受の設置数をm=1、ラジアル軸受の設置数をn=1、磁気ダンパの設置数をk=1とするとき、磁気ダンパのダンパ磁極と回転子17のラジアル方向のギャップgを変化させたときの(数27)の計算結果を図8に示す。(数27)の右辺>左辺となっている磁気ダンパのギャップで条件を満たしている。 Then, the radius from the center of the damper magnetic pole and the stator of the magnetic damper is R 0 = 12.4 mm, the height of the damper magnetic pole (magnetic tooth) in the thrust direction is h 0 = 1 mm, and the length of the permanent magnet in the magnetic path direction Lp 0 = 3 mm, the radial width of the permanent magnet is re 0 = 1.3 mm, the outer diameter is Re 0 = 15 mm, the holding force of the permanent magnet is Hc 0 = 891 × 10 3 A / m, the rotor 17 The radial displacement is x = 0.05 mm, the rotation angle around the thrust axis is θ, the radial thrust bearings are installed m = 1, the radial bearings are installed n = 1, and the magnetic dampers are installed k = 1. FIG. 8 shows the calculation result of (Equation 27) when the radial gap g 0 between the damper magnetic pole of the magnetic damper and the rotor 17 is changed. The condition is satisfied by the gap of the magnetic damper in which the right side of (Equation 27)> the left side.

(実施形態2)
図9は本発明の実施形態2における磁気軸受装置を示す構造図である。本実施形態2は前述した実施形態1の磁気ダンパを電磁石タイプとしたものである。図10に本実施形態2における磁気ダンパの構造図を示す。磁気ダンパのダンパ磁極20(磁歯)の面積をS、磁気ダンパ20のダンパ磁極と回転子17とのギャップをge、回転中心から磁極までの半径をR、電磁石巻線の巻数をN、巻線を流れる電流をIとすると、電磁石の吸引力Fd2は(数28)
(Embodiment 2)
FIG. 9 is a structural diagram showing a magnetic bearing device according to Embodiment 2 of the present invention. In the second embodiment, the magnetic damper of the first embodiment described above is an electromagnet type. FIG. 10 shows a structural diagram of the magnetic damper in the second embodiment. The area of the damper magnetic pole 20 (magnetic tooth) of the magnetic damper is S 0 , the gap between the damper magnetic pole of the magnetic damper 20 and the rotor 17 is ge 0 , the radius from the rotation center to the magnetic pole is R 0 , and the number of turns of the electromagnetic winding is When N 0 and the current flowing through the winding are I 0 , the attractive force Fd2 of the electromagnet is (Equation 28)

Figure 0004994047
にて表される。
Figure 0004994047
It is represented by

したがって、変位xに対する力Fd2xは(数29)   Therefore, the force Fd2x with respect to the displacement x is (Equation 29).

Figure 0004994047
にて表される。
Figure 0004994047
It is represented by

ラジアルスラスト軸受の設置数をm、ラジアル軸受の設置数をn、磁気ダンパの設置数をkとするとき、非接触浮上をさせるために、ラジアルスラスト軸受とラジアル軸受のラジアル方向の復元力の和を磁気ダンパの吸引力よりも大きくするための条件は(数30)   When the number of radial thrust bearings is m, the number of radial bearings is n, and the number of magnetic dampers is k, the sum of the restoring forces in the radial direction of the radial thrust bearing and the radial bearing is used to make contactless levitation. The condition for making the magnetic force larger than the attractive force of the magnetic damper is (Equation 30)

Figure 0004994047
にて表される。
Figure 0004994047
It is represented by

電磁石タイプにすることにより、加工に応じて電流値を変化させることにより磁気ダンパの効果を調整することができる。   By using an electromagnet type, the effect of the magnetic damper can be adjusted by changing the current value in accordance with processing.

本実施形態2の具体的な設計例を示す。前述したラジアルスラスト軸受の複数の磁歯のうち最小の磁歯の幅をrg=0.4mm、回転子17の回転中心からそれぞれ内径rf=9.5mm、外径rf=9.9mm、内径rf=10.3mm、外径rf=10.7mm、内径rf=11.1mm、外径rf=11.5mm、内径rf=11.9mm、外径rf=12.3mm、ラジアルスラスト軸受と回転子17とのスラスト方向のギャップをg=0.025mm、電磁石巻線に流す電流をI=0.15A、巻線の巻き数をN=300ターンとする。 A specific design example of the second embodiment will be described. The minimum magnetic tooth width among the plurality of magnetic teeth of the radial thrust bearing described above is rg 1 = 0.4 mm, the inner diameter rf 1 = 9.5 mm and the outer diameter rf 2 = 9.9 mm from the rotation center of the rotor 17, respectively. , Inner diameter rf 3 = 10.3 mm, outer diameter rf 4 = 10.7 mm, inner diameter rf 5 = 11.1 mm, outer diameter rf 6 = 11.5 mm, inner diameter rf 7 = 11.9 mm, outer diameter rf 8 = 1.12. The gap in the thrust direction between the radial thrust bearing and the rotor 17 is g 1 = 0.025 mm, the current flowing through the electromagnet winding is I 1 = 0.15 A, and the number of turns of the winding is N 1 = 300 turns. .

また、ラジアル軸受の複数の磁歯のうち最小の磁歯の幅をrg、複数ある磁歯を4つの磁歯としてモデル化して、回転子17の回転中心から内径rr=9.5mm、外径rr=9.9mm、内径rr=10.3mm、外径rr=10.7mm、内径rr=11.1mm、外径rr=11.5mm、内径rr=11.9mm、外径rr=12.3mm、ラジアル軸受と回転子17とのスラスト方向のギャップをg=0.025mm、永久磁石の磁路方向の長さをlp=3mm、永久磁石の内径をRe=10.7mm、永久磁石のスラスト方向の高さをre=1.2mm、永久磁石の保持力をHc=891×10A/mとする。 Further, the minimum magnetic tooth width among the plurality of magnetic teeth of the radial bearing is modeled as rg 2 , and the plurality of magnetic teeth are modeled as four magnetic teeth, and the inner diameter rr 1 = 9.5 mm from the rotation center of the rotor 17, Outer diameter rr 2 = 9.9 mm, Inner diameter rr 3 = 10.3 mm, Outer diameter rr 4 = 10.7 mm, Inner diameter rr 5 = 11.1 mm, Outer diameter rr 6 = 11.5 mm, Inner diameter rr 7 = 11.9 mm , Outer diameter rr 8 = 12.3 mm, gap in radial direction between radial bearing and rotor 17 g 2 = 0.025 mm, length of permanent magnet in magnetic path direction lp 2 = 3 mm, inner diameter of permanent magnet Re 2 = 10.7 mm, the height of the permanent magnet in the thrust direction is re 2 = 1.2 mm, and the holding force of the permanent magnet is Hc 2 = 891 × 10 3 A / m.

そして、磁気ダンパのダンパ磁極と固定子の中心からの半径をR=12.4mm、ダンパ磁極(磁歯)のスラスト方向の高さをh=1mm、電磁石巻線に流す電流をI=0.17A、巻線の巻き数をN=300ターン、回転子17のラジアル方向の変位をx=0.05mm、スラスト軸まわりの回転角度をθ、ラジアルスラスト軸受の設置数をm=1、ラジアル軸受の設置数をn=1、磁気ダンパの設置数をk=1とするとき、磁気ダンパのダンパ磁極と回転子17のラジアル方向のギャップgを変化させたときの(数30)の計算結果を図11に示す。(数30)の右辺>左辺となっている磁気ダンパのギャップで条件を満たしている。 Then, the radius from the center of the damper magnetic pole and the stator of the magnetic damper is R 0 = 12.4 mm, the height of the damper magnetic pole (magnetic tooth) in the thrust direction is h 0 = 1 mm, and the current flowing through the electromagnetic winding is I 0. = 0.17 A, the number of turns of the winding is N 0 = 300 turns, the displacement of the rotor 17 in the radial direction is x = 0.05 mm, the rotational angle around the thrust axis is θ, and the number of radial thrust bearings installed is m = 1. When the number of installed radial bearings is n = 1 and the number of installed magnetic dampers is k = 1, the radial gap g 0 between the damper magnetic poles of the magnetic damper and the rotor 17 is changed (Equation 30 The calculation result of) is shown in FIG. The condition is satisfied by the gap of the magnetic damper in which the right side of (Equation 30)> the left side.

(実施形態3)
図12は本発明の実施形態3における磁気軸受装置を示す構造図である。本実施形態3は前述した実施形態2のラジアル軸受を電磁石タイプとしたものである。実施形態1と同様に、ラジアル軸受の複数の磁歯のうち最小の磁歯の幅をrgとし、4つの磁歯を内側から内径をrr、外径をrr、内径をrr、外径をrr、内径をrr、外径をrr、内径をrr、外径をrrとする。電磁石巻線の巻数をN、巻線に流す電流をIとすると、外径rrを半径とした円と半径rrの円をラジアル方向に変位x移動させたときの元の半径rrの円との交点の回転中心における角度をα2とし、4つの磁歯の幅は等しくrgとする。変位xに対する復元力Fr1、Fr2は(数31)
(Embodiment 3)
FIG. 12 is a structural diagram showing a magnetic bearing device according to Embodiment 3 of the present invention. In the third embodiment, the radial bearing of the second embodiment is an electromagnet type. As in the first embodiment, the width of the smallest magnetic tooth among the plurality of magnetic teeth of the radial bearing is rg 2 , and the four magnetic teeth have an inner diameter of rr 1 , an outer diameter of rr 2 , an inner diameter of rr 3 , The outer diameter is rr 4 , the inner diameter is rr 5 , the outer diameter is rr 6 , the inner diameter is rr 7 , and the outer diameter is rr 8 . N 2 turns of the electromagnet coil, and the current flowing through the winding and I 2, the original radius rr when the circle of the circle and the radius rr 8 in which the outer diameter rr 8 the radius is displaced x moved in the radial direction the angle at the rotation center of the intersection of the circle of 8 and [alpha] 2, the width of the four magnetic teeth are equally rg 2. The restoring forces Fr1 and Fr2 with respect to the displacement x are (Equation 31)

Figure 0004994047
にて表される。
Figure 0004994047
It is represented by

ラジアルスラスト軸受の設置数をm、ラジアル軸受の設置数をn、磁気ダンパの設置数をkとするとき、非接触浮上をさせるために、ラジアルスラスト軸受とラジアル軸受のラジアル方向の復元力の和を磁気ダンパの吸引力よりも大きくするための条件は(数32)   When the number of radial thrust bearings is m, the number of radial bearings is n, and the number of magnetic dampers is k, the sum of the restoring forces in the radial direction of the radial thrust bearing and the radial bearing is used to make contactless levitation. The condition for making the magnetic force larger than the attractive force of the magnetic damper is (Expression 32)

Figure 0004994047
にて表される。
Figure 0004994047
It is represented by

電磁石タイプにすることにより、加工に応じて電流値を変化させることにより剛性及び磁気ダンパの効果を調整することができる。   By using an electromagnet type, the rigidity and the effect of the magnetic damper can be adjusted by changing the current value according to the processing.

次に、実施形態3の具体的な設計例を示す。前述したラジアルスラスト軸受の複数の磁歯のうち最小の磁歯の幅をrg=0.4mm、回転子17の回転中心からそれぞれ内径rf=9.5mm、外径rf=9.9mm、内径rf=10.3mm、外径rf=10.7mm、内径rf=11.1mm、外径rf=11.5mm、内径rf=11.9mm、外径rf=12.3mm、ラジアルスラスト軸受と回転子17とのスラスト方向のギャップをg=0.025mm、電磁石巻線に流す電流をI=0.15A、巻線の巻き数をN=300ターンとする。 Next, a specific design example of the third embodiment is shown. The minimum magnetic tooth width among the plurality of magnetic teeth of the radial thrust bearing described above is rg 1 = 0.4 mm, the inner diameter rf 1 = 9.5 mm and the outer diameter rf 2 = 9.9 mm from the rotation center of the rotor 17, respectively. , Inner diameter rf 3 = 10.3 mm, outer diameter rf 4 = 10.7 mm, inner diameter rf 5 = 11.1 mm, outer diameter rf 6 = 11.5 mm, inner diameter rf 7 = 11.9 mm, outer diameter rf 8 = 1.12. The gap in the thrust direction between the radial thrust bearing and the rotor 17 is g 1 = 0.025 mm, the current flowing through the electromagnet winding is I 1 = 0.15 A, and the number of turns of the winding is N 1 = 300 turns. .

また、ラジアル軸受の複数の磁歯のうち最小の磁歯の幅をrg、複数ある磁歯を4つの磁歯としてモデル化し、回転子17の回転中心から内径rr=9.5mm、外径rr=9.9mm、内径rr=10.3mm、外径rr=10.7mm、内径rr=11.1mm、外径rr=11.5mm、内径rr=11.9mm、外径rr=12.3mm、ラジアル軸受と回転子17とのスラスト方向のギャップをg=0.025mm、電磁石巻線に流す電流をI=0.15A、巻数の巻き数をN=300ターンとする。 Further, the minimum magnetic tooth width of the plurality of magnetic teeth of the radial bearing is modeled as rg 2 , and the plurality of magnetic teeth are modeled as four magnetic teeth, and the inner diameter rr 1 = 9.5 mm from the rotation center of the rotor 17 is diameter rr 2 = 9.9 mm, inner diameter rr 3 = 10.3 mm, external diameter rr 4 = 10.7 mm, inner diameter rr 5 = 11.1 mm, an outer diameter rr 6 = 11.5 mm, inner diameter rr 7 = 11.9 mm, The outer diameter rr 8 = 12.3 mm, the radial gap between the radial bearing and the rotor 17 is g 2 = 0.025 mm, the current flowing through the electromagnet winding is I 2 = 0.15 A, and the number of turns is N 2 = 300 turns.

そして、磁気ダンパのダンパ磁極と固定子の中心からの半径をR=12.4mm、ダンパ磁極(磁歯)のスラスト方向の高さをh=1mm、電磁石巻線に流す電流をI=0.17A、巻線の巻き数をN=300ターン、回転子17のラジアル方向の変位をx=0.05mm、スラスト軸まわりの回転角度をθ、ラジアルスラスト軸受の設置数をm=1、ラジアル軸受の設置数をn=1、磁気ダンパの設置数をk=1とするとき、磁気ダンパのダンパ磁極と回転子17のラジアル方向のギャップgを変化させたときの(数32)の計算結果を図13に示す。(数32)の右辺>左辺となっている磁気ダンパのギャップで条件を満たしている。 Then, the radius from the center of the damper magnetic pole and the stator of the magnetic damper is R 0 = 12.4 mm, the height of the damper magnetic pole (magnetic tooth) in the thrust direction is h 0 = 1 mm, and the current flowing through the electromagnetic winding is I 0. = 0.17 A, the number of turns of the winding is N 0 = 300 turns, the displacement of the rotor 17 in the radial direction is x = 0.05 mm, the rotational angle around the thrust axis is θ, and the number of radial thrust bearings installed is m = 1. When the number of installed radial bearings is n = 1 and the number of installed magnetic dampers is k = 1, the radial gap g 0 between the damper magnetic poles of the magnetic damper and the rotor 17 is changed (Equation 32 The calculation result of) is shown in FIG. The condition is satisfied by the gap of the magnetic damper in which the right side of (Equation 32)> the left side.

(実施形態4)
図14は本発明の実施形態4における磁気軸受の構造図を示す図である。前述した実施形態1〜3は、軸受磁極とダンパ磁極が別構造で構成されていたが、本実施形態4では同一磁路に軸受磁極とダンパ磁極を設けて兼用した磁気軸受である。
(Embodiment 4)
FIG. 14 is a view showing the structure of a magnetic bearing according to Embodiment 4 of the present invention. In the first to third embodiments described above, the bearing magnetic pole and the damper magnetic pole are configured as separate structures. However, in the fourth embodiment, the magnetic bearing is provided with the bearing magnetic pole and the damper magnetic pole provided in the same magnetic path.

ダンパ磁極の磁気ダンパを別に構成する必要がないため、装置を小型化ができ、また回転子の長さを短くすることができるため、固有振動数を高くすることができる。さらに、永久磁石をはじめとする部品点数を削減することができ、コストダウンを実現できる。   Since it is not necessary to separately configure a magnetic damper for the damper magnetic pole, the apparatus can be miniaturized and the length of the rotor can be shortened, so that the natural frequency can be increased. Furthermore, the number of parts including a permanent magnet can be reduced, and the cost can be reduced.

本実施形態4について図14を用いて説明する。17は回転子であり、複数の磁歯が設けられた軸受磁極11が取り付けられている。この回転子17側の軸受磁極11からスラスト方向に微小間隔の距離(空隙)をおいて固定子側の軸受磁極31が配置されている。固定子側の軸受磁極31には、回転子側の軸受磁極11に対応した複数の磁歯が設けられ、回転子17を取り巻くリング状に配置されている。また、固定子側の軸受磁極31には回転子17の回転中心を中心とする同心円状に複数の溝を有し、少なくとも1つに電磁石巻線32が設置されている。また、固定子側の軸受磁極31には、回転子17の軸受磁極11からラジアル方向に微小間隔の距離をおいて磁気ダンパ用のダンパ磁極33が設けられている。   The fourth embodiment will be described with reference to FIG. Reference numeral 17 denotes a rotor, to which a bearing magnetic pole 11 provided with a plurality of magnetic teeth is attached. A stator-side bearing magnetic pole 31 is disposed at a minute distance (gap) in the thrust direction from the bearing magnetic pole 11 on the rotor 17 side. The stator-side bearing magnetic pole 31 is provided with a plurality of magnetic teeth corresponding to the rotor-side bearing magnetic pole 11 and arranged in a ring shape surrounding the rotor 17. The stator-side bearing magnetic pole 31 has a plurality of concentric grooves centering on the rotation center of the rotor 17, and at least one of the electromagnet windings 32 is installed. In addition, the stator-side bearing magnetic pole 31 is provided with a damper magnetic pole 33 for a magnetic damper at a small distance in the radial direction from the bearing magnetic pole 11 of the rotor 17.

ラジアル方向の磁気浮上による支持について説明する。固定子側の軸受磁極31に取り付けられている電磁石巻線32に電流を流し磁束を発生させ、固定子側の軸受磁極31の磁歯と対向する回転子17側の軸受磁極11の磁歯と磁気ダンパ用のダンパ磁極33の磁歯とで磁路が形成される。この磁束により、固定子側の軸受磁極31と回転子17側の軸受磁極11との間にスラスト方向の磁気吸引力が発生する。また、ラジアル方向への変位xに対しては、固定子側の軸受磁極31に形成されている磁歯と回転子17側の軸受磁極11の磁歯との対向面積の減少に伴う磁気エネルギーの減少に逆らうラジアル方向の復元力が発生して回転子17のラジアル方向の移動を押し戻す。   The support by magnetic levitation in the radial direction will be described. A current is passed through the electromagnet winding 32 attached to the bearing magnetic pole 31 on the stator side to generate a magnetic flux, and the magnetic teeth of the bearing magnetic pole 11 on the rotor 17 side facing the magnetic teeth of the bearing magnetic pole 31 on the stator side. A magnetic path is formed by the magnetic teeth of the damper magnetic pole 33 for the magnetic damper. This magnetic flux generates a magnetic attractive force in the thrust direction between the bearing magnetic pole 31 on the stator side and the bearing magnetic pole 11 on the rotor 17 side. Further, with respect to the displacement x in the radial direction, the magnetic energy associated with the decrease in the facing area between the magnetic teeth formed on the stator-side bearing magnetic pole 31 and the magnetic teeth of the bearing magnetic pole 11 on the rotor 17 side is reduced. A restoring force in the radial direction against the decrease is generated to push back the movement of the rotor 17 in the radial direction.

