JP4990446B2 - Injection for treatment of arthropathy - Google Patents
Injection for treatment of arthropathy Download PDFInfo
- Publication number
- JP4990446B2 JP4990446B2 JP2001158454A JP2001158454A JP4990446B2 JP 4990446 B2 JP4990446 B2 JP 4990446B2 JP 2001158454 A JP2001158454 A JP 2001158454A JP 2001158454 A JP2001158454 A JP 2001158454A JP 4990446 B2 JP4990446 B2 JP 4990446B2
- Authority
- JP
- Japan
- Prior art keywords
- phospholipid
- hyaluronic acid
- gel
- solution
- injection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Medicinal Preparation (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、生体適合性のヒアルロン酸ゲルを用いた関節症治療用注入剤に関するものである。
【0002】
【従来の技術】
関節液は、生体関節において関節軟骨へ栄養を供給するとともに、他に類を見ない優れた潤滑機能とショックアブソーバー機能を有し、その優れた粘弾性機能は関節液中の主成分の一つであるヒアルロン酸(以下、HAと略す)に大きく支配されている。HAは、β−D−N−アセチルグルコサミンとβ−D−グルクロン酸が交互に結合した直鎖状の高分子多糖であり、その分子量は数百万〜1千万もの高分子量であることが知られている。
【0003】
一般に、変形性関節症,慢性関節リウマチ等の各種関節症の患者関節液中のHA濃度及び分子量の分析結果から、関節症患者の関節液は正常関節液に比較し、濃度、分子量において低下傾向が認められており、このことが関節液の潤滑作用、関節軟骨表面保護作用の低下に起因する運動機能障害や疼痛症状の発生に密接な関係があるものと考えられている。
【0004】
これら関節疾患のうち変形性膝関節症に有効な手段として、HA溶液を疾患関節部位へ注入する方法が採用されてきており、その膝関節治療剤の例としてはアルツ(生化学工業製、平均分子量90万)、Hyalgan(Fidia 製、平均分子量<50万)や、高分子量の方が一層の効果が期待できるとの考えのもと本発明者らが開発した、慢性関節リウマチにも適応するスベニール(アベンティスファーマ社/中外製薬社/電気化学工業社製、平均分子量190万)が挙げられる。
【0005】
また、HAを化学的に架橋することで高分子化し粘弾性を改良した、架橋HAゲルを含有するSynvisc(ジェンザイム製)が開発されている。この架橋HAゲルは架橋剤ジビニルスルホンでHAを化学的に架橋したHAゲルでハイランと呼ばれる。ハイラン及びハイランを架橋したゲルの生成法は、米国特許第4,713,448号に詳細に記載されている。HAをベースとする単一及び混合ゲルは、米国特許第4,582,865号及び同第4,605,691号に記載されている。
【0006】
これら関節製剤を用いた治療は、患者の関節に直接1週間毎に3〜5回の注射を行う必要があり、患者及び医者の負担の面からその低減が望まれている。
【0007】
一方、リン脂質は関節軟骨表面に存在し表面を疎水性に保ち、関節軟骨間に関節液による流体潤滑膜を形成するのに寄与している。従って、このリン脂質を用いHA水溶液に混合することで、関節面の潤滑を改善する関節炎治療のための潤滑組成物を提供することができる。(特願昭63−507021号)
通常、人の膝関節に生じる定常負荷約3kg/cm2ではヒアルロン酸の運動摩擦係数は上昇し潤滑能力が低下すると言われているが、リン脂質を添加することにより膝関節への負荷が20kg/cm2の厳しい条件でも運動摩擦係数を0.003〜0.05に低く保ち、潤滑能力を改善できる。(「生体関節に於ける多モード適応潤滑機構と摩擦特性」(日本機械学会第73期通常総会講演会講演要旨集、502−503(1996))。「靱帯切離による変形性関節症モデル家兎に対するリン脂質リポソームの関節腔内注入効果」(日本臨床バイオメカニクス学会誌、Vol.19,131−135(1998)等)。
【0008】
【発明が解決しようとする課題】
従来のHA及びHAゲルの構成の潤滑組成物は、HA注入だけでは困難であった関節液の粘弾性のさらなる向上を可能とし、潤滑作用や関節軟骨表面保護作用の改善が期待できる。
しかし、その投与回数は患者の関節に直接1週間毎に3〜5回の注射を行う必要があった。また、関節に負荷のかかる条件下では軟骨間の摩擦係数を低下させることは難しく、さらに関節軟骨が摩耗した重度の病態では、関節液による境界潤滑膜が形成されにくいため潤滑作用の改善を十分に発揮できなかった。
【0009】
一方、HA及びリン脂質の構成の潤滑組成物は、関節に負荷のかかる条件下でも軟骨間の摩擦を低下させ、また、関節軟骨が摩耗した病態でも、リン脂質が軟骨面を疎水性に保つことができるため関節の摩擦を低減することが期待できる。
しかし、関節液の粘弾性は改善できないため、潤滑作用や関節軟骨表面保護作用を十分に得ることは難しい。
【0010】
本発明者らは、物性試験及び動物試験を鋭意検討した結果、HAゲル及びリン脂質、及び/又はHAを含有してなる構成が、動物を用いた薬理試験に於いて驚くべき相乗効果を奏し、著名な製剤の投与回数の低減効果と高い治療効果を発揮することを見い出し、本発明を完成するに至った。
【0011】
【課題を解決するための手段】
即ち、本発明は、(1)生体適合性のHAゲル及びリン脂質、及び/又はHAを含有してなる関節症治療用注入剤、(2)生体適合性のHAゲルの濃度が、5〜60%であることを特徴とする(1)記載の関節症治療用注入剤、(3)生体適合性のHAゲルが、粉砕状で含有されていることを特徴とする(1)記載の関節症治療用注入剤、(4)リン脂質の濃度が、1〜200mg/mlである(1)記載の関節症治療用注入剤、(5)該リン脂質がフォスファチジルコリン、フォスファチジルエタノールアミン、フォスファチジルセリン、フォスファチジルグリセロール、フォスファチジルイノシトール、スフィンゴミエリン及びそれらの誘導体からなる群から選択されてなる(1)記載の関節症治療用注入剤、(6)該リン脂質が、α−ジパルミトイルフォスファチジルコリンである(1)記載の関節症治療用注入剤、(7)HAの濃度が、1〜10mg/mlである(1)記載の関節症治療用注入剤である。
【0012】
【発明の実施の形態】
以下、本発明を詳細に説明する。
本発明に用いられるHAは、動物組織から抽出したものでも、また発酵法で製造したものでもその起源を問うことなく使用できる。
発酵法で使用する菌株は自然界から分離されるストレプトコッカス属等のHA生産能を有する微生物、又は特開昭63−123392号公報に記載したストレプトコッカス・エクイFM−100(微工研菌寄第9027号)、特開平2−234689号公報に記載したストレプトコッカス・エクイFM−300(微工研菌寄第2319号)のような高収率で安定にHAを生産する変異株が望ましい。上記の変異株を用いて培養、精製されたものが用いられる。
本発明に用いられるHAの分子量は、約1×105〜約1×107ダルトンの範囲内のものが好ましい。また、上記範囲内の分子量をもつものであれば、より高分子量のものから加水分解処理をして得た低分子量のものでも同様に好ましく使用できる。
尚、本発明でいうHAは、そのアルカリ金属塩、例えば、ナトリウム、カリウム、リチウムの塩をも包含する概念で使用される。
【0013】
本発明のHAの濃度は、1〜10mg/mlが好ましい。1mg/mlより低濃度では粘弾性が低く関節用医薬品としては効果が低く、10mg/mlより高濃度では粘性が高すぎて関節に注入する際、圧力が高くなり取り扱いが困難となる。
【0014】
HAの分子量は、一般的に用いられるHPLC(液体クロマトグラフィー)を用いたGPC法や極限粘度測定から導き出すなどの方法で測定できる。
【0015】
本発明でいうHAゲルとは、三次元網目構造をもつ高分子及びその膨潤体である。三次元網目構造はHAの架橋構造によって形成されている。
なお、HA自体は直鎖状の高分子であり、分岐構造を有さないことが知られている(多糖生化学1 化学編 共立出版 昭和44年)。またゲルとは、新版高分子辞典(朝倉書店 昭和63年)によれば、「あらゆる溶媒に不溶の三次元網目構造をもつ高分子及びその膨潤体」と定義されている。理化学辞典(岩波書店第4版 昭和62年)によれば、「ゾル(コロイド溶液)がジェリー状に固化したもの」と定義されている。
【0016】
本発明でいうHAゲルとしては、生体に移植または注入した場合に優れた生体適合性を有するものであればどのようなものでも使用できる。
本発明でいう生体適合性とは、本発明のHAゲルと接触する生体組織に好ましくない作用もしくは副作用が全くないか、または最小限であることを意味する。
起こり得る副作用としては、毒性、炎症、免疫反応、異物反応、及び被包反応等が挙げられる。
【0017】
HAゲルの例としては、化学的架橋剤や化学的修飾剤を用いないHA単独からなるHAゲル(PCT/JP98/03536)や、HAのカルボキシル基と水酸基間のエステル結合形成を導く方法により得られる自己架橋HAを挙げることができる(EP 0341745 B1参照)。また、ジビニルスルホン、ビスエポキシド類、ホルムアルデヒド等の二官能性試薬を架橋剤に用いて架橋したHAゲルを挙げることができる(米国特許第4,582,865号明細書、特公平6−37575号公報、特開平7−97401号公報、特開昭60−130601号公報参照)。また、HA水溶液を、pH2.0〜3.8、20〜80質量%水溶性有機溶剤存在下におくことを特徴とするHAゲルが挙げられる(特開平5−58881公報参照)。
【0018】
この中でも化学的架橋剤や化学的修飾剤を用いないHA単独からなるHAゲル(PCT/JP98/03536)が、生体適合性の面から特に好ましい。
【0019】
本発明に用いられるHAゲルの濃度は、5〜60%が好ましい。5%未満では、関節用医薬品としては効果が低く好ましくない。また、60%を越えるとHAゲルの凝集が大きくなり注入の際の取り扱いが難しくなるため好ましくない。
【0020】
本発明に用いられるHAゲルは、粉砕状で含有されていることが好ましい。
【0021】
本発明に用いられるリン脂質は、動物組織から抽出したものでも、また人工的に合成して製造したものでもその起源を問うことなく使用できる。
リン脂質は、好ましくはフォスファチジルコリン、フォスファチジルエタノールアミン、フォスファチジルセリン、フォスファチジルグリセロール、フォスファチジルイノシトール、スフィンゴミエリン及びそれらの誘導体を含む。
特に好ましくは、α−ジパルミトイルフォスファチジルコリン(α−DPPC)である。このα−DPPCはL体、D体、あるいはラセミ(DL)体混合物でもよい。
【0022】
本発明に用いられるリン脂質の濃度は、1〜200mg/mlが好ましい。
リン脂質の濃度が1mg/ml未満では、関節用医薬品としては効果が低く、200mg/mlを越えるとリン脂質の凝集が大きくなり保存の面で難があり、取り扱いが難しくなるため好ましくない。
【0023】
リン脂質は、両親媒性物質なのでHA溶液中での安定性などの目的のためリポソーム化しても良いが、特にリポソーム化せず懸濁させるだけでもよい。
【0024】
リン脂質の懸濁液を得るには、リン脂質に生理的食塩水を加え、超音波処理すれば容易にリン脂質の生理的食塩水懸濁液が得られる。
【0025】
リン脂質のリポソーム化は、定法に従い、次のようにして作成できる。
例えば、α−DPPCをクロルフォルムに1質量%になるように溶解し、これをナス型フラスコにとり、ロータリーエバポレーターでクロロフォルムを蒸発除去させ、ナス型フラスコ表面にα−DPPC薄膜を形成させる。次に、ここに生理的食塩水を加え、超音波処理を行うことにより、α−DPPCのリポソーム膜の生理的食塩水の懸濁液を得ることができる。
【0026】
更に、本発明では、HAゲル及びリン脂質、及び/又はHAに、医薬的に許容し得る生理的食塩水やリン酸緩衝液等を用いることができる。
【0027】
【実施例】
以下、詳細な内容について実施例を用いて説明するが、本発明は以下の実施例に限定されるものではない。
【0028】
調製例1
HA溶液の調製
分子量2×106 ダルトンのヒアルロン酸ナトリウム(電気化学工業製)6gをクリーンベンチ内で計りとり、ナルゲンフィルターにより無菌濾過した5mMのpH7.2リン酸緩衝化生理的食塩水450mlを加えて、ローラーボトルで溶解した(高分子量HAナトリウム 1.3質量%)。
【0029】
調製例2
HAゲルの調製
分子量2×106 ダルトンのHAナトリウム(電気化学工業製)を注射用水に溶解し、1質量%のHA水溶液を調整した。この水溶液のpHを、1N塩酸でpH1.5に調整し、HA酸性水溶液を得た。このHA酸性水溶液100mlを、300mlサンプル瓶に入れ、−20℃に設定した冷凍庫に入れた。120時間の凍結でHAゲルが得られた。次にこれを注射用水10mlを加え10分間放置後デカンテーションする洗浄を3回繰り返した後、生理的食塩水に50mM濃度でリン酸緩衝成分を加えて調整したpH7のリン酸緩衝生理的食塩水200mlを加えデカンテーションする中和を2回繰り返した後、5mMのpH7.2リン酸緩衝化生理的食塩水で十分に洗浄しHAゲルを得た。
【0030】
調製例3
リン脂質溶液の調製
1.0gのL−α−DPPC(和光純薬製)に5mMのpH7.2リン酸緩衝化生理的食塩水100mlを加え、これを3分間激しく攪拌し、更に3分間超音波処理を行って懸濁させた。これを121℃、15分間のオートクレーブ処理で滅菌した(乳白色の懸濁液となった)。
【0031】
実施例1
HAゲル及びリン脂質の混合製剤の調製
ナルゲンフィルターにより無菌濾過した5mMのpH7.2リン酸緩衝化生理的食塩水200mlに、調製例2のHAゲル300mlと調製例3のリン脂質溶液100mlを加えた。この混合溶液をマイクロホモジナイザー(NISSEI EXCEL AUTO HOMOGENIZER)を用いHAゲルの破砕処理及びリン脂質の完全な分散を行い、平均粒径が300〜1,000μmのヒアルロン酸ゲルを含むHAゲル及びリン脂質の混合製剤を得た。
なお、これら一連の操作は無菌・無埃環境下で行い、使用する薬液等も予め滅菌処理を行ったものを用いた。
【0032】
実施例2
HAとHAゲル及びリン脂質の混合製剤の調製
それぞれ別個に調製した調製例1のHA溶液450mlに、調製例2のHAゲル100mlと調製例3のリン脂質溶液50mlを加えた。この混合溶液をマイクロホモジナイザー(NISSEI EXCEL AUTO HOMOGENIZER)を用い、HAゲルの破砕処理及びリン脂質の完全な分散を行い、平均粒径が300〜1,000μmのヒアルロン酸ゲルを含むHAとHAゲル及びリン脂質の混合製剤を得た。
なお、これら一連の操作は無菌・無埃環境下で行い、使用する薬液等も予め滅菌処理を行ったものを用いた。
【0033】
比較例1
HA及びHAゲルの混合製剤の調製
それぞれ別個に調製した調製例1のHA溶液450mlに、調製例2のHAゲル100mlと5mMのpH7.2リン酸緩衝化生理的食塩水50mlを加えた。 この混合溶液をマイクロホモジナイザー(NISSEI EXCEL AUTO HOMOGENIZER)を用いHAゲルの破砕処理を行い、平均粒径が300〜1,000μmのヒアルロン酸ゲルを含むHA及びHAゲルの混合製剤を得た。
なお、これら一連の操作は無菌・無埃環境下で行い、使用する薬液等も予め滅菌処理を行ったものを用いた。
【0034】
比較例2
HA及びリン脂質の混合製剤の調製
それぞれ別個に調製した調製例1のHA溶液450mlに、調製例3のリン脂質溶液50mlと5mMのpH7.2リン酸緩衝化生理的食塩水100mlを加えた。この混合溶液をマイクロホモジナイザー(NISSEI EXCEL AUTO HOMOGENIZER)を用いリン脂質の完全な分散を行い、HA及びリン脂質の混合製剤を得た。なお、これら一連の操作は無菌・無埃環境下で行い、使用する薬液等も予め滅菌処理を行ったものを用いた。
【0035】
実施例3
HAとHAゲル及びリン脂質の混合製剤の薬理効果
実施例1のHAゲル及びリン脂質の混合製剤、及び実施例2のHAとHAゲル及びリン脂質の混合製剤の薬理効果は、以下の動物試験で評価した。
日本白色家兎60羽(体重約3kg)を麻酔し右膝の前十字靱帯と内側副靱帯を切離した。これにより日本白色家兎の右膝は関節間に異常な応力が負荷されるため、1週間内で関節が炎症を起こし変形性膝関節炎のモデルとなる。
術後7週間後、十分に関節の炎症が惹起された日本白色家兎の右膝に対し、10羽に実施例1のHAゲル及びリン脂質の混合製剤、10羽に実施例2のHAとHAゲル及びリン脂質の混合製剤、10羽に比較例1のHA及びHAゲルの混合製剤、10羽に比較例2のHA及びリン脂質の混合製剤、を0.3mlを10日間隔で2回、投与した。
尚、残り10羽はコントロールのため水溶液の注入を行わず同間隔で麻酔のみを実施した。
2回目の注入より10日後に全例屠殺し、X線撮影を行った。膝関節部より靱帯と関節包及び半月以外の軟部組織を切除し、直ちに、振り子摩擦試験機により低振幅域(0.03〜0.01rad)、加重3kgでの摩擦係数を測定した。摩擦係数は、振り子の減衰に於ける位置エネルギーの損失が全て摩擦によるとする仮定により算出した。その結果を表1に示す。
【0036】
【表1】
【0037】
表1より、振り子摩擦試験による摩擦係数は実施例1のHAゲル及びリン脂質の混合製剤、及び実施例2のHAとHAゲル及びリン脂質の混合製剤が、比較例1、2より優位に低く、その値は正常な無処置群と同様な低い値を示した。
【0038】
また、関節軟骨組織切片を切り出し、このX線像から骨の増殖性変化を評価した。
評価基準は、無処置の膝と比較して、軟骨下骨への効果と軟骨辺縁の骨棘の形成と軟骨面の滑らかさの3つの面から各々(2点:正常、1点:中程度の異常、0点:重度の異常)から評価し、0点から6点の7段階にグレーディングした。その結果を表2に示す。
【0039】
【表2】
【0040】
表2より、驚くべきことに実施例1、2は正常な無処置群に近い大きな治癒効果が認められた。それに対し、比較例1、2では軟骨の増殖変形が認められた。また、コントロールは著しい増殖性変形が認められた。
【0041】
【発明の効果】
以上、本発明の生体適合性のHAゲル及びリン脂質、及び/又はHAを含有してなる構成の関節症治療用注入剤は、従来のHA及びHAゲル、又はHA及びリン脂質の構成の混合製剤では得られない製剤の投与回数の低減と高い治療効果を有するものである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an injection for treating arthropathy using a biocompatible hyaluronic acid gel.
[0002]
[Prior art]
Joint fluid supplies nutrients to articular cartilage in living joints, and has an unparalleled lubrication function and shock absorber function, and its excellent viscoelastic function is one of the main components in joint fluid. Is largely controlled by hyaluronic acid (hereinafter abbreviated as HA). HA is a linear high-molecular polysaccharide in which β-D-N-acetylglucosamine and β-D-glucuronic acid are alternately bonded, and the molecular weight thereof may be as high as several million to 10 million. Are known.
[0003]
In general, according to the analysis results of HA concentration and molecular weight in joint fluids of patients with various arthropathy such as osteoarthritis and rheumatoid arthritis, the joint fluid of arthritic patients tends to decrease in concentration and molecular weight compared to normal joint fluid This is considered to be closely related to the occurrence of motor dysfunction and pain symptoms due to a decrease in the synovial fluid lubricating action and articular cartilage surface protecting action.
[0004]
Among these joint diseases, as an effective means for osteoarthritis of the knee, a method of injecting an HA solution into a diseased joint site has been adopted. As an example of the knee joint therapeutic agent, Alz (manufactured by Seikagaku Corporation, average The molecular weight is 900,000), Hyalgan (Fidia, average molecular weight <500,000), and high molecular weight can be expected to be more effective. It is also applied to rheumatoid arthritis developed by the present inventors. Svenir (Aventis Pharma Co., Ltd./Chugai Pharmaceutical Co., Ltd./Electrochemical Co., Ltd., average molecular weight 1.9 million) can be mentioned.
[0005]
Also, Synvisc (manufactured by Genzyme) containing a crosslinked HA gel which has been polymerized by chemically crosslinking HA to improve viscoelasticity has been developed. This cross-linked HA gel is an HA gel obtained by chemically cross-linking HA with a cross-linking agent divinyl sulfone and is called hylan. Methods for producing high runs and high run cross-linked gels are described in detail in US Pat. No. 4,713,448. Single and mixed gels based on HA are described in US Pat. Nos. 4,582,865 and 4,605,691.
[0006]
The treatment using these joint preparations requires 3 to 5 injections directly into the patient's joint every week, and the reduction is desired in view of the burden on the patient and the doctor.
[0007]
On the other hand, phospholipids exist on the surface of articular cartilage, keep the surface hydrophobic, and contribute to the formation of a fluid lubricating film by joint fluid between articular cartilage. Therefore, the lubricating composition for the treatment of arthritis that improves the lubrication of the joint surface can be provided by mixing this phospholipid with an aqueous HA solution. (Japanese Patent Application No. 63-507021)
Normally, it is said that the coefficient of motion friction of hyaluronic acid increases and the lubricating ability decreases at a steady load of about 3 kg / cm 2 generated in a human knee joint, but the load on the knee joint is 20 kg by adding phospholipid. Even under severe conditions of / cm 2, the coefficient of kinetic friction can be kept low at 0.003 to 0.05, and the lubricating ability can be improved. (“Multi-mode adaptive lubrication mechanism and friction characteristics in living joints” (Abstracts of the 73rd General Meeting of the Japan Society of Mechanical Engineers, 502-503 (1996)). Effect of intra-articular injection of phospholipid liposomes on sputum "(Journal of Japanese Society for Clinical Biomechanics, Vol. 19, 131-135 (1998), etc.).
[0008]
[Problems to be solved by the invention]
The conventional lubricating composition of HA and HA gel can further improve the viscoelasticity of joint fluid, which was difficult only by HA injection, and can be expected to improve the lubricating action and the articular cartilage surface protecting action.
However, the number of administrations required 3 to 5 injections directly into the patient's joint every week. In addition, it is difficult to reduce the coefficient of friction between cartilage under conditions where the joint is loaded, and in severe pathologies where the articular cartilage is worn, it is difficult to form a boundary lubrication film due to joint fluid. Could not be demonstrated.
[0009]
On the other hand, the lubricating composition composed of HA and phospholipid reduces friction between cartilage even under conditions where the joint is loaded, and phospholipid keeps the cartilage surface hydrophobic even in a pathological condition where articular cartilage is worn. Therefore, it can be expected to reduce the friction of the joint.
However, since the viscoelasticity of the joint fluid cannot be improved, it is difficult to obtain sufficient lubrication and articular cartilage surface protection.
[0010]
As a result of intensive studies on physical property tests and animal tests, the present inventors have found that a composition comprising HA gel and phospholipid and / or HA has a surprising synergistic effect in pharmacological tests using animals. The present inventors have found that the number of administrations of a prominent preparation can be reduced and that a high therapeutic effect is exhibited, and the present invention has been completed.
[0011]
[Means for Solving the Problems]
That is, the present invention provides (1) an injectable agent for treating arthropathy comprising (1) a biocompatible HA gel and phospholipid and / or HA, and (2) a concentration of the biocompatible HA gel is 5 to 5. The joint according to (1), wherein the joint is an infusion for treating arthritis according to (1), and (3) the biocompatible HA gel is pulverized. (4) The arthrosis treatment infusion according to (1), wherein the concentration of phospholipid is 1 to 200 mg / ml, (5) the phospholipid is phosphatidylcholine, phosphatidylethanol (1) The injectable agent for treating arthropathy according to (1), which is selected from the group consisting of amine, phosphatidylserine, phosphatidylglycerol, phosphatidylinositol, sphingomyelin and derivatives thereof, (6) , Α- Palmitoyl phosphatidylcholine (1), wherein the arthrosis therapeutic infusions, the concentration of (7) HA, is a 1-10 mg / ml (1), wherein the arthrosis therapeutic infusion.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
The HA used in the present invention may be extracted from animal tissues or manufactured by fermentation, regardless of its origin.
The strain used in the fermentation method is a microorganism having the ability to produce HA such as Streptococcus isolated from the natural world, or Streptococcus equii FM-100 described in Japanese Patent Laid-Open No. 63-123392 (No. 9027 by Microtechnological Bacteria). ), A mutant that stably produces HA with high yield, such as Streptococcus equi FM-300 described in JP-A-2-23489, is available. Those cultured and purified using the above mutant strains are used.
The molecular weight of HA used in the present invention is preferably in the range of about 1 × 10 5 to about 1 × 10 7 daltons. Moreover, as long as it has a molecular weight within the above range, a low molecular weight one obtained by hydrolysis treatment from a higher molecular weight can be preferably used as well.
In addition, HA as used in the field of this invention is used by the concept also including the alkali metal salt, for example, the salt of sodium, potassium, and lithium.
[0013]
The concentration of the HA of the present invention is preferably 1 to 10 mg / ml. When the concentration is lower than 1 mg / ml, the viscoelasticity is low and the effect as a pharmaceutical product for joints is low, and when the concentration is higher than 10 mg / ml, the viscosity is too high and the pressure becomes high and difficult to handle when injected into the joint.
[0014]
The molecular weight of HA can be measured by a GPC method using HPLC (liquid chromatography) generally used or a method derived from intrinsic viscosity measurement.
[0015]
The HA gel referred to in the present invention is a polymer having a three-dimensional network structure and a swollen body thereof. The three-dimensional network structure is formed by the crosslinked structure of HA.
It is known that HA itself is a linear polymer and does not have a branched structure (Polysaccharide Biochemistry 1 Chemistry edited by Kyoritsu Shuppan 1969). The gel is defined as “a polymer having a three-dimensional network structure insoluble in any solvent and its swollen body” according to the new edition of the Dictionary of Polymers (Asakura Shoten 1988). According to the physics and chemistry dictionary (Iwanami Shoten 4th edition, 1987), it is defined as “a sol (colloidal solution) solidified into a jelly”.
[0016]
Any HA gel may be used as long as it has excellent biocompatibility when implanted or injected into a living body.
The term “biocompatibility” as used in the present invention means that there is no or minimal undesirable effects or side effects on the living tissue in contact with the HA gel of the present invention.
Possible side effects include toxicity, inflammation, immune reaction, foreign body reaction, encapsulation reaction, and the like.
[0017]
Examples of HA gels include HA gels (PCT / JP98 / 03536) consisting of HA alone that does not use chemical cross-linking agents or chemical modifiers, and methods that lead to the formation of ester bonds between carboxyl groups and hydroxyl groups of HA. Mention may be made of self-crosslinked HAs (see EP 0341745 B1). Further, there can be mentioned HA gel crosslinked using a bifunctional reagent such as divinyl sulfone, bisepoxide, formaldehyde or the like as a crosslinking agent (US Pat. No. 4,582,865, JP-B-6-37575). Gazette, JP-A-7-97401, JP-A-60-130601). Moreover, HA gel characterized by putting HA aqueous solution in presence of pH 2.0-3.8 and 20-80 mass% water-soluble organic solvent is mentioned (refer Unexamined-Japanese-Patent No. 5-58881).
[0018]
Among these, HA gel (PCT / JP98 / 03536) made of HA alone without using a chemical crosslinking agent or chemical modifier is particularly preferable from the viewpoint of biocompatibility.
[0019]
The concentration of the HA gel used in the present invention is preferably 5 to 60%. If it is less than 5%, the effect as a joint drug is low, which is not preferable. On the other hand, if it exceeds 60%, the aggregation of the HA gel becomes large and the handling at the time of injection becomes difficult.
[0020]
The HA gel used in the present invention is preferably contained in a pulverized state.
[0021]
The phospholipid used in the present invention can be used regardless of its origin, whether it is extracted from animal tissue or artificially synthesized.
The phospholipid preferably comprises phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylglycerol, phosphatidylinositol, sphingomyelin and their derivatives.
Particularly preferred is α-dipalmitoylphosphatidylcholine (α-DPPC). The α-DPPC may be an L-form, D-form, or racemic (DL) -form mixture.
[0022]
The concentration of the phospholipid used in the present invention is preferably 1 to 200 mg / ml.
When the concentration of phospholipid is less than 1 mg / ml, the effect as a joint drug is low, and when it exceeds 200 mg / ml, the aggregation of phospholipid increases, which is difficult in terms of storage and difficult to handle.
[0023]
Since phospholipids are amphipathic substances, they may be made into liposomes for the purpose of stability in an HA solution, but may be suspended in particular without being made into liposomes.
[0024]
To obtain a phospholipid suspension, a physiological saline suspension of phospholipid can be easily obtained by adding physiological saline to the phospholipid and sonicating.
[0025]
Phospholipids can be made into liposomes according to a conventional method as follows.
For example, α-DPPC is dissolved in chloroform so as to be 1% by mass, and this is taken into an eggplant type flask, and chloroform is removed by evaporation with a rotary evaporator, thereby forming an α-DPPC thin film on the surface of the eggplant type flask. Next, a physiological saline suspension is added to the liposome membrane of α-DPPC by adding physiological saline thereto and performing ultrasonic treatment.
[0026]
Furthermore, in the present invention, pharmaceutically acceptable physiological saline, phosphate buffer, or the like can be used for the HA gel and phospholipid, and / or HA.
[0027]
【Example】
Hereinafter, although detailed content is demonstrated using an Example, this invention is not limited to a following example.
[0028]
Preparation Example 1
Preparation of HA solution 6 g of sodium hyaluronate (manufactured by Denki Kagaku Kogyo) with a molecular weight of 2 × 10 6 Dalton was weighed in a clean bench, and 450 ml of 5 mM pH 7.2 phosphate buffered physiological saline filtered aseptically with a Nalgen filter. In addition, it was dissolved in a roller bottle (high molecular weight HA sodium 1.3% by mass).
[0029]
Preparation Example 2
Preparation of HA gel HA sodium (manufactured by Denki Kagaku Kogyo) having a molecular weight of 2 × 10 6 daltons was dissolved in water for injection to prepare a 1% by mass HA aqueous solution. The pH of this aqueous solution was adjusted to pH 1.5 with 1N hydrochloric acid to obtain an HA acidic aqueous solution. 100 ml of this HA acidic aqueous solution was placed in a 300 ml sample bottle and placed in a freezer set at −20 ° C. HA gel was obtained after freezing for 120 hours. Next, 10 ml of water for injection was added, and the washing which was allowed to stand for 10 minutes and then decanted was repeated three times, and then phosphate buffered physiological saline having a pH of 7 adjusted by adding a phosphate buffer component at a concentration of 50 mM to physiological saline. Neutralization by adding 200 ml and decanting was repeated twice, and then washed thoroughly with 5 mM pH 7.2 phosphate buffered physiological saline to obtain an HA gel.
[0030]
Preparation Example 3
Preparation of phospholipid solution To 1.0 g of L-α-DPPC (manufactured by Wako Pure Chemical Industries, Ltd.) was added 100 ml of 5 mM pH 7.2 phosphate buffered physiological saline, which was vigorously stirred for 3 minutes and further over 3 minutes. Suspended by sonication. This was sterilized by autoclaving at 121 ° C. for 15 minutes (becomes a milky white suspension).
[0031]
Example 1
Preparation of a mixed preparation of HA gel and phospholipid To 200 ml of 5 mM pH 7.2 phosphate buffered physiological saline filtered aseptically with a Nalgen filter, add 300 ml of the HA gel of Preparation Example 2 and 100 ml of the phospholipid solution of Preparation Example 3. It was. This mixed solution is subjected to HA gel crushing treatment and complete dispersion of phospholipid using a microhomogenizer (NISSEI EXCEL AUTO HOMOGENIZER), and the HA gel and phospholipid containing hyaluronic acid gel having an average particle size of 300 to 1,000 μm are dispersed. A mixed formulation was obtained.
These series of operations were performed in an aseptic and dust-free environment, and the chemicals used were sterilized in advance.
[0032]
Example 2
Preparation of HA, HA gel and phospholipid mixed preparation To 450 ml of the HA solution of Preparation Example 1 separately prepared, 100 ml of the HA gel of Preparation Example 2 and 50 ml of the phospholipid solution of Preparation Example 3 were added. Using this mixed solution, a HA homogenizer (NISSEI EXCEL AUTO HOMOGENIZER) is used to crush the HA gel and completely disperse the phospholipid. The HA and HA gel containing hyaluronic acid gel having an average particle size of 300 to 1,000 μm and A mixed phospholipid formulation was obtained.
These series of operations were performed in an aseptic and dust-free environment, and the chemicals used were sterilized in advance.
[0033]
Comparative Example 1
Preparation of Mixed Formulation of HA and HA Gel To 450 ml of the HA solution of Preparation Example 1 separately prepared, 100 ml of the HA gel of Preparation Example 2 and 50 ml of 5 mM pH 7.2 phosphate buffered physiological saline were added. This mixed solution was subjected to HA gel crushing treatment using a microhomogenizer (NISSEI EXCEL AUTO HOMOGENIZER) to obtain a mixed preparation of HA and HA gel containing hyaluronic acid gel having an average particle size of 300 to 1,000 μm.
These series of operations were performed in an aseptic and dust-free environment, and the chemicals used were sterilized in advance.
[0034]
Comparative Example 2
Preparation of Mixed Formulation of HA and Phospholipid To 450 ml of the HA solution of Preparation Example 1 prepared separately, 50 ml of the phospholipid solution of Preparation Example 3 and 100 ml of 5 mM pH 7.2 phosphate buffered physiological saline were added. This mixed solution was completely dispersed with phospholipid using a microhomogenizer (NISSEI EXCEL AUTO HOMOGENIZER) to obtain a mixed preparation of HA and phospholipid. These series of operations were performed in an aseptic and dust-free environment, and the chemicals used were sterilized in advance.
[0035]
Example 3
Pharmacological Effect of Mixed Formulation of HA, HA Gel and Phospholipid The pharmacological effect of the mixed formulation of HA gel and phospholipid of Example 1 and the mixed formulation of HA, HA gel and phospholipid of Example 2 is as follows. It was evaluated with.
60 Japanese white rabbits (weight approximately 3 kg) were anesthetized and the anterior cruciate ligament and medial collateral ligament of the right knee were separated. As a result, the right knee of the Japanese white rabbit is subjected to abnormal stress between the joints, so that the joint becomes inflamed within a week and becomes a model for osteoarthritis of the knee.
Seven weeks after the operation, the HA gel and phospholipid mixed preparation of Example 1 was applied to 10 chickens and the HA of Example 2 was applied to 10 chickens on the right knee of Japanese white rabbits in which inflammation of the joint was sufficiently induced. Mixed preparation of HA gel and phospholipid, mixed preparation of HA and HA gel of Comparative Example 1 in 10 birds, mixed preparation of HA and phospholipid of Comparative Example 2 in 10 birds, 0.3 ml twice at 10 day intervals Administered.
The remaining 10 birds were anesthetized only at the same interval without injection of an aqueous solution for control.
All patients were sacrificed 10 days after the second injection and radiographed. The ligament, the joint capsule and the soft tissue other than the half moon were excised from the knee joint, and immediately, the friction coefficient at a low amplitude region (0.03 to 0.01 rad) and a load of 3 kg was measured by a pendulum friction tester. The coefficient of friction was calculated based on the assumption that the potential energy loss due to the pendulum damping was all due to friction. The results are shown in Table 1.
[0036]
[Table 1]
[0037]
From Table 1, the friction coefficient by the pendulum friction test is significantly lower in the mixed preparation of HA gel and phospholipid in Example 1 and in the mixed preparation of HA, HA gel and phospholipid in Example 2 than in Comparative Examples 1 and 2. The value was as low as that in the normal untreated group.
[0038]
Further, articular cartilage tissue sections were cut out, and bone proliferative changes were evaluated from the X-ray images.
The evaluation criteria were compared to the untreated knee in each of three aspects: the effect on the subchondral bone, the formation of osteophytes at the cartilage margin, and the smoothness of the cartilage surface (2 points: normal, 1 point: medium) Grade from 0 to 6 points, and graded into 7 grades. The results are shown in Table 2.
[0039]
[Table 2]
[0040]
From Table 2, surprisingly, in Examples 1 and 2, a large healing effect close to that of the normal untreated group was recognized. In contrast, in Comparative Examples 1 and 2, cartilage proliferation and deformation were observed. In addition, remarkable proliferative deformation was observed in the control.
[0041]
【Effect of the invention】
As described above, the biocompatible HA gel and phospholipid of the present invention and / or the injectable agent for treating arthropathy comprising HA are mixed with the conventional HA and HA gel or HA and phospholipid composition. It has a high therapeutic effect and a reduced number of administrations of the preparation that cannot be obtained by the preparation.
Claims (8)
且つ前記生体適合性のヒアルロン酸ゲルの濃度が5〜60%であり、前記生体適合性のヒアルロン酸ゲルが破砕状で含有されている、膝関節症治療用注入剤。A biocompatible hyaluronic acid gel composed of hyaluronic acid alone without using a chemical cross-linking agent or a chemical modifier, and phospholipid,
And wherein the concentration from 5 to 60% of the biocompatibility of hyaluronic acid gel, the biocompatible hyaluronic acid gel is contained in crushed form, knee arthrosis therapeutic infusion.
前記リン脂質溶液、及び化学的架橋剤又は化学的修飾剤を用いないヒアルロン酸単独からなる生体適合性のヒアルロン酸ゲルを含む混合溶液を調製する工程と、
前記ヒアルロン酸ゲルの破砕処理、及び前記リン脂質溶液の分散処理を行う工程と、
を含み、前記混合溶液中の前記ヒアルロン酸ゲルの濃度が5〜60%である、
膝関節症治療用注入剤の生産方法。Sonicating a solution containing phospholipid to prepare a phospholipid solution;
Preparing a mixed solution comprising the phospholipid solution and a biocompatible hyaluronic acid gel consisting of hyaluronic acid alone without using a chemical crosslinking agent or chemical modifier;
A step of crushing the hyaluronic acid gel and dispersing the phospholipid solution;
The concentration of the hyaluronic acid gel in the mixed solution is 5 to 60%,
A method for producing an injection for the treatment of knee osteoarthritis.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001158454A JP4990446B2 (en) | 2001-05-28 | 2001-05-28 | Injection for treatment of arthropathy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001158454A JP4990446B2 (en) | 2001-05-28 | 2001-05-28 | Injection for treatment of arthropathy |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002348243A JP2002348243A (en) | 2002-12-04 |
JP4990446B2 true JP4990446B2 (en) | 2012-08-01 |
Family
ID=19002181
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001158454A Expired - Fee Related JP4990446B2 (en) | 2001-05-28 | 2001-05-28 | Injection for treatment of arthropathy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4990446B2 (en) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004016275A1 (en) | 2002-08-16 | 2004-02-26 | Denki Kagaku Kogyo Kabushiki Kaisha | Separate type medical material |
US20070275032A1 (en) * | 2004-03-05 | 2007-11-29 | Synthes (U.S.A.) | Use Of A Mixture For The Production Of An Agent For Treating Defective Or Degenerated Cartilage In The Production Of Natural Cartilage Replacement In Vitro |
EP2386306A1 (en) | 2006-12-06 | 2011-11-16 | Seikagaku Corporation | Pharmaceutical agent having long-lasting effect of treating arthritic disorders |
EP3040367A4 (en) * | 2013-08-29 | 2017-04-19 | Dainichiseika Color & Chemicals Mfg. Co., Ltd. | Method for manufacturing water-insoluble molded article and water-insoluble molded article |
CN111684060B (en) | 2018-01-30 | 2023-11-03 | 株式会社片冈制作所 | Method for preparing insulin-producing cells |
US11834679B2 (en) | 2018-01-30 | 2023-12-05 | Kataoka Corporation | Method for producing cardiomyocytes |
JP7406196B2 (en) | 2018-07-10 | 2023-12-27 | 株式会社片岡製作所 | Method for producing neuron-like cells |
CN113015792A (en) | 2018-11-14 | 2021-06-22 | 株式会社片冈制作所 | Method for producing insulin-producing cell |
US20220025336A1 (en) | 2018-11-14 | 2022-01-27 | Kataoka Corporation | Method for producing insulin-producing cells, and composition |
WO2021106697A1 (en) | 2019-11-25 | 2021-06-03 | 株式会社片岡製作所 | Brown adipocyte production method |
EP4083194A4 (en) | 2019-11-25 | 2024-01-03 | Kataoka Corporation | Composition for medium |
WO2023048060A1 (en) | 2021-09-21 | 2023-03-30 | 株式会社片岡製作所 | Screening method using brown adipocytes |
WO2023167122A1 (en) | 2022-03-01 | 2023-09-07 | 株式会社片岡製作所 | Growth factor-producing cells and method for producing same |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999010385A1 (en) * | 1997-08-22 | 1999-03-04 | Denki Kagaku Kogyo Kabushiki Kaisha | Hyaluronic acid gel, process for producing the same and medical material containing the same |
CN1157191C (en) * | 1998-11-10 | 2004-07-14 | 电气化学工业株式会社 | Hyaluronic acid gel, process for preparation thereof and medical materials containing the same |
-
2001
- 2001-05-28 JP JP2001158454A patent/JP4990446B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2002348243A (en) | 2002-12-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1066044B1 (en) | Dextran formulations for treatment of inflammatory joint disorders | |
KR101834588B1 (en) | Crosslinked hyaluronic acid composition and self-crosslinking hyaluronic acid particles | |
JP5208332B2 (en) | Intra-joint replacement for treating joint diseases and joint damage | |
JP6759220B2 (en) | Joint fat pad preparation and how to use it | |
JP4990446B2 (en) | Injection for treatment of arthropathy | |
EP3449927A1 (en) | Pharmaceutical formulations comprising chondroitin sulfate and hyaluronic acid derivatives | |
US7807657B2 (en) | Separate type medical material | |
CA2426083A1 (en) | Use of hyaluronic acid derivatives for inhibiting inflammatory arthritis | |
JP2011037853A (en) | Hyaluronic acid mixture used for treating and preventing inflammatory bowel disease (ibd) | |
CN106692179B (en) | Pharmaceutical preparation containing low molecular weight xanthan gum for articular cavity injection and preparation method thereof | |
CN116919982A (en) | Pharmaceutical composition for treating arthritis and application thereof | |
JP2007507516A (en) | Treatment of mammalian disorders by amino sugar administration and use of amino sugar | |
WO2006028361A1 (en) | Implants and microspheres for the sustained release of drugs for ophthalmic use and preparation methods thereof | |
JP7506431B2 (en) | Composition for preventing or treating joint and cartilage damage comprising hyaluronic acid and pluronics | |
US10857176B2 (en) | Composition comprising polyglucosamine-glyoxylate solutions mixed with hyaluronan | |
EP1001790B1 (en) | Compositions for lubricating and separating tissues and biological membranes | |
JP7093372B2 (en) | New viscoelastic solutions and their use in rheumatology | |
TW201739457A (en) | Use of composition for preparing drug for treating injured tendon in animal or ahuman and kit | |
EP4084801A1 (en) | A novel viscoelastic formulation for osteoarthritis treatment and a production method thereof | |
WO2024080954A1 (en) | Intra-articular gel for tissue and cartilage regeneration | |
EA042176B1 (en) | PHARMACEUTICAL COMPOSITIONS CONTAINING HYALURONIC ACID AND CARNOSINE AND THEIR RELATED USE | |
Patel et al. | Hyaluronic Acid (Hyaluronan): A Review on Pharmacokinetics and its Application |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080516 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110719 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20110822 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20110824 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110914 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20111129 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120222 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20120321 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120424 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120502 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150511 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |