JP4990855B2 - Optical signal position detection method and optical signal position detection apparatus - Google Patents

Optical signal position detection method and optical signal position detection apparatus Download PDF

Info

Publication number
JP4990855B2
JP4990855B2 JP2008211099A JP2008211099A JP4990855B2 JP 4990855 B2 JP4990855 B2 JP 4990855B2 JP 2008211099 A JP2008211099 A JP 2008211099A JP 2008211099 A JP2008211099 A JP 2008211099A JP 4990855 B2 JP4990855 B2 JP 4990855B2
Authority
JP
Japan
Prior art keywords
signal
position detection
correlation value
optical signal
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008211099A
Other languages
Japanese (ja)
Other versions
JP2010050567A (en
Inventor
理一 工藤
浩一 石原
孝行 小林
泰司 鷹取
宗大 松井
匡人 溝口
明秀 佐野
英一 山田
悦史 山崎
宮本  裕
秀之 野坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2008211099A priority Critical patent/JP4990855B2/en
Publication of JP2010050567A publication Critical patent/JP2010050567A/en
Application granted granted Critical
Publication of JP4990855B2 publication Critical patent/JP4990855B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、主に、光伝送における信号位置を検出する光信号位置検出方法および光信号位置検出装置に関する。   The present invention mainly relates to an optical signal position detection method and an optical signal position detection apparatus that detect a signal position in optical transmission.

従来技術の例として、無線技術における信号位置の検出方法について図5を用いて説明する。図5は、従来の無線通信技術における信号位置の検出装置の構成例である。
図5に示すとおり従来の検出装置200は、アナログ・デジタル変換部201、相関値演算部202、相関位置検出部203、信号位置決定部204から構成されている。
検出装置200は、伝搬路を介して受信した電気信号を、アナログ・デジタル変換部201においてデジタル信号に変換する。相関値演算回路202は、このデジタル信号に基づき、相関を演算する。例えば、無線LANの802.11aにおける信号検出方法は、ショートプリアンブルと呼ばれる既知信号系列を用いて行われる。ここで、既知信号をS(t)と定義する。既知信号は時間tの関数となっており、時間tは、0≦t≦Ns−1とする。受信された信号X(t)に対し、相関値ρ(t)は、次式に従い算出される。

Figure 0004990855
ここで、上付き添え字「*」は複素共役を表す。
相関位置検出部203は、相関値ρ(t)がピークとなる、時間t0を算出し、信号位置決定部204に出力する。信号位置決定部204は、この時間t0からマージン時間Δtを引いた時間t0−Δtを信号の信号位置(先頭位置)として決定する。ここでΔtは0以上の値とする。無線通信では、一般に、時間的に初めに受信される電波が最も強く受信されるため、上記方法で受信された信号の先頭位置を正確に得ることができる。この信号位置は、フーリエ変換などの信号処理が施される際の位置として決定される位置であって、信号位置の精度が信号処理の結果を左右する。このため、信号位置の精度が下がると、信号処理が適切な位置から実行されないため、干渉電力が増大する問題が生じる。
近年、上述した無線通での信号処理技術が、光通信において適用されつつあり、直交波周波数分割多重方式や、周波数領域等化を用いるシングルキャリア伝送などが検討され、光通信においても信号位置検出の需要が高まってきている。
Govind P.Agrawal,“Nonlinear fiber optics,”Academic press,2006,pp63−65,pp76−77. As an example of the prior art, a signal position detection method in wireless technology will be described with reference to FIG. FIG. 5 is a configuration example of a signal position detection apparatus in the conventional wireless communication technology.
As shown in FIG. 5, the conventional detection apparatus 200 includes an analog / digital conversion unit 201, a correlation value calculation unit 202, a correlation position detection unit 203, and a signal position determination unit 204.
The detection apparatus 200 converts an electrical signal received via the propagation path into a digital signal in the analog / digital conversion unit 201. The correlation value calculation circuit 202 calculates the correlation based on this digital signal. For example, a signal detection method in 802.11a of a wireless LAN is performed using a known signal sequence called a short preamble. Here, the known signal is defined as S (t). The known signal is a function of time t, and the time t is 0 ≦ t ≦ Ns−1. For the received signal X (t), the correlation value ρ (t) is calculated according to the following equation.
Figure 0004990855
Here, the superscript “*” represents a complex conjugate.
The correlation position detection unit 203 calculates a time t0 when the correlation value ρ (t) reaches a peak, and outputs the time t0 to the signal position determination unit 204. The signal position determination unit 204 determines a time t0−Δt obtained by subtracting the margin time Δt from the time t0 as a signal position (leading position) of the signal. Here, Δt is a value of 0 or more. In wireless communication, generally, the first radio wave received first in time is received most strongly, so that the head position of the signal received by the above method can be obtained accurately. This signal position is a position determined as a position when signal processing such as Fourier transform is performed, and the accuracy of the signal position determines the result of the signal processing. For this reason, if the accuracy of the signal position is lowered, the signal processing is not executed from an appropriate position, which causes a problem that the interference power increases.
In recent years, the above-described wireless signal processing technology is being applied to optical communication, and orthogonal wave frequency division multiplexing, single carrier transmission using frequency domain equalization, and the like have been studied, and signal position detection is also used in optical communication. The demand for is increasing.
Govind P.M. Agrawal, “Nonlinear fiber optics,” Academic press, 2006, pp 63-65, pp 76-77.

しかし、光通信における信号位置検出では、光ファイバー内を伝搬する際に、波長分散の影響により光の波長によって伝送速度にずれが生じ、受信装置において、高周波から低周波まで受信時間に遅延時間が生じるため、上記方法では信号位置を正確に得ることができない問題があった。
また、このような現象が生じる場合には、相関値はゆるやかに上昇し、全ての波長帯が到達した時間にピークとなり、その後減少するため、相関値のピーク位置が信号の先頭位置に対応しておらず、信号位置を正確に検出することができない問題があった。
このように、上記方法を光伝送に適用した場合では、波長分散により相関値が広がった分布になるため、相関値のピーク値から信号位置を検出できない問題があった。
However, in signal position detection in optical communication, when propagating through an optical fiber, the transmission speed varies depending on the wavelength of light due to the influence of chromatic dispersion, and a delay time occurs in the reception time from a high frequency to a low frequency in the receiver. Therefore, the above method has a problem that the signal position cannot be obtained accurately.
When such a phenomenon occurs, the correlation value rises slowly, peaks at the time when all the wavelength bands reach, and then decreases, so the peak position of the correlation value corresponds to the head position of the signal. However, there is a problem that the signal position cannot be accurately detected.
As described above, when the above method is applied to optical transmission, there is a problem that the signal position cannot be detected from the peak value of the correlation value because the correlation value is spread by chromatic dispersion.

本発明は、このような事情を考慮し、上記の問題を解決すべくなされたものであって、その目的は、波長分散の影響が存在する伝搬路を介した通信においても、相関値の分布の情報を得ることにより、波長分散の影響を考慮し、信号位置を検出する光信号位置検出方法および光信号位置検出装置を提供することにある。   The present invention has been made in consideration of such circumstances, and has been made to solve the above-described problem. The purpose of the present invention is to distribute the correlation value even in communication via a propagation path in which the influence of chromatic dispersion exists. Thus, an optical signal position detection method and an optical signal position detection apparatus for detecting a signal position in consideration of the influence of chromatic dispersion are provided.