磁気ダンパの動作について説明する。回転子17がラジアル方向に変位すると、磁束の変化を打ち消す方向に回転子17及びダンパ磁極33に渦電流が発生し、この渦電流により運動を制動する力が発生する。この磁気ダンパは平衡点からずれると、回転子17がダンパ磁極33に吸引されるので、回転子17をバネ要素で支持しておく必要がある。本実施形態4では磁気ダンパと同一磁路に設けられている軸受磁極のラジアル方向の磁気吸引力により非接触なバネ要素を構成している。したがって、非接触浮上をさせるためには、軸受磁極のラジアル方向の復元力が磁気ダンパの吸引力よりも大きくなる必要がある。回転中心からラジアル方向にずれたときの回転子17がダンパ磁極33に吸引される方向と、軸受磁極のスラスト方向の復元力は逆向きの力である。   The operation of the magnetic damper will be described. When the rotor 17 is displaced in the radial direction, an eddy current is generated in the rotor 17 and the damper magnetic pole 33 in a direction to cancel the change of the magnetic flux, and a force for braking the motion is generated by the eddy current. When the magnetic damper deviates from the equilibrium point, the rotor 17 is attracted to the damper magnetic pole 33, so that the rotor 17 needs to be supported by a spring element. In the fourth embodiment, a non-contact spring element is configured by a radial magnetic attractive force of a bearing magnetic pole provided in the same magnetic path as the magnetic damper. Therefore, in order to make non-contact levitation, the restoring force in the radial direction of the bearing magnetic pole needs to be larger than the attractive force of the magnetic damper. The restoring force in the thrust direction of the bearing magnetic pole and the direction in which the rotor 17 is attracted to the damper magnetic pole 33 when shifted in the radial direction from the center of rotation are opposite forces.

ダンパ効果の発生を確認するために、図15に示すモデルを用いてCAE解析(Computer Aided Engineering)を行った。ダンパ効果のみの解析とするため、軸受磁極のスラスト方向の復元力が働かないよう回転子17側の軸受磁極をフラットにした。ラジアル方向のバネ定数は解析ソフト上で与えた。固定子側の磁極と回転子側の磁極のギャップは、スラスト方向(軸受磁極)0.025mm、ラジアル方向(ダンパ磁極)0.1mm、初期のラジアル方向変位を0.010mm、希土類永久磁石を使用したときの固定子側に発生する電流を図16、回転子17側に発生する電流を図17、回転子17のラジアル方向の変位を図18に示す。図18に示すように、回転子17の変位が減衰していることが分かる。   In order to confirm the occurrence of the damper effect, CAE analysis (Computer Aided Engineering) was performed using the model shown in FIG. In order to analyze only the damper effect, the bearing magnetic pole on the rotor 17 side is flattened so that the restoring force in the thrust direction of the bearing magnetic pole does not work. The spring constant in the radial direction was given on the analysis software. The gap between the stator-side magnetic pole and the rotor-side magnetic pole is 0.025 mm in the thrust direction (bearing magnetic pole), 0.1 mm in the radial direction (damper magnetic pole), 0.010 mm in the initial radial direction displacement, and a rare earth permanent magnet is used. FIG. 16 shows the current generated on the stator side at this time, FIG. 17 shows the current generated on the rotor 17 side, and FIG. 18 shows the radial displacement of the rotor 17. As shown in FIG. 18, it can be seen that the displacement of the rotor 17 is attenuated.

次に、軸受磁極の復元力とダンパ磁極の吸引力を定式化する。図14に示すように、複数ある磁歯を2つの磁歯としてモデル化する。第9磁歯61の断面積をS,第10磁歯62の断面積をS,ダンパ磁極33(磁歯)の面積をS、電磁石巻線32の巻数をN、巻線に流す電流をI、第9磁歯61及び第10磁歯62と回転子17とのギャップをg、ダンパ磁極33と回転子17の軸受磁極11とのラジアル方向のギャップをgとすると、磁路の磁束Φは(数33) Next, the restoring force of the bearing magnetic pole and the attractive force of the damper magnetic pole are formulated. As shown in FIG. 14, a plurality of magnetic teeth are modeled as two magnetic teeth. The cross-sectional area of the ninth magnetic tooth 61 is S 1 , the cross-sectional area of the tenth magnetic tooth 62 is S 2 , the area of the damper magnetic pole 33 (magnetic tooth) is S, the number of turns of the electromagnet winding 32 is N, and the current passed through the winding , I 3 , the gap between the ninth magnetic tooth 61 and the tenth magnetic tooth 62 and the rotor 17 is g 3 , and the radial gap between the damper magnetic pole 33 and the bearing magnetic pole 11 of the rotor 17 is g. Magnetic flux Φ is (Expression 33)

Figure 0004994047
にて表される。
Figure 0004994047
It is represented by

断面積S,Sはラジアル方向の変位xの関数なので、磁束Φを変位xで微分すると(数34) Since the sectional areas S 1 and S 2 are functions of the radial displacement x, the magnetic flux Φ is differentiated by the displacement x (Equation 34).

Figure 0004994047
にて表される。
Figure 0004994047
It is represented by

第9磁歯61の内径をr、外径をr、第10磁歯62の内径をr、外径をrとする。図19に示すように外径rを半径とした円と半径rの円をラジアル方向に変位x移動させたときの元の半径rの円との交点で回転中心における角度をαとし、第9磁歯61、第10磁歯62の幅は等しくrgとすると、微小区間dθの面積及び面積の変位xの微分は(数35) The inner diameter of the ninth magnetic tooth 61 is r 1 , the outer diameter is r 2 , the inner diameter of the tenth magnetic tooth 62 is r 3 , and the outer diameter is r 4 . As shown in FIG. 19, the angle at the center of rotation is α at the intersection of the circle having the radius of outer diameter r 4 and the circle of radius r 4 displaced x in the radial direction and the original circle of radius r 4. If the widths of the ninth magnetic tooth 61 and the tenth magnetic tooth 62 are equal to rg, the differential of the area of the minute section dθ and the displacement x of the area is given by

Figure 0004994047
にて表すことができる。
(数34),(数35)より、(数36)
Figure 0004994047
Can be expressed as
From (Expression 34) and (Expression 35), (Expression 36)

Figure 0004994047
と表すことができる。
Figure 0004994047
It can be expressed as.

変位xに対する復元力F1は(数37)   The restoring force F1 with respect to the displacement x is (Expression 37)

Figure 0004994047
にて表すことができる。
Figure 0004994047
Can be expressed as

また、角度αからπradまでの範囲では、微小区間dθの面積及び面積の変位xの微分は(数38)   Further, in the range from the angle α to π rad, the differential of the area of the minute section dθ and the displacement x of the area is (Equation 38).

Figure 0004994047
と表すことができる。
Figure 0004994047
It can be expressed as.

この区間での変位xに対する復元力F2は(数39)   The restoring force F2 with respect to the displacement x in this section is (Equation 39)

Figure 0004994047
と表すことができる。
Figure 0004994047
It can be expressed as.

また、磁気ダンパの変位xに対する吸引力Fd3は(数40),(数41)より(数42) The suction force Fd3 x is (number 40) relative to the displacement x of the magnetic damper (number 41) from the equation (42)

Figure 0004994047
Figure 0004994047

Figure 0004994047
Figure 0004994047

Figure 0004994047
と表すことができる。
Figure 0004994047
It can be expressed as.

したがって、軸受磁極の復元力をダンパ磁極の吸引力よりも大きくするためには、(数43)   Therefore, in order to make the restoring force of the bearing magnetic pole larger than the attractive force of the damper magnetic pole, (Equation 43)

Figure 0004994047
の条件を満たす必要がある。
Figure 0004994047
It is necessary to satisfy the conditions.

図20は本実施形態4の磁気軸受で構成された磁気軸受装置の例を示す図である。図20に示すように、工具16に近い方(フロント側)の磁気軸受に本実施形態4の磁気軸受を設置し、工具16から遠い方(リヤ側)の磁気軸受は実施形態1の永久磁石を使用したラジアル軸受で構成している。   FIG. 20 is a diagram showing an example of a magnetic bearing device constituted by the magnetic bearing of the fourth embodiment. As shown in FIG. 20, the magnetic bearing of the fourth embodiment is installed on the magnetic bearing closer to the tool 16 (front side), and the magnetic bearing farther from the tool 16 (rear side) is the permanent magnet of the first embodiment. It consists of a radial bearing using

次に、本実施形態4の具体的な設計例を示す。図14に示す磁極A面の複数の磁歯のうち最小の磁歯の幅をrg=0.4mm、回転子17の回転中心からそれぞれ内径r=9.5mm、外径r=9.9mm、内径r=10.3mm、外径r=10.7mm、磁極A面と回転子17とのスラスト方向のギャップをg=0.050mm、磁極B面と固定子の中心からの半径をR=12.4mm、磁極B面と回転子17のラジアル方向のギャップをg=0.1mm、回転子17のラジアル方向の変位をx=0.05mm、スラスト軸まわりの回転角度をθとするとき、ダンパ磁極33(磁歯)のスラスト方向の高さhを変化させたときの(数43)の計算結果を図21に示す。(数43)の右辺>左辺となっているダンパ磁極33のスラスト方向の高さで条件を満たしている。 Next, a specific design example of the fourth embodiment will be shown. Of the plurality of magnetic teeth on the magnetic pole A surface shown in FIG. 14, the width of the smallest magnetic tooth is rg = 0.4 mm, the inner diameter r 1 = 9.5 mm and the outer diameter r 2 = 9. 9 mm, inner diameter r 3 = 10.3 mm, outer diameter r 4 = 10.7 mm, the gap in the thrust direction between the magnetic pole A surface and the rotor 17 is g 3 = 0.050 mm, from the magnetic pole B surface and the center of the stator The radius is R = 12.4 mm, the radial gap between the magnetic pole B surface and the rotor 17 is g = 0.1 mm, the radial displacement of the rotor 17 is x = 0.05 mm, and the rotation angle about the thrust axis is θ. FIG. 21 shows the calculation result of (Equation 43) when the height h of the damper magnetic pole 33 (magnetic tooth) in the thrust direction is changed. The condition is satisfied by the height in the thrust direction of the damper magnetic pole 33 in which the right side of (Equation 43)> the left side.

(実施形態5)
図22は本発明の実施形態5における磁気軸受装置を示す構造図である。本実施形態5は実施形態4の磁気軸受の電磁石巻線を永久磁石にしたものである。第9磁歯61の断面積をS,第10磁歯62の断面積をS,ダンパ磁極37の面積をS、永久磁石の磁路方向の長さをlp、永久磁石のラジアル方向の幅をre、永久磁石の外径をRe、永久磁石の保持力をHc、永久磁石の断面積をS、第9磁歯61及び第10磁歯62と回転子17とのギャップをg、ダンパ磁極37と回転子17とのギャップをgとすると、磁路の磁束Φは(数44)
(Embodiment 5)
FIG. 22 is a structural diagram showing a magnetic bearing device according to Embodiment 5 of the present invention. In the fifth embodiment, the electromagnet winding of the magnetic bearing of the fourth embodiment is a permanent magnet. The cross-sectional area of the ninth magnetic tooth 61 is S 1 , the cross-sectional area of the tenth magnetic tooth 62 is S 2 , the area of the damper magnetic pole 37 is S, the length of the permanent magnet in the magnetic path direction is lp, and the radial direction of the permanent magnet is The width is re, the outer diameter of the permanent magnet is Re, the holding force of the permanent magnet is Hc, the sectional area of the permanent magnet is S 6 , and the gap between the ninth magnetic tooth 61 and the tenth magnetic tooth 62 and the rotor 17 is g 3. When the gap between the damper magnetic pole 37 and the rotor 17 is g, the magnetic flux Φ of the magnetic path is (Equation 44)

Figure 0004994047
で表すことができる。
ここで、永久磁石の断面積Sは(数45)
Figure 0004994047
Can be expressed as
Here, the cross-sectional area S 6 of the permanent magnets (number 45)

Figure 0004994047
にて表す。
Figure 0004994047
Represented by

断面積S,Sはラジアル方向の変位xの関数なので、磁束Φを変位xで微分すると(数46) Since the sectional areas S 1 and S 2 are functions of the displacement x in the radial direction, the magnetic flux Φ is differentiated by the displacement x (Equation 46)

Figure 0004994047
となる。
(数35),(数45)より、(数47)
Figure 0004994047
It becomes.
From (Equation 35) and (Equation 45), (Equation 47)

Figure 0004994047
と表すことができる。
Figure 0004994047
It can be expressed as.

したがって、変位xに対する復元力F1は(数48)   Therefore, the restoring force F1 with respect to the displacement x is (Formula 48).

Figure 0004994047
と表すことができる。
Figure 0004994047
It can be expressed as.

また、角度αからπradまでの範囲における変位xに対する復元力F2は(数49)   Further, the restoring force F2 with respect to the displacement x in the range from the angle α to π rad is (Equation 49).

Figure 0004994047
と表すことができる。
Figure 0004994047
It can be expressed as.

また、磁気ダンパの吸引力は(数50)   Also, the attractive force of the magnetic damper is (Equation 50)

Figure 0004994047
と表すことができる。
(数41)より、磁気ダンパの吸引力によるラジアル方向の成分は(数51)
Figure 0004994047
It can be expressed as.
From (Equation 41), the radial component due to the attractive force of the magnetic damper is (Equation 51).

Figure 0004994047
と表すことができる。
Figure 0004994047
It can be expressed as.

したがって、軸受磁極によるラジアル方向の復元力を磁気ダンパの吸引力よりも大きくするためには、(数52)   Therefore, in order to make the radial restoring force by the bearing magnetic pole larger than the attractive force of the magnetic damper, (Equation 52)

Figure 0004994047
の条件を満たす必要がある。
Figure 0004994047
It is necessary to satisfy the conditions.

また、図24に示すように、ダンパ磁極の磁極D面を回転子の回転軸側に配置しても同様の効果が得られる。   As shown in FIG. 24, the same effect can be obtained even when the magnetic pole D surface of the damper magnetic pole is arranged on the rotating shaft side of the rotor.

次に、本実施形態5の具体的な設計例を示す。図22に示す磁極A面の複数の磁歯のうち最小の磁歯の幅をrg=0.4mm、回転子17の回転中心からそれぞれ内径r=9.5mm、外径r=9.9mm、内径r=10.3mm、外径r=10.7mm、磁極A面と回転子17とのスラスト方向のギャップをg=0.025mm、磁極B面の固定子の中心からの半径をR=12.4mm、磁極B面と回転子17のラジアル方向のギャップをg=0.1mm、永久磁石の磁路方向の長さをlp=3mm、永久磁石のラジアル方向の幅をre=1.3mm、外径をRe=15mm、回転子17のラジアル方向の変位をx=0.05mm、スラスト軸まわりの回転角度をθとするとき、ダンパ磁極37(磁歯)のスラスト方向の高さhを変化させたときの(数52)の計算結果を図23に示す。(数52)の右辺>左辺となっているダンパ磁極37のスラスト方向の高さで条件を満たしている。 Next, a specific design example of the fifth embodiment will be shown. The minimum magnetic tooth width among the plurality of magnetic teeth on the magnetic pole A surface shown in FIG. 22 is rg = 0.4 mm, the inner diameter r 1 = 9.5 mm from the rotation center of the rotor 17, and the outer diameter r 2 = 9. 9 mm, inner diameter r 3 = 10.3 mm, outer diameter r 4 = 10.7 mm, the gap in the thrust direction between the magnetic pole A surface and the rotor 17 is g 3 = 0.025 mm, from the center of the stator on the magnetic pole B surface The radius is R = 12.4 mm, the radial gap between the magnetic pole B surface and the rotor 17 is g = 0.1 mm, the length of the permanent magnet in the magnetic path direction is lp = 3 mm, and the radial width of the permanent magnet is re. = 1.3 mm, outer diameter Re = 15 mm, radial displacement of the rotor 17 is x = 0.05 mm, and the rotation angle about the thrust axis is θ, the damper magnetic pole 37 (magnetic tooth) in the thrust direction Calculation result of (Formula 52) when height h is changed It is shown in Figure 23. The condition is satisfied by the height in the thrust direction of the damper magnetic pole 37 in which the right side of (Expression 52)> the left side.

本発明に係る磁気軸受装置は、回転子に加わる外乱の大きさに応じてダンパ効果を増大させることができるため、回転子に加わる外乱が大きく変化する工作機械用として有用である。   Since the magnetic bearing device according to the present invention can increase the damper effect according to the magnitude of the disturbance applied to the rotor, it is useful for machine tools in which the disturbance applied to the rotor changes greatly.

本発明の実施形態1における磁気軸受装置を示す構造図1 is a structural diagram showing a magnetic bearing device according to a first embodiment of the present invention. 本実施形態1におけるラジアルスラスト軸受の構造を示す図The figure which shows the structure of the radial thrust bearing in this Embodiment 1. 本実施形態1における変位xに対する距離rθと角度α1の説明図Explanatory drawing of distance r (theta) and angle (alpha) 1 with respect to the displacement x in this Embodiment 1. FIG. 本実施形態1における変位xに対する微小面積dSの説明図Explanatory drawing of micro area dS with respect to displacement x in this Embodiment 1. 本実施形態1におけるラジアル軸受の構造を示す図The figure which shows the structure of the radial bearing in this Embodiment 1. 本実施形態1における微小面積dSの説明図Illustration of small area dS 5 in the embodiment 1 本実施形態1における磁気ダンパの構造を示す図The figure which shows the structure of the magnetic damper in this Embodiment 1. 本実施形態1における磁気軸受の計算結果を示す図The figure which shows the calculation result of the magnetic bearing in this Embodiment 1. 本発明の実施形態2における磁気軸受装置を示す構造図Structural drawing showing a magnetic bearing device in Embodiment 2 of the present invention 本実施形態2における磁気ダンパの構造を示す図The figure which shows the structure of the magnetic damper in this Embodiment 2. 本実施形態2における磁気軸受の計算結果を示す図The figure which shows the calculation result of the magnetic bearing in this Embodiment 2. 本発明の実施形態3における磁気軸受装置を示す構造図Structural drawing showing a magnetic bearing device in Embodiment 3 of the present invention 本実施形態3における磁気軸受の計算結果を示す図The figure which shows the calculation result of the magnetic bearing in this Embodiment 3. 本発明の実施形態4における磁気軸受の構造図Structural diagram of magnetic bearing in embodiment 4 of the present invention 本実施形態4における磁気軸受の解析モデルを示す図The figure which shows the analysis model of the magnetic bearing in this Embodiment 4. 本実施形態4における磁気軸受の解析結果(固定子側の電流)を示す図The figure which shows the analysis result (the electric current of the stator side) of the magnetic bearing in this Embodiment 4. 本実施形態4における磁気軸受の解析結果(回転子側の電流)を示す図The figure which shows the analysis result (current on the rotor side) of the magnetic bearing in this Embodiment 4. 本実施形態4における磁気軸受の解析結果(ラジアル方向の変位)を示す図The figure which shows the analysis result (displacement of radial direction) of the magnetic bearing in this Embodiment 4. 本実施形態4における変位xに対する角度αの説明図Explanatory drawing of angle (alpha) with respect to the displacement x in this Embodiment 4. 本実施形態4の磁気軸受で構成された磁気軸受装置の例を示す図The figure which shows the example of the magnetic bearing apparatus comprised with the magnetic bearing of this Embodiment 4. 本実施形態4における磁気軸受の計算結果を示す図The figure which shows the calculation result of the magnetic bearing in this Embodiment 4. 本発明の実施形態5における磁気軸受装置を示す構造図Structural diagram showing a magnetic bearing device according to Embodiment 5 of the present invention 本実施形態5における磁気軸受の計算結果を示す図The figure which shows the calculation result of the magnetic bearing in this Embodiment 5. 本実施形態5における別の磁気軸受の構造を示す図The figure which shows the structure of another magnetic bearing in this Embodiment 5. 従来の磁気軸受装置を示す図A diagram showing a conventional magnetic bearing device

符号の説明Explanation of symbols

1,3,5,7,25,27,31,35 固定子側の軸受磁極
2,4,21,26,28,32 電磁石巻線
6,8,10,36 永久磁石
9,20,33,37 固定子側のダンパ磁極
11,12 回転子側の軸受磁極
13,14 変位センサ
15 アクチュエータ
16 工具
17 回転子
19 ケーシング
51 第1磁歯
52 第2磁歯
53 第3磁歯
54 第4磁歯
55 第5磁歯
56 第6磁歯
57 第7磁歯
58 第8磁歯
61 第9磁歯
62 第10磁歯
1, 3, 5, 7, 25, 27, 31, 35 Stator-side bearing magnetic poles 2, 4, 21, 26, 28, 32 Electromagnet windings 6, 8, 10, 36 Permanent magnets 9, 20, 33, 37 Damper magnetic poles 11 and 12 on the stator side Bearing magnetic poles 13 and 14 on the rotor side Displacement sensor 15 Actuator 16 Tool 17 Rotor 19 Casing 51 First magnetic teeth 52 Second magnetic teeth 53 Third magnetic teeth 54 Fourth magnetic teeth 55 5th magnetic tooth 56 6th magnetic tooth 57 7th magnetic tooth 58 8th magnetic tooth 61 9th magnetic tooth 62 10th magnetic tooth

Claims (2)

固定子側と回転子側の第1軸受磁極を、空隙を介してスラスト方向に対向させ、前記空隙に面するそれぞれの第1軸受磁極に前記回転子の回転中心を中心とする同心円状に複数の溝を有し、前記固定子側で第1軸受磁極の溝の少なくとも1つに電磁石巻線を設置することにより前記固定子と前記回転子とに磁気回路を形成したラジアルスラスト軸受と、
前記固定子側と前記回転子側の第2軸受磁極を、空隙を介してスラスト方向に対向させ、前記空隙に面するそれぞれの第2軸受磁極に前記回転子の回転中心を中心とする同心円状に複数の溝を有し、前記固定子側で第2軸受磁極の溝の少なくとも1つに永久磁石を設置することにより前記固定子と前記回転子とに磁気回路を形成したラジアル軸受と、
前記固定子側のダンパ磁極としてラジアル方向に空隙を介して前記回転子に対向させ、前記ダンパ磁極に有する溝に永久磁石を設置することにより、前記固定子と前記回転子とに磁気回路を形成した磁気ダンパと、により構成するとともに、
前記ラジアルスラスト軸受における複数の磁極歯のうち最小の磁極歯の幅をrg、前記複数ある磁極歯を4つの磁極歯としてモデル化して、回転子の回転中心からそれぞれの磁極歯が内径rf,外径rf,幅rg、内径rf,外径rf,幅rg、内径rf,外径rf,幅rg、内径rf,外径rf,幅rg、前記ラジアルスラスト軸受で前記回転子と前記固定子とのスラスト方向のギャップをg、電磁石巻線の巻線に流す電流をI、前記巻線の巻き数をNとし、
前記ラジアル軸受における複数の磁極歯のうち最小の磁極歯の幅をrg、前記複数ある磁極歯を4つの磁極歯としてモデル化して、前記回転子の回転中心からそれぞれの磁極歯が内径rr,外径rr,幅rg、内径rr,外径rr,幅rg、内径rr,外径rr,幅rg、内径rr,外径rr,幅rg、前記ラジアル軸受で前記回転子と前記固定子とのスラスト方向のギャップをg、永久磁石の磁気回路方向の長さをlp、前記永久磁石の内径をRe、前記永久磁石のスラスト方向の高さをre、前記永久磁石の保持力をHcとし、
前記磁気ダンパのダンパ磁極と前記固定子の中心からの半径をR、前記ダンパ磁極と前記回転子のラジアル方向のギャップをg、前記ダンパ磁極のスラスト方向の高さをh、前記永久磁石の磁気回路方向の長さをlp、前記永久磁石のラジアル方向の幅をre、前記永久磁石の外径をRe、前記永久磁石の保持力をHcとし、
前記回転子のラジアル方向の変位をx、前記外径rfを半径とした円と該半径rfの円をラジアル方向に前記変位x移動させたときの元の半径rfの円との交点で回転中心における角度をα、前記外径rrを半径とした円と該半径rrの円をラジアル方向に前記変位x移動させたときの元の半径rrの円との交点で回転中心における角度をα、スラスト軸まわりの回転角度をθ、前記ラジアルスラスト軸受の設置数をm、前記ラジアル軸受の設置数をn、前記磁気ダンパの設置数をkとするとき、(数1)
Figure 0004994047
を満たすことを特徴とする磁気軸受装置。
A plurality of first bearing magnetic poles on the stator side and the rotor side are opposed to each other in the thrust direction through a gap, and each of the first bearing magnetic poles facing the gap is concentrically centered on the rotation center of the rotor. A radial thrust bearing in which a magnetic circuit is formed in the stator and the rotor by installing an electromagnetic winding in at least one of the grooves of the first bearing magnetic pole on the stator side,
The second bearing magnetic poles on the stator side and the rotor side are opposed to each other in the thrust direction through a gap, and each second bearing magnetic pole facing the gap has a concentric shape centered on the rotation center of the rotor. A radial bearing in which a magnetic circuit is formed in the stator and the rotor by installing a permanent magnet in at least one of the grooves of the second bearing magnetic pole on the stator side,
A magnetic circuit is formed between the stator and the rotor by placing a permanent magnet in a groove provided in the damper magnetic pole so as to face the rotor via a gap in the radial direction as a damper magnetic pole on the stator side. And a magnetic damper
The minimum magnetic pole tooth width of the plurality of magnetic pole teeth in the radial thrust bearing is modeled as rg 1 , and the plurality of magnetic pole teeth are modeled as four magnetic pole teeth, and each magnetic pole tooth has an inner diameter rf 1 from the rotation center of the rotor. , Outer diameter rf 2 , width rg 1 , inner diameter rf 3 , outer diameter rf 4 , width rg 1 , inner diameter rf 5 , outer diameter rf 6 , width rg 1 , inner diameter rf 7 , outer diameter rf 8 , width rg 1 , In the radial thrust bearing, the gap in the thrust direction between the rotor and the stator is g 1 , the current flowing through the winding of the electromagnetic winding is I 1 , and the number of turns of the winding is N 1 .
The minimum magnetic pole tooth width of the plurality of magnetic pole teeth in the radial bearing is modeled as rg 2 , and the plurality of magnetic pole teeth are modeled as four magnetic pole teeth, and each magnetic pole tooth has an inner diameter rr 1 from the rotation center of the rotor. , Outer diameter rr 2 , width rg 2 , inner diameter rr 3 , outer diameter rr 4 , width rg 2 , inner diameter rr 5 , outer diameter rr 6 , width rg 2 , inner diameter rr 7 , outer diameter rr 8 , width rg 2 , In the radial bearing, the gap in the thrust direction between the rotor and the stator is g 2 , the length of the permanent magnet in the magnetic circuit direction is lp 2 , the inner diameter of the permanent magnet is Re 2 , and the height in the thrust direction of the permanent magnet is high. Re 2 , and the holding force of the permanent magnet is Hc 2 ,
The radius from the center of the damper magnetic pole and the stator of the magnetic damper is R 0 , the radial gap between the damper magnetic pole and the rotor is g 0 , the height of the damper magnetic pole in the thrust direction is h 0 , and the permanent The length of the magnet in the magnetic circuit direction is lp 0 , the radial width of the permanent magnet is re 0 , the outer diameter of the permanent magnet is Re 0 , and the holding force of the permanent magnet is Hc 0 ,
The radial displacement of the rotor x, the intersection of the original circle of radius rf 8 when the outer diameter rf 8 and the circle and the circle of the radius rf 8 that the radius is the displacement x moves in the radial direction Rotate at the intersection of a circle having an angle at the rotation center α 1 and a radius of the outer diameter rr 8 and a circle of the radius rr 8 and the original radius rr 8 when the circle of the radius rr 8 is moved by the displacement x in the radial direction. When the angle at the center is α 2 , the rotational angle around the thrust axis is θ, the number of radial thrust bearings is m, the number of radial bearings is n, and the number of magnetic dampers is k, (Equation 1 )
Figure 0004994047
Magnetic bearing device you and satisfies the.
前記電磁石巻線に流す電流を変化させることによって、軸受剛性,ダンピング特性を調
整することを特徴とする請求項1記載の磁気軸受装置。
It said electromagnetic by varying the current applied to the Ishinomaki Line, bearing rigidity, the magnetic bearing device according to claim 1 Symbol mounting and adjusting the damping characteristics.
JP2007005521A 2007-01-15 2007-01-15 Magnetic bearing device Expired - Fee Related JP4994047B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007005521A JP4994047B2 (en) 2007-01-15 2007-01-15 Magnetic bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007005521A JP4994047B2 (en) 2007-01-15 2007-01-15 Magnetic bearing device

Publications (2)

Publication Number Publication Date
JP2008169965A JP2008169965A (en) 2008-07-24
JP4994047B2 true JP4994047B2 (en) 2012-08-08

Family

ID=39698242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007005521A Expired - Fee Related JP4994047B2 (en) 2007-01-15 2007-01-15 Magnetic bearing device

Country Status (1)

Country Link
JP (1) JP4994047B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5762999B2 (en) * 2012-03-09 2015-08-12 株式会社東芝 Magnetic levitation device
JP6616232B2 (en) 2016-04-25 2019-12-04 ファナック株式会社 Rotating electric machine having stator core and machine tool provided with the same
CN111022498B (en) * 2019-12-31 2023-09-29 淮阴工学院 Radial winding-free hybrid magnetic bearing
CN111173838B (en) * 2020-01-17 2023-05-26 淮阴工学院 Radial uncoupled three-degree-of-freedom direct current hybrid magnetic bearing
CN114857170B (en) * 2022-04-19 2023-03-24 华中科技大学 Axial magnetic bearing structure of magnetic suspension bearing

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5226293B2 (en) * 1973-07-11 1977-07-13
JPS5226578B2 (en) * 1974-02-08 1977-07-14
JPS597858B2 (en) * 1977-06-03 1984-02-21 株式会社日立製作所 Eddy current damping device
JPS5983828A (en) * 1982-11-02 1984-05-15 Seiko Instr & Electronics Ltd Magnetic bearing
JPH056419Y2 (en) * 1988-12-20 1993-02-18
JP3979452B2 (en) * 1997-04-18 2007-09-19 株式会社荏原製作所 Damper device

Also Published As

Publication number Publication date
JP2008169965A (en) 2008-07-24

Similar Documents

Publication Publication Date Title
JP4920687B2 (en) Magnetic levitation motor and pump
JP4934140B2 (en) Magnetic levitation motor and pump
JP4616122B2 (en) Magnetic bearing
JP4994047B2 (en) Magnetic bearing device
US9559565B2 (en) Homopolar permanent-magnet-biased action magnetic bearing with an integrated rotational speed sensor
WO2003073586A1 (en) Three axis magnetic bearing having permanent magnets
CN100468926C (en) Damping linear electric machine for electromagnetic vibration damping
JP2007120635A (en) Hybrid-type magnetic bearing
EP3314618B1 (en) A magnetic actuator for a magnetic suspension system
JP2017106899A (en) Device for detecting position of rotator shaft in axial direction and application of the device to rotary machine
Tezuka et al. Design and simulation of a five degrees of freedom active control magnetic levitated motor
WO2001023768A1 (en) Thrust magnetic bearing
US9683601B2 (en) Generating radial electromagnetic forces
Asama et al. Evaluation of magnetic suspension performance in a multi-consequent-pole bearingless motor
JP2013050172A (en) Electromagnetic suspension
Baumgartner et al. Novel high-speed, Lorentz-type, slotless self-bearing motor
KR101067025B1 (en) Toroidally-wound self-bearing brushless DC motor
JP4889350B2 (en) Magnetic bearing device
JPS6146683B2 (en)
WO2013143457A1 (en) Ampere-force radial electromagnetic bearing and composite electromagnetic bearing formed using same
US20220336133A1 (en) A magnetic actuator for a magnetic suspension system
JP2004316756A (en) Five-axis control magnetic bearing
JP2005076792A (en) Magnetic bearing device
Han et al. Modeling and analysis of coupling performance of dynamic stiffness models for a novel combined radial-axial hybrid magnetic bearing
Heya et al. Development of triaxial active control magnetic bearing with asymmetric structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091117

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20100917

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120410

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120508

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees