JP4986672B2 - Oxygen concentrator and control method thereof - Google Patents

Oxygen concentrator and control method thereof Download PDF

Info

Publication number
JP4986672B2
JP4986672B2 JP2007082150A JP2007082150A JP4986672B2 JP 4986672 B2 JP4986672 B2 JP 4986672B2 JP 2007082150 A JP2007082150 A JP 2007082150A JP 2007082150 A JP2007082150 A JP 2007082150A JP 4986672 B2 JP4986672 B2 JP 4986672B2
Authority
JP
Japan
Prior art keywords
oxygen
unit
flow rate
drive phase
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007082150A
Other languages
Japanese (ja)
Other versions
JP2008237543A (en
Inventor
康利 河田
成嗣 増村
久 切明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Pharma Ltd
Original Assignee
Teijin Pharma Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Pharma Ltd filed Critical Teijin Pharma Ltd
Priority to JP2007082150A priority Critical patent/JP4986672B2/en
Publication of JP2008237543A publication Critical patent/JP2008237543A/en
Application granted granted Critical
Publication of JP4986672B2 publication Critical patent/JP4986672B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Of Gases By Adsorption (AREA)

Description

本発明は、モータで空気の圧縮を行う空気圧縮部と、そのモータを駆動制御するインバータと、を備えた酸素濃縮器およびその制御方法に関する。   The present invention relates to an oxygen concentrator including an air compression unit that compresses air with a motor, and an inverter that drives and controls the motor, and a control method thereof.

従来の圧縮機を備えた酸素濃縮器の低消費電力化の方法として、特許文献1に開示されているように、酸素濃縮器の設定流量と製品タンク出口の流量との差、または圧縮機への負荷量を監視し、圧縮機モータの回転数をインバータを用いて制御することにより、供給する酸素流量を一定に確保し、圧縮機モータへの負荷電流増大を抑えることで効率的運転し消費電力の増大を防止している。
図3は特許文献1に開示された従来例のブロック図である。
この酸素濃縮器において、1は圧縮機で、空気取り入れ口に除塵フィルタ2と除湿器3を通して外気を取り込み、取り込んだ空気を圧縮機1により一定圧に加圧して酸素濃縮部4へ送り、酸素を濃縮した空気を製品タンク5に蓄える。
酸素を濃縮した空気を供給する際は、圧力調整器6と通して所定の圧力に調整し、流量設定器7を通してその流量を調整する。製品タンク5の入口側と出口側に差圧センサ8の圧力検出端8a、8bを取付け、差圧センサ8の検出値を流量算出部Aにより算出し、供給する流量と設定流量を比較部Bにより比較し、その差を圧縮機制御部9の回転数制御部Cにより圧縮機1の回転数をインバータを用い制御することにより、供給する酸素流量を設定流量に確保しつつ、効率的運転をも実現するというものである。
特開2000−60973(第2−4頁、図1)
As a method for reducing power consumption of an oxygen concentrator equipped with a conventional compressor, as disclosed in Patent Document 1, the difference between the set flow rate of the oxygen concentrator and the flow rate at the product tank outlet, or to the compressor By monitoring the load amount of the compressor and controlling the rotation speed of the compressor motor using an inverter, the supplied oxygen flow rate is kept constant, and the increase in the load current to the compressor motor is suppressed, resulting in efficient operation and consumption. The increase in power is prevented.
FIG. 3 is a block diagram of a conventional example disclosed in Patent Document 1. In FIG.
In this oxygen concentrator, reference numeral 1 denotes a compressor, and outside air is taken into an air intake through a dust