また、本発明は、光通信方式において、光信号として受信した受信信号の信号位置を検知する光信号位置検出装置における光信号位置検出方法であって、前記光信号位置検出装置の光・電気変換部が、前記受信信号の光信号を電気信号に変換し、前記光信号位置検出装置の信号系列生成部が、少なくとも1つの経路長により生じる波長分散の影響が与えられた波長分散考慮既知信号を記憶し、前記光信号位置検出装置の相関値演算部が、前記信号系列生成部に記憶されている前記波長分散考慮既知信号と、前記受信信号との相関値を演算し、前記光信号位置検出装置の相関位置検出部が、前記相関値演算部より演算された前記相関値が最大となるピーク位置および相関値の分布の情報を出力し、前記光信号位置検出装置の信号位置決定部が、前記相関位置検出部から出力された前記相関値の情報に基づき、前記受信信号の信号位置を検出するとともに、波長分散の影響を保証する機能部を有し、複数の波長分散考慮既知信号を用いる場合には、相関値が最大となる波長分散考慮既知信号に対応する経路長を出力することを特徴とする光信号位置検出方法である。   The present invention also relates to an optical signal position detecting method in an optical signal position detecting device for detecting a signal position of a received signal received as an optical signal in an optical communication system, wherein the optical / electrical conversion of the optical signal position detecting device is performed. Unit converts the optical signal of the received signal into an electrical signal, and the signal sequence generation unit of the optical signal position detection device outputs a known signal that considers chromatic dispersion that is affected by chromatic dispersion caused by at least one path length. And a correlation value calculation unit of the optical signal position detection device calculates a correlation value between the chromatic dispersion-considered known signal stored in the signal sequence generation unit and the received signal, and detects the optical signal position. The correlation position detection unit of the apparatus outputs information on the peak position where the correlation value calculated by the correlation value calculation unit is maximum and the distribution of the correlation value, and the signal position determination unit of the optical signal position detection apparatus Based on the correlation value information output from the correlation position detection unit, the signal position of the received signal is detected and a function unit that guarantees the influence of chromatic dispersion is used, and a plurality of known signals considering chromatic dispersion are used. In this case, the optical signal position detection method is characterized in that a path length corresponding to a chromatic dispersion-considered known signal having a maximum correlation value is output.

また、本発明は、光通信方式において、光信号として受信した受信信号の信号位置を検知する光信号位置検出装置における光信号位置検出方法であって、前記光信号位置検出装置の光・電気変換部が、前記受信信号の光信号を電気信号に変換し、前記光信号位置検出装置の信号系列生成部が、前記受信信号を送信する所定の送信装置と前記光信号位置検出装置との送受信間で生じ得る複数の周波数ずれが与えられた周波数ずれ検知既知信号を記憶し、前記光信号位置検出装置の相関値演算部が、前記信号系列生成部に記憶されている前記周波数ずれ検知既知信号と、前記受信信号との相関値を演算し、前記光信号位置検出装置の相関位置検出部が、前記相関値演算部より演算された前記相関値が最大となるピーク位置および相関値の分布の情報を出力し、前記光信号位置検出装置の信号位置決定部が、前記相関位置検出部から出力された前記相関値の情報に基づき、前記受信信号の信号位置を検出するとともに、周波数ずれを補償する機能部を有する場合には、前記送受信間で生じる周波数ずれを出力することを特徴とする光信号位置検出方法である。   The present invention also relates to an optical signal position detecting method in an optical signal position detecting device for detecting a signal position of a received signal received as an optical signal in an optical communication system, wherein the optical / electrical conversion of the optical signal position detecting device is performed. The optical signal of the received signal is converted into an electrical signal, and the signal sequence generating unit of the optical signal position detecting device transmits and receives between the predetermined transmitting device that transmits the received signal and the optical signal position detecting device. A frequency shift detection known signal to which a plurality of frequency shifts that may occur in the optical signal position detection device are stored, and the correlation value calculation unit of the optical signal position detection device and the frequency shift detection known signal stored in the signal sequence generation unit The correlation value with the received signal is calculated, and the correlation position detection unit of the optical signal position detection device has information on the peak position where the correlation value calculated by the correlation value calculation unit is maximum and the distribution of the correlation value. And the signal position determination unit of the optical signal position detection device detects the signal position of the received signal and compensates for the frequency shift based on the correlation value information output from the correlation position detection unit. In the case of having a functional unit, the optical signal position detection method is characterized by outputting a frequency shift that occurs between the transmission and reception.

また、本発明は、光通信方式において、光信号として受信した受信信号の信号位置を検知する光信号位置検出装置における光信号位置検出方法であって、前記光信号位置検出装置の光・電気変換部が、前記受信信号の光信号を電気信号に変換し、前記光信号位置検出装置の信号系列生成部が、所定の既知信号における周波数帯域に応じて分割された複数の周波数領域分割既知信号を記憶し、前記光信号位置検出装置の相関値演算部が、前記信号系列生成部に記憶されている複数の前記周波数領域分割既知信号と、前記受信信号との相関値を演算し、前記光信号位置検出装置の相関位置検出部が、前記相関値演算部より演算されたそれぞれ周波数領域分割既知信号における前記相関値が最大となるピーク位置の情報を出力し、前記光信号位置検出装置の信号位置決定部が、前記相関位置検出部から出力された複数の前記相関値の情報に基づき、前記受信信号の信号位置を検出するとともに、波長分散の影響を補償する機能部を有する場合には、ピーク位置のずれの情報を出力することを特徴とする光信号位置検出方法である。   The present invention also relates to an optical signal position detecting method in an optical signal position detecting device for detecting a signal position of a received signal received as an optical signal in an optical communication system, wherein the optical / electrical conversion of the optical signal position detecting device is performed. Unit converts an optical signal of the received signal into an electrical signal, and a signal sequence generation unit of the optical signal position detection device outputs a plurality of frequency domain divided known signals divided according to a frequency band in a predetermined known signal. A correlation value calculation unit of the optical signal position detection device calculates a correlation value between the plurality of frequency domain division known signals stored in the signal sequence generation unit and the reception signal, and the optical signal A correlation position detection unit of the position detection device outputs information on a peak position where the correlation value is maximum in each frequency domain division known signal calculated by the correlation value calculation unit, and the optical signal position detection When the signal position determination unit of the apparatus has a function unit that detects the signal position of the received signal and compensates for the influence of chromatic dispersion based on the information of the plurality of correlation values output from the correlation position detection unit Is a method for detecting the position of an optical signal, characterized by outputting information on a shift in peak position.

また、本発明は、光通信方式において、光信号として受信した受信信号の信号位置を検知する光信号位置検出装置において、前記受信信号の光信号を電気信号に変換する光・電気変換部と、波長分散の影響が与えられた波長分散考慮既知信号、所定の既知信号に前記受信信号を送信する複数の所定の送信装置と前記光信号位置検出装置との送受信間で生じ得る周波数ずれが与えられた前記周波数ずれ検知既知信号、前記所定の既知信号に複数の周波数ずれが与えられた前記複数の波長分散周波数領域既知信号、前記所定の既知信号が周波数帯域に応じて分割されている前記複数の周波数領域分割既知信号、あるいは前記複数の周波数ずれが与えられた前記複数の周波数領域分割既知信号のうち少なくとも1つを記憶する信号系列生成部と、前記信号系列生成部に記憶されている前記波長分散考慮既知信号、前記周波数ずれ検知既知信号、前記複数の波長分散周波数領域既知信号、あるいは前記複数の周波数領域分割既知信号のうち少なくとも1つと、前記受信信号との相関値を演算し、前記相関値演算部より演算された前記相関値が最大となるピーク位置、もしくはピーク位置と相関値の分布の情報を出力する相関位置検出部と、前記相関位置検出部から出力された前記相関値の情報に基づき、前記受信信号の信号位置を検出する信号位置決定部とを有すること特徴とする。 Further, the present invention provides an optical signal position detection device that detects a signal position of a received signal received as an optical signal in an optical communication system, and an optical / electrical converter that converts the optical signal of the received signal into an electrical signal ; wavelength dispersion wavelength dispersion considered known signal effect is given of a frequency shift that can occur between the transmission and reception of a plurality of predetermined transmission apparatus that transmits the received signal to a Jo Tokoro of the known signal and the optical signal position detecting device The given frequency deviation detection known signal, the plurality of chromatic dispersion frequency domain known signals obtained by giving a plurality of frequency deviations to the predetermined known signal, and the predetermined known signal being divided according to a frequency band A plurality of frequency domain division known signals, or a signal sequence generation unit that stores at least one of the plurality of frequency domain division known signals given the plurality of frequency shifts; and Signal sequence generating unit before Symbol wavelength dispersion considering the known signal that has been stored in the frequency deviation detection known signals, said plurality of wavelength dispersion frequency domain known signal or at least one of the plurality of frequency domain division known signal, the A correlation position detection unit that calculates a correlation value with a received signal and outputs information on a peak position where the correlation value calculated by the correlation value calculation unit is maximum or a distribution of a peak position and a correlation value; and the correlation And a signal position determination unit that detects a signal position of the received signal based on the correlation value information output from the position detection unit.

本発明によれば、相関値のピーク位置と相関値の分布の広がりを求めることにより、波長分散の影響を評価し、信号位置を検出することができる。
また、本発明によれば、送受信間で生じる周波数ずれを考慮し、周波数ずれによる影響を乗算した複数の周波数ずれ検知既知信号と受信信号との相関を演算することにより、相関値の大きさから、送受信間の周波数ずれを判定することができる。また、既知信号を帯域分割して得られる複数の周波数領域分割既知信号と、受信信号との相関を演算することにより、各周波数帯における相関値のピーク位置のずれから、波長分散の影響を判定することが可能となり、帯域分割された既知信号との相関により波長分散の影響を評価することができる。
さらに、複数の経路長に対応する波長分散の影響が与えられた波長分散考慮既知信号と受信信号との相関を演算することにより、相関値の大きさから、波長分散の影響を評価することができる。
According to the present invention, it is possible to evaluate the influence of chromatic dispersion and detect the signal position by obtaining the peak position of the correlation value and the spread of the distribution of the correlation value.
In addition, according to the present invention, taking into account the frequency shift that occurs between transmission and reception, by calculating the correlation between a plurality of frequency shift detection known signals multiplied by the influence of the frequency shift and the received signal, the magnitude of the correlation value can be calculated. The frequency shift between transmission and reception can be determined. Also, by calculating the correlation between the received signal and multiple frequency domain division known signals obtained by dividing the known signal into bands, the influence of chromatic dispersion can be determined from the deviation of the peak position of the correlation value in each frequency band. Thus, the influence of chromatic dispersion can be evaluated based on the correlation with the known signal obtained by band division.
In addition, by calculating the correlation between the received signal and the chromatic dispersion-considered known signal that is affected by the chromatic dispersion corresponding to a plurality of path lengths, the influence of the chromatic dispersion can be evaluated from the magnitude of the correlation value. it can.

[第1の実施形態]
以下、図面を参照して、本発明の一実施形態について説明する。図1は、本発明の実施の形態にかかる光信号位置検出装置の構成例を示すブロック図である。図2は、既知信号を用いた相関値分布を示す概略図である。
[First Embodiment]
Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing a configuration example of an optical signal position detection apparatus according to an embodiment of the present invention. FIG. 2 is a schematic diagram showing a correlation value distribution using a known signal.

図1に示すとおり、光信号位置検出装置100は、光・電気変換部101、A/D変換部102、信号系列生成部103、相関値演算部104、相関位置検出部105、信号位置決定部106を備える。
光・電気変換部101は、光ファイバを伝送してきた光信号を受信し、この受信信号を光信号から電気信号に変換し、出力する。
A/D変換部(アナログ/デジタル信号変換部)102は、光・電気変換部101から出力された電気信号をアナログ信号からデジタル信号に変換し、出力する。以下、A/D変換部102により出力される信号をX(t)と定義する。
信号系列生成部103は、相関値演算部104において演算される相関値ρに応じて、複数の既知信号を記憶している。ここで、既知信号は、S(t)で定義され、時間tの関数である。時間tは、0≦t≦Ns−1の範囲とする。Nsは、既知信号の長さを表す。
As shown in FIG. 1, an optical signal position detection apparatus 100 includes an optical / electrical conversion unit 101, an A / D conversion unit 102, a signal sequence generation unit 103, a correlation value calculation unit 104, a correlation position detection unit 105, and a signal position determination unit. 106.
The optical / electrical converter 101 receives an optical signal transmitted through an optical fiber, converts the received signal from an optical signal to an electrical signal, and outputs the electrical signal.
The A / D conversion unit (analog / digital signal conversion unit) 102 converts the electrical signal output from the optical / electrical conversion unit 101 from an analog signal to a digital signal and outputs the signal. Hereinafter, a signal output from the A / D conversion unit 102 is defined as X (t).
The signal sequence generation unit 103 stores a plurality of known signals according to the correlation value ρ calculated by the correlation value calculation unit 104. Here, the known signal is defined by S (t) and is a function of time t. The time t is in the range of 0 ≦ t ≦ Ns−1. Ns represents the length of the known signal.

相関値演算部104は、受信信号と、予め記憶されている既知信号との相関を演算する。すなわち、相関値演算部104は、A/D変換部102から出力された受信信号と、信号系列生成部103から読み出した既知信号との相関を演算し、相関値ρを出力する。例えば、相関値演算部104は、予め設定されている相関値ρの演算式として、次式に示す式1に従って、相関値ρを算出する。

Figure 0004990855
これは、受信信号X(t)と既知信号S(t)に基づき、相関値ρ(t)を算出する演算式を示している。
なお、上付き添え字「*」は複素共役を表す。式1において、分母に示す|S(t)|の総和は、時間によらず一定となるため、省略することができ、分母に示す|X(t−i)|の総和についても、受信レベルが大きく変動しない場合は無視することができる。 Correlation value calculation section 104 calculates the correlation between the received signal and a known signal stored in advance. That is, correlation value calculation section 104 calculates the correlation between the received signal output from A / D conversion section 102 and the known signal read from signal sequence generation section 103, and outputs correlation value ρ. For example, the correlation value calculation unit 104 calculates the correlation value ρ as a calculation formula for the correlation value ρ set in advance according to Formula 1 shown below.
Figure 0004990855
This shows an arithmetic expression for calculating the correlation value ρ (t) based on the received signal X (t) and the known signal S (t).
The superscript “*” represents a complex conjugate. In equation 1, the sum of | S (t) | shown in the denominator is constant regardless of time, and can be omitted. The sum of | X (t−i) | If it does not fluctuate significantly, it can be ignored.

相関位置検出部105は、相関値演算部104から出力された相関値ρがピークとなるピーク時の時間、つまりピーク位置tpを検出する。また、相関位置検出部105は、検出したピーク位置tp、もしくはピーク位置tp周辺の相関値情報を分散値算出部106に出力する。
信号位置決定部106は、相関位置検出部105により検出されたピーク位置tp周辺の相関値情報に基づき、受信信号の先頭位置を検出する。例えば、相関位置検出部105は、図2に示すとおり、ピーク位置tpにおける相関値ρpに基づき、相関値がピーク位置tpの前後で、ρp/M以上となる時間間隔Tを算出する。なお、Mは任意の定数である。信号位置決定部106は、この時間間隔Tに基づきマージン時間Δtを式3に従い算出し、式2に従い信号の先頭位置tsを算出する。

Figure 0004990855
Figure 0004990855
このように、信号位置決定部106は、ピーク位置tpからマージン時間Δtを引いた時間tp−Δtの床関数を先頭位置tsとして決定する。Δtは0以上の値とする。 The correlation position detection unit 105 detects a peak time at which the correlation value ρ output from the correlation value calculation unit 104 peaks, that is, a peak position tp. Further, the correlation position detection unit 105 outputs the detected peak position tp or correlation value information around the peak position tp to the variance value calculation unit 106.
The signal position determination unit 106 detects the head position of the received signal based on the correlation value information around the peak position tp detected by the correlation position detection unit 105. For example, as shown in FIG. 2, the correlation position detection unit 105 calculates a time interval T at which the correlation value is greater than or equal to ρp / M before and after the peak position tp based on the correlation value ρp at the peak position tp. M is an arbitrary constant. Based on this time interval T, the signal position determination unit 106 calculates the margin time Δt according to Equation 3, and calculates the head position ts of the signal according to Equation 2.
Figure 0004990855
Figure 0004990855
As described above, the signal position determination unit 106 determines the floor function of the time tp−Δt obtained by subtracting the margin time Δt from the peak position tp as the head position ts. Δt is 0 or more.

なお、マージン時間Δtは、ピーク位置tpから時間軸方向にどれだけ前、もしくは後ろを、信号の先頭とみなすかを表す値である。また、式2に示す右辺は床関数であり、(tp−Δt)を超えない最大の整数という意味を表している。さらに、式3に示すBは、1以上の正の定数であって、例えば、波長分散による影響をどの程度許容するかにより決定され、波長分散による干渉を低減するためには、大きい値が設定される。   The margin time Δt is a value representing how far in front of or behind the peak position tp is regarded as the head of the signal. Moreover, the right side shown in Formula 2 is a floor function, and represents the meaning of the maximum integer that does not exceed (tp−Δt). Further, B shown in Expression 3 is a positive constant of 1 or more, and is determined by, for example, how much the influence due to chromatic dispersion is allowed. A large value is set in order to reduce interference due to chromatic dispersion. Is done.

また、信号位置決定部106は、信号系列にガードインターバルを用いる場合には、ガードインターバルを考慮して先頭位置tsを決定する。例えば、信号位置決定部106は、ガードインターバルが時間間隔Gだけ用いられていた場合、ガードインターバルに分散が最も収まるようにウィンドウ位置を決定する必要があるため、信号の先頭位置tsは、次に示す式4に従って決定する。

Figure 0004990855
In addition, when the guard interval is used for the signal series, the signal position determination unit 106 determines the head position ts in consideration of the guard interval. For example, when the guard interval is used only for the time interval G, the signal position determination unit 106 needs to determine the window position so that the variance is most contained in the guard interval. Determined according to Equation 4 shown.
Figure 0004990855

ここで、図2を用いて具体的に説明する。図2は、光信号位置検出装置100が、12.5G[sample/sec]で送信され、1600kmの光ファイバーで伝搬された光信号を、25G[sample/sec]で受信し、相関値演算部104が、この送信信号に基づき、式1の演算式に従い、時間t[sample]に対する相関値ρを算出したデータを示す。ここで、時間t=1[sample]は40psecに対応する。
図2に示すとおり、相関値ρのピークは、ρp=5.6であり、その時のピーク位置tpは、tp=540[sample]である。そして、このピーク位置tpの時間軸方向の前後には、信号が広がっている。これは、光ファイバーの伝搬による波長分散の影響によるものである。ここで、相関値が1より大きい値をとっているのは、式1において分母の演算を省略したためである。
Here, it demonstrates concretely using FIG. In FIG. 2, the optical signal position detection apparatus 100 receives an optical signal transmitted at 12.5 G [sample / sec] and propagated through an optical fiber of 1600 km at 25 G [sample / sec]. Shows data obtained by calculating a correlation value ρ with respect to time t [sample] based on this transmission signal and according to the arithmetic expression of Expression 1. Here, time t = 1 [sample] corresponds to 40 psec.
As shown in FIG. 2, the peak of the correlation value ρ is ρp = 5.6, and the peak position tp at that time is tp = 540 [sample]. A signal spreads before and after the peak position tp in the time axis direction. This is due to the influence of chromatic dispersion caused by the propagation of the optical fiber. Here, the reason why the correlation value is larger than 1 is that the calculation of the denominator is omitted in Equation 1.

信号位置決定部106は、ピーク位置tp=540[sample]と、そのときの相関値(ピーク値)ρp=5.6を検出し、tp=540[sample]前後で、相関値ρ=ρp/Mとなる時間間隔Tを算出する。M=2とすると、520≦t≦566のとき、ρp=5.6/2以上の値となる。
よって、この場合、相関値演算部105は、時間間隔T=47[sample]分の信号の広がりをピーク位置tp周辺の相関値情報として出力する。
信号位置決定部106は、この相関値情報に基づき、B=1.5とすると、式2、式3から先頭位置tsを推定し、先頭位置ts=505[sample]を算出する。なお、ガードインターバルが64カウント分用いられている場合は、式4に従い、信号位置決定部106は、先頭位置ts=508[sample]を算出する。
The signal position determination unit 106 detects the peak position tp = 540 [sample] and the correlation value (peak value) ρp = 5.6 at that time, and before and after tp = 540 [sample], the correlation value ρ = ρp / A time interval T for M is calculated. When M = 2, when 520 ≦ t ≦ 566, ρp = 5.6 / 2 or more.
Therefore, in this case, correlation value calculation section 105 outputs the signal spread for time interval T = 47 [sample] as correlation value information around peak position tp.
Based on this correlation value information, the signal position determination unit 106 estimates the head position ts from Equations 2 and 3 and sets the head position ts = 505 [sample] when B = 1.5. When the guard interval is used for 64 counts, the signal position determination unit 106 calculates the head position ts = 508 [sample] according to Equation 4.

次に、図3を用いて、本実施の形態にかかる光信号位置検出装置100における光信号位置検出方法について説明する。図3は、本発明にかかる光信号位置検出方法の一例を示すフローチャートである。
図3に示すとおり、光信号位置検出装置100は、受信信号を受信すると、光・電気変換部101が光信号から電気信号に変換し、A/D変換部102に出力する(S1)。A/D変換部102は、電気信号を受信すると、アナログ信号からデジタル信号に変換し、相関値演算部104に出力する(S2)。相関値演算部104は、A/D変換部102から受信した受信信号と、信号系列生成部103から読み出した既知信号に基づき、相関値ρを算出し、相関位置検出部105に出力する(S3)。相関位置検出部105は、相関値ρに基づき、ピーク位置tpを検出し、ピーク位置tp、もしくはピーク位置tp周辺の相関値情報を信号位置決定部106に出力する(S4)。
信号位置決定部106は、受信した相関値情報に基づき、受信信号の先頭位置tsを式2もしくは式4から決定し、出力する(S5)。
Next, the optical signal position detection method in the optical signal position detection apparatus 100 according to the present embodiment will be described with reference to FIG. FIG. 3 is a flowchart showing an example of an optical signal position detection method according to the present invention.
As shown in FIG. 3, when the optical signal position detection device 100 receives a reception signal, the optical / electrical conversion unit 101 converts the optical signal into an electric signal and outputs it to the A / D conversion unit 102 (S1). When the A / D converter 102 receives the electrical signal, the A / D converter 102 converts the analog signal into a digital signal and outputs it to the correlation value calculator 104 (S2). Correlation value calculation section 104 calculates correlation value ρ based on the received signal received from A / D conversion section 102 and the known signal read from signal sequence generation section 103, and outputs the correlation value ρ to correlation position detection section 105 (S3). ). The correlation position detection unit 105 detects the peak position tp based on the correlation value ρ, and outputs the peak position tp or correlation value information around the peak position tp to the signal position determination unit 106 (S4).
Based on the received correlation value information, the signal position determination unit 106 determines the head position ts of the received signal from Expression 2 or 4, and outputs it (S5).

[第2の実施形態]
次に、本発明にかかる他の実施の形態について説明する。なお、本実施の形態における光信号位置検出装置は、第1の実施形態において説明した光信号位置検出装置100と同じ構成を有し、構成の詳細な説明は同じ符号を付すことで省略する。
本実施の形態にかかる光信号位置検出装置は、経路長により生じる波長分散の影響を既知信号に与えておくことで、より高い相関値を得るため、以下の構成・機能を有することを特徴としている。なお、光信号位置検出装置が、複数の波長分散考慮既知信号を用いる場合において、相関値が最大となる波長分散考慮既知信号に対応する経路長を得ることで、外部に接続されている任意の波長分散の影響を保証する機能部(図示せず)が、この経路長を利用して、波長分散の影響を補償することができる。
[Second Embodiment]
Next, another embodiment according to the present invention will be described. Note that the optical signal position detection device in the present embodiment has the same configuration as the optical signal position detection device 100 described in the first embodiment, and detailed description of the configuration is omitted by attaching the same reference numerals.
The optical signal position detection apparatus according to the present embodiment has the following configuration and function in order to obtain a higher correlation value by giving the known signal the influence of chromatic dispersion caused by the path length. Yes. In the case where the optical signal position detection device uses a plurality of chromatic dispersion-considered known signals, by obtaining a path length corresponding to the chromatic dispersion-considered known signal that maximizes the correlation value, any externally connected arbitrary signal is obtained. A function unit (not shown) that guarantees the influence of chromatic dispersion can compensate for the influence of chromatic dispersion by using this path length.

信号系列生成部103は、波長分散を考慮して周波数による遅延が与えられた波長分散考慮既知信号S´(0),S´(1),・・・,S´(Ns−1)を記憶する。
この波長分散考慮既知信号S´(0),S´(1),・・・,S´(Ns−1)は、既知信号S(0),S(1),・・・,S(Ns−1)から得られる。時間領域の信号である既知信号S(0),S(1),・・・,S(Ns−1)にフーリエ変換を用いることにより、周波数領域の既知信号Sf(0),Sf(1),・・・,Sf(Ns−1)が得られ、さらに波長分散による遅延に対応する位相ずれを周波数領域の既知信号Sf(0),Sf(1),・・・,Sf(Ns−1)に乗算することで、波長分散周波数領域既知信号S´(0)、S´(1),・・・S´(Ns−1)を得ることできる。このとき、次式(式5)の演算式を用いることができる。
で示す。

Figure 0004990855
ここで、位相θ(f)は、波長分散による位相オフセット値であり、非特許文献1記載のように伝送経路である光ファイバの長さ及び光ファイバの波長分散値、波長分散スロープ値に合わせて算出することができる。Sf´(0)、Sf´(1),・・・S´(Ns−1)を逆フーリエ変換により時間領域に変換することで、波長分散周波数領域既知信号S´(0)、S´(1),・・・S´(Ns−1)を得ることできる。相関値演算部104は、波長分散周波数領域既知信号S´(0)、S´(1),・・・S´(Ns−1)を用いて、下に示す式6に従い、相関値ρを算出する。
Figure 0004990855
ここで、分母の値の時間による変動が小さい場合には、無視することができる。 The signal sequence generation unit 103 stores chromatic dispersion-considered known signals S ′ (0), S ′ (1),..., S ′ (Ns−1) to which a delay due to frequency is given in consideration of chromatic dispersion. To do.
The known signals S ′ (0), S ′ (1),..., S ′ (Ns−1) in consideration of chromatic dispersion are known signals S (0), S (1),. -1). By using Fourier transform for the known signals S (0), S (1),..., S (Ns−1), which are time domain signals, the frequency domain known signals Sf (0), Sf (1). ,..., Sf (Ns−1) are obtained, and the phase shift corresponding to the delay due to chromatic dispersion is further converted into the known signals Sf (0), Sf (1),. ) To obtain chromatic dispersion frequency domain known signals S ′ (0), S ′ (1),... S ′ (Ns−1). At this time, an arithmetic expression of the following expression (Expression 5) can be used.
It shows with.
Figure 0004990855
Here, the phase θ (f) is a phase offset value due to chromatic dispersion, and matches the length of the optical fiber, the chromatic dispersion value of the optical fiber, and the chromatic dispersion slope value as described in Non-Patent Document 1. Can be calculated. By converting Sf ′ (0), Sf ′ (1),... S ′ (Ns−1) into the time domain by inverse Fourier transform, chromatic dispersion frequency domain known signals S ′ (0), S ′ ( 1),... S ′ (Ns−1) can be obtained. The correlation value calculation unit 104 uses the chromatic dispersion frequency domain known signals S ′ (0), S ′ (1),... S ′ (Ns−1), and calculates the correlation value ρ according to Equation 6 below. calculate.
Figure 0004990855
Here, when the variation of the denominator value with time is small, it can be ignored.

信号位置決定部106は、相関位置検出部105から出力された相関値ρの情報に基づき、受信信号の先端位置tsを検出する。また、信号位置決定部106は、光信号位置検出装置の外部に接続されている任意の波長分散の影響を保証する機能部(図示せず)があり、複数の波長分散考慮既知信号を用いる場合には、相関値ρが最大となる波長分散考慮既知信号に対応する経路長を出力する。   The signal position determination unit 106 detects the front end position ts of the received signal based on the correlation value ρ output from the correlation position detection unit 105. In addition, the signal position determination unit 106 includes a function unit (not shown) that guarantees the influence of arbitrary chromatic dispersion connected to the outside of the optical signal position detection device, and uses a plurality of chromatic dispersion-considered known signals. Output the path length corresponding to the chromatic dispersion-considered known signal having the maximum correlation value ρ.

このように、本実施の形態にかかる光信号位置検出装置は、相関値ρを求める既知信号として、波長分散を考慮した周波数による遅延を与えた既知信号を用いることにより、より高い相関値を得ることができる。   As described above, the optical signal position detection apparatus according to the present embodiment obtains a higher correlation value by using a known signal with a delay due to a frequency considering chromatic dispersion as a known signal for obtaining the correlation value ρ. be able to.

[第3の実施形態]
次に、本発明にかかる他の実施の形態について説明する。なお、本実施の形態における光信号位置検出装置は、第1の実施形態において説明した光信号位置検出装置100と同じ構成を有し、構成の詳細な説明は同じ符号を付すことで省略する。
本実施の形態にかかる光信号位置検出装置は、受信装置と送信装置において生じる光の周波数ずれを検知する場合、相関値が最も大きくなる位相オフセットφaに対応する周波数ずれを検知するとともに、信号の先頭位置tsを検出するため、以下の構成・機能を有することを特徴とする。
[Third Embodiment]
Next, another embodiment according to the present invention will be described. Note that the optical signal position detection device in the present embodiment has the same configuration as the optical signal position detection device 100 described in the first embodiment, and detailed description of the configuration is omitted by attaching the same reference numerals.
The optical signal position detection apparatus according to the present embodiment detects a frequency shift corresponding to the phase offset φa having the largest correlation value when detecting a frequency shift of light occurring in the reception apparatus and the transmission apparatus, and In order to detect the leading position ts, the following configuration / function is provided.

信号系列生成部103は、周波数ずれ検知既知信号S´´a(0),S´´a(1),・・・,S´´a(Ns−1)を記憶する。ここで、1≦a≦Naであり、信号系列生成部103は、Na通りの周波数ずれに対応した周波数ずれ検知信号S´´a(t)を記憶する。
この周波数ずれ検知既知信号S´´a(t)は、次式(式7)で表される。

Figure 0004990855
ここで、Nsは、周波数チャネル数であり、φaは、周波数ずれに対応する位相オフセット値であり、−π<φa<πである。
相関値演算部104は、周波数ずれ検知既知信号S´´a(t)に基づき、下に示す式8に従い、相関値ρを算出する。
Figure 0004990855
ここで、分母の値の時間変動が小さい場合には、分母を無視することができる。
すなわち、相関値演算部104は、時系列の既知信号系列S(t)に位相オフセット値φaが付加された周波数ずれ検知既知信号S´´a(t)を用いて、相関値ρを算出し、相関値のピーク位置の精度を高めることができる。
また、相関値演算部104は、時系列の既知信号系列に位相オフセットを付加することにより、相関値が最も大きくなる位相オフセットφaに対応する周波数ずれを検出することができる。
さらに、信号位置決定部106は、光信号位置検出装置の外部に接続されている任意の周波数ずれを補償する機能部(図示せず)を備えている場合、送受信間で生じる周波数ずれを出力する。 The signal series generation unit 103 stores the frequency deviation detection known signals S ″ a (0), S ″ a (1),..., S ″ a (Ns−1). Here, 1 ≦ a ≦ Na, and the signal sequence generation unit 103 stores a frequency shift detection signal S ″ a (t) corresponding to Na frequency shifts.
This frequency shift detection known signal S ″ a (t) is expressed by the following equation (Equation 7).
Figure 0004990855
Here, Ns is the number of frequency channels, φa is a phase offset value corresponding to the frequency shift, and −π <φa <π.
The correlation value calculation unit 104 calculates the correlation value ρ according to Equation 8 below based on the frequency shift detection known signal S ″ a (t).
Figure 0004990855
Here, when the time variation of the denominator value is small, the denominator can be ignored.
That is, the correlation value calculation unit 104 calculates the correlation value ρ using the frequency shift detection known signal S ″ a (t) obtained by adding the phase offset value φa to the time-series known signal sequence S (t). The accuracy of the peak position of the correlation value can be improved.
Further, the correlation value calculation unit 104 can detect a frequency shift corresponding to the phase offset φa at which the correlation value becomes the largest by adding a phase offset to the time-series known signal sequence.
Furthermore, when the signal position determination unit 106 includes a function unit (not shown) that compensates for an arbitrary frequency shift connected to the outside of the optical signal position detection apparatus, the signal position determination unit 106 outputs a frequency shift that occurs between transmission and reception. .

[第4の実施の形態]
次に、本発明にかかる他の実施の形態について説明する。なお、本実施の形態における光信号位置検出装置は、第1の実施形態において説明した光信号位置検出装置100と同じ構成を有し、構成の詳細な説明は同じ符号を付すことで省略する。
本実施の形態にかかる光信号位置検出装置は、周波数領域に応じて分割された既知信号を用いて、相関値の大きさから波長分散の影響を判断するとともに、信号の先頭位置tsを検出するため、以下の構成・機能を有することを特徴とする。
[Fourth Embodiment]
Next, another embodiment according to the present invention will be described. Note that the optical signal position detection device in the present embodiment has the same configuration as the optical signal position detection device 100 described in the first embodiment, and detailed description of the configuration is omitted by attaching the same reference numerals.
The optical signal position detection apparatus according to the present embodiment uses the known signal divided according to the frequency domain, determines the influence of chromatic dispersion from the magnitude of the correlation value, and detects the leading position ts of the signal. Therefore, it has the following configuration / function.

信号系列生成部103は、周波数帯域に応じて分割された複数の周波数領域分割既知信号S´´´c(0),S´´´c(1),・・・,S´´´c(Ns−1)を記憶している。この周波数領域分割既知信号S´´´c(t)は、既知信号系列S(0)〜S(Ns−1)にローパスフィルタ、ハイパスフィルタ、バンドパスフィルタなどのデジタル処理が施されることにより、あるいは、波長分散考慮既知信号S´(0),S´(1),・・・,S´(Ns−1)から任意の周波数領域のみの信号を用いて、時間領域に再度変換することにより、予め算出され、信号系列生成部103に記憶されている。なお、1≦c≦Nfbであり、信号系列生成部103は、Nfb通りの周波数領域に対応する周波数領域分割既知信号S´´´c(t)が記憶されている。
相関値演算部104は、信号系列生成部103から読み出した複数の周波数領域分割既知信号S´´´c(t)に基づき、下に示す式10に従い、相関値ρを算出する。

Figure 0004990855
ここで、分母の値の時間変動が小さい場合には、分母を無視することができる。
このとき、異なる周波数領域に対応する周波数領域分割既知信号S´´´c(t)では、相関値ρのピーク位置が異なる。 The signal sequence generation unit 103 includes a plurality of frequency domain division known signals S ″ ″ c (0), S ″ ″ c (1),. Ns-1) is stored. This frequency domain division known signal S ″ ″ c (t) is obtained by subjecting the known signal series S (0) to S (Ns−1) to digital processing such as a low pass filter, a high pass filter, and a band pass filter. Alternatively, conversion from the known signals S ′ (0), S ′ (1),..., S ′ (Ns−1) in consideration of chromatic dispersion into the time domain is performed again using a signal in only an arbitrary frequency domain. Is calculated in advance and stored in the signal sequence generation unit 103. Note that 1 ≦ c ≦ Nfb, and the signal sequence generation unit 103 stores frequency domain division known signals S ′ ″ c (t) corresponding to Nfb frequency domains.
Correlation value calculation section 104 calculates correlation value ρ according to Equation 10 shown below based on a plurality of frequency domain division known signals S ″ ″ (t) read from signal sequence generation section 103.
Figure 0004990855
Here, when the time variation of the denominator value is small, the denominator can be ignored.
At this time, the peak positions of the correlation values ρ are different in the frequency domain division known signal S ′ ″ c (t) corresponding to different frequency domains.

ここで、図4を用いて具体的に説明する。図4は、光信号位置検出装置100が、12.5[sample/sec]で送信され、1600kmの光ファイバーで伝搬された光信号を、25G[sample/sec]で受信し、相関値演算部104が、この送信信号に基づき、2つの周波数帯域に対応する周波数領域分割既知信号S´´´1(t)とS´´´2(t)を用いて、式9の演算式に従い、時間t[sample]に対する相関値ρを算出したデータを示す。ここで、時間t[sample]は40psecに対応する。
図4に示すとおり、周波数領域分割既知信号S´´´1(t)に対応する周波数帯域A、周波数領域分割既知信号S´´´2(t)に対応する周波数帯域Bで相関値ρのピークがずれている
相関位置検出部105は、対応する周波数帯域(周波数帯域A,B)の相関値ρのピーク位置tp1,tp2を検出する。
信号位置決定部106は、このピーク位置tp1,tp2との間の中心をピーク位置tpと、ピーク位置tp1,tp2との間隔を時間間隔Tとして、式2,式3に従い、信号の先頭位置tsを検出する。
また、信号位置決定部106は、光信号位置検出装置の外部に接続されている任意の波長分散の影響を補償する機能部(図示せず)を備えている場合、ピーク位置のずれ情報を出力する。
このようにして、本実施の形態にかかる光信号位置検出装置は、周波数領域に応じて分割された周波数領域分割既知信号S´´´c(t)を用いて算出された相関値ρのピーク位置のずれから、波長分散の影響を評価するとともに、信号の先頭位置tsを検出することができる。
Here, it demonstrates concretely using FIG. In FIG. 4, the optical signal position detection apparatus 100 receives an optical signal transmitted at 12.5 [sample / sec] and propagated through an optical fiber of 1600 km at 25 G [sample / sec]. However, based on this transmission signal, using the frequency domain division known signals S ″ ″ 1 (t) and S ″ ″ 2 (t) corresponding to two frequency bands, the time t The data which calculated correlation value (rho) with respect to [sample] are shown. Here, the time t [sample] corresponds to 40 psec.
As shown in FIG. 4, the correlation value ρ of the frequency band A corresponding to the frequency domain division known signal S ″ ″ 1 (t) and the frequency band B corresponding to the frequency domain division known signal S ″ ″ 2 (t) The peak is shifted The correlation position detection unit 105 detects the peak positions tp1 and tp2 of the correlation value ρ in the corresponding frequency band (frequency bands A and B).
The signal position determination unit 106 uses the center between the peak positions tp1 and tp2 as the peak position tp and the interval between the peak positions tp1 and tp2 as the time interval T, and the signal start position ts according to Equations 2 and 3. Is detected.
Further, when the signal position determination unit 106 includes a function unit (not shown) that compensates for the influence of arbitrary chromatic dispersion connected to the outside of the optical signal position detection device, it outputs peak position deviation information. To do.
In this way, the optical signal position detection device according to the present embodiment uses the peak of the correlation value ρ calculated using the frequency domain division known signal S ″ ″ c (t) divided according to the frequency domain. From the position shift, it is possible to evaluate the influence of chromatic dispersion and detect the leading position ts of the signal.

[第5の実施の形態]
次に、本発明にかかる他の実施の形態について説明する。なお、本実施の形態における光信号位置検出装置は、第1の実施形態において説明した光信号位置検出装置100と同じ構成を有し、構成の詳細な説明は同じ符号を付すことで省略する。また、本実施の形態における光信号位置検出装置は、第1の実施形態と異なり、図1に示した信号系列生成部103および既知信号は不要である。
本実施の形態にかかる光信号位置検出装置は、受信した光信号に基づく受信信号の相互相関により算出された相互相関値ρcに基づき、信号の先頭位置tsを検出するため、以下の構成・機能を有することを特徴とする。
相関値演算部104は、所定時間あけて受信した光信号に基づく複数の受信信号同士の相互相関値ρcを算出する。すなわち、相関値演算部104は、下に示す式11の演算式に従い、相互相関値ρcを算出する。

Figure 0004990855
検出されたピーク位置に基づき得られたガードインターバルの時間間隔Gから式4により信号位置を決定できる。 [Fifth Embodiment]
Next, another embodiment according to the present invention will be described. Note that the optical signal position detection device in the present embodiment has the same configuration as the optical signal position detection device 100 described in the first embodiment, and detailed description of the configuration is omitted by attaching the same reference numerals. Further, unlike the first embodiment, the optical signal position detection apparatus in the present embodiment does not require the signal sequence generation unit 103 and the known signal shown in FIG.
The optical signal position detection apparatus according to the present embodiment detects the signal start position ts based on the cross-correlation value ρc calculated by the cross-correlation of the received signal based on the received optical signal. It is characterized by having.
Correlation value calculation section 104 calculates a cross-correlation value ρc between a plurality of received signals based on optical signals received after a predetermined time. That is, correlation value calculation section 104 calculates cross-correlation value ρc according to the calculation expression of Expression 11 shown below.
Figure 0004990855
The signal position can be determined by Equation 4 from the time interval G of the guard interval obtained based on the detected peak position.

なお、本発明にかかる光信号位置検出装置は、上述した複数の実施形態を組み合わせて利用することができる。例えば、波長分散考慮既知信号S´(0),S´(1),・・・,S´(Ns−1)や、周波数領域分割既知信号S´´´c(0),S´´´c(1),・・・,S´´´c(Ns−1)に、式7に示すように、周波数ずれに対応する位相オフセット値を乗算して得られる信号を、信号系列生成部103が、記憶できる。
また、上述の実施形態において、信号位置決定部103は、任意の既知信号を予め記憶する構成を例に説明したが、本発明はこれに限られず、記憶されている既知信号に基づき、波長分散考慮既知信号S´(t)、波長分散周波数領域既知信号Sf´(t)、周波数ずれ検知既知信号S´´a(t)、周波数領域分割既知信号S´´´c(t)を生成する構成であってもよい。
例えば、信号系列生成部103は、第4の実施形態を用いて説明したような、周波数帯域に応じて分割された既知信号を利用する場合、第3の実施形態と組み合わせて、式7あるいは式9に従い得られる周波数ずれ検知既知信号S´´a(t)に、ローパスフィルタ、ハイパスフィルタ、バンドパスフィルタなどのデジタル処理を施すことで、周波数領域分割既知信号S´´´c(t)を生成する構成であってもよい。
また、信号系列生成部103は、第2,4の実施形態と組み合わせて、式5に従い波長分散考慮既知信号S´(0)を算出した後、任意の周波数のみの信号を用いて、時間領域に再度変換することで、周波数領域分割既知信号S´´´c(t)を生成する構成であってもよい。
以上、説明したように、本発明によれば、光通信において、受信された信号に基づき、信号の先頭位置を検出することができる。
In addition, the optical signal position detection apparatus according to the present invention can be used in combination of the above-described embodiments. For example, chromatic dispersion consideration known signals S ′ (0), S ′ (1),..., S ′ (Ns−1) and frequency domain division known signals S ″ ″ c (0), S ″ ″. Signals obtained by multiplying c (1),..., S ″ ″ (Ns−1) by the phase offset value corresponding to the frequency shift as shown in Expression 7 Can be remembered.
In the above-described embodiment, the signal position determination unit 103 has been described by taking an example of a configuration in which an arbitrary known signal is stored in advance. However, the present invention is not limited to this, and based on the stored known signal, wavelength dispersion A known signal S ′ (t) to be considered, a chromatic dispersion frequency domain known signal Sf ′ (t), a frequency shift detection known signal S ″ a (t), and a frequency domain division known signal S ″ ″ c (t) are generated. It may be a configuration.
For example, when using the known signal divided according to the frequency band as described with reference to the fourth embodiment, the signal sequence generation unit 103 is combined with the third embodiment in accordance with Equation 7 or Equation 9 is applied to the frequency deviation detection known signal S ″ a (t) obtained in accordance with 9, and a digital processing such as a low-pass filter, a high-pass filter, and a band-pass filter is performed to obtain the frequency domain division known signal S ″ ″ c (t). The structure to produce | generate may be sufficient.
In addition, the signal sequence generation unit 103 calculates the chromatic dispersion-considered known signal S ′ (0) according to Equation 5 in combination with the second and fourth embodiments, and then uses a signal of only an arbitrary frequency to generate a time domain. The frequency domain division known signal S ′ ″ c (t) may be generated by converting again to.
As described above, according to the present invention, the head position of a signal can be detected based on the received signal in optical communication.

本実施の形態の構成の一例を示すブロック図である。It is a block diagram which shows an example of a structure of this Embodiment. 本実施の形態にかかる既知信号を用いた相関値分布を示す概略図であるIt is the schematic which shows correlation value distribution using the known signal concerning this Embodiment. 本実施の形態にかかる光信号位置検出装置における光信号位置検出方法の一例を示すフローチャートである。It is a flowchart which shows an example of the optical signal position detection method in the optical signal position detection apparatus concerning this Embodiment. 本実施の形態にかかる周波数帯域に応じて分割された既知信号を用いた相関値分布を示す概略図である。It is the schematic which shows the correlation value distribution using the known signal divided | segmented according to the frequency band concerning this Embodiment. 従来の信号位置検出装置の一例を示すブロック図である。It is a block diagram which shows an example of the conventional signal position detection apparatus.

符号の説明Explanation of symbols

100 光信号位置検出装置
101 光・電気変換部
102 A/D変換部
103 信号系列生成部
104 相関値演算部
105 相関位置検出部
106 信号位置決定部
DESCRIPTION OF SYMBOLS 100 Optical signal position detection apparatus 101 Opto-electric conversion part 102 A / D conversion part 103 Signal sequence generation part 104 Correlation value calculation part 105 Correlation position detection part 106 Signal position determination part

Claims (4)

光通信方式において、光信号として受信した受信信号の信号位置を検知する光信号位置検出装置における光信号位置検出方法であって、
前記光信号位置検出装置の光・電気変換部が、
前記受信信号の光信号を電気信号に変換し、
前記光信号位置検出装置の信号系列生成部が、
少なくとも1つの経路長により生じる波長分散の影響が与えられた波長分散考慮既知信号を記憶し、
前記光信号位置検出装置の相関値演算部が、
前記信号系列生成部に記憶されている前記波長分散考慮既知信号と、前記受信信号との相関値を演算し、
前記光信号位置検出装置の相関位置検出部が、
前記相関値演算部より演算された前記相関値が最大となるピーク位置および相関値の分布の情報を出力し、
前記光信号位置検出装置の信号位置決定部が、
前記相関位置検出部から出力された前記相関値の情報に基づき、前記受信信号の信号位置を検出するとともに、波長分散の影響を保証する機能部を有し、複数の波長分散考慮既知信号を用いる場合には、相関値が最大となる波長分散考慮既知信号に対応する経路長を出力する ことを特徴とする光信号位置検出方法。
In an optical communication method, an optical signal position detection method in an optical signal position detection device for detecting a signal position of a received signal received as an optical signal,
The optical / electrical converter of the optical signal position detecting device is
Converting the optical signal of the received signal into an electrical signal;
The signal sequence generation unit of the optical signal position detection device,
Storing a known signal in consideration of chromatic dispersion given the influence of chromatic dispersion caused by at least one path length;
The correlation value calculation unit of the optical signal position detection device,
Calculating a correlation value between the chromatic dispersion-considered known signal stored in the signal sequence generation unit and the received signal;
The correlation position detection unit of the optical signal position detection device,
Output the peak position where the correlation value calculated by the correlation value calculation unit is maximum and the distribution of the correlation value,
The signal position determination unit of the optical signal position detection device,
Based on the correlation value information output from the correlation position detection unit, the signal position of the received signal is detected and a function unit that guarantees the influence of chromatic dispersion is used, and a plurality of known signals considering chromatic dispersion are used. In this case, a path length corresponding to a chromatic dispersion-considered known signal having a maximum correlation value is output.
光通信方式において、光信号として受信した受信信号の信号位置を検知する光信号位置検出装置における光信号位置検出方法であって、
前記光信号位置検出装置の光・電気変換部が、
前記受信信号の光信号を電気信号に変換し、
前記光信号位置検出装置の信号系列生成部が、
前記受信信号を送信する所定の送信装置と前記光信号位置検出装置との送受信間で生じ得る複数の周波数ずれが与えられた周波数ずれ検知既知信号を記憶し、
前記光信号位置検出装置の相関値演算部が、
前記信号系列生成部に記憶されている前記周波数ずれ検知既知信号と、前記受信信号との相関値を演算し、
前記光信号位置検出装置の相関位置検出部が、
前記相関値演算部より演算された前記相関値が最大となるピーク位置および相関値の分布の情報を出力し、
前記光信号位置検出装置の信号位置決定部が、
前記相関位置検出部から出力された前記相関値の情報に基づき、前記受信信号の信号位置を検出するとともに、周波数ずれを補償する機能部を有する場合には、前記送受信間で生じる周波数ずれを出力する
ことを特徴とする光信号位置検出方法。
In an optical communication method, an optical signal position detection method in an optical signal position detection device for detecting a signal position of a received signal received as an optical signal,
The optical / electrical converter of the optical signal position detecting device is
Converting the optical signal of the received signal into an electrical signal;
The signal sequence generation unit of the optical signal position detection device,
Storing a frequency deviation detection known signal to which a plurality of frequency deviations that may occur between transmission and reception between the predetermined transmission device that transmits the reception signal and the optical signal position detection device are given;
The correlation value calculation unit of the optical signal position detection device,
Calculating a correlation value between the received signal and the frequency deviation detection known signal stored in the signal sequence generation unit;
The correlation position detection unit of the optical signal position detection device,
Output the peak position where the correlation value calculated by the correlation value calculation unit is maximum and the distribution of the correlation value,
The signal position determination unit of the optical signal position detection device,
Based on the correlation value information output from the correlation position detector, detects the signal position of the received signal and outputs a frequency shift that occurs between the transmission and reception when the function unit compensates the frequency shift. An optical signal position detection method.
光通信方式において、光信号として受信した受信信号の信号位置を検知する光信号位置検出装置における光信号位置検出方法であって、
前記光信号位置検出装置の光・電気変換部が、
前記受信信号の光信号を電気信号に変換し、
前記光信号位置検出装置の信号系列生成部が、
所定の既知信号における周波数帯域に応じて分割された複数の周波数領域分割既知信号を記憶し、
前記光信号位置検出装置の相関値演算部が、
前記信号系列生成部に記憶されている複数の前記周波数領域分割既知信号と、前記受信信号との相関値を演算し、
前記光信号位置検出装置の相関位置検出部が、
前記相関値演算部より演算されたそれぞれ周波数領域分割既知信号における前記相関値が最大となるピーク位置の情報を出力し、
前記光信号位置検出装置の信号位置決定部が、
前記相関位置検出部から出力された複数の前記相関値の情報に基づき、前記受信信号の信号位置を検出するとともに、波長分散の影響を補償する機能部を有する場合には、ピーク位置のずれの情報を出力する
ことを特徴とする光信号位置検出方法。
In an optical communication method, an optical signal position detection method in an optical signal position detection device for detecting a signal position of a received signal received as an optical signal,
The optical / electrical converter of the optical signal position detecting device is
Converting the optical signal of the received signal into an electrical signal;
The signal sequence generation unit of the optical signal position detection device,
Storing a plurality of frequency domain divided known signals divided according to a frequency band in a predetermined known signal;
The correlation value calculation unit of the optical signal position detection device,
Calculating a correlation value between the plurality of frequency domain division known signals stored in the signal sequence generation unit and the received signal;
The correlation position detection unit of the optical signal position detection device,
Output the information of the peak position where the correlation value in each frequency domain division known signal calculated by the correlation value calculation unit is maximized,
The signal position determination unit of the optical signal position detection device,
Based on the information of the plurality of correlation values output from the correlation position detection unit, the signal position of the received signal is detected, and a function unit that compensates for the influence of chromatic dispersion is provided. An optical signal position detection method characterized by outputting information.
光通信方式において、光信号として受信した受信信号の信号位置を検知する光信号位置検出装置において、
前記受信信号の光信号を電気信号に変換する光・電気変換部と、
長分散の影響が与えられた波長分散考慮既知信号、所定の既知信号に前記受信信号を送信する複数の所定の送信装置と前記光信号位置検出装置との送受信間で生じ得る周波数ずれが与えられた前記周波数ずれ検知既知信号、前記所定の既知信号に複数の周波数ずれが与えられた前記複数の波長分散周波数領域既知信号、前記所定の既知信号が周波数帯域に応じて分割されている前記複数の周波数領域分割既知信号、あるいは前記複数の周波数ずれが与えられた前記複数の周波数領域分割既知信号のうち少なくとも1つを記憶する信号系列生成部と、
前記信号系列生成部に記憶されている前記波長分散考慮既知信号、前記周波数ずれ検知既知信号、前記複数の波長分散周波数領域既知信号、あるいは前記複数の周波数領域分割既知信号のうち少なくとも1つと、前記受信信号との相関値を演算し、
前記相関値演算部より演算された前記相関値が最大となるピーク位置、もしくはピーク位置と相関値の分布の情報を出力する相関位置検出部と、
前記相関位置検出部から出力された前記相関値の情報に基づき、前記受信信号の信号位置を検出する信号位置決定部と
を有すること特徴とする光信号位置検出装置。
In an optical communication system, in an optical signal position detection device that detects a signal position of a received signal received as an optical signal,
An optical / electrical converter that converts an optical signal of the received signal into an electrical signal;
Wavelength dispersion wavelength dispersion considered known signal effect is given of a frequency shift that can occur between the transmission and reception of a plurality of predetermined transmission apparatus that transmits the received signal to a Jo Tokoro of the known signal and the optical signal position detecting device The given frequency deviation detection known signal, the plurality of chromatic dispersion frequency domain known signals obtained by giving a plurality of frequency deviations to the predetermined known signal, and the predetermined known signal being divided according to a frequency band A plurality of frequency domain division known signals, or a signal sequence generation unit that stores at least one of the plurality of frequency domain division known signals given the plurality of frequency shifts;
The signal sequence generating unit before Symbol wavelength dispersion considering the known signal that has been stored in the frequency deviation detection known signals, said plurality of wavelength dispersion frequency domain known signal or at least one of the plurality of frequency domain division known signal, Calculating a correlation value with the received signal;
A correlation position detection unit that outputs information on a peak position where the correlation value calculated by the correlation value calculation unit is maximum, or a distribution of a peak position and a correlation value;
An optical signal position detecting device comprising: a signal position determining unit that detects a signal position of the received signal based on the correlation value information output from the correlation position detecting unit.
JP2008211099A 2008-08-19 2008-08-19 Optical signal position detection method and optical signal position detection apparatus Expired - Fee Related JP4990855B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008211099A JP4990855B2 (en) 2008-08-19 2008-08-19 Optical signal position detection method and optical signal position detection apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008211099A JP4990855B2 (en) 2008-08-19 2008-08-19 Optical signal position detection method and optical signal position detection apparatus

Publications (2)

Publication Number Publication Date
JP2010050567A JP2010050567A (en) 2010-03-04
JP4990855B2 true JP4990855B2 (en) 2012-08-01

Family

ID=42067327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008211099A Expired - Fee Related JP4990855B2 (en) 2008-08-19 2008-08-19 Optical signal position detection method and optical signal position detection apparatus

Country Status (1)

Country Link
JP (1) JP4990855B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4933505B2 (en) * 2008-08-29 2012-05-16 日本電信電話株式会社 Interference reduction method and interference reduction apparatus
JP4933504B2 (en) * 2008-08-29 2012-05-16 日本電信電話株式会社 Interference reduction transmission method and interference reduction transmission apparatus

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3835800B2 (en) * 2002-02-08 2006-10-18 株式会社東芝 Reception frame synchronization method and reception apparatus
JP2003258725A (en) * 2002-02-26 2003-09-12 Nec Corp Optical packet header discrimination circuit, optical router using the same, and optical routing method
JP2005260433A (en) * 2004-03-10 2005-09-22 Matsushita Electric Ind Co Ltd Receiving timing detector and detecting method
JP2007074518A (en) * 2005-09-08 2007-03-22 Matsushita Electric Ind Co Ltd Multicarrier transmitter, multicarrier receiver and synchronization detection method

Also Published As

Publication number Publication date
JP2010050567A (en) 2010-03-04

Similar Documents

Publication Publication Date Title
US8452192B2 (en) Apparatus and method for monitoring statistical characteristics of phase noises, and coherent optical communication receiver
JP5842472B2 (en) Self-phase modulation noise calculation device, self-phase modulation noise elimination device, and optical coherent receiver
EP2456097A1 (en) Wavelength dispersion amount calculation device, optical signal reception device, optical signal transmission device, and wavelength dispersion amount calculation method
US7616723B2 (en) Method for symbol timing synchronization and apparatus thereof
WO2004068749A1 (en) Fading frequency estimation apparatus
JP4990855B2 (en) Optical signal position detection method and optical signal position detection apparatus
US9261548B2 (en) Hum noise detection device
US10263697B2 (en) Method and apparatus for monitoring chromatic dispersion in optical communications network
US8848176B2 (en) Dispersion measurement apparatus using a wavelet transform to determine a time difference based on indentified peaks
US7439485B2 (en) Multimode optical transmission apparatus and multimode optical transmission system
US9444668B2 (en) Frame synchronization in a receiver using a preamble having a specific structure
KR102130585B1 (en) Synchronization apparatus in narrowband wireless communication system and method thereof
JP5681743B2 (en) Optical receiving apparatus and optical receiving method
KR101133526B1 (en) Phase correction apparatus and method of frequency modulated interrupted continuous wave
US10999659B2 (en) Optical network device and method for monitoring transmission line
US10554299B2 (en) Method and apparatus for characterizing a dispersion of an optical medium
US11463169B2 (en) Wavelength dispersion amount estimation apparatus
EP3617745B1 (en) Radar device
CN108880711B (en) Estimation device and method of linear crosstalk between channels and receiver
JP5770878B1 (en) Optical transmission system and optical transmission method
KR101255077B1 (en) Method and apparatus for estimating the propagation delay time
CN102170316A (en) Transmission channel response estimator
JP2010507270A (en) Determination of symbol synchronization information of OFDM signal
JP4977409B2 (en) Multimode optical transmission apparatus and multimode optical transmission system
JP5963581B2 (en) Equalizer, equalization method, received signal processing device, and received signal processing method

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100526

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120424

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120502

R151 Written notification of patent or utility model registration

Ref document number: 4990855

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees