JP4989591B2 - Permanent magnet synchronous motor driving device, air conditioner, ventilation fan driving device, washing machine, automobile and vehicle - Google Patents

Permanent magnet synchronous motor driving device, air conditioner, ventilation fan driving device, washing machine, automobile and vehicle Download PDF

Info

Publication number
JP4989591B2
JP4989591B2 JP2008224963A JP2008224963A JP4989591B2 JP 4989591 B2 JP4989591 B2 JP 4989591B2 JP 2008224963 A JP2008224963 A JP 2008224963A JP 2008224963 A JP2008224963 A JP 2008224963A JP 4989591 B2 JP4989591 B2 JP 4989591B2
Authority
JP
Japan
Prior art keywords
synchronous motor
permanent magnet
magnet synchronous
inverter
short
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008224963A
Other languages
Japanese (ja)
Other versions
JP2009284747A (en
Inventor
優 岸和田
和徳 畠山
和憲 坂廼邊
倫雄 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2008224963A priority Critical patent/JP4989591B2/en
Publication of JP2009284747A publication Critical patent/JP2009284747A/en
Application granted granted Critical
Publication of JP4989591B2 publication Critical patent/JP4989591B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Stopping Of Electric Motors (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Control Of Ac Motors In General (AREA)

Description

本発明は、省エネ性の高い誘起電圧定数の大きな永久磁石同期モータが強制的に回転させられた場合に発生する回生電圧を抑制することで駆動装置の安全性を確保する永久磁石同期モータの駆動装置、空気調和装置、換気扇の駆動装置、洗濯機、自動車及び車両に関するものである。   The present invention drives a permanent magnet synchronous motor that secures the safety of a driving device by suppressing a regenerative voltage that is generated when a permanent magnet synchronous motor with high energy-saving and large induced voltage constant is forcibly rotated. The present invention relates to a device, an air conditioner, a driving device for a ventilation fan, a washing machine, an automobile, and a vehicle.

従来、永久磁石同期モータは誘起電圧定数が大きいほど、インバータに代表されるモータの駆動装置の低損失化が図れる。しかし、永久磁石同期モータは外風やその他外乱要因により強制的に回転させられた場合に、発電機として働き電圧(回生電圧)が発生する。
そのため、誘起電圧定数が大きい永久磁石同期モータを用いた場合、大きな回生電圧が発生し、電動機の駆動装置を構成する素子が耐圧破壊を起こし、発煙や発火に至る恐れがある。
そこで、従来のブラシレスモータの保護装置に、リレーなどの開閉器によりモータとインバータを切り離すことで、回生電圧に対して素子を保護する技術がある(例えば、特許文献1参照)。
Conventionally, as the induced voltage constant of a permanent magnet synchronous motor increases, the loss of a motor drive device represented by an inverter can be reduced. However, the permanent magnet synchronous motor works as a generator and generates a voltage (regenerative voltage) when it is forced to rotate due to external wind or other disturbance factors.
For this reason, when a permanent magnet synchronous motor with a large induced voltage constant is used, a large regenerative voltage is generated, and the elements constituting the motor drive device may break down with pressure, leading to smoke or ignition.
Therefore, a conventional brushless motor protection device has a technique for protecting an element against a regenerative voltage by separating a motor and an inverter by a switch such as a relay (see, for example, Patent Document 1).

特開昭63―206189号公報(第1頁、第1図)JP 63-206189 A (first page, FIG. 1)

しかしながら、特許文献1に記載の従来のブラシレスモータの保護装置は、リレーなどの開閉器を追加することによる部品点数や電子基板面積の増加に伴うコストアップという問題があり、また開閉器の耐圧を考慮して設計しなければならないといった課題もあった。
本発明はかかる問題を解決するためになされたもので、永久磁石同期モータが強制的に回転させられた場合に生じる回生電圧を部品点数の増加なしに抑制して低コスト化できる永久磁石同期モータの駆動装置、空気調和装置、換気扇の駆動装置、洗濯機、自動車及び車両を得ることを目的とする。
However, the conventional protection device for a brushless motor described in Patent Document 1 has a problem of increased costs due to an increase in the number of parts and the area of an electronic board due to the addition of a switch such as a relay. There was also a problem that the design had to be taken into account.
The present invention has been made to solve such a problem, and a permanent magnet synchronous motor capable of reducing the cost by suppressing the regenerative voltage generated when the permanent magnet synchronous motor is forcibly rotated without increasing the number of parts. An object of the present invention is to obtain a driving device, an air conditioner, a ventilation fan driving device, a washing machine, an automobile and a vehicle.

本発明に係る永久磁石同期モータの駆動装置は、直流電源の直流電圧を入力とし、永久磁石同期モータに電圧を出力するインバータと、インバータの入力側に現れる直流の回生電圧を検出する直流電圧検出手段と、インバータが出力する電圧を制御するインバータ制御手段を備え、インバータ制御手段は、回生運転時に、直流電圧検出手段が検出した増大する回生電圧に基づいてインバータと永久磁石同期モータの線間を短絡するようにインバータを制御する短絡手段と、直流電圧検出手段が検出する減少する回生電圧に基づいてインバータと永久磁石同期モータの線間を開放するようにインバータを制御する開放手段と、直流電圧検出手段が検出する増大する回生電圧に基づいてインバータと永久磁石同期モータの線間を開放と短絡を交互に行うようにインバータを制御する間欠短絡手段と、を備え、直流電圧検出手段が検出した増大する回生電圧が、第1の閾値を超える場合に間欠短絡手段を動作させ、その後に短絡手段を動作させ、直流電圧検出手段が検出した減少する回生電圧が、第2の閾値を下回った場合に開放手段を動作させるようにしたものである。 A permanent magnet synchronous motor driving apparatus according to the present invention includes a DC voltage of a DC power supply as an input, an inverter that outputs a voltage to the permanent magnet synchronous motor, and a DC voltage detection that detects a DC regenerative voltage appearing on the input side of the inverter. And inverter control means for controlling the voltage output from the inverter, and the inverter control means is configured to provide a gap between the inverter and the permanent magnet synchronous motor based on the increased regenerative voltage detected by the DC voltage detection means during regenerative operation. Short-circuit means for controlling the inverter so as to short-circuit, open-circuit means for controlling the inverter so as to open the line between the inverter and the permanent magnet synchronous motor based on the decreasing regenerative voltage detected by the DC voltage detection means, and DC voltage Based on the increasing regenerative voltage detected by the detection means, the inverter and the permanent magnet synchronous motor are alternately opened and shorted between the lines. An intermittent short-circuit means for controlling the inverter to perform the operation, and when the increasing regenerative voltage detected by the DC voltage detection means exceeds the first threshold, the intermittent short-circuit means is operated, and then the short-circuit means is operated. The release means is operated when the decreasing regenerative voltage detected by the DC voltage detection means falls below the second threshold value .

本発明に係る永久磁石同期モータの駆動装置においては、直流電源の直流電圧を入力とし、永久磁石同期モータに電圧を出力するインバータと、インバータの入力側に現れる直流の回生電圧を検出する直流電圧検出手段と、インバータが出力する電圧を制御するインバータ制御手段を備え、インバータ制御手段は、回生運転時に、直流電圧検出手段が検出した増大する回生電圧に基づいてインバータと永久磁石同期モータの線間を短絡するようにインバータを制御する短絡手段と、直流電圧検出手段が検出する減少する回生電圧に基づいてインバータと永久磁石同期モータの線間を開放するようにインバータを制御する開放手段と、直流電圧検出手段が検出する増大する回生電圧に基づいてインバータと永久磁石同期モータの線間を開放と短絡を交互に行うようにインバータを制御する間欠短絡手段と、を備え、直流電圧検出手段が検出した増大する回生電圧が、第1の閾値を超える場合に間欠短絡手段を動作させ、その後に短絡手段を動作させ、直流電圧検出手段が検出した減少する回生電圧が、第2の閾値を下回った場合に開放手段を動作させるので、永久磁石同期モータが強制的に回転させられて回生電圧が生じる場合に、インバータと永久磁石同期モータの線間を短絡し、また短絡及び開放を繰り返すことで、永久磁石同期モータに発生した回生電圧を永久磁石同期モータ内で消費させて直流電圧の上昇を抑制し、回生電圧をインバータの耐圧以下に抑制可能となりインバータを構成するスイッチング素子等の耐圧破壊を部品点数の増加なしに低コストで防止することができ、誘起電圧定数の大きい永久磁石同期モータを用いることが可能となるため、永久磁石同期モータの駆動装置の損失を低下させて省エネにも寄与し、地球温暖化を軽減可能とするという効果がある。 In the permanent magnet synchronous motor driving apparatus according to the present invention, a DC voltage of a DC power supply is input, an inverter that outputs a voltage to the permanent magnet synchronous motor, and a DC voltage that detects a DC regenerative voltage appearing on the input side of the inverter Detecting means and inverter control means for controlling the voltage output from the inverter, and the inverter control means is arranged between the line between the inverter and the permanent magnet synchronous motor based on the increasing regenerative voltage detected by the DC voltage detecting means during the regenerative operation. A short-circuit means for controlling the inverter so as to short-circuit, an open-circuit means for controlling the inverter so as to open a line between the inverter and the permanent magnet synchronous motor based on a decreasing regenerative voltage detected by the DC voltage detection means, Based on the increasing regenerative voltage detected by the voltage detector, the line between the inverter and the permanent magnet synchronous motor is opened and closed. Intermittent short-circuit means for controlling the inverter so as to alternately perform the operation, and when the increasing regenerative voltage detected by the DC voltage detection means exceeds the first threshold, the intermittent short-circuit means is operated, and then the short-circuit means When the decreasing regenerative voltage detected by the DC voltage detecting means falls below the second threshold value, the opening means is operated , and the permanent magnet synchronous motor is forcibly rotated to generate the regenerative voltage. In addition, the regenerative voltage generated in the permanent magnet synchronous motor is consumed in the permanent magnet synchronous motor by short-circuiting the line between the inverter and the permanent magnet synchronous motor, and repeating the short circuit and the open circuit, thereby suppressing the DC voltage rise. The regenerative voltage can be suppressed below the withstand voltage of the inverter, and the breakdown voltage of the switching elements that constitute the inverter can be prevented at low cost without increasing the number of parts. Since it is possible to use a permanent magnet synchronous motor having a large induced voltage constant, it is possible to reduce energy loss by reducing the loss of the drive device of the permanent magnet synchronous motor and to reduce global warming. .

実施の形態1
図1は本発明の実施の形態1に係る永久磁石同期モータの駆動装置のブロック図、図2は同永久磁石同期モータの駆動装置のインバータの三相ブリッジの回路図、図3は同永久磁石同期モータの駆動装置のインバータの短絡動作状態の回路図、図4は同永久磁石同期モータの駆動装置のインバータの開放動作状態の回路図、図5は同永久磁石同期モータの駆動装置のインバータの短絡及び開放動作のフローチャート(直流電圧検出手段を用いた場合)、図6は同永久磁石同期モータの駆動装置のインバータの短絡および開放動作による直流電圧波形図、図7は同永久磁石同期モータの駆動装置のインバータの開放、間欠短絡、開放動作時のスイッチング波形を示す説明図、図8は同永久磁石同期モータの駆動装置のインバータの短絡および開放動作時間の比率制御を示すブロック図、図9は同永久磁石同期モータの駆動装置のコントローラの内部構成を示すブロック図である。
Embodiment 1
1 is a block diagram of a driving apparatus for a permanent magnet synchronous motor according to Embodiment 1 of the present invention, FIG. 2 is a circuit diagram of a three-phase bridge of an inverter of the driving apparatus for the permanent magnet synchronous motor, and FIG. 4 is a circuit diagram of a short circuit operation state of the inverter of the synchronous motor driving device, FIG. 4 is a circuit diagram of an open state of the inverter of the permanent magnet synchronous motor driving device, and FIG. 5 is a circuit diagram of the inverter of the permanent magnet synchronous motor driving device. FIG. 6 is a flowchart of a short circuit and an open operation (when DC voltage detecting means is used), FIG. 6 is a DC voltage waveform diagram due to a short circuit and an open operation of the inverter of the permanent magnet synchronous motor driving device, and FIG. FIG. 8 is an explanatory diagram showing switching waveforms at the time of opening, intermittent short-circuiting, and opening operation of the inverter of the driving device, and FIG. Block diagram showing the ratio control operating time, FIG. 9 is a block diagram showing the internal configuration of the controller of the permanent magnet synchronous motor driving device.

図1において、10は直流電源、20は直流電源10に入力側接続されたモータ駆動装置、30はモータ駆動装置20の出力側に接続された三相の永久磁石同期モータである。
モータ駆動装置20は、インバータ40と、インバータ40を駆動制御するインバータ制御手段50と、永久磁石同期モータ30の線間を短絡するようにインバータ40を制御する短絡手段60と、永久磁石同期モータ30の線間を開放するようにインバータ40を制御する開放手段70と、短絡手段60と開放手段70とを交互に動作させる間欠短絡手段80と、直流電源10の直流電圧を検出する直流電圧検出手段90とを有して構成されている。
In FIG. 1, 10 is a DC power source, 20 is a motor drive device connected to the DC power source 10 on the input side, and 30 is a three-phase permanent magnet synchronous motor connected to the output side of the motor drive device 20.
The motor drive device 20 includes an inverter 40, an inverter control means 50 that controls the drive of the inverter 40, a short-circuit means 60 that controls the inverter 40 so as to short-circuit between the lines of the permanent magnet synchronous motor 30, and the permanent magnet synchronous motor 30. An open means 70 for controlling the inverter 40 so as to open the line, an intermittent short circuit means 80 for alternately operating the short circuit means 60 and the open means 70, and a DC voltage detection means for detecting the DC voltage of the DC power supply 10. 90.

図2に示すインバータ40の構成について説明する。
インバータ40は、直流電源10の正側に接続される還流ダイオード110が並列接続された3つのIGBTスイッチング素子100aと、直流電源10の負側に接続される還流ダイオード110が並列接続された3つのIGBTスイッチング素子100bとを有し、それぞれが直列に接続された構成となっており、正側と負側の中性点が永久磁石同期モータ30の各相に接続されている。
ここで、直流電源10の3つの正側スイッチング素子100aを上アーム、3つの負側スイッチング素子100bを下アームとして以下、説明する。
A configuration of the inverter 40 shown in FIG. 2 will be described.
The inverter 40 includes three IGBT switching elements 100a connected in parallel to the freewheeling diode 110 connected to the positive side of the DC power supply 10 and three connected in parallel to the freewheeling diode 110 connected to the negative side of the DC power supply 10. The IGBT switching element 100b is connected to each other in series, and the neutral point on the positive side and the negative side is connected to each phase of the permanent magnet synchronous motor 30.
Here, the following description will be made assuming that the three positive side switching elements 100a of the DC power supply 10 are upper arms and the three negative side switching elements 100b are lower arms.

次に、本発明の実施の形態1に係る永久磁石同期モータの駆動装置の動作について図5のフローチャートに基づいて説明する。ただし、図5は直流電圧検出手段を用いた場合を示しているが、交流電圧検出手段や回転速度検出手段を用いた場合も同様のフローチャートとなる。
インバータ制御手段50は、直流電圧検出手段90の出力に基づいて、回生電圧を抑制するようにインバータ40を制御する。
即ち、永久磁石同期モータ30が駆動停止させられてインバータ40の上アームの3つの正側スイッチング素子100aと下アームの3つの負側スイッチング素子100bが全てオフのとき(このときを開放状態という)に、永久磁石同期モータ30が強制的に回転させられると回生電圧が発生する。
この回生電圧により上アームと下アームの還流ダイオード110に電流が流れて整流され、直流電圧が直流電源10に印加される。その直流電源10に印加される直流電圧を直流電圧検出手段90が検出し、その検出した直流電圧をインバータ制御手段50に出力している。
Next, the operation of the permanent magnet synchronous motor driving apparatus according to Embodiment 1 of the present invention will be described based on the flowchart of FIG. However, FIG. 5 shows the case where the DC voltage detecting means is used, but the same flowchart is obtained when the AC voltage detecting means and the rotational speed detecting means are used.
The inverter control means 50 controls the inverter 40 based on the output of the DC voltage detection means 90 so as to suppress the regenerative voltage.
That is, when the permanent magnet synchronous motor 30 is stopped driving and all the three positive side switching elements 100a of the upper arm of the inverter 40 and the three negative side switching elements 100b of the lower arm are turned off (this is referred to as an open state). In addition, when the permanent magnet synchronous motor 30 is forcibly rotated, a regenerative voltage is generated.
This regenerative voltage causes a current to flow through the upper and lower arm freewheeling diodes 110 for rectification, and a DC voltage is applied to the DC power supply 10. The DC voltage detection means 90 detects the DC voltage applied to the DC power supply 10 and outputs the detected DC voltage to the inverter control means 50.

そして、インバータ制御手段50では、直流電圧検出手段90が検出する回生電圧に基づく直流電圧の出力が増大して第1の閾値である短絡閾値を超えた場合(ステップS1)に、短絡手段60を動作させ、図3の(a)に示すように、インバータ40の上アーム100aを全てオンさせるように制御してインバータ40と永久磁石同期モータ30の線間を短絡状態とするか、もしくは図3の(b)に示すようにインバータ40の下アーム100bを全てオンさせることでインバータ40と永久磁石同期モータ30の線間を短絡状態として(ステップS2)、発生した回生電圧を永久磁石同期モータ30内で消費させることで、回生電圧を低下させる。   Then, in the inverter control means 50, when the output of the DC voltage based on the regenerative voltage detected by the DC voltage detection means 90 increases and exceeds the short-circuit threshold that is the first threshold (step S1), the short-circuit means 60 is changed. As shown in FIG. 3A, control is performed so that all the upper arms 100a of the inverter 40 are turned on, and the line between the inverter 40 and the permanent magnet synchronous motor 30 is short-circuited, or FIG. As shown in (b), all the lower arms 100b of the inverter 40 are turned on to short-circuit the line between the inverter 40 and the permanent magnet synchronous motor 30 (step S2), and the generated regenerative voltage is used as the permanent magnet synchronous motor 30. The regenerative voltage is lowered by consuming it in the interior.

このように、インバータ40と永久磁石同期モータ30の線間が短絡状態となった場合には、直流電源10に回生エネルギーが供給されないが、その直流電源10の直流電圧は例えばインバータ制御手段50の動作電圧として供給されているので、そこで消費されて徐々に低下していく。
そして、インバータ制御手段50では、直流電圧検出手段90が検出する回生電圧に基づく直流電圧の出力が低下して第2の閾値である開放閾値を下回った際に(ステップS3)、図4に示すように、インバータ40のいままでオンしていた上アーム100aを全てオフさせ、もしくはいままでオンしていた下アーム100bを全てオフさせることで前述の短絡状態を解除し、結局上アーム100a及び下アーム100bを全てオフにして開放状態にする(ステップS4)。
Thus, when the line between the inverter 40 and the permanent magnet synchronous motor 30 is short-circuited, regenerative energy is not supplied to the DC power supply 10, but the DC voltage of the DC power supply 10 is, for example, that of the inverter control means 50. Since it is supplied as an operating voltage, it is consumed there and gradually decreases.
Then, in the inverter control means 50, when the output of the direct current voltage based on the regenerative voltage detected by the direct current voltage detection means 90 falls and falls below the open threshold value which is the second threshold value (step S3), it is shown in FIG. As described above, the above-described short-circuit state is canceled by turning off all the upper arms 100a of the inverter 40 that have been turned on or turning off all of the lower arms 100b that have been turned on until now. All the arms 100b are turned off to be opened (step S4).

そうすると、図6に示すように回生電圧は再び上昇し、回生電圧に基づく直流電圧も上昇して第1の閾値に達することになれば、ステップS2に戻り短絡状態にさせられることになる。
このように、インバータ40と永久磁石同期モータ30の線間が短絡及び開放動作を繰り返すことで、永久磁石同期モータ30が強制的に回転させられた場合に生じる回生電圧をインバータ40の耐圧以下に抑制可能となり、インバータ40を構成するスイッチング素子などの耐圧破壊を保護することができる。
Then, as shown in FIG. 6, the regenerative voltage rises again, and if the DC voltage based on the regenerative voltage also rises to reach the first threshold value, the process returns to step S2 to be short-circuited.
As described above, the regenerative voltage generated when the permanent magnet synchronous motor 30 is forcibly rotated by repeating the short circuit and the open operation between the lines of the inverter 40 and the permanent magnet synchronous motor 30 is less than the withstand voltage of the inverter 40. It becomes possible to suppress the breakdown voltage breakdown of the switching elements constituting the inverter 40 and the like.

しかしながら、前記したように短絡手段60及び開放手段70で短絡および開放する直流電圧の短絡閾値と開放閾値が略同一程度に近似している場合、短絡および開放動作が頻繁に発生し、永久磁石同期モータ30に流れる電流にノイズが発生する問題がある。
そのため、短絡動作を開始する短絡閾値と、開放動作を開始する開放閾値の二つの閾値を略同一の値にせず、また短絡閾値と開放閾値の関係を 短絡閾値>開放閾値 とすることで短絡および開放動作が頻繁に起こることを抑え、ノイズの発生を少なくできるため、ノイズによる誤動作のない信頼性の高い永久磁石同期モータの駆動装置を得ることができる。
但し、短絡閾値と開放閾値はノイズ等が発生しないようにある程度電圧差を持たせたほうがよい。そのときの直流電圧波形を図6に示す。
However, as described above, when the short-circuit threshold value and the open-circuit threshold value of the DC voltage that are short-circuited and opened by the short-circuit means 60 and the open-circuit means 70 are approximately the same, short-circuit and open operations frequently occur and permanent magnet synchronization occurs. There is a problem that noise occurs in the current flowing through the motor 30.
Therefore, the short-circuit threshold value for starting the short-circuit operation and the open-circuit threshold value for starting the open-circuit operation are not made substantially the same value, and the short-circuit threshold value is set to the open-threshold value so that the short-circuit threshold value is greater than the open-circuit threshold value. Since frequent opening operations can be suppressed and noise generation can be reduced, it is possible to obtain a highly reliable permanent magnet synchronous motor driving device free from malfunctions due to noise.
However, it is better to have a certain voltage difference between the short-circuit threshold and the open threshold so that noise or the like does not occur. The DC voltage waveform at that time is shown in FIG.

しかし、永久磁石同期モータ30の線間が開放動作から短絡動作に移行する際には、永久磁石同期モータ30に定常状態のおよそ2倍程度の電流が瞬間的に流れる。
永久磁石同期モータ30を構成する永久磁石は大きな電流が流れると、磁力が低下して性能が劣化するおそれがある。
そこで、永久磁石同期モータ30の線間が開放動作から短絡動作に移行する前に、間欠短絡手段80により短絡と開放とを短時間のうちに交互に動作させて間欠短絡動作を行わせ、短絡する時間を徐々に長くしながら間欠的に短絡動作を行った後、短絡手段60により短絡動作を行うことで瞬間的に流れる電流を抑制することができる。
図7は、短絡、間欠短絡、開放動作へ移行する際のインバータ40の上アーム100aもしくは下アーム100bのスイッチング波形を示す。また、図7に示すように、間欠短絡動作時間tを任意に設計できるものとする。
また、間欠短絡手段80はタイマー等で時間の経過と共に短絡時間を徐々に長くするよう制御したり、PWM を用いて徐々にDutyを上げて短絡時間を長くするようにしても良い。
However, when the line between the permanent magnet synchronous motors 30 shifts from the open operation to the short circuit operation, a current about twice as large as the steady state flows through the permanent magnet synchronous motor 30 instantaneously.
When a large current flows through the permanent magnets constituting the permanent magnet synchronous motor 30, the magnetic force may decrease and the performance may deteriorate.
Therefore, before the line between the permanent magnet synchronous motor 30 shifts from the open operation to the short circuit operation, the short circuit and the open circuit are alternately operated in a short time by the intermittent short circuit means 80 to perform the intermittent short circuit operation. The current that flows instantaneously can be suppressed by performing the short-circuit operation by the short-circuit means 60 after performing the short-circuit operation intermittently while gradually increasing the time to be performed.
FIG. 7 shows switching waveforms of the upper arm 100a or the lower arm 100b of the inverter 40 when shifting to a short circuit, intermittent short circuit, and open operation. Further, as shown in FIG. 7, the intermittent short-circuit operation time t can be arbitrarily designed.
Further, the intermittent short-circuit means 80 may be controlled so as to gradually increase the short-circuit time as time passes by a timer or the like, or the duty may be gradually increased by using PWM to increase the short-circuit time.

さらに、インバータ制御手段50の短絡手段60、開放手段70及び間欠短絡手段80に代わる同様な機能を有する手段として、直流電圧検出手段70の出力と予め設定した直流電圧指令値との偏差に応じて、短絡及び開放動作時間の比率を可変し、直流電圧を一定に保つように制御するようにしたものがある。
それは、例えば、図8に示すように直流電圧指令値を正、直流電圧検出手段90で検出した出力を負として加算器119で加算し、その偏差をコントローラ120の入力とし、偏差をなくすように短絡及び開放動作時間の比率を制御する。
この場合、開放動作時間を0に設定し、短絡動作時間だけ制御するようにすれば、前記短絡手段60と同様に機能し、逆に短絡動作時間を0に設定し、開放動作時間だけ制御するようにすれば、前記開放手段70として機能し、開放動作時間と短絡動作時間を一定の比率に設定すれば、間欠短絡手段80として機能することになる。
コントローラ120は、図9に示すように、例えば、比例動作、積分動作及び微分動作を行なうPID制御器などを用いてもよい。もちろん、偏差をなくすように制御できればよいので、他の制御器でも代用できることは言うまでもない。
Further, as a means having the same function as the short-circuit means 60, the open means 70 and the intermittent short-circuit means 80 of the inverter control means 50, according to the deviation between the output of the DC voltage detection means 70 and a preset DC voltage command value. In some cases, the ratio of the short-circuiting and opening operation times is varied to control the DC voltage to be constant.
For example, as shown in FIG. 8, the DC voltage command value is positive and the output detected by the DC voltage detecting means 90 is negative and added by the adder 119. The deviation is input to the controller 120, and the deviation is eliminated. Controls the ratio of short and open operation time.
In this case, if the opening operation time is set to 0 and only the short-circuiting operation time is controlled, it functions in the same manner as the short-circuit means 60. Conversely, the short-circuiting operation time is set to 0 and only the opening operation time is controlled. If it does so, it will function as the said open | release means 70, and if it sets an open operation time and a short circuit operation time to a fixed ratio, it will function as the intermittent short circuit means 80.
As shown in FIG. 9, the controller 120 may use, for example, a PID controller that performs proportional operation, integration operation, and differentiation operation. Of course, it is sufficient if the control can be performed so as to eliminate the deviation, and it goes without saying that another controller can be substituted.

これにより、永久磁石同期モータ30の定数等が変わる場合でも、偏差に応じて短絡及び開放動作時間の比率を制御することで、永久磁石の磁力が弱まるのを防止できることから経年劣化防止にも効果が期待できる。
また、例えばPID制御器の比例動作、積分動作及び微分動作のゲインを変えて応答を調整することにより、徐々に短絡及び開放動作時間の比率を変化させていき、前述の間欠短絡手段と等価な効果を得ることが出来る。
これにより、開放から短絡状態への移行時における瞬間的な電流を抑制することが可能となり、永久磁石同期モータ30の磁力低下を抑え、信頼性の高い永久磁石同期モータの駆動装置を得ることができる。
Thereby, even when the constant of the permanent magnet synchronous motor 30 changes, it is possible to prevent the magnetic force of the permanent magnet from being weakened by controlling the ratio of the short-circuiting and opening operation time according to the deviation. Can be expected.
Further, for example, by adjusting the response by changing the gains of the proportional operation, integral operation and differential operation of the PID controller, the ratio of the short-circuiting and opening operation time is gradually changed, which is equivalent to the intermittent short-circuit means described above. An effect can be obtained.
As a result, it is possible to suppress an instantaneous current at the time of transition from the open state to the short circuit state, to suppress a decrease in magnetic force of the permanent magnet synchronous motor 30, and to obtain a highly reliable permanent magnet synchronous motor drive device. it can.

上述した実施の形態1で説明したインバータ40及びインバータ制御手段50について以下の説明を補足する。
インバータ40は図3に示すようにIGBTスイッチング素子100a、100bとなっているが、MOSFETなどの他のスイッチング素子でも問題はない。
また、インバータ40は図3に示すように三相ブリッジ回路となっているが、二相の場合や複数のブリッジ回路で構成される場合も短絡および開放動作をするようにインバータ制御手段50で制御信号を入力することで同様の結果が得られることはいうまでもない。
The following description is supplemented for the inverter 40 and the inverter control means 50 described in the first embodiment.
Inverter 40 is IGBT switching elements 100a and 100b as shown in FIG. 3, but there is no problem with other switching elements such as MOSFETs.
Further, although the inverter 40 is a three-phase bridge circuit as shown in FIG. 3, it is controlled by the inverter control means 50 so as to perform a short circuit and an open operation even in the case of two phases or a plurality of bridge circuits. It goes without saying that the same result can be obtained by inputting a signal.

さらに、インバータ制御手段50は直流電源10により電源が供給されない場合、動作できない問題がある。しかし、永久磁石同期モータ30が強制的に回転させられた場合に生じる回生電圧が所定値以上になると直流電源10により電源が供給されたものと同じ効果が得られるため、動作することが可能となる。   Furthermore, there is a problem that the inverter control means 50 cannot operate when power is not supplied from the DC power supply 10. However, if the regenerative voltage generated when the permanent magnet synchronous motor 30 is forcibly rotated becomes equal to or greater than a predetermined value, the same effect as that obtained when the power is supplied by the DC power supply 10 can be obtained. Become.

また、インバータ制御手段50は、インバータ40の上アーム100aもしくは下アーム100bを全てオンして短絡状態となる場合、所定時間経過後、いままでオンしていた上アーム100aもしくはいままでオンしていた下アーム100bを全てオフし、上アーム100a及び下アーム100bが全てオフして開放状態とする。
これにより、例えば直流電源10が異常で短絡動作する閾値異常の電圧を供給した場合など、何らかの原因で短絡状態が停止できない場合や短絡状態が長時間(数秒〜数十分など)続く動作において、永久磁石同期モータ30が高温となり、永久磁石同期モータ30の巻線抵抗増加による省エネ性能低下や永久磁石同期モータ30の永久磁石の磁力が弱まり易い状態となるのを防ぐことができる。
Further, when all of the upper arm 100a or the lower arm 100b of the inverter 40 are turned on and the inverter control means 50 is short-circuited, the upper arm 100a that has been on until now or has been on until now after a predetermined time has elapsed. All the lower arms 100b are turned off, and all the upper arms 100a and the lower arms 100b are turned off to be in an open state.
Thereby, for example, when the short-circuit state cannot be stopped for some reason, such as when the DC power supply 10 supplies an abnormal threshold voltage that causes a short-circuit operation, or in an operation in which the short-circuit state continues for a long time (several seconds to several tens of minutes, etc.) It is possible to prevent the permanent magnet synchronous motor 30 from reaching a high temperature and reducing the energy saving performance due to an increase in the winding resistance of the permanent magnet synchronous motor 30 and the magnetic force of the permanent magnet of the permanent magnet synchronous motor 30 from being easily weakened.

さらに、インバータ制御手段50はインバータ40の上アーム100aもしくは下アーム100bのいずれかを全てオンして短絡動作する場合、上アーム100aと下アーム100bを交互にオンするように制御することで、スイッチング素子の温度上昇を抑えることができる。これにより、片方のスイッチング素子のみに負荷がかかることを防止でき、経年劣化防止にも効果が期待できる。   Further, when the inverter control means 50 performs a short circuit operation by turning on either the upper arm 100a or the lower arm 100b of the inverter 40, switching is performed by alternately turning on the upper arm 100a and the lower arm 100b. The temperature rise of the element can be suppressed. As a result, it is possible to prevent a load from being applied to only one of the switching elements, and an effect can be expected to prevent aged deterioration.

また、インバータ制御手段50は、インバータ40の上アーム100aもしくは下アーム100bのいずれかを全てオンして短絡状態となる場合、温度検出手段(図示省略)である例えばサーミスタのような温度検出素子から得る温度やインバータ40や永久磁石同期モータ30に流れる電流から演算して求めた温度推定値に応じて、上アーム100aもしくは下アーム100bをオフする
これにより、永久磁石同期モータ30が高温となり、省エネ性能低下や永久磁石同期モータ30の永久磁石の磁力が弱まり易い状態となるのを防ぐことができる。
Further, when all of the upper arm 100a and the lower arm 100b of the inverter 40 are turned on and the inverter control means 50 is short-circuited, the inverter control means 50 is a temperature detection means (not shown) from a temperature detection element such as a thermistor. The upper arm 100a or the lower arm 100b is turned off according to the temperature obtained and the temperature estimated value obtained by calculation from the current flowing through the inverter 40 and the permanent magnet synchronous motor 30. As a result, the permanent magnet synchronous motor 30 becomes high temperature and energy is saved. It is possible to prevent the performance from being deteriorated and the permanent magnet of the permanent magnet synchronous motor 30 from being easily weakened.

実施の形態2
図10は本発明の実施の形態2に係る永久磁石同期モータの駆動装置のブロック図である。
図10において、10は直流電源、20はモータ駆動装置、30は永久磁石同期モータ、40はインバータ、50はインバータ制御手段、60は短絡手段、70は開放手段、80は間欠短絡手段である。
そして、インバータ40と永久磁石同期モータ30との間に、インバータ40が出力する交流電圧を検出する交流電圧検出手段130が設けられている。
この実施の形態2は、実施の形態1の図1に示す直流電圧検出手段90が交流電圧検出手段130に置き換わったもので、その他の構成は同じである。
つまり、インバータ制御手段50に取り込まれる物理量が直流電圧から交流電圧となり、第1の閾値と第2の閾値が交流の電圧値となることのみが実施の形態1の説明で異なる点であり、インバータ40やインバータ制御手段50での動作は同様となるため、重複する説明は省略する。
Embodiment 2
FIG. 10 is a block diagram of a permanent magnet synchronous motor driving apparatus according to Embodiment 2 of the present invention.
In FIG. 10, 10 is a DC power source, 20 is a motor drive device, 30 is a permanent magnet synchronous motor, 40 is an inverter, 50 is inverter control means, 60 is short-circuit means, 70 is open means, and 80 is short-circuit means.
Between the inverter 40 and the permanent magnet synchronous motor 30, AC voltage detection means 130 for detecting the AC voltage output from the inverter 40 is provided.
In the second embodiment, the DC voltage detecting means 90 shown in FIG. 1 of the first embodiment is replaced with an AC voltage detecting means 130, and the other configurations are the same.
That is, the only difference from the description of the first embodiment is that the physical quantity taken into the inverter control means 50 changes from a DC voltage to an AC voltage, and the first threshold value and the second threshold value become an AC voltage value. 40 and the inverter control means 50 operate in the same manner, and therefore redundant description is omitted.

実施の形態3
図11は本発明の実施の形態3に係る永久磁石同期モータの駆動装置のブロック図である。
図11において、10は直流電源、20はモータ駆動装置、30は永久磁石同期モータ、40はインバータ、50はインバータ制御手段、60は短絡手段、70は開放手段、80は間欠短絡手段、140は永久磁石同期モータ30の回転速度を検出する回転速度検出手段である。
この実施形態3は、実施の形態1の図1に示す直流電圧検出手段90が回転速度検出手段140に置き換わったもので、その他の構成は同じである。
つまり、インバータ制御手段50に取り込まれる物理量が直流電圧から回転速度となり、第1の閾値と第2の閾値が回転速度となることのみが実施の形態1の説明で異なる点であり、インバータ40やインバータ制御手段50での動作は同様となるため重複する説明は省略する。
Embodiment 3
FIG. 11 is a block diagram of a permanent magnet synchronous motor driving apparatus according to Embodiment 3 of the present invention.
In FIG. 11, 10 is a DC power source, 20 is a motor drive device, 30 is a permanent magnet synchronous motor, 40 is an inverter, 50 is an inverter control means, 60 is a short-circuit means, 70 is an open means, 80 is an intermittent short-circuit means, and 140 is It is a rotational speed detection means for detecting the rotational speed of the permanent magnet synchronous motor 30.
In the third embodiment, the DC voltage detection means 90 shown in FIG. 1 of the first embodiment is replaced with a rotation speed detection means 140, and the other configurations are the same.
That is, the only difference between the description of the first embodiment is that the physical quantity taken into the inverter control means 50 becomes the rotational speed from the DC voltage, and the first threshold value and the second threshold value become the rotational speed. Since the operation in the inverter control means 50 is the same, redundant description is omitted.

実施の形態4
図12は本発明の実施の形態4に係る永久磁石同期モータの駆動装置のブロック図、図13は同永久磁石同期モータの駆動装置のもう1つのブロック図である。
図12において、10は直流電源、20はモータ駆動装置、30は永久磁石同期モータ、40はインバータ、50はインバータ制御手段、60は短絡手段、70は開放手段、80は間欠短絡手段、90は直流電圧検出手段、130は交流電圧検出手段、140は回転速度検出手段である。
Embodiment 4
FIG. 12 is a block diagram of a driving apparatus for a permanent magnet synchronous motor according to Embodiment 4 of the present invention, and FIG. 13 is another block diagram of the driving apparatus for the permanent magnet synchronous motor.
In FIG. 12, 10 is a DC power source, 20 is a motor drive device, 30 is a permanent magnet synchronous motor, 40 is an inverter, 50 is an inverter control means, 60 is a short-circuit means, 70 is an open means, 80 is an intermittent short-circuit means, and 90 is DC voltage detecting means, 130 is AC voltage detecting means, and 140 is a rotational speed detecting means.

上述したように実施の形態1では直流電圧検出手段90、実施の形態2では交流電圧検出手段130、実施の形態3では回転速度検出手段140の各検出手段の出力に基づいてインバータ制御手段50の短絡手段60、開放手段70、間欠短絡手段80により短絡、間欠短絡、開放動作を行った。
しかし、各検出手段が何らかの原因で機能しなくなると同時に短絡、間欠短絡、開放動作することができず、永久磁石同期モータ30が強制的に回転させられた場合に生じる回生電圧を抑制できなくなり、十分な安全性を確保できない。
そこで、図12に示すように三つの検出手段90、130、140を同時に使用し、故障していない少なくとも1つの検出手段の出力に基づいてインバータ制御手段50が短絡手段60と開放手段70を動作させて短絡と開放を行うようにすることで、より高い信頼性でインバータ回路40の保護が可能となる。
また、インバータ制御手段50が短絡手段60と、間欠短絡手段80と、開放手段70を動作させて短絡と間欠短絡と開放を行うようにすることで、より高い信頼性でインバータ回路40の保護が可能となると共に、間欠短絡動作を行うことにより、開放動作から短絡動作に移行する際の瞬間的に流れる電流を抑制することができる。
この場合、1つの検出手段の出力が用いられれば、他の検出手段の出力は用いないようにしている。
As described above, the inverter control means 50 is based on the outputs of the DC voltage detection means 90 in the first embodiment, the AC voltage detection means 130 in the second embodiment, and the rotation speed detection means 140 in the third embodiment. Short-circuiting, intermittent short-circuiting, and opening operations were performed by the short-circuiting means 60, the opening means 70, and the intermittent short-circuiting means 80.
However, each detection means does not function for some reason, and at the same time, short circuit, intermittent short circuit, open operation cannot be performed, and the regenerative voltage generated when the permanent magnet synchronous motor 30 is forcibly rotated cannot be suppressed. Sufficient safety cannot be secured.
Therefore, as shown in FIG. 12, three detection means 90, 130, 140 are used simultaneously, and the inverter control means 50 operates the short-circuit means 60 and the release means 70 based on the output of at least one detection means that is not malfunctioning. By performing the short circuit and opening, the inverter circuit 40 can be protected with higher reliability.
Further, the inverter control means 50 operates the short-circuit means 60, the intermittent short-circuit means 80, and the opening means 70 so as to perform short-circuiting, intermittent short-circuiting, and opening, so that the inverter circuit 40 can be protected with higher reliability. In addition, by performing the intermittent short-circuit operation, it is possible to suppress a current that flows instantaneously when shifting from the open operation to the short-circuit operation.
In this case, if the output of one detection means is used, the output of the other detection means is not used.

また、直流電圧検出手段90、交流電圧検出手段130及び回転速度検出手段140の三つの検出手段から予め選択された二つの検出手段の出力のうち、一つの増大する出力に基づいてインバータ制御手段50が短絡手段60と開放手段70を動作させて短絡と開放を行うようにすることで、より高い信頼性でインバータ回路40の保護が可能となる。
さらに、インバータ制御手段50が短絡手段60と、間欠短絡手段80と、開放手段70を動作させて短絡と間欠短絡と開放を行うようにすることで、より高い信頼性でインバータ回路40の保護が可能となると共に、間欠短絡動作を行うことにより、開放動作から短絡動作に移行する際の瞬間的に流れる電流を抑制することができる。
この場合も、1つの検出手段の出力が用いられれば、他の検出手段の出力は用いないようにしている。
Also, the inverter control means 50 is based on one increasing output among the outputs of two detection means preselected from the three detection means of the DC voltage detection means 90, the AC voltage detection means 130 and the rotational speed detection means 140. By operating the short-circuit means 60 and the open-circuit means 70 to perform short-circuit and open-circuit, the inverter circuit 40 can be protected with higher reliability.
Further, the inverter control means 50 operates the short-circuit means 60, the intermittent short-circuit means 80, and the opening means 70 so as to perform short-circuiting, intermittent short-circuiting, and opening, so that the inverter circuit 40 can be protected with higher reliability. In addition, by performing the intermittent short-circuit operation, it is possible to suppress a current that flows instantaneously when shifting from the open operation to the short-circuit operation.
Also in this case, if the output of one detection means is used, the output of the other detection means is not used.

図13に示すように、直流電圧検出手段90にコンバータなどの電源装置150や圧縮機などの負荷装置160が接続されている場合、直流電圧検出手段90、交流電圧検出手段130及び回転速度検出手段140の三つの検出手段から直流電圧検出手段90と回転速度検出手段140が検出した二つの出力または直流電圧検出手段90と交流電圧検出手段130が検出した二つの出力が共にそれぞれに設定した短絡閾値を越えた場合にインバータ制御手段50が短絡手段60を動作させ、交流電圧検出手段130または回転速度検出手段140の出力が開放閾値を下回った場合にインバータ制御手段50が開放手段70を動作させるようにする。
このように、インバータ40の入力側に生じる直流電圧と出力側に生じる回転速度又は交流電圧の双方の出力を共に検出するようにしたのは、永久磁石同期モータ30が外部から強制的に回転させられることにより、直流電圧の昇圧、回転速度の増大又は交流電圧の昇圧が生じるからである。
As shown in FIG. 13, when a power supply device 150 such as a converter and a load device 160 such as a compressor are connected to the DC voltage detection means 90, the DC voltage detection means 90, the AC voltage detection means 130, and the rotation speed detection means. The two outputs detected by the DC voltage detecting means 90 and the rotational speed detecting means 140 from the three detecting means 140 or the two outputs detected by the DC voltage detecting means 90 and the AC voltage detecting means 130 are both set to the short-circuit threshold. The inverter control means 50 operates the short-circuit means 60, and the inverter control means 50 operates the opening means 70 when the output of the AC voltage detecting means 130 or the rotational speed detecting means 140 falls below the opening threshold. To.
As described above, both the output of the DC voltage generated on the input side of the inverter 40 and the output of the rotational speed or the AC voltage generated on the output side are both detected because the permanent magnet synchronous motor 30 is forcibly rotated from the outside. This is because the DC voltage is boosted, the rotation speed is increased, or the AC voltage is boosted.

従って、永久磁石同期モータが外部から強制的に回転させられることによる直流電圧の昇圧ではなく、例えば、図13に示すように直流電圧検出手段90に接続されるコンバータなどの電源装置150や圧縮機などの電気機器160の異常動作や緊急停止などが原因で起こりうる直流電圧の昇圧が生じる場合に、インバータ40の出力側には 回転速度又は交流電圧の出力は生じることはない。
そこで、上記のような電源装置150(コンバータなど)や電気機器160(圧縮機など)の異常動作や緊急停止などが原因で起こりうる直流電圧の昇圧に対しては短絡動作させないことでモータ駆動装置の通常動作を妨げることなく、より高い信頼性でインバータ回路40の保護が可能となる。
さらに、インバータ制御手段50が短絡手段60と、間欠短絡手段80と、開放手段70を動作させて短絡と間欠短絡と開放を行うようにすることで、より高い信頼性でインバータ回路40の保護が可能となると共に、間欠短絡動作を行うことにより、開放動作から短絡動作に移行する際の瞬間的に流れる電流を抑制することができる。
Therefore, the DC voltage is not boosted by forcibly rotating the permanent magnet synchronous motor from the outside. For example, as shown in FIG. 13, the power supply device 150 such as a converter connected to the DC voltage detecting means 90 or the compressor When a DC voltage boost that may occur due to an abnormal operation or an emergency stop of the electrical device 160 occurs, the output speed of the inverter 40 or the output of the AC voltage does not occur.
Therefore, the motor drive device is not operated by short-circuiting the DC voltage boost that may occur due to abnormal operation or emergency stop of the power supply device 150 (converter or the like) or the electric device 160 (compressor or the like) as described above. The inverter circuit 40 can be protected with higher reliability without hindering the normal operation of the inverter circuit 40.
Further, the inverter control means 50 operates the short-circuit means 60, the intermittent short-circuit means 80, and the opening means 70 so as to perform short-circuiting, intermittent short-circuiting, and opening, so that the inverter circuit 40 can be protected with higher reliability. In addition, by performing the intermittent short-circuit operation, it is possible to suppress a current that flows instantaneously when shifting from the open operation to the short-circuit operation.

上記実施の形態1〜4におけるインバータ制御手段50はアナログ回路、デジタル回路、又はマイコンのいずれにおいても実現できることはいうまでもない。   It goes without saying that the inverter control means 50 in the first to fourth embodiments can be realized by any of an analog circuit, a digital circuit, and a microcomputer.

以上、実施の形態1から4で説明したモータ駆動装置の活用例として、空気調和装置、換気扇、洗濯機、自動車、車両などが挙げられる。   As described above, examples of utilizing the motor driving device described in the first to fourth embodiments include an air conditioner, a ventilation fan, a washing machine, an automobile, and a vehicle.

本発明の実施の形態1に係る永久磁石同期モータの駆動装置のブロック図。The block diagram of the drive device of the permanent-magnet synchronous motor which concerns on Embodiment 1 of this invention. 同永久磁石同期モータの駆動装置のインバータの三相ブリッジの回路図。The circuit diagram of the three-phase bridge of the inverter of the drive device of the permanent magnet synchronous motor. 同永久磁石同期モータの駆動装置のインバータの短絡動作状態の回路図。The circuit diagram of the short circuit operation state of the inverter of the drive device of the permanent magnet synchronous motor. 同永久磁石同期モータの駆動装置のインバータの開放動作状態の回路図。The circuit diagram of the open operation state of the inverter of the drive device of the permanent magnet synchronous motor. 同永久磁石同期モータの駆動装置のインバータの短絡及び開放動作のフローチャート。The flowchart of the short circuit of the inverter of the drive device of the permanent magnet synchronous motor, and open | release operation. 同永久磁石同期モータの駆動装置のインバータの短絡および開放動作による直流電圧波形図。The DC voltage waveform figure by the short circuit of the inverter of the drive device of the permanent magnet synchronous motor, and open | release operation. 同永久磁石同期モータの駆動装置のインバータの開放、間欠短絡、開放動作時のスイッチング波形を示す説明図。Explanatory drawing which shows the switching waveform at the time of the open of the inverter of the drive device of the permanent magnet synchronous motor, an intermittent short circuit, and an open operation. 同永久磁石同期モータの駆動装置のインバータの短絡および開放動作時間の比率制御を示すブロック図。The block diagram which shows the ratio control of the short circuit of the inverter of the drive device of the permanent magnet synchronous motor, and an open operation time. 同永久磁石同期モータの駆動装置のコントローラの内部構成を示すブロック図。The block diagram which shows the internal structure of the controller of the drive device of the permanent magnet synchronous motor. 本発明の実施の形態2に係る永久磁石同期モータの駆動装置のブロック図。The block diagram of the drive device of the permanent-magnet synchronous motor which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係る永久磁石同期モータの駆動装置のブロック図。The block diagram of the drive device of the permanent-magnet synchronous motor which concerns on Embodiment 3 of this invention. 本発明の実施の形態4に係る永久磁石同期モータの駆動装置のブロック図。The block diagram of the drive device of the permanent-magnet synchronous motor which concerns on Embodiment 4 of this invention. 同永久磁石同期モータの駆動装置のもう1つのブロック図。The other block diagram of the drive device of the permanent magnet synchronous motor.

符号の説明Explanation of symbols

10 直流電源、20 モータ駆動装置、30 永久磁石同期モータ、40 インバータ、50 インバータ制御手段、60 短絡手段、70 開放手段、80 間欠短絡手段、90 直流電圧検出手段、100a 正側スイッチング素子(上アーム)、100b 負側スイッチング素子(下アーム)、110 還流ダイオード、119 加算器、120 コントローラ、130 交流電圧検出手段、140 回転速度検出手段、150 電源装置、160 負荷装置。   DESCRIPTION OF SYMBOLS 10 DC power supply, 20 Motor drive device, 30 Permanent magnet synchronous motor, 40 Inverter, 50 Inverter control means, 60 Short circuit means, 70 Opening means, 80 Intermittent short circuit means, 90 DC voltage detection means, 100a Positive side switching element (upper arm ), 100b negative side switching element (lower arm), 110 freewheeling diode, 119 adder, 120 controller, 130 AC voltage detecting means, 140 rotational speed detecting means, 150 power supply device, 160 load device.

Claims (10)

直流電源の直流電圧を入力とし、永久磁石同期モータに電圧を出力するインバータと、
前記インバータの入力側に現れる直流の回生電圧を検出する直流電圧検出手段と、
前記インバータが出力する電圧を制御するインバータ制御手段を備え、
前記インバータ制御手段は、回生運転時に、
前記直流電圧検出手段が検出した増大する回生電圧に基づいて前記インバータと前記永久磁石同期モータの線間を短絡するように前記インバータを制御する短絡手段と、
前記直流電圧検出手段が検出する減少する回生電圧に基づいて前記インバータと前記永久磁石同期モータの線間を開放するように前記インバータを制御する開放手段と、
前記直流電圧検出手段が検出する増大する回生電圧に基づいて前記インバータと前記永久磁石同期モータの線間を開放と短絡を交互に行うように前記インバータを制御する間欠短絡手段と、
を備え
前記直流電圧検出手段が検出した増大する回生電圧が、第1の閾値を超える場合に前記間欠短絡手段を動作させ、その後に前記短絡手段を動作させ、前記直流電圧検出手段が検出した減少する回生電圧が、第2の閾値を下回った場合に前記開放手段を動作させる
ことを特徴とする永久磁石同期モータの駆動装置。
An inverter that takes the DC voltage of the DC power supply as input and outputs the voltage to the permanent magnet synchronous motor;
DC voltage detecting means for detecting a DC regenerative voltage appearing on the input side of the inverter;
Inverter control means for controlling the voltage output from the inverter,
The inverter control means, during regenerative operation,
Short-circuiting means for controlling the inverter so as to short-circuit the line between the inverter and the permanent magnet synchronous motor based on the increasing regenerative voltage detected by the DC voltage detection means;
An opening means for controlling the inverter so as to open a line between the inverter and the permanent magnet synchronous motor based on a decreasing regenerative voltage detected by the DC voltage detecting means;
Intermittent short-circuit means for controlling the inverter so as to alternately open and short-circuit the line between the inverter and the permanent magnet synchronous motor based on the increasing regenerative voltage detected by the DC voltage detection means;
Equipped with a,
When the increasing regenerative voltage detected by the DC voltage detecting means exceeds a first threshold, the intermittent shorting means is operated, and then the shorting means is operated, and the decreasing regenerative detection detected by the DC voltage detecting means is performed. The permanent magnet synchronous motor driving apparatus , wherein the opening means is operated when a voltage falls below a second threshold value .
前記間欠短絡手段は、
前記永久磁石同期モータの線間を間欠的に短絡する時の短絡時間を徐々に長くする
ことを特徴とする請求項に記載の永久磁石同期モータの駆動装置。
The intermittent short-circuit means includes
The driving device for a permanent magnet synchronous motor according to claim 1 , wherein a short-circuiting time when the permanent magnet synchronous motor is intermittently short-circuited is gradually increased.
前記インバータは前記直流電源の正側に接続された複数個の正側スイッチング素子及び前記直流電源の負側に接続された複数個の負側スイッチング素子で構成され、
前記短絡手段は、前記正側スイッチング素子もしくは負側スイッチング素子の全てをオンさせるように構成され、
前記開放手段は、前記正側スイッチング素子及び負側スイッチング素子の全てをオフさせるように構成されている
ことを特徴とする請求項1又は2に記載の永久磁石同期モータの駆動装置。
The inverter is composed of a plurality of positive side switching elements connected to the positive side of the DC power source and a plurality of negative side switching elements connected to the negative side of the DC power source,
The short-circuit means is configured to turn on all of the positive-side switching element or the negative-side switching element,
The permanent magnet synchronous motor drive device according to claim 1 or 2 , wherein the opening means is configured to turn off all of the positive side switching element and the negative side switching element.
前記インバータは前記直流電源の正側に接続された複数個の正側スイッチング素子及び前記直流電源の負側に接続された複数個の負側スイッチング素子で構成され、
前記短絡手段は、前記正側スイッチング素子の全てと負側スイッチング素子の全てを交互にオンさせるように構成され、
前記開放手段は、前記正側スイッチング素子及び負側スイッチング素子の全てをオフさせるように構成されている
ことを特徴とする請求項1又は2に記載の永久磁石同期モータの駆動装置。
The inverter is composed of a plurality of positive side switching elements connected to the positive side of the DC power source and a plurality of negative side switching elements connected to the negative side of the DC power source,
The short-circuit means is configured to alternately turn on all of the positive-side switching elements and all of the negative-side switching elements,
The permanent magnet synchronous motor drive device according to claim 1 or 2 , wherein the opening means is configured to turn off all of the positive side switching element and the negative side switching element.
前記インバータ制御手段はアナログ回路、またはデジタル回路、またはマイコンにより実現する
ことを特徴とする請求項1〜のいずれか一項に記載の永久磁石同期モータの駆動装置。
The said inverter control means is implement | achieved by an analog circuit, a digital circuit, or a microcomputer. The drive device of the permanent-magnet synchronous motor as described in any one of Claims 1-4 characterized by the above-mentioned.
請求項1〜5のいずれか一項に記載の永久磁石同期モータの駆動装置を搭載した
ことを特徴とする空気調和装置。
An air conditioner comprising the permanent magnet synchronous motor driving device according to any one of claims 1 to 5 .
請求項1〜5のいずれか一項に記載の永久磁石同期モータの駆動装置を搭載した
ことを特徴とする換気扇の駆動装置。
A drive device for a ventilation fan, wherein the drive device for a permanent magnet synchronous motor according to any one of claims 1 to 5 is mounted.
請求項1〜5のいずれか一項に記載の永久磁石同期モータの駆動装置を搭載した
ことを特徴とする洗濯機。
A washing machine comprising the permanent magnet synchronous motor driving device according to any one of claims 1 to 5 .
請求項1〜5のいずれか一項に記載の永久磁石同期モータの駆動装置を搭載した
ことを特徴とする自動車。
An automobile comprising the permanent magnet synchronous motor driving device according to any one of claims 1 to 5 .
請求項1〜5のいずれか一項に記載の永久磁石同期モータの駆動装置を搭載した
ことを特徴とする車両。
A vehicle comprising the permanent magnet synchronous motor drive device according to any one of claims 1 to 5 .
JP2008224963A 2008-04-23 2008-09-02 Permanent magnet synchronous motor driving device, air conditioner, ventilation fan driving device, washing machine, automobile and vehicle Active JP4989591B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008224963A JP4989591B2 (en) 2008-04-23 2008-09-02 Permanent magnet synchronous motor driving device, air conditioner, ventilation fan driving device, washing machine, automobile and vehicle

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008112771 2008-04-23
JP2008112771 2008-04-23
JP2008224963A JP4989591B2 (en) 2008-04-23 2008-09-02 Permanent magnet synchronous motor driving device, air conditioner, ventilation fan driving device, washing machine, automobile and vehicle

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2011266903A Division JP5474034B2 (en) 2008-04-23 2011-12-06 Permanent magnet synchronous motor driving device, air conditioner, ventilation fan driving device, washing machine, automobile and vehicle
JP2011266982A Division JP5398815B2 (en) 2008-04-23 2011-12-06 Permanent magnet synchronous motor driving device, air conditioner, ventilation fan driving device, washing machine, automobile and vehicle

Publications (2)

Publication Number Publication Date
JP2009284747A JP2009284747A (en) 2009-12-03
JP4989591B2 true JP4989591B2 (en) 2012-08-01

Family

ID=41454579

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2008224963A Active JP4989591B2 (en) 2008-04-23 2008-09-02 Permanent magnet synchronous motor driving device, air conditioner, ventilation fan driving device, washing machine, automobile and vehicle
JP2011266982A Active JP5398815B2 (en) 2008-04-23 2011-12-06 Permanent magnet synchronous motor driving device, air conditioner, ventilation fan driving device, washing machine, automobile and vehicle
JP2011266903A Active JP5474034B2 (en) 2008-04-23 2011-12-06 Permanent magnet synchronous motor driving device, air conditioner, ventilation fan driving device, washing machine, automobile and vehicle

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2011266982A Active JP5398815B2 (en) 2008-04-23 2011-12-06 Permanent magnet synchronous motor driving device, air conditioner, ventilation fan driving device, washing machine, automobile and vehicle
JP2011266903A Active JP5474034B2 (en) 2008-04-23 2011-12-06 Permanent magnet synchronous motor driving device, air conditioner, ventilation fan driving device, washing machine, automobile and vehicle

Country Status (1)

Country Link
JP (3) JP4989591B2 (en)

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4989591B2 (en) * 2008-04-23 2012-08-01 三菱電機株式会社 Permanent magnet synchronous motor driving device, air conditioner, ventilation fan driving device, washing machine, automobile and vehicle
FR2956379B1 (en) * 2010-02-17 2012-08-24 Technofan VENTILATION APPARATUS FOR AIRCRAFT
JP5857394B2 (en) 2010-09-15 2016-02-10 日産自動車株式会社 Inverter device and inverter control method
JP5433608B2 (en) 2011-03-03 2014-03-05 日立オートモティブシステムズ株式会社 Power converter
JP5618899B2 (en) * 2011-05-13 2014-11-05 日立アプライアンス株式会社 Motor control device and air conditioner
JP5831060B2 (en) * 2011-09-08 2015-12-09 株式会社ジェイテクト Motor control device and vehicle steering device
JP5923822B2 (en) * 2012-02-09 2016-05-25 ミネベア株式会社 Drive control device for brushless motor
US9385642B2 (en) 2012-03-07 2016-07-05 Mitsubishi Electric Corporation Air conditioner
JP5998548B2 (en) * 2012-03-14 2016-09-28 富士電機株式会社 Power converter
JP6361018B2 (en) * 2014-02-24 2018-07-25 パナソニックIpマネジメント株式会社 Inverter device and washing machine equipped with the same
JP6298069B2 (en) 2013-10-01 2018-03-20 日立オートモティブシステムズ株式会社 Power converter
JP2015094590A (en) * 2013-11-08 2015-05-18 日本無線株式会社 Radiator revolution number control device of radar antenna
JP2015144543A (en) * 2013-12-27 2015-08-06 ダイキン工業株式会社 Motor drive device
JP6405687B2 (en) * 2014-04-24 2018-10-17 株式会社デンソー Motor control device and motor control method
CN104155564B (en) * 2014-08-28 2017-01-25 西安科技大学 Brushless direct-current motor inverter single tube open-circuit fault diagnosing and positioning method
US10351002B2 (en) 2014-11-14 2019-07-16 Aisin Aw Co., Ltd. Inverter control device and vehicle control device
DE102015201543A1 (en) * 2015-01-29 2016-08-04 Zf Friedrichshafen Ag Control method for standstill assurance of an electrical machine
JP6314863B2 (en) * 2015-02-03 2018-04-25 株式会社デンソー Electronic control unit
JP6455309B2 (en) * 2015-05-15 2019-01-23 日産自動車株式会社 Inverter control device and inverter control method
JP6578789B2 (en) * 2015-07-28 2019-09-25 株式会社デンソー Control device for rotating electrical machine
CN105958871A (en) * 2016-03-09 2016-09-21 广东美的制冷设备有限公司 Air conditioner and compressor thereof shutdown control method and device
JP6324426B2 (en) * 2016-03-10 2018-05-16 三菱電機株式会社 Motor drive device
CN107204730A (en) * 2016-03-18 2017-09-26 日立江森自控空调有限公司 Control device of electric motor, air conditioner, compressor and refrigerating circulatory device
JP2018042294A (en) * 2016-09-05 2018-03-15 日立ジョンソンコントロールズ空調株式会社 Electric power conversion system and air conditioner with the same
JP6305495B1 (en) * 2016-11-14 2018-04-04 三菱電機株式会社 Inverter control device and inverter control method
JP6793597B2 (en) * 2017-05-10 2020-12-02 日立グローバルライフソリューションズ株式会社 Washing machine
JP6946758B2 (en) * 2017-06-08 2021-10-06 株式会社デンソー Motor control device
DE102019200181A1 (en) * 2018-01-15 2019-07-18 Continental Teves Ag & Co. Ohg Method of control, drive circuit, brake system and use
CN108565839A (en) 2018-03-08 2018-09-21 精进电动科技股份有限公司 A kind of IGBT drive circuit and electric machine controller of electric machine controller
CN108964572B (en) * 2018-06-28 2021-07-23 同济大学 Method and system for active short circuit control of motor
JP7089449B2 (en) * 2018-09-18 2022-06-22 東芝ライフスタイル株式会社 Inverter device for washing machine
JP6937943B2 (en) * 2018-11-07 2021-09-22 三菱電機株式会社 Motor drive device and air conditioner using it
CN109905068A (en) * 2019-03-13 2019-06-18 阳光电源股份有限公司 Electric machine controller and its active short circuit current and method
JP2020162254A (en) * 2019-03-26 2020-10-01 日本電産株式会社 Inverter device
CN113346804B (en) * 2020-03-02 2023-06-13 广东威灵电机制造有限公司 Motor control method, motor control device, motor system, and storage medium
CN113346805B (en) * 2020-03-02 2022-05-20 广东威灵电机制造有限公司 Motor control method, motor control device, motor system, and storage medium
JP7424172B2 (en) 2020-04-01 2024-01-30 富士電機株式会社 Motor drive device, motor drive method, and motor drive program
JP7392570B2 (en) * 2020-05-21 2023-12-06 富士電機株式会社 inverter device
JPWO2023007747A1 (en) 2021-07-30 2023-02-02

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0732627B2 (en) * 1987-02-19 1995-04-10 松下電器産業株式会社 Brushless motor protector
JPH07106073B2 (en) * 1989-04-19 1995-11-13 株式会社日立製作所 Motor reducer and motor drive circuit or sewing machine controller used for the same
JPH04165976A (en) * 1990-10-29 1992-06-11 Toshiba Corp Motor driver
JP4409144B2 (en) * 2002-03-22 2010-02-03 パナソニック株式会社 Washing machine
JP4479422B2 (en) * 2004-08-31 2010-06-09 パナソニック株式会社 Motor control device for washing machine
JP2006197750A (en) * 2005-01-14 2006-07-27 Mitsubishi Electric Engineering Co Ltd Motor driving and controlling device
JP2007037382A (en) * 2005-07-29 2007-02-08 Yaskawa Electric Corp Motor control unit and control method thereof
DE102006003254A1 (en) * 2006-01-24 2007-07-26 Robert Bosch Gmbh Operating method for electrical machine with pulse-controlled inverter in case of disturbance, involves switching electrical machine into de-energizing mode and into short-circuit mode
JP4989591B2 (en) * 2008-04-23 2012-08-01 三菱電機株式会社 Permanent magnet synchronous motor driving device, air conditioner, ventilation fan driving device, washing machine, automobile and vehicle

Also Published As

Publication number Publication date
JP5474034B2 (en) 2014-04-16
JP5398815B2 (en) 2014-01-29
JP2012050332A (en) 2012-03-08
JP2009284747A (en) 2009-12-03
JP2012050333A (en) 2012-03-08

Similar Documents

Publication Publication Date Title
JP4989591B2 (en) Permanent magnet synchronous motor driving device, air conditioner, ventilation fan driving device, washing machine, automobile and vehicle
JP5967299B2 (en) Power conversion apparatus and control method thereof
JP4752772B2 (en) AC motor winding switching device and winding switching system thereof
EP2464004A2 (en) Rotator control device, rotator system, vehicle, electric car and electric generation system
JP5098599B2 (en) Brushless motor drive device for compressor of air conditioner
JP5070799B2 (en) Inverter control device for motor drive and equipment equipped with the same
JP2014023182A (en) Inverter
WO2009125683A1 (en) Motor control device and control method thereof
JP2010246210A (en) Method and system for driving motor, heat pump system, and fan motor system
JPWO2019026125A1 (en) Motor drive and refrigeration cycle application equipment
JP2008011670A (en) Inverter system
WO2017094718A1 (en) Inverter device
JP4839700B2 (en) Generator control device and refrigeration cycle device
JP5396920B2 (en) Winding switching device for three-phase AC motor drive system
JP4675299B2 (en) Control device for rotating electrical machine for vehicle
JP2006200404A (en) Inverter circuit and motor control device
JP6250090B2 (en) AC rotating machine control device and control method
JP2004125209A (en) Air conditioner
JP2009100558A (en) Motor driving inverter controller
JP2013255297A (en) Vehicular inverter device
CN112219350B (en) Motor drive device, control device for motor drive device, control method for motor drive device, and air conditioner
JP6762175B2 (en) Motor controller and air conditioner
JP2008131761A (en) Driving device and motor-driven vehicle equipped with driving device
JP2009038867A (en) Motor drive controller
WO2023079672A1 (en) Motor drive device amd refrigeration cycle application device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111011

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120427

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4989591

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250