JP4990599B2 - Permanent magnet rotating electric machine - Google Patents

Permanent magnet rotating electric machine Download PDF

Info

Publication number
JP4990599B2
JP4990599B2 JP2006302444A JP2006302444A JP4990599B2 JP 4990599 B2 JP4990599 B2 JP 4990599B2 JP 2006302444 A JP2006302444 A JP 2006302444A JP 2006302444 A JP2006302444 A JP 2006302444A JP 4990599 B2 JP4990599 B2 JP 4990599B2
Authority
JP
Japan
Prior art keywords
permanent magnet
magnet
rotor
electric machine
pieces
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006302444A
Other languages
Japanese (ja)
Other versions
JP2007166888A (en
Inventor
康明 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2006302444A priority Critical patent/JP4990599B2/en
Publication of JP2007166888A publication Critical patent/JP2007166888A/en
Application granted granted Critical
Publication of JP4990599B2 publication Critical patent/JP4990599B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、永久磁石回転電機に関する。   The present invention relates to a permanent magnet rotating electrical machine.

回転電機は、界磁磁束発生に永久磁石を使う事で高効率化が可能であることが知られて
いる。最近では、高特性な磁石を使う事で、ギャップの高磁束密度化が達成され高効率で
コンパクトな回転電機が構成可能である。また、磁石の高特性化や技術の向上により永久
磁石回転電機の用途が増大し、高速回転用途や大型の回転電機でも高特性な永久磁石が使
われるようになってきている。
It is known that a rotating electrical machine can be highly efficient by using a permanent magnet for generating a field magnetic flux. Recently, a high-efficiency and compact rotating electrical machine can be constructed by using a high-performance magnet to achieve a high magnetic flux density in the gap. In addition, the use of permanent magnet rotating electrical machines has increased due to higher magnet properties and improved technology, and high-performance permanent magnets have been used in high-speed rotating applications and large rotating electrical machines.

高特性な磁石は、導電性が高く、高速回転または大型の回転電機では磁石に発生する渦
電流によって効率の低下が起こる事が問題になっている。その問題を解決するために、高
特性な導電性の永久磁石材料の間に絶縁材料を介在させることによって、永久磁石の渦電
流を減少させるものが特許文献1に記載されている。
High-performance magnets have high conductivity, and in high-speed rotations or large-sized rotating electrical machines, there is a problem that efficiency is reduced due to eddy currents generated in the magnets. In order to solve the problem, Patent Document 1 discloses a technique in which an eddy current of a permanent magnet is reduced by interposing an insulating material between high-performance conductive permanent magnet materials.

しかしながら、上記特許に記載の技術は、絶縁物と導電性の永久磁石の熱膨張率の差に
より、応力が発生し磁石の破壊等が生じることがあった。また、磁石片間に絶縁部材を介
在させるため、絶縁部材を均等に配置する事や、施工のため時間やコストがかかることに
なる。また、上記技術は絶縁部材を磁石片間に配置するため磁石としての特性が減少する
等の問題が発生することになる。
特開平11―4555号公報
However, in the technique described in the above patent, stress is generated due to the difference in thermal expansion coefficient between the insulator and the conductive permanent magnet, and the magnet may be broken. In addition, since the insulating member is interposed between the magnet pieces, it takes time and cost to arrange the insulating member evenly and to perform the construction. Moreover, since the above-mentioned technique arranges the insulating member between the magnet pieces, there arises a problem that the characteristic as a magnet is reduced.
Japanese Patent Laid-Open No. 11-4555

上記問題点に鑑み、本発明は、熱による磁石の破損を防止し、さらに永久磁石に発生す
る渦電流を減少させながら渦電流損失を低減し、さらには、施工の時間やコストを短縮す
ることができる永久磁石回転電機を提供することを目的とする。
In view of the above problems, the present invention prevents damage to magnets due to heat, further reduces eddy current loss while reducing eddy currents generated in permanent magnets, and further shortens construction time and cost. An object of the present invention is to provide a permanent magnet rotating electrical machine that can perform the above.

本発明の永久磁石回転電機は、回転子鉄心の内部または表面に複数個の永久磁石を配置
すると共に、回転子周方向に互いに異なる磁極方向となるように、互いに間隔を持って回
転子周方向に環状に併設された永久磁石が、導電性の磁石から形成され、その永久磁石に
発生する渦電流を低減するように、導電性の磁石片を回転子周方向、軸方向または周方向
と軸方向に複数個併設した永久磁石(磁石片集合体)から構成されており、磁石片間に絶
縁部材が配置されないものである。
The permanent magnet rotating electric machine according to the present invention has a plurality of permanent magnets arranged inside or on the surface of the rotor core, and the rotor circumferential direction is spaced from each other so as to have different magnetic pole directions in the rotor circumferential direction. In order to reduce the eddy current generated in the permanent magnet, the permanent magnet provided in an annular shape on the rotor is arranged in the rotor circumferential direction, the axial direction or the circumferential direction and the shaft. It is composed of a plurality of permanent magnets (magnet piece aggregates) arranged in the direction, and no insulating member is disposed between the magnet pieces.

本発明は、具体的には、巻線が巻回された複数の固定子突極を有する固定子と、該固定子に回転空隙をもって回転可能に保持された回転子とを有し、上記回転子が、回転子周方向に互いに間隔を持って環状に並設された複数の永久磁石挿入孔を内部に有する回転子鉄心と、上記複数の永久磁石挿入孔に、回転子周方向に隣り合う挿入孔が互いに異なる磁極方向となるように挿入された永久磁石とを備えており、上記永久磁石が、複数個併設された磁石片から構成され、該磁石片間に介在物を配置しない構造を有し、上記磁石片が、同一の永久磁石焼結体から分割して得られたものである永久磁石回転電機を提供する。 Specifically, the present invention includes a stator having a plurality of stator salient poles wound with windings, and a rotor that is rotatably held by the stator with a rotation gap. The rotor is adjacent to the rotor core having a plurality of permanent magnet insertion holes arranged in a ring in the circumferential direction of the rotor in the circumferential direction and the plurality of permanent magnet insertion holes in the circumferential direction of the rotor. A permanent magnet inserted in such a way that the insertion holes have different magnetic pole directions, and the permanent magnet is composed of a plurality of magnet pieces arranged side by side, and an inclusion is not arranged between the magnet pieces. Yes, and the magnet piece, to provide a permanent magnet rotating electrical machine is obtained by dividing the same permanent magnet sintered body.

磁石片間に絶縁物を有する永久磁石は、エポキシ樹脂等の絶縁物に有機溶剤を含むもの
を利用しているが、真空中では有機溶剤が高温下で拡散し、使えない問題がある。本発明
の永久磁石回転電機における磁石片を備える永久磁石は、高温さらに真空下においても有
機溶剤の拡散がなく、問題なく利用できる。
また、渦電流対策を目的とした永久磁石の分割は、磁石片間に絶縁物等が存在する場合
、高温下では膨張率の差から、また、絶縁物の耐熱性の問題から破損することがある。本
発明によれば、分割した磁石片間に介在物を存在させないことによって、温度上昇による
磁石の応力を緩和し、耐熱性を備えた渦電流低減磁石を提供し、さらにコストと加工時間
を大幅に短縮させることが可能になった。
A permanent magnet having an insulator between magnet pieces uses an insulator such as an epoxy resin containing an organic solvent. However, in a vacuum, the organic solvent diffuses at a high temperature and cannot be used. The permanent magnet provided with the magnet piece in the permanent magnet rotating electric machine of the present invention does not diffuse the organic solvent even at high temperature and under vacuum, and can be used without any problem.
In addition, the division of permanent magnets for the purpose of eddy current countermeasures can be damaged due to the difference in expansion coefficient at high temperatures and the heat resistance problem of insulators when there is an insulator between the magnet pieces. is there. According to the present invention, by providing no inclusions between the divided magnet pieces, the stress of the magnet due to the temperature rise is relieved, and an eddy current reducing magnet having heat resistance is provided, and cost and processing time are greatly increased. It became possible to shorten it.

図1は永久磁石回転電機の断面図を、図2は永久磁石回転電機の平面図を示す。
本実施形態は、固定子コイルが6極、回転子の永久磁石極数は4極のものであるが、他
の突極数のものに対しても本発明を適用可能である。
FIG. 1 is a sectional view of a permanent magnet rotating electric machine, and FIG. 2 is a plan view of the permanent magnet rotating electric machine.
In this embodiment, the stator coil has 6 poles and the rotor has 4 permanent magnet poles, but the present invention can be applied to other salient poles.

図1及び図2において、永久磁石回転電機は固定子1と回転子2からなり、固定子1は
固定子鉄心3と固定子巻線4とで構成される。
回転子2は、シャフトがベアリング5にて保持され自在に回転可能になっている。
また、回転子2には、複数の永久磁石挿入のための孔6が設置され、永久磁石7は各孔
6に挿入され固定されている。
1 and 2, the permanent magnet rotating electric machine includes a stator 1 and a rotor 2, and the stator 1 includes a stator core 3 and a stator winding 4.
The rotor 2 has a shaft held by a bearing 5 and can freely rotate.
The rotor 2 is provided with holes 6 for inserting a plurality of permanent magnets, and the permanent magnets 7 are inserted and fixed in the holes 6.

図1及び図2に示す永久磁石7は、周方向又は/及び軸方向に分割されていることが好
ましく、特に応力を分散するためにも軸方向に分割されていることがより好ましい。永久
磁石7は、周方向のみに分割されていてもよい。
分割数は、回転機の長さにもよるが、一つの磁石を一方向に通常3〜15分割すること
が望ましい。なお、図3に示すように、一列の磁石片の磁化方向は同一方向で、平行にな
るように形成されている。
上記磁石片は、同一の永久磁石焼結体を切断分割して、得られたものであることが磁化
の均一度が高い点で好ましい。永久磁石焼結体は、永久磁石挿入孔6に入るサイズに成型
され、焼成して得られた永久磁石焼成体である。
永久磁石焼結体は、磁化方向を均一とするために分割切断に先立ち、アニーリングを行
ってもよい。アニーリング温度としては、好ましくは、150〜1000℃、より好まし
くは、300〜900℃である。
永久磁石焼結体の分割方法としては、例えば、ダイヤモンドカッター、ワイヤーソー、
外周刃切断機等を用いて切断する方法が挙げられる。
これらの分割磁石は、それぞれ個々に各孔6に挿入することもできるし、または、固定
部材を用いて分割磁石を一体化させた後、各孔6に挿入することもできる。
The permanent magnet 7 shown in FIGS. 1 and 2 is preferably divided in the circumferential direction and / or the axial direction, and more preferably divided in the axial direction to disperse stress. The permanent magnet 7 may be divided only in the circumferential direction.
Although the number of divisions depends on the length of the rotating machine, it is desirable to divide one magnet normally into 3 to 15 in one direction. In addition, as shown in FIG. 3, the magnetization direction of the magnet piece of 1 row is formed so that it may become the same direction and may become parallel.
The magnet pieces are preferably obtained by cutting and dividing the same permanent magnet sintered body from the standpoint of high magnetization uniformity. The permanent magnet sintered body is a permanent magnet fired body obtained by being molded into a size that can enter the permanent magnet insertion hole 6 and firing.
The permanent magnet sintered body may be annealed prior to split cutting in order to make the magnetization direction uniform. The annealing temperature is preferably 150 to 1000 ° C, more preferably 300 to 900 ° C.
As a method for dividing the permanent magnet sintered body, for example, a diamond cutter, a wire saw,
The method of cut | disconnecting using an outer periphery blade cutting machine etc. is mentioned.
These divided magnets can be individually inserted into the respective holes 6, or can be inserted into the respective holes 6 after the divided magnets are integrated using a fixing member.

複数個の磁石片間に介在物を配置しないで固定する方法としては、例えば、図4の斜視
図に示すように、各磁石片8を永久磁石挿入孔6に配置する際、上下の回転子蓋10を用
いる方法が挙げられる。この方法により、磁石片間9のうち、特に軸方向に固定すること
ができる。
また、図5に示すように、磁石片8は磁石固定用プレート11の上に配置され、各磁石
片間に介在物がないようにすることもできる。さらには、図6に示すように、周りを磁石
固定バンド12で結束するような方法により周方向及び軸方向の両方向を固定することも
できる。上記プレート状の固定ケース11や固定バンド12等の磁石片固定材の材質とし
ては、発生磁場に影響を与えないものであれば、磁性体、非磁性体のいずれであってもよ
く、例えば、アルミニウム、ステンレス鋼等が挙げられる。
For example, as shown in the perspective view of FIG. 4, when the magnet pieces 8 are arranged in the permanent magnet insertion holes 6, the upper and lower rotors can be fixed without arranging inclusions between the plurality of magnet pieces. A method using the lid 10 may be mentioned. By this method, among the magnet pieces 9, it can be fixed particularly in the axial direction.
Moreover, as shown in FIG. 5, the magnet piece 8 is arrange | positioned on the plate 11 for magnet fixation, and it can also be made that there is no inclusion between each magnet piece. Furthermore, as shown in FIG. 6, both the circumferential direction and the axial direction can be fixed by a method in which the periphery is bound by a magnet fixing band 12. The material of the magnet piece fixing material such as the plate-like fixing case 11 and the fixing band 12 may be either a magnetic material or a non-magnetic material as long as it does not affect the generated magnetic field. Examples thereof include aluminum and stainless steel.

以上のように、例えば、図4〜図6のような構成にする事により、磁石片間に介在物が
存在しないため、高温下での磁石片と介在物との膨張率の差による応力が発生せず、磁石の破損が起こらないようにすることができる。さらに、磁石が個別に分割されているため渦電流損失を低減でき、さらには磁石片間の介在物の施工を施さないため、工程数を大幅に短縮可能となる。
従って、導電性の永久磁石を利用しても、応力の発生を抑え、さらに、渦電流低減、加
工工程の短縮が可能な永久磁石を提供でき、温度変動に対して磁石の応力を非常に小さく
する回転電機を提供できる。
本発明の永久磁石回転電機の運転温度は、好ましくは、50〜350℃であり、200
℃以上の高温運転であっても磁石内部に生じる応力を非常に小さくすることができるもの
である。運転温度は、上記範囲内であれば、上限を350℃とすることができる。
本発明の永久磁石回転電機は、回転数2000rpm〜数万rpm、出力10kW〜1MWの電動機に特に好適に用いることができる。
As described above, for example, by using the configuration as shown in FIGS. 4 to 6, there is no inclusion between the magnet pieces, so that stress due to the difference in expansion coefficient between the magnet piece and the inclusion at high temperature is increased. It does not occur and it is possible to prevent the magnet from being damaged. Furthermore, since the magnets are divided individually, eddy current loss can be reduced, and further, since no inclusions are provided between the magnet pieces, the number of steps can be greatly shortened.
Therefore, even when a conductive permanent magnet is used, it is possible to provide a permanent magnet that can suppress the generation of stress, reduce eddy currents, and shorten the machining process. Can be provided.
The operating temperature of the permanent magnet rotating electrical machine of the present invention is preferably 50 to 350 ° C., 200
The stress generated inside the magnet can be made extremely small even at high temperature operation of ℃ or higher. If an operating temperature is in the said range, an upper limit can be 350 degreeC.
The permanent magnet rotating electrical machine of the present invention can be particularly suitably used for an electric motor having a rotational speed of 2000 rpm to tens of thousands rpm and an output of 10 kW to 1 MW.

以下、本発明を実施例に基づき説明するが、本発明はこれに限定されるものではない。
実施例1
図2に示すような最大回転数7200rpmの回転電機を用いた。固定子は、コイルが巻回された固定子突極を有するケイ素鋼板で構成した。固定子外径が300mm、固定子内径が150mmのものを用いた。珪素鋼板からなる回転子の4つの挿入孔の各々に、60mm×16mm×150mmのサイズの永久磁石を挿入した。
永久磁石は、BHmaxが48MGOeで、導電性がある希土類焼結磁石のNd−Fe−B磁石を用いた。図3に示すように、この磁石の60mmの方向を3分割、150mmの方向を7分割し、磁石片を作成した。この際、磁石片間に介在物の施工を施さずに各孔にそれぞれ挿入し、SUS304の蓋で固定した。
この回転電機の固定子を構成する三相巻線に2550rpm〜7200rpmの回転数に相当する85Hzから240Hzの周波数の電流を印加し、駆動させながら180℃、200℃、240℃になるまで温度上昇させその際の回転子の破損状況を調べた。
磁石片を備える永久磁石を用いた回転子は、180℃、200℃、240℃何れの温度
でも変化がなかった。
EXAMPLES Hereinafter, although this invention is demonstrated based on an Example, this invention is not limited to this.
Example 1
A rotating electrical machine having a maximum rotational speed of 7200 rpm as shown in FIG. 2 was used. The stator was composed of a silicon steel plate having a stator salient pole around which a coil was wound. A stator having an outer diameter of 300 mm and an inner diameter of 150 mm was used. A permanent magnet having a size of 60 mm × 16 mm × 150 mm was inserted into each of the four insertion holes of the rotor made of a silicon steel plate.
As the permanent magnet, an Nd—Fe—B magnet having a BHmax of 48 MGOe and a conductive rare earth sintered magnet was used. As shown in FIG. 3, the 60 mm direction of this magnet was divided into 3 parts, and the 150 mm direction was divided into 7 parts to produce magnet pieces. At this time, the inclusions were not inserted between the magnet pieces and inserted into each hole, and fixed with a lid of SUS304.
The temperature rises to 180 ° C, 200 ° C, and 240 ° C while driving by applying a current having a frequency of 85 Hz to 240 Hz corresponding to the rotation speed of 2550 rpm to 7200 rpm to the three-phase windings constituting the stator of the rotating electric machine Then, the damage situation of the rotor was investigated.
The rotor using the permanent magnet provided with the magnet piece did not change at any temperature of 180 ° C., 200 ° C., and 240 ° C.

比較例1
各磁石片間にエポキシ系接着剤を100μm塗布し、それぞれの磁石片を固定させた以外は、実施例1と同様な方法で処理し、回転子を作製した。この回転子を備える回転電機を組み立て、回転電機に施された三相巻線に各回転数に相当する周波数の電流を印加し駆動させ温度上昇させ、その際の回転子の破損状況を調べた。180℃では変化がなく、200℃で変色があり、240℃で磁石片間の結合が取れてばらばらになった。
Comparative Example 1
A rotor was manufactured by processing in the same manner as in Example 1 except that 100 μm of an epoxy adhesive was applied between the magnet pieces and each magnet piece was fixed. We assembled a rotating electrical machine equipped with this rotor, applied a current of a frequency corresponding to each rotation speed to the three-phase windings applied to the rotating electrical machine to drive the temperature, and investigated the damage of the rotor at that time. . There was no change at 180 ° C., discoloration at 200 ° C., and separation between the magnet pieces at 240 ° C.

実施例2
図2に示すような断面形状の回転電機を用いた。鉄心の軸方向の長さは150mmのものを用いた。珪素鋼板からなる外径200mmの回転子の4つの挿入孔の各々に、52mm×7.5mm×150mmのサイズの永久磁石を挿入した。この回転電機の定格出力は定格電流200A時に50kWであった。外径300mmの固定子は、実施例1と同様、コイルが巻回された固定子突極を有し、珪素鋼板で構成した。
永久磁石にはBHmaxが48MGOeのNd−Fe−B系焼結磁石を用い、図3に示すように、52mmを3分割、150mmを7分割し、磁石片を作製した。分割した磁石片は、磁石片間に介在物を設けずに再度寄せ集め、得られた磁石の端部を、SUS304の蓋で覆い、蓋は回転子にボルトで固定した。
回転電機の固定子に配置された三相巻線に定格電流の正弦波交流を印加し20℃、180℃、200℃、240℃の各温度で回転電機を運転した。回転数は定格回転数の2550rpmとした。
その後、挿入孔から磁石を取り出し、バンドで各磁石片を固定し、ロードセルによりねじれ破壊強度を測定した。ねじれ破壊強度は、磁石の両端部を固定した状態で、ねじれにより磁石中心部を破壊するのに要した力である。測定は4回行い、その平均値を算出した。結果を表1に示す。
Example 2
A rotary electric machine having a cross-sectional shape as shown in FIG. 2 was used. The axial length of the iron core was 150 mm. A permanent magnet having a size of 52 mm × 7.5 mm × 150 mm was inserted into each of four insertion holes of a rotor made of a silicon steel plate having an outer diameter of 200 mm. The rated output of this rotating electrical machine was 50 kW at a rated current of 200 A. As in Example 1, the stator having an outer diameter of 300 mm had a stator salient pole around which a coil was wound, and was composed of a silicon steel plate.
As a permanent magnet, an Nd—Fe—B sintered magnet having a BHmax of 48 MGOe was used, and as shown in FIG. 3, 52 mm was divided into 3 parts and 150 mm was divided into 7 parts to produce magnet pieces. The divided magnet pieces were gathered again without providing inclusions between the magnet pieces, and the ends of the obtained magnets were covered with a cover of SUS304, and the cover was fixed to the rotor with bolts.
A sine wave alternating current with a rated current was applied to the three-phase windings arranged on the stator of the rotating electrical machine, and the rotating electrical machine was operated at temperatures of 20 ° C., 180 ° C., 200 ° C., and 240 ° C. The rotational speed was set to 2550 rpm, which is the rated rotational speed.
Thereafter, the magnet was taken out from the insertion hole, each magnet piece was fixed with a band, and the torsional fracture strength was measured with a load cell. The torsion breaking strength is a force required to break the magnet central part by twisting in a state where both ends of the magnet are fixed. The measurement was performed 4 times, and the average value was calculated. The results are shown in Table 1.

比較例2
分割した磁石片を寄せ集める際、各磁石片間にエポキシ系接着剤を80μm塗布し、それぞれの磁石片を固定させたほかは、実施例2と同様の条件で磁石を作製し、回転電機を運転した。その後、実施例2と同様の条件で磁石のねじれ破壊強度を測定した。結果を表1に示す。
Comparative Example 2
When collecting the divided magnet pieces, a magnet was produced under the same conditions as in Example 2 except that 80 μm of epoxy adhesive was applied between the magnet pieces and each magnet piece was fixed. Drove. Thereafter, the torsional fracture strength of the magnet was measured under the same conditions as in Example 2. The results are shown in Table 1.

Figure 0004990599
Figure 0004990599

表1から、磁石片間に介在物を有しない実施例2は、磁石片間に介在物を有する比較例2に比べて、運転温度の上昇による応力破壊が著しく抑制されることがわかった。   From Table 1, it was found that in Example 2 having no inclusions between the magnet pieces, stress fracture due to an increase in the operating temperature was remarkably suppressed as compared with Comparative Example 2 having inclusions between the magnet pieces.

永久磁石回転電機の断面図を示す。Sectional drawing of a permanent magnet rotary electric machine is shown. 永久磁石回転電機の平面図を示す。The top view of a permanent magnet rotary electric machine is shown. 一つの永久磁石挿入孔における各磁石片の磁極方向の平面図を示す。The top view of the magnetic pole direction of each magnet piece in one permanent magnet insertion hole is shown. 回転子の斜視図並びに磁石挿入孔への磁石片の挿入方法および固定方法の例を示す。The perspective view of a rotor and the example of the insertion method and fixing method of a magnet piece to a magnet insertion hole are shown. 磁石片の固定方法の例を示す。An example of a magnet piece fixing method will be shown. 磁石片の固定方法の他の例を示す。The other example of the fixing method of a magnet piece is shown.

符号の説明Explanation of symbols

1 固定子
2 回転子
3 固定子鉄心
4 固定子巻線
5 ベアリング
6 永久磁石挿入孔
7 永久磁石
8 磁石片
9 磁石片間
10 回転子蓋
11 磁石固定用プレート
12 磁石固定用バンド
DESCRIPTION OF SYMBOLS 1 Stator 2 Rotor 3 Stator iron core 4 Stator winding 5 Bearing 6 Permanent magnet insertion hole 7 Permanent magnet 8 Magnet piece 9 Between magnet pieces 10 Rotor lid 11 Magnet fixing plate 12 Magnet fixing band

Claims (3)

巻線が巻回された複数の固定子突極を有する固定子と、
該固定子に回転空隙をもって回転可能に保持された回転子とを有し、
上記回転子が、
回転子周方向に互いに間隔を持って環状に並設された複数の永久磁石挿入孔を内部に有する回転子鉄心と、
上記複数の永久磁石挿入孔に、回転子周方向に隣り合う挿入孔において互いに異なる磁極方向となるように挿入された永久磁石とを備えており、
上記永久磁石が、複数個併設された磁石片から構成され、該磁石片間に介在物を配置しない構造を有し、
上記磁石片が、同一の永久磁石焼結体から分割して得られたものである
永久磁石回転電機。
A stator having a plurality of stator salient poles wound with windings;
A rotor rotatably held by the stator with a rotation gap;
The rotor is
A rotor core having therein a plurality of permanent magnet insertion holes arranged in an annular manner at intervals in the circumferential direction of the rotor;
A permanent magnet inserted into the plurality of permanent magnet insertion holes so as to have different magnetic pole directions in insertion holes adjacent to the circumferential direction of the rotor,
The permanent magnet is composed of a plurality hotel has been magnet pieces, have a structure that does not place the inclusions magnet pieces,
The permanent magnet rotating electric machine , wherein the magnet pieces are obtained by dividing the same permanent magnet sintered body .
上記永久磁石が、上記回転子の周方向及び/又は軸方向に複数個併設された磁石片を備える請求項1に記載の永久磁石回転電機。   The permanent magnet rotating electric machine according to claim 1, wherein the permanent magnet includes a plurality of magnet pieces arranged side by side in a circumferential direction and / or an axial direction of the rotor. 上記永久磁石が、上記回転子の軸方向に複数個併設された磁石片を備える請求項1に記載の永久磁石回転電機。
The permanent magnet rotating electric machine according to claim 1, wherein the permanent magnet includes a plurality of magnet pieces provided side by side in the axial direction of the rotor.
JP2006302444A 2005-11-15 2006-11-08 Permanent magnet rotating electric machine Active JP4990599B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006302444A JP4990599B2 (en) 2005-11-15 2006-11-08 Permanent magnet rotating electric machine

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005330348 2005-11-15
JP2005330348 2005-11-15
JP2006302444A JP4990599B2 (en) 2005-11-15 2006-11-08 Permanent magnet rotating electric machine

Publications (2)

Publication Number Publication Date
JP2007166888A JP2007166888A (en) 2007-06-28
JP4990599B2 true JP4990599B2 (en) 2012-08-01

Family

ID=38249149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006302444A Active JP4990599B2 (en) 2005-11-15 2006-11-08 Permanent magnet rotating electric machine

Country Status (1)

Country Link
JP (1) JP4990599B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4497198B2 (en) 2007-12-06 2010-07-07 トヨタ自動車株式会社 Permanent magnet and method for manufacturing the same, and rotor and IPM motor
JP2010183692A (en) * 2009-02-04 2010-08-19 Toyota Motor Corp Magnet for motor, rotor for ipm motor, and ipm motor
JP2010220440A (en) * 2009-03-18 2010-09-30 Nissan Motor Co Ltd Permanent magnet type rotary electric machine
CN102754316A (en) 2009-06-24 2012-10-24 丰田自动车株式会社 Sintered magnet and method for producing the same
CN102474140B (en) * 2009-07-29 2014-10-15 丰田自动车株式会社 Apparatus for handling magnet
JP5493663B2 (en) 2009-10-01 2014-05-14 信越化学工業株式会社 Assembling method of rotor for IPM type permanent magnet rotating machine
US8747583B2 (en) * 2010-06-17 2014-06-10 Nissan Motor Co., Ltd. Manufacturing device for permanent magnet disposed in rotating electrical machine and manufacturing method of the same
KR101163516B1 (en) 2010-11-29 2012-07-09 김택수 Stator of mortor and generator
JP2012125034A (en) * 2010-12-08 2012-06-28 Hitachi Ltd Permanent magnet type rotary electric machine and manufacturing method for rotor thereof
JP5962055B2 (en) * 2012-02-27 2016-08-03 日産自動車株式会社 Field pole magnet body
JP2013176259A (en) * 2012-02-27 2013-09-05 Nissan Motor Co Ltd Permanent magnet dynamoelectric machine
JP2013243886A (en) * 2012-05-22 2013-12-05 Nitto Denko Corp Permanent magnet motor, manufacturing method therefor and permanent magnet
JP6403982B2 (en) * 2014-04-30 2018-10-10 マブチモーター株式会社 Brushless motor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3690067B2 (en) * 1997-06-11 2005-08-31 株式会社日立製作所 Permanent magnet rotating electric machine
JP2000324736A (en) * 1999-05-12 2000-11-24 Mitsubishi Electric Corp Permanent magnet mounted motor
JP2003070214A (en) * 2001-08-21 2003-03-07 Railway Technical Res Inst Method of manufacturing permanent magnet segment
JP3731872B2 (en) * 2001-10-24 2006-01-05 財団法人鉄道総合技術研究所 Method for manufacturing permanent magnet and permanent magnet

Also Published As

Publication number Publication date
JP2007166888A (en) 2007-06-28

Similar Documents

Publication Publication Date Title
JP4990599B2 (en) Permanent magnet rotating electric machine
US7405503B2 (en) Permanent magnet rotating electric machine
US8698367B2 (en) High-speed permanent magnet motor and generator with low-loss metal rotor
US7228616B2 (en) System and method for magnetization of permanent magnet rotors in electrical machines
JP5851365B2 (en) Rotating electric machine
CN109004780B (en) Built-in permanent magnet motor
CN108370178B (en) Axial gap type rotating electric machine and method for manufacturing same
EP2190103A1 (en) Axial gap type coreless rotating machine
EP2020662A2 (en) Assembly and method for magnetization of permanent magnet rotors in electrical machines
JP2008193778A (en) Stator and enclosed compressor and rotating machine
JP2002112475A (en) Permanent magnet rotating electric machine, air compressor and power generator using it
EP3007323B1 (en) Rotating electrical machine in which permanent magnet is used
US11336163B2 (en) Low profile axial, flux permanent magnet synchronous motor
JP2011019398A (en) Stator, hermetically sealed compressor and rotating machine
US6239527B1 (en) Non-circular field winding enclosure
CA2344731C (en) Stator, dynamoelectric machine, and methods for fabricating same
US20130127267A1 (en) Cylindrical linear motor with laminated stator
US7671509B2 (en) Rotor and stator assemblies for permanent magnet electric generator
WO2016053352A1 (en) Rotor for consequent pole permanent magnet machine
CN102299599B (en) High-speed electric machine with stator and permanent magnet
JP2957346B2 (en) Axial gap rotating electric machine
US2419863A (en) Laminated rotor for dynamoelectric machines
JP5975759B2 (en) Rotating electric machine
WO2005017318A2 (en) A rotary machine and a method of manufacturing the same
EP3579382A1 (en) Axial gap-type rotary electrical machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120413

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120502

R150 Certificate of patent or registration of utility model

Ref document number: 4990599

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3