JP4992782B2 - Control device for variable valve mechanism - Google Patents

Control device for variable valve mechanism Download PDF

Info

Publication number
JP4992782B2
JP4992782B2 JP2008076095A JP2008076095A JP4992782B2 JP 4992782 B2 JP4992782 B2 JP 4992782B2 JP 2008076095 A JP2008076095 A JP 2008076095A JP 2008076095 A JP2008076095 A JP 2008076095A JP 4992782 B2 JP4992782 B2 JP 4992782B2
Authority
JP
Japan
Prior art keywords
variable valve
valve mechanism
valve
fuel ratio
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008076095A
Other languages
Japanese (ja)
Other versions
JP2009228588A (en
Inventor
敬 川辺
勝彦 宮本
隆 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2008076095A priority Critical patent/JP4992782B2/en
Publication of JP2009228588A publication Critical patent/JP2009228588A/en
Application granted granted Critical
Publication of JP4992782B2 publication Critical patent/JP4992782B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Electrical Control Of Ignition Timing (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

本発明は、内燃機関の吸気弁又は排気弁の作動タイミングを変更可能な可変動弁機構の制御装置に関し、特に冷態始動直後に吸気弁と排気弁とのバルブオーバラップを変更するようにした、可変動弁機構の制御装置に関する。   The present invention relates to a control device for a variable valve mechanism that can change the operation timing of an intake valve or an exhaust valve of an internal combustion engine, and more particularly, to change a valve overlap between an intake valve and an exhaust valve immediately after a cold start. The present invention relates to a control device for a variable valve mechanism.

一般に、内燃機関(エンジン)には排気ガス中のHC等を低減すべく、排気通路の途中には三元触媒等からなる排気浄化触媒(以下、単に触媒という)が設けられている。しかし、触媒は活性化温度に達するまではHC等の排ガス成分を十分に浄化することができないため、冷態始動時等にはHC等の浄化効率が低下する。
このため、冷態始動時又は冷態始動直後(以下、まとめて、冷態始動時という)は触媒の温度を早期に活性化温度まで上昇させるために点火時期をリタードするとともに、空燃比を理論空燃比(ストイキ)よりも僅かにリーンにしたいわゆるスライトリーンモードで運転するような技術が知られている。なお、スライトリーンモードでは燃焼安定性が高く健全な燃焼を得ることができるので、点火時期を大幅にリタードさせることが可能となり、これにより、排気通路に比較的高温の排ガスを排出することができ、触媒の早期昇温を図ることができるのである。
In general, an internal combustion engine (engine) is provided with an exhaust purification catalyst (hereinafter simply referred to as a catalyst) composed of a three-way catalyst or the like in the middle of an exhaust passage in order to reduce HC or the like in exhaust gas. However, since the exhaust gas component such as HC cannot be sufficiently purified until the catalyst reaches the activation temperature, the purification efficiency of HC or the like is reduced at the time of cold start or the like.
For this reason, at the time of cold start or immediately after the cold start (hereinafter collectively referred to as cold start), the ignition timing is retarded in order to raise the catalyst temperature to the activation temperature early, and the air-fuel ratio is calculated theoretically. There is known a technique of operating in a so-called light lean mode in which the air / fuel ratio (stoichiometric) is slightly leaner than that. In the light lean mode, combustion stability is high and healthy combustion can be obtained, so that the ignition timing can be significantly retarded, so that a relatively high temperature exhaust gas can be discharged into the exhaust passage. Thus, the catalyst can be raised in temperature early.

一方、排気行程とその後の吸気行程との間において排気弁と吸気弁との開弁時期のオーバラップ期間(以下、バルブオーバラップ又はVOLと記す)を設定すると、いわゆる内部EGRが生じ、HC排出量が低減されることが知られている。これは、VOLを設定することにより高温となった既燃ガス(排ガス)の一部が吸気ポートに吹き返し、この既燃ガスにより吸気ポート壁に付着して液化した燃料の気化が促進されるため、及び排気行程終期にシリンダ壁から引き剥がされて集中的に発生する未燃燃料が排気されずに吸気ポートへ吹き返されるためと考えられる。   On the other hand, if an overlap period (hereinafter referred to as valve overlap or VOL) of the valve opening timing between the exhaust valve and the intake valve is set between the exhaust stroke and the subsequent intake stroke, so-called internal EGR occurs and HC emission occurs. It is known that the amount is reduced. This is because part of the burned gas (exhaust gas) that has become hot by setting the VOL blows back to the intake port, and this burnt gas promotes vaporization of the liquefied fuel that adheres to the intake port wall. It is considered that unburned fuel that is peeled off from the cylinder wall at the end of the exhaust stroke and concentratedly blows back to the intake port without being exhausted.

また、近年では吸気弁及び排気弁の開閉タイミング(バルブタイミング)をそれぞれ独立に制御する可変動弁機構が広く知られており、冷態始動時には可変動弁機構を作動させてバルブオーバラップを拡大することにより内部EGRを促進し、さらなるHC低減を図ることができる。
例えば、下記特許文献1においては、エンジンの冷却水温又は吸気弁の温度に基づいてエンジン始動時のバルブオーバラップを設定するようにした技術が開示されている。より詳細には、冷却水温又は吸気弁の温度が低いほどオーバラップ期間を長く設定する技術が開示されている。このため、特許文献1の技術では、結果的に冷態始動時にはまずバルブオーバラップを大きく設定し、その後バルブオーバラップを徐々に低減することとなる。
特開2006−329144号公報
In recent years, a variable valve mechanism that controls the opening and closing timing (valve timing) of the intake valve and the exhaust valve independently is widely known. During cold start, the variable valve mechanism is operated to expand the valve overlap. By doing so, internal EGR can be promoted and further HC reduction can be achieved.
For example, Patent Document 1 below discloses a technique in which a valve overlap at the time of starting the engine is set based on the engine coolant temperature or the intake valve temperature. More specifically, a technique is disclosed in which the overlap period is set longer as the coolant temperature or the intake valve temperature is lower. For this reason, in the technique of Patent Document 1, as a result, at the time of cold start, a large valve overlap is set first, and then the valve overlap is gradually reduced.
JP 2006-329144 A

しかしながら、このような可変動弁機構を備えたエンジンでは、冷態始動直後の過渡運転時(即ち、VOLの変更時)には筒内の燃焼が不安定となり失火を招くおそれがあるほか、VOLを大きくしすぎると吸気に占める内部EGR量が過大となり、やはり燃焼が不安定となり失火を招くおそれがある。
本発明は、このような課題に鑑み創案されたもので、直接燃焼状態を示すパラメータを用いて、安定した燃焼状態を維持しながら冷態始動時のバルブオーバラップを極力大きく設定して、冷態始動のHC排出量を大幅に低減できるようにした、可変動弁機構の制御装置を提供することを目的とする。
However, in an engine equipped with such a variable valve mechanism, in-cylinder combustion may become unstable during a transient operation immediately after cold start (that is, when VOL is changed), leading to misfire, and VOL If the value is too large, the amount of internal EGR in the intake air becomes excessive, and the combustion may become unstable, leading to misfire.
The present invention has been devised in view of such problems, and uses a parameter indicating the direct combustion state to set a valve overlap at the time of cold start as large as possible while maintaining a stable combustion state, thereby cooling the engine. It is an object of the present invention to provide a control device for a variable valve mechanism that can greatly reduce the amount of HC discharged at the time of starting an engine.

このため、本発明の可変動弁機構の制御装置は、内燃機関の吸気弁と排気弁とのバルブオーバラップを可変制御可能な可変動弁機構と、該内燃機関の燃状態を検出する燃焼状態検出手段と、該内燃機関の冷態始動時においては、該燃焼状態検出手段から得られる燃焼変動を示す指標が所定値以下の範囲で該可変動弁機構をバルブオーバラップが最大となるように制御する制御手段とをそなえ、該制御手段は、該冷態始動時に該内燃機関の点火時期をリタードして目標空燃比を理論空燃比よりも希薄なリーン空燃比に設定してから所定時間経過したら、該冷態始動時における該可変動弁機構の制御を終了することを特徴としている(請求項1)。 Therefore, the control device of the variable valve mechanism of the present invention detects a variable controllable variable valve mechanism the valve overlap of an intake valve of an internal combustion engine and the exhaust valve, the combustion state of the internal combustion engine combustion At the time of cold start of the state detection means and the internal combustion engine, the variable valve mechanism has a maximum valve overlap when the index indicating the combustion fluctuation obtained from the combustion state detection means is within a predetermined value or less. The control means retards the ignition timing of the internal combustion engine at the cold start and sets the target air-fuel ratio to a lean air-fuel ratio that is leaner than the stoichiometric air-fuel ratio for a predetermined time. Once passed, it is characterized that you end the control of the movable variable valve mechanism during the cold state starting (claim 1).

また、本発明の可変動弁機構の制御装置は、内燃機関の吸気弁と排気弁とのバルブオーバラップを可変制御可能な可変動弁機構と、該内燃機関の燃焼状態を検出する燃焼状態検出手段と、該内燃機関の冷態始動時においては、該燃焼状態検出手段から得られる燃焼変動を示す指標が所定値以下の範囲で該可変動弁機構をバルブオーバラップが最大となるように制御する制御手段とをそなえ、該制御手段は、該所定値よりも小さい第二の所定値を超えない範囲で該可変動弁機構をバルブオーバラップが最大となるように制御し、該第二の所定値を超えた場合はその時点におけるバルブオーバラップを維持するように制御し、該所定値を超えた場合はバルブオーバラップを減少させるように制御することを特徴としている(請求項2)。
該制御手段は、該冷態始動時には、該内燃機関の点火時期をリタードするとともに、目標空燃比を理論空燃比よりも希薄なリーン空燃比に設定するのが好ましい(請求項)。
なお、ハンチングを防止する目的で、上記所定値に範囲を持たせてもよい。つまり、上記所定値が所定の下限値と所定の上限値とを有し、燃焼変動を示す指標が下限値を超えない範囲でバルブオーバラップが最大となるように該可変動弁機構の作動を拡大していき、該下限値を超えた場合には、その時点におけるバルブオーバラップを維持する。そして、このような状態においても外乱等により上限値を超えた場合には、バルブオーバラップを減少させる
The control device for a variable valve mechanism according to the present invention includes a variable valve mechanism capable of variably controlling a valve overlap between an intake valve and an exhaust valve of an internal combustion engine, and a combustion state detection for detecting a combustion state of the internal combustion engine. And when the internal combustion engine is cold started, the variable valve mechanism is controlled so that the valve overlap is maximized when the index indicating the combustion fluctuation obtained from the combustion state detecting means is within a predetermined value or less. And a control means for controlling the variable valve mechanism so that the valve overlap is maximized within a range not exceeding a second predetermined value smaller than the predetermined value. When the predetermined value is exceeded, control is performed so as to maintain the valve overlap at that time, and when the predetermined value is exceeded, control is performed so as to decrease the valve overlap (Claim 2).
The control means, at the time of cold state starting, as well as retarding the ignition timing of the internal combustion engine, it is preferable to set the target air-fuel ratio to the lean lean air-fuel ratio than the stoichiometric air-fuel ratio (claim 3).
For the purpose of preventing hunting, the predetermined value may have a range. That is, the variable valve mechanism is operated so that the valve overlap is maximized in a range where the predetermined value has a predetermined lower limit value and a predetermined upper limit value, and the index indicating combustion fluctuation does not exceed the lower limit value. If the lower limit is exceeded, the valve overlap at that point is maintained. Even in such a state, when the upper limit value is exceeded due to disturbance or the like, the valve overlap is reduced .

本発明の可変動弁機構の制御装置によれば、冷態始動時において、直接筒内の燃焼状態を示すパラメータを用いてバルブオーバラップを設定するので、失火を招くことなく極力バルブオーバラップを大きく設定できる。したがって、冷態始動時の内部EGRを増大させることができHC排出量を大幅に低減することができるという利点がある。
また、内部EGRの増大により筒内の燃焼がやや緩慢なものとなることで吸入空気量が増大し、排ガス流量増加によって触媒昇温効果を高めることができる。すなわち、内部EGRが増大すると燃焼速度が低下し、出力不足となり回転が低下する。そこで、回転を維持するべく空気量を増大させ圧縮時のガス温度を上げることで燃焼を改善している。この結果排出ガス量が増大となる。
According to the control device for a variable valve mechanism of the present invention, at the time of cold start, the valve overlap is set using a parameter directly indicating the combustion state in the cylinder, so that the valve overlap is minimized without causing misfire. Can be set larger. Therefore, there is an advantage that the internal EGR at the time of cold start can be increased and the HC emission amount can be greatly reduced.
Further, the combustion in the cylinder becomes somewhat slow due to the increase in internal EGR, so that the intake air amount increases, and the catalyst temperature rise effect can be enhanced by increasing the exhaust gas flow rate. That is, when the internal EGR increases, the combustion speed decreases, the output becomes insufficient, and the rotation decreases. Therefore, combustion is improved by increasing the amount of air to maintain rotation and increasing the gas temperature during compression. As a result, the amount of exhaust gas increases.

以下、図面により、本発明の一実施形態にかかる可変動弁機構の制御装置について説明すると、図1は本装置を備えたエンジンを示す模式図である。図中において、1はエンジン、2はエンジン1の吸気ポート4に接続された吸気通路、3はエンジンの排気ポート5に接続された排気通路である。
エンジン1のシリンダ23にはピストン19が摺動可能に収められており、このピストン19はコネクティングロッド20を介して図示しないクランクシャフトに接続されている。また、シリンダ23内の混合気に火花点火するための点火プラグ21が、燃焼室24に臨むように設けられている。
Hereinafter, a control apparatus for a variable valve mechanism according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a schematic diagram showing an engine equipped with the apparatus. In the figure, 1 is an engine, 2 is an intake passage connected to an intake port 4 of the engine 1, and 3 is an exhaust passage connected to an exhaust port 5 of the engine.
A piston 19 is slidably accommodated in the cylinder 23 of the engine 1, and the piston 19 is connected to a crankshaft (not shown) via a connecting rod 20. An ignition plug 21 for spark ignition of the air-fuel mixture in the cylinder 23 is provided so as to face the combustion chamber 24.

吸気ポート4及び排気ポート5の燃焼室24側の開口部には、吸気弁10及び排気弁11がそれぞれ備えられ、これらの吸排気弁10,11は図示しないクランクシャフトと同期して回転する吸気カムシャフト12及び排気カムシャフト13によってそれぞれ開弁駆動されるようになっている。
また、吸気側及び排気側の各動弁機構には、いずれも吸気弁10及び排気弁11の開閉時期、すなわちバルブタイミングを変更可能な公知の可変動弁機構31,32が付設されている。
An intake valve 10 and an exhaust valve 11 are respectively provided in the openings of the intake port 4 and the exhaust port 5 on the combustion chamber 24 side. These intake and exhaust valves 10 and 11 are intake air that rotates in synchronization with a crankshaft (not shown). Each of the camshaft 12 and the exhaust camshaft 13 is driven to open the valve.
Each of the valve mechanisms on the intake side and the exhaust side is provided with known variable valve mechanisms 31 and 32 that can change the opening / closing timing of the intake valve 10 and the exhaust valve 11, that is, the valve timing.

なお、可変動弁機構31,32は、少なくとも排気弁11の閉弁期間と吸気弁10の開弁期間とが重なり合うバルブオーバラップ期間を変更することができればよく、吸気側のみに設けてもよいし排気側のみに設けてもよい。ここで吸気側可変動弁機構31及び排気側可変動弁機構32は、例えばカムシャフト12,13と図示しないカムプーリとの間の位相を変更することにより、クランク角に対して吸排気弁10,11の作動を連続的に進角させたり遅角させたりすることができるように構成されている。 The variable valve mechanisms 31 and 32 need only be able to change a valve overlap period in which at least the valve closing period of the exhaust valve 11 and the valve opening period of the intake valve 10 overlap, and may be provided only on the intake side. However, it may be provided only on the exhaust side. Here the intake variable valve mechanism 31 and the exhaust variable valve mechanism 32, for example, by changing the phase between the Kamupu re not shown and cam shaft 12, intake and exhaust valves 10 relative to the crank angle , 11 can be continuously advanced or retarded.

一方、吸気通路2には、上流側から順に、吸気中から塵埃を除去するエアクリーナ6、吸入空気量を検出するエアフローセンサ8、吸入空気量を調節するスロットルバルブ7、吸気脈動を抑制するべく吸入空気を一時的に蓄えるサージタンク16、吸気ポート4に向けて燃料を噴射する燃料噴射弁(インジェクタ)14が配設されている。なお、本実施形態のスロットルバルブ7は電子制御により開閉制御されるいわゆる電子制御スロットルであるが、これに限定されるものではない。また、排気通路3上には、排気の空燃比を検出する空燃比センサ9、排気を浄化するための排気浄化触媒22が上流側から順に介装されている。   On the other hand, in the intake passage 2, in order from the upstream side, an air cleaner 6 that removes dust from the intake air, an air flow sensor 8 that detects the intake air amount, a throttle valve 7 that adjusts the intake air amount, and intake air to suppress intake pulsation. A surge tank 16 for temporarily storing air and a fuel injection valve (injector) 14 for injecting fuel toward the intake port 4 are provided. The throttle valve 7 of the present embodiment is a so-called electronically controlled throttle that is controlled to open and close by electronic control, but is not limited to this. In addition, an air-fuel ratio sensor 9 for detecting the air-fuel ratio of the exhaust and an exhaust purification catalyst 22 for purifying the exhaust are interposed in this order from the upstream side.

エアフローセンサ8及び空燃比センサ9で検出された情報は制御手段としてのコントロールユニット(ECU)15に読み込まれるようになっている。また、コントロールユニット15には、この他にも冷却水温を検出する水温センサ18、アクセルペダル26に付設されてアクセル開度を検出するアクセル開度センサ25、エンジン1の回転数を検出するためのクランク角を検出するクランク角センサ(エンジン回転数センサ)17が接続されており、ECU15では、これらの検出信号に基づいて要求吸入空気量や目標空燃比等の演算を行い、スロットルバルブ7の開度や燃料噴射量の制御、点火時期の制御を実行するようになっている。   Information detected by the air flow sensor 8 and the air-fuel ratio sensor 9 is read into a control unit (ECU) 15 as control means. In addition, the control unit 15 includes a water temperature sensor 18 that detects the coolant temperature, an accelerator opening sensor 25 that is attached to the accelerator pedal 26 to detect the accelerator opening, and detects the number of revolutions of the engine 1. A crank angle sensor (engine speed sensor) 17 for detecting the crank angle is connected, and the ECU 15 calculates a required intake air amount, a target air-fuel ratio and the like based on these detection signals, and opens the throttle valve 7. The control of the engine speed, the fuel injection amount, and the ignition timing are executed.

ところで、ECU15では上記クランク角センサ17から得られたクランク角速度に基づいて、公知の手法によりエンジン1の燃焼変動を示す指標としての燃焼変動率COV Piを算出するようになっている。なお、燃焼変動率COV Piが大きくなるほど燃焼が悪化していることを示し、燃焼変動率COV Piが小さくなるほど燃焼が安定していることを示している。ここで、燃焼変動率COV Piの算出手法について説明すると、まず、センサで筒内圧を計測し、得られた計測値からPi(図示平均有効圧)を計算する。そして、Nサイクル(例えば100サイクル)の標準偏差を求め、この標準偏差をNサイクルの平均Piで割る。そしてこれにより得られた値が燃焼変動率COV Piとなる。   Incidentally, the ECU 15 calculates the combustion fluctuation rate COV Pi as an index indicating the combustion fluctuation of the engine 1 by a known method based on the crank angular velocity obtained from the crank angle sensor 17. In addition, it has shown that combustion is getting worse, so that combustion fluctuation rate COV Pi becomes large, and it has shown that combustion is stable, so that combustion fluctuation rate COV Pi becomes small. Here, the calculation method of the combustion fluctuation rate COV Pi will be described. First, the in-cylinder pressure is measured by a sensor, and Pi (the indicated mean effective pressure) is calculated from the obtained measurement value. Then, a standard deviation of N cycles (for example, 100 cycles) is obtained, and this standard deviation is divided by an average Pi of N cycles. The value obtained thereby becomes the combustion fluctuation rate COV Pi.

なお、本実施形態ではクランク角センサ17がエンジン1の燃焼状態を検出する燃焼状態検出手段として機能するものであるが、燃焼状態検出手段は上述のものに限定されず、たとえば各気筒の点火コイルからのイオン電流を検知することにより燃焼状態を確認するようにしてもよい。この場合、イオン電流発生時間は燃焼期間に相当し、イオン電流発生時間の変動率は燃焼変動率と相関を示す。このため、このイオン電流を用いて燃焼状態を判断することができる。   In the present embodiment, the crank angle sensor 17 functions as a combustion state detection means for detecting the combustion state of the engine 1, but the combustion state detection means is not limited to the above-described one. For example, the ignition coil of each cylinder The combustion state may be confirmed by detecting the ionic current from. In this case, the ion current generation time corresponds to the combustion period, and the fluctuation rate of the ion current generation time correlates with the combustion fluctuation rate. For this reason, a combustion state can be judged using this ion current.

また、ECU15では、水温センサ18からの情報に基づいて水温が所定温度(例えば70℃)以下であると、現在の運転状態が冷態始動時と判定するようになっている。そして、冷態始動時であると判定した場合には、触媒温度を昇温させるための触媒昇温制御を実行するようになっている。
この場合、点火時期を大幅にリタードさせるとともに、空燃比を始動時のリッチな空燃比から理論空燃比(ストイキ)よりも僅かにリーンなスライトリーン空燃比(例えばA/F=15.5程度)に徐々変更するようになっている。また、これと同時に吸気側可変動弁機構31及び排気側可変動弁機構32の作動を制御して、VOLを徐々に拡大するようになっている。
Further, the ECU 15 determines that the current operating state is the cold start when the water temperature is equal to or lower than a predetermined temperature (for example, 70 ° C.) based on information from the water temperature sensor 18. And when it determines with it being at the time of a cold start, the catalyst temperature rising control for raising a catalyst temperature is performed.
In this case, the ignition timing is significantly retarded, and the air-fuel ratio is slightly leaner than the stoichiometric air-fuel ratio (stoichiometric) from the rich air-fuel ratio at the start (for example, A / F = 15.5). It is adapted to change gradually to. At the same time, the operation of the intake side variable valve mechanism 31 and the exhaust side variable valve mechanism 32 is controlled to gradually expand the VOL.

ところで、エンジン1の始動時(クランキング時)には空燃比は一旦リッチ空燃比となるが、その後は、上述したように目標空燃比は徐々にスライトリーン空燃比へ変更される。このとき、空燃比がスライトリーン空燃比よりも僅かにリッチな所定空燃比(例えばA/F=15.0程度)になるまでは、吸気側可変動弁機構31及び排気側可変動弁機構32をともに比較的VOLが小さく設定される所定の初期位相角に保持するようになっている。これは、エンジン始動時には可変動弁機構31,32を作動させるための十分な油圧が生じていないから、及び燃焼が安定しない始動直後にいきなりバルブオーバラップを大きくしてしまうと燃焼安定性をさらに悪化させるおそれがあるからである。   Incidentally, when the engine 1 is started (during cranking), the air-fuel ratio once becomes a rich air-fuel ratio, but thereafter, the target air-fuel ratio is gradually changed to a slightly lean air-fuel ratio as described above. At this time, the intake-side variable valve mechanism 31 and the exhaust-side variable valve mechanism 32 until the air-fuel ratio becomes a predetermined air-fuel ratio slightly richer than the light lean air-fuel ratio (for example, A / F = 15.0). Both are held at a predetermined initial phase angle at which the VOL is set to be relatively small. This is because, when the engine is started, sufficient hydraulic pressure to operate the variable valve mechanisms 31 and 32 is not generated, and if the valve overlap is suddenly increased immediately after the start when the combustion is not stable, the combustion stability is further increased. It is because there is a possibility of making it worse.

そして、所定空燃比に到達した後は、エンジン1の燃焼変動率COV Piをパラメータとして、VOL期間を徐々に拡大するようになっている。具体的にはクランク角センサ17から得られたクランク角速度に基づいてECUで燃焼変動率COV Piを算出し、予め設定された所定値(燃焼変動限界、又は失火限界ともいう)を超えない範囲で極力VOLが大きくなるように各可変動弁機構31,32のアクチュエータを徐々に作動させるようになっている。 After reaching the predetermined air-fuel ratio, the VOL period is gradually extended with the combustion fluctuation rate COV Pi of the engine 1 as a parameter. Specifically calculates the fluctuation rate of the combustion COV Pi by the ECU based on the crank angle velocity obtained from the crank square spine capacitors 17, exceeded a predetermined value (referred combustion variation limit, or the misfire limit) The actuators of the variable valve mechanisms 31 and 32 are gradually actuated so that the VOL becomes as large as possible within the range.

ここで、図2の横軸は排気弁の閉弁タイミング[°ATDC]を示し、縦軸は吸気弁の開弁タイミング[°BTDC]を示している。また、実線はHC排出量の特性を示しており、数字はその排出量[g/h]を示している。また、破線は燃焼変動率COV Piの特性を示しており、数字はその燃焼変動率[%]を示している。
そして、本実施形態では冷態始動時には、図2の点bから点aを目標に徐々にVOLを変更するようになっている。ここで、図2の点bは通常運転(温態時)での運転点であり、オーバラップは存在していない(ネガティブオーバラップ)。また、冷態始動時であるにもかかわらず、このような点bで運転した場合には、燃焼変動に関しては何ら問題が生じず(燃焼変動率15%以下)安定した燃焼状態を得られるもの、HC排出量が約2[g/h]と比較的高い数値となってしまう。
Here, the horizontal axis of FIG. 2 indicates the valve closing timing [° ATDC] of the exhaust valve, and the vertical axis indicates the valve opening timing [° BTDC] of the intake valve. The solid line indicates the characteristics of the HC emission amount, and the number indicates the emission amount [g / h]. Moreover, the broken line has shown the characteristic of combustion fluctuation rate COV Pi , and the number has shown the combustion fluctuation rate [%].
In this embodiment, at the time of cold start, the VOL is gradually changed from the point b to the point a in FIG. Here, the point b in FIG. 2 is an operating point in the normal operation (in the warm state), and there is no overlap (negative overlap). In addition, when operating at such a point b in spite of the cold start, there is no problem with combustion fluctuation (combustion fluctuation rate of 15% or less) and a stable combustion state can be obtained. The HC emission amount is about 2 [g / h], which is a relatively high value.

一方、点aは排気弁の閉弁時期が上死点より後の遅角側に,吸気弁の開弁時期が上死点の前で進角側であって、合計のバルブオーバラップ期間が長くなる点であり、この運転点でのHC排出量は0.4[g/h]である。
そして、本実施形態では、直接エンジン1の燃焼状態表す指標として燃焼変動率COV Piを用い、この燃焼変動率COV Piが予め設定された燃焼変動限界(本実施形態では例えば21%)を超えない範囲でHC排出量が最低となように、可変動弁機構31,32の作動を制御することにより、筒内の失火を招くことなく、バルブオーバラップ量を最大限まで設定することができる。なお、図2に示す例では、冷態始動時のHCを約20%にまで低減することができた(低減率80%)。
On the other hand, the point a is the retarded side after the exhaust valve closing timing after the top dead center, the opening timing of the intake valve is the advanced side before the top dead center, and the total valve overlap period is The HC emission amount at this operating point is 0.4 [g / h].
In this embodiment, the combustion fluctuation rate COV Pi is used as an index that directly represents the combustion state of the engine 1, and this combustion fluctuation rate COV Pi exceeds a preset combustion fluctuation limit (for example, 21% in this embodiment). as HC emissions minimum and ing with no range, by controlling the operation of the variable valve mechanism 31, 32, without causing a misfire in the cylinder, to set the valve overlap amount to a maximum it can. In the example shown in FIG. 2, the HC at the cold start could be reduced to about 20% (reduction rate 80%).

このように、本実施形態においては、冷態始動時には常に燃焼変動率COV Piを監視しながら吸気弁10と排気弁11とのバルブオーバラップが徐々に拡大するように吸気側可変動弁機構31及び排気側可変動弁機構32の作動を制御し、燃焼変動率COV Piが所定値になるとバルブオーバラップを維持、燃焼変動率COV Piが所定値を超えるとバルブオーバラップを低減するようになっている。   As described above, in the present embodiment, the intake side variable valve mechanism 31 is arranged so that the valve overlap between the intake valve 10 and the exhaust valve 11 gradually increases while constantly monitoring the combustion fluctuation rate COV Pi during the cold start. And the exhaust side variable valve mechanism 32 is controlled so that the valve overlap is maintained when the combustion fluctuation rate COV Pi reaches a predetermined value, and the valve overlap is reduced when the combustion fluctuation rate COV Pi exceeds the predetermined value. ing.

本発明の一実施形態に係る可変動弁機構の制御装置は上述のように構成されているので、その作用について図3のフローチャートを用いて説明すると以下のようになる。まず、ステップS1において、温度センサ18等の情報に基づいて冷態始動直後か否かを判定し、冷態始動時ではないと判定した場合にはNoのルートを通ってステップS2に進み、通常制御を行う。なお、通常制御とは、例えば負荷と回転数とで決まる運転領域に対応して可変動弁機構31,32の作動を制御するとともに、やはり負荷と回転数に基づいて点火時期や燃料噴射量を制御することをいう。   Since the control apparatus for a variable valve mechanism according to an embodiment of the present invention is configured as described above, its operation will be described below with reference to the flowchart of FIG. First, in step S1, it is determined whether or not it is immediately after the cold start based on the information of the temperature sensor 18 and the like. Take control. The normal control refers to, for example, controlling the operation of the variable valve mechanisms 31 and 32 corresponding to the operation range determined by the load and the rotational speed, and also adjusting the ignition timing and the fuel injection amount based on the load and the rotational speed. It means to control.

ステップS1において冷態始動直後であると判定された場合にはステップS3に進みアイドルスイッチオンか否か、つまりアイドル運転中か否かが判定される。アイドル運転ではないと判定された場合には、Noのルートを通って上述のステップS2に進み、やはり通常制御を行いリターンする。
一方、ステップS3においてアイドル運転中と判定されると、ステップS4に進み、冷態始動時の触媒昇温制御を開始するとともに、この触媒昇温制御を開始してから所定時間経過したかが判定される。なお、上記の条件に代えて、水温が所定水温まで上昇したか、という条件を適用してもよい。
If it is determined in step S1 that it is immediately after the cold start, the process proceeds to step S3, in which it is determined whether or not the idle switch is on, that is, whether or not the engine is idling. If it is determined that the engine is not idling, the process proceeds to the above-described step S2 through the route No, and the normal control is again performed and the process returns.
On the other hand, if it is determined in step S3 that the engine is idling, the process proceeds to step S4, where catalyst temperature increase control at the time of cold start is started, and whether a predetermined time has elapsed since the start of this catalyst temperature increase control is determined. Is done. Instead of the above conditions, a condition that the water temperature has risen to a predetermined water temperature may be applied.

ここで、触媒昇温制御が所定時間経過した(或いは水温が所定温度に達した)と判定されると、冷態始動時の制御が終了し(触媒昇温制御の終了判定)、Yesのルートを通ってやはりステップS2に進む。また、触媒昇温制御が所定時間経過していない(或いは水温が所定温度に達していない)場合には、次にステップS5に進み、点火時期をリタードするとともに、空燃比をスライトリーンに設定し、空燃比が所定空燃比となるまで初期位相角を保持する。 Here, when it is determined that the catalyst temperature increase control has passed a predetermined time (or the water temperature has reached a predetermined temperature), the control at the cold start is completed (catalyst temperature increase control end determination), and the Yes route After that, the process proceeds to step S2. If the catalyst temperature increase control has not elapsed for a predetermined time (or the water temperature has not reached the predetermined temperature), the process proceeds to step S5, where the ignition timing is retarded and the air-fuel ratio is set to light lean. The initial phase angle is maintained until the air / fuel ratio reaches a predetermined air / fuel ratio .

そして、ステップS6で可変動弁位相角制御用の所定時間を経過したか否かを判定し、経過していなければ、ステップS7に進み、エンジン1の燃焼変動率COV Piが所定の変動率以下か否かを判定する。そして、エンジン1の燃焼変動率COV Piが所定の変動率(燃焼変動限界)以下であれば、燃焼状態が極めて良好であるため、ステップS8で現在の可変動弁機構31,32の位相角が機構上許容される最大位相角以下か否かを判定し、最大位相角以下であればステップS9に進み、さらにバルブオーバラップが拡大するように可変動弁機構31,32の位相角を所定角度だけ変更する。また、ステップS8で最大位相角であると判定されると、そのままリターンする。 In step S6, it is determined whether or not a predetermined time for variable valve phase angle control has elapsed. If not, the process proceeds to step S7, where the combustion fluctuation rate COV Pi of the engine 1 is equal to or less than the predetermined fluctuation rate. It is determined whether or not. If the combustion fluctuation rate COV Pi of the engine 1 is equal to or less than a predetermined fluctuation rate (combustion fluctuation limit) , the combustion state is very good, and the current phase angle of the variable valve mechanisms 31 and 32 is determined in step S8. It is determined whether or not it is less than the maximum phase angle permitted by the mechanism. If it is less than or equal to the maximum phase angle, the process proceeds to step S9. Just change. If it is determined in step S8 that the phase angle is the maximum, the process returns as it is.

なお、ステップS8では吸気側可変動弁機構31及び排気側可変動弁機構32をまとめて表現しているが、吸気側可変動弁機構31と排気側可変動弁機構32とでそれぞれ最大位相角か否かを判定するようにしてもよい。そして、この場合には、吸気側可変動弁機構31に最大位相角まで余裕があれば、吸気弁の開弁タイミングを所定位相だけ進角するように指示を出力し、また、排気側可変動弁機構32に最大位相角まで余裕があれば、気弁の閉弁タイミングを所定位相だけ遅角するように指示を出力する。 In step S8, the intake-side variable valve mechanism 31 and the exhaust-side variable valve mechanism 32 are collectively represented. However, the intake-side variable valve mechanism 31 and the exhaust-side variable valve mechanism 32 each have a maximum phase angle. It may be determined whether or not. In this case, if the intake side variable valve mechanism 31 has a margin to the maximum phase angle, an instruction is output to advance the intake valve opening timing by a predetermined phase, and the exhaust side variable valve mechanism 31 if there is room up to the phase angle to the valve mechanism 32, and outputs an instruction to retard closing timing of the exhaust valves by a predetermined phase.

また、ステップS7でエンジン1の燃焼変動率COV Piが所定の変動率よりも大きいと判定された場合には、これ以上のバルブオーバラップ拡大は失火を招くおそれがあるため、ステップS10に進み、バルブオーバラップが減少するように所定位相だけ可変動弁機構31,32の位相角を低減する。なお、この場合でも現在の可変動弁機構31,32の位相角が機構上許容される最小位相角以下か否かを判定し、最小位相角以下であればリターンしてもよい。この場合、空燃比制御等の位相角制御以外の方法で失火抑制が行われる。また、判定基準を最小位相角でなく初期位相角としてもよい。 Further, if it is determined in step S7 that the combustion fluctuation rate COV Pi of the engine 1 is larger than the predetermined fluctuation rate, further expansion of the valve overlap may cause misfire, so the process proceeds to step S10. The phase angle of the variable valve mechanisms 31 and 32 is reduced by a predetermined phase so that the valve overlap is reduced. In this case as well, it may be determined whether or not the current phase angle of the variable valve mechanisms 31 and 32 is equal to or smaller than the minimum phase angle permitted by the mechanism. In this case, misfire suppression is performed by a method other than phase angle control such as air-fuel ratio control. Further, the determination criterion may be the initial phase angle instead of the minimum phase angle.

一方、上記ステップS6において、可変動弁位相角制御用の所定時間を経過したと判定された場合には、ステップS11に進み触媒昇温制御を維持したまま可変動弁機構31,32は初期位相角に変更される。ここで所定時間を設定しているのは、触媒昇温制御は点火時期をリタードさせるため、そのままの運転状態では発進時のもたつきになる恐れがあるので、これを解消するためである。 On the other hand, if it is determined in step S6 that the predetermined time for variable valve phase angle control has elapsed, the flow proceeds to step S11, and the variable valve mechanisms 31 and 32 maintain the initial temperature control while maintaining the catalyst temperature increase control. It is changed to a corner. Here are you set the predetermined time, since the catalyst temperature increase control causes the ignition timing is re Tado, since as they are operating conditions may become sluggish at the start, in order to solve this problem.

そして、このようなステップS1〜S1のルーチンを繰り返し実行することにより、失火を招かない範囲でバルブオーバラップを可能な限り大きく設定することができ触媒を早期に昇温することができるほか、HC排出量も大幅に低減することができるという利点がある。
次に、図4のタイムチャートを用いて、本装置の作用の具体例について説明すると、(a)は排気側可変動弁機構32による排気弁11の閉弁タイミングを、(b)は吸気側可変動弁機構31による吸気弁10の開弁タイミングを示している。なお、(a),(b)ともに上方が進角側、下方が遅角側である。また、(c)は排気ポート3の直後に設けられたフロント触媒22(FCC)の温度、(d)はHC排出量、(e)は空燃比、(f)は吸入空気量、(g)は点火時期、(h)はエンジン回転数の特性を示す。
Then, in addition to by repeatedly executing such steps S1~S1 1 routine, it is possible to raise the temperature of the catalyst can be set as large as possible a valve overlap to the extent that does not cause misfire early, There is an advantage that the amount of HC emission can be greatly reduced.
Next, a specific example of the operation of the present apparatus will be described with reference to the time chart of FIG. 4. (a) shows the closing timing of the exhaust valve 11 by the exhaust side variable valve mechanism 32, and (b) shows the intake side. The opening timing of the intake valve 10 by the variable valve mechanism 31 is shown. In both (a) and (b), the upper side is the advance side, and the lower side is the retard side. (C) is the temperature of the front catalyst 22 (FCC) provided immediately after the exhaust port 3, (d) is the HC discharge amount, (e) is the air-fuel ratio, (f) is the intake air amount, (g) Indicates ignition timing, and (h) indicates engine speed characteristics.

さて、いまt1においてエンジン始動させるべくイグニッションオンとすると、図4(f),(h)に示すように、スロットルバルブ7が開いて吸入空気量が増大するとともに、クランキング後エンジン回転数が上昇する。また、このとき図4(e),(g)に示すように、空燃比A/Fがリッチ側に変更されるとともに点火時期が進角される。なお、このとき、図4(d)に示すようにHC排出量は一時的に増加する。 Now, when the ignition is turned on to start the engine at t1, as shown in FIGS. 4 (f) and 4 (h), the throttle valve 7 is opened and the intake air amount is increased, and the engine speed after cranking is increased. To do. At this time, as shown in FIGS. 4E and 4G, the air-fuel ratio A / F is changed to the rich side and the ignition timing is advanced. At this time, the HC discharge amount temporarily increases as shown in FIG.

そして、エンジン1が完爆したと判定されると(t=t3)、触媒昇温制御を開始する。具体的には、空燃比をリーン化するとともに点火時期をリタードし、これにより、図4(c)に示すように、触媒温度が上昇していく。
一方、図4(a),(b)に示すように、イグニッションオン(t=t1)により作動油圧が立ち上がり可変動弁機構31,32が作動可能となると(t=t2)、可変動弁機構31,32を作動させ、排気弁11の閉弁タイミング(EC)及び吸気弁10の開弁タイミング(IO)を所定の初期位相角に設定する。そして、このような初期位相角を空燃比が所定空燃比になるまで保持する。
When it is determined that the engine 1 has completely exploded (t = t3), the catalyst temperature increase control is started. Specifically, the air-fuel ratio is made lean and the ignition timing is retarded, so that the catalyst temperature rises as shown in FIG.
On the other hand, as shown in FIGS. 4A and 4B, when the hydraulic pressure rises due to the ignition ON (t = t1) and the variable valve mechanisms 31 and 32 become operable (t = t2), the variable valve mechanism 31 and 32 are operated, and the valve closing timing (EC) of the exhaust valve 11 and the valve opening timing (IO) of the intake valve 10 are set to predetermined initial phase angles. Such an initial phase angle is maintained until the air-fuel ratio reaches a predetermined air-fuel ratio.

そして、空燃比が所定空燃比となると(t=t4)、これ以降は燃焼変動率COV Piが所定値を超えないように徐々にVOLを拡大していく。また、図4に示す例では、位相角が可変動弁機構31,32が許容しうる最大位相角まで達しても(t=t5)、燃焼変動率COV Piが所定値以内であるため、t5以降は最大位相角に保持される。
そして、このようなバルブオーバラップの拡大により内部EGRが増大して、図4(d)に示すように、HC排出量が低減される。また、その後触媒昇温制御を開始して所定時間経過すると(t=t6)、通常制御モードに移行して、図4(a),(b)に示すように、バルブオーバラップが減少していく。また、これと同時に、図4(e)に示すように、空燃比がストイキに変更され、また、点火時期も徐々に進角していく。
When the air-fuel ratio becomes the predetermined air-fuel ratio (t = t4), the VOL is gradually expanded so that the combustion fluctuation rate COV Pi does not exceed the predetermined value thereafter. In the example shown in FIG. 4, even if the phase angle reaches the maximum phase angle allowable by the variable valve mechanisms 31 and 32 (t = t5), the combustion fluctuation rate COV Pi is within a predetermined value, so t5 Thereafter, the maximum phase angle is maintained.
Then, the expansion of the valve overlap increases the internal EGR and reduces the HC emission amount as shown in FIG. 4 (d). Further, after the catalyst temperature increase control is started and a predetermined time elapses (t = t6), the mode shifts to the normal control mode, and the valve overlap is reduced as shown in FIGS. 4 (a) and 4 (b). Go. At the same time, as shown in FIG. 4 (e), the air-fuel ratio is changed to stoichiometric, and the ignition timing is gradually advanced.

なお、本実施形態では、通常制御モードへの移行を触媒昇温制御の継続時間をトリガにしているが(図3のステップS4に相当)、触媒温度をトリガとしてもよい。この場合には触媒温度が所定温度以上となると、通常制御モードに移行する。また、これ以外にも水温をトリガにして通常制御モードに移行するようにしてもよい。
以上説明したように、本発明の一実施形態に係る可変動弁機構の制御装置によれば、冷態始動時において、直接燃焼状態を示すパラメータを用いてバルブオーバラップを設定するので、失火を招くことなく極力バルブオーバラップを大きく設定できる。したがって、冷態始動時の内部EGRを増大させることができHC排出量を大幅に低減することができる。
In this embodiment, the transition to the normal control mode is triggered by the duration of the catalyst temperature increase control (corresponding to step S4 in FIG. 3), but the catalyst temperature may be triggered. In this case, when the catalyst temperature becomes equal to or higher than the predetermined temperature, the mode shifts to the normal control mode. In addition to this, the normal control mode may be shifted to the water temperature as a trigger.
As described above, according to the control apparatus for a variable valve mechanism according to an embodiment of the present invention, the valve overlap is set using the parameter indicating the direct combustion state at the time of cold start, so misfire is prevented. The valve overlap can be set as large as possible without incurring. Therefore, the internal EGR at the time of cold start can be increased, and the HC emission amount can be greatly reduced.

また、内部EGRにより筒内の燃焼がやや緩慢なものとなることで吸入空気量が増大し、排ガス流量増加によって触媒昇温効果を高めることができる。
また、本発明では、燃焼変動率を直接監視しているので、冷態始動直後の失火を確実に防止することができる。
以上、本発明の実施の形態について説明したが、本発明は上述した実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の変形が可能である。例えば、制御のハンチングを防止する目的で、上記所定値(所定の変動率)に範囲をたせてもよい。この場合、上記の所定値に対して下限値と上限値とを設定し、燃焼変動を示す指標COV Piが下限値を超えない範囲でバルブオーバラップが最大となるように可変動弁機構の作動を拡大していき、下限値を超えた場合には、その時点におけるバルブオーバラップを維持する。また、このような状態においても外乱等により上限値を超えた場合には、バルブオーバラップを減少させる。これにより、可変動弁機構の制御を安定させることができ、ハンチングを防止することが可能となる。
In addition, the internal EGR makes the combustion in the cylinder somewhat slow, so that the intake air amount increases, and the catalyst temperature rise effect can be enhanced by increasing the exhaust gas flow rate.
In the present invention, since the combustion fluctuation rate is directly monitored, misfire immediately after the cold start can be surely prevented.
Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the present invention. For example, in order to prevent the hunting of the control, it may make myself lifting the range to the predetermined value (predetermined variation rate). In this case, set the lower limit and upper limit for the above-mentioned predetermined value, and operate the variable valve mechanism so that the valve overlap is maximized so long as the indicator COV Pi indicating combustion fluctuation does not exceed the lower limit. we will expand, if it exceeds the lower limit value, maintains the valve overlap at that time. Even in such a state, if the upper limit is exceeded due to disturbance or the like, the valve overlap is reduced. Thereby, the control of the variable valve mechanism can be stabilized, and hunting can be prevented.

上述した実施形態においては、可変動弁機構を吸気側及び排気側の両方に設けた場合について説明したが、吸気側及び排気側のどちらか一方のみに設けるようにしてもよい。また、可変動弁機構としては、吸気弁又は排気弁の開閉タイミングを変更できるものであればよく、その構成については特に限定されるものではない。また、本実施形態では、可変動弁機構として吸気弁又は排気弁の作動タイミングを連続的に変更可能に構成されたものが適用されているが、段階的に変更可能に構成されたものを適用してもよい。   In the above-described embodiment, the case where the variable valve mechanism is provided on both the intake side and the exhaust side has been described. However, the variable valve mechanism may be provided only on either the intake side or the exhaust side. Further, the variable valve mechanism is not particularly limited as long as it can change the opening / closing timing of the intake valve or the exhaust valve. In the present embodiment, the variable valve mechanism is configured such that the operation timing of the intake valve or the exhaust valve can be continuously changed, but the variable valve mechanism is configured so that it can be changed in stages. May be.

本発明の一実施形態にかかる可変動弁機構の制御装置が適用されるエンジンを示す模式図である。It is a mimetic diagram showing an engine to which a control device of a variable valve mechanism concerning one embodiment of the present invention is applied. 本発明の一実施形態にかかる可変動弁機構の制御装置の作用を説明する図である。It is a figure explaining the effect | action of the control apparatus of the variable valve mechanism concerning one Embodiment of this invention. 本発明の一実施形態にかかる可変動弁機構の制御装置の作用を説明するフローチャートである。It is a flowchart explaining the effect | action of the control apparatus of the variable valve mechanism concerning one Embodiment of this invention. 本発明の一実施形態にかかる可変動弁機構の制御装置の作用を説明するタイムチャートである。It is a time chart explaining the effect | action of the control apparatus of the variable valve mechanism concerning one Embodiment of this invention.

符号の説明Explanation of symbols

1 エンジン(内燃機関)
10 吸気弁
11 排気弁
15 ECU(制御手段)
17 クランク角センサ又はエンジン回転数センサ(燃焼状態検出手段)
31 吸気側可変動弁機構
32 排気側可変動弁機構
1 engine (internal combustion engine)
10 Intake valve 11 Exhaust valve 15 ECU (control means)
17 Crank angle sensor or engine speed sensor (combustion state detection means)
31 Intake side variable valve mechanism 32 Exhaust side variable valve mechanism

Claims (3)

内燃機関の吸気弁と排気弁とのバルブオーバラップを可変制御可能な可変動弁機構と、
該内燃機関の燃焼状態を検出する燃焼状態検出手段と、
該内燃機関の冷態始動時においては、該燃焼状態検出手段から得られる燃焼変動を示す指標が所定値以下の範囲で該可変動弁機構をバルブオーバラップが最大となるように制御する制御手段とをそなえ
該制御手段は、該冷態始動時に該内燃機関の点火時期をリタードして目標空燃比を理論空燃比よりも希薄なリーン空燃比に設定してから所定時間経過したら、該冷態始動時における該可変動弁機構の制御を終了す
ことを特徴とする、可変動弁機構の制御装置。
A variable valve mechanism capable of variably controlling the valve overlap between the intake valve and the exhaust valve of the internal combustion engine;
Combustion state detection means for detecting the combustion state of the internal combustion engine;
At the time of cold start of the internal combustion engine, control means for controlling the variable valve mechanism so that the valve overlap is maximized when the index indicating the combustion fluctuation obtained from the combustion state detection means is within a predetermined value or less. equipped with a door,
The control means retards the ignition timing of the internal combustion engine during the cold start and sets the target air / fuel ratio to a lean air / fuel ratio that is leaner than the stoichiometric air / fuel ratio. It characterized that you end the control of the movable variable valve mechanism, the control device of the variable valve mechanism.
内燃機関の吸気弁と排気弁とのバルブオーバラップを可変制御可能な可変動弁機構と、
該内燃機関の燃焼状態を検出する燃焼状態検出手段と、
該内燃機関の冷態始動時においては、該燃焼状態検出手段から得られる燃焼変動を示す指標が所定値以下の範囲で該可変動弁機構をバルブオーバラップが最大となるように制御する制御手段とをそなえ
該制御手段は、該所定値よりも小さい第二の所定値を超えない範囲で該可変動弁機構をバルブオーバラップが最大となるように制御し、該第二の所定値を超えた場合はその時点におけるバルブオーバラップを維持するように制御し、該所定値を超えた場合はバルブオーバラップを減少させるように制御す
ことを特徴とする、可変動弁機構の制御装置。
A variable valve mechanism capable of variably controlling the valve overlap between the intake valve and the exhaust valve of the internal combustion engine;
Combustion state detection means for detecting the combustion state of the internal combustion engine;
At the time of cold start of the internal combustion engine, control means for controlling the variable valve mechanism so that the valve overlap is maximized when the index indicating the combustion fluctuation obtained from the combustion state detection means is within a predetermined value or less. equipped with a door,
The control means controls the variable valve mechanism so that the valve overlap is maximized within a range not exceeding a second predetermined value smaller than the predetermined value, and when the second predetermined value is exceeded, controlled to maintain the valve overlap at that time, if it exceeds the predetermined value, characterized that you control so as to reduce the valve overlap, control unit of the variable valve mechanism.
該制御手段は、該冷態始動時には、該内燃機関の点火時期をリタードするとともに、目標空燃比を理論空燃比よりも希薄なリーン空燃比に設定する
ことを特徴とする、請求項1又は2記載の可変動弁機構の制御装置
The control means, at the time of cold state starting, as well as retarding the ignition timing of the internal combustion engine, and sets the target air-fuel ratio to the lean lean air-fuel ratio than the stoichiometric air-fuel ratio, according to claim 1 or 2 The control apparatus of the variable valve mechanism as described .
JP2008076095A 2008-03-24 2008-03-24 Control device for variable valve mechanism Active JP4992782B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008076095A JP4992782B2 (en) 2008-03-24 2008-03-24 Control device for variable valve mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008076095A JP4992782B2 (en) 2008-03-24 2008-03-24 Control device for variable valve mechanism

Publications (2)

Publication Number Publication Date
JP2009228588A JP2009228588A (en) 2009-10-08
JP4992782B2 true JP4992782B2 (en) 2012-08-08

Family

ID=41244256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008076095A Active JP4992782B2 (en) 2008-03-24 2008-03-24 Control device for variable valve mechanism

Country Status (1)

Country Link
JP (1) JP4992782B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107532561A (en) * 2015-04-16 2018-01-02 日产自动车株式会社 Engine control system and engine control

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5995548B2 (en) * 2012-06-22 2016-09-21 ダイハツ工業株式会社 Control device for internal combustion engine
JP6304937B2 (en) * 2013-04-25 2018-04-04 ダイハツ工業株式会社 Control device for internal combustion engine
JP6494190B2 (en) * 2014-06-30 2019-04-03 ダイハツ工業株式会社 Control device for internal combustion engine
US10280858B2 (en) 2015-04-20 2019-05-07 Nissan Motor Co., Ltd. Engine control device and engine control method
JP6742675B2 (en) * 2019-01-10 2020-08-19 ダイハツ工業株式会社 Control device for internal combustion engine
JP7362216B2 (en) * 2020-02-28 2023-10-17 ダイハツ工業株式会社 Hybrid vehicle control device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003120350A (en) * 2001-10-19 2003-04-23 Yanmar Co Ltd Gas engine with fuel reformer
JP2008002435A (en) * 2006-06-26 2008-01-10 Nissan Motor Co Ltd Control method and control device of engine
JP4907416B2 (en) * 2007-04-23 2012-03-28 日立オートモティブシステムズ株式会社 Variable valve operating device for internal combustion engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107532561A (en) * 2015-04-16 2018-01-02 日产自动车株式会社 Engine control system and engine control
CN107532561B (en) * 2015-04-16 2018-09-28 日产自动车株式会社 Engine control system and engine control

Also Published As

Publication number Publication date
JP2009228588A (en) 2009-10-08

Similar Documents

Publication Publication Date Title
JP5360121B2 (en) Control method of spark ignition engine and spark ignition engine
US8141533B2 (en) Control apparatus and method for internal combustion engine
US7748354B2 (en) System and method for adaptive control of variable valve lift tappet switching
JP4992782B2 (en) Control device for variable valve mechanism
JP2009019538A (en) Control device for cylinder injection type internal combustion engine
JP2002129991A (en) Valve timing control device for internal combustion engine
JP4848396B2 (en) Ignition timing control device for internal combustion engine
JP2007016685A (en) Internal combustion engine control device
JP3085181B2 (en) Ignition timing control device for internal combustion engine
JP5927024B2 (en) Engine start control device
JP4677844B2 (en) Engine valve timing control device
EP1828576B1 (en) Valve characteristic control apparatus for internal combustion engine
JP5565370B2 (en) Control method of spark ignition engine and spark ignition engine
JP5029517B2 (en) Control device for internal combustion engine
JP2014020265A (en) Control device for internal combustion engine
US9291141B2 (en) Control device and control method for internal combustion engine
JP2001098972A (en) Controller for spark-ignition direct injection engine
JP4432729B2 (en) Engine stop control device
JP4419800B2 (en) Engine starter
JP4835589B2 (en) Ignition control system for internal combustion engine
JP2008267294A (en) Control system of internal combustion engine
JP3092454B2 (en) Ignition timing control device for internal combustion engine
JP2008232066A (en) Ignition control system for internal combustion engine
JP2007092719A (en) Starter of multicylinder engine
JP6369629B2 (en) ENGINE CONTROL DEVICE AND ENGINE CONTROL METHOD

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120410

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120423

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4992782

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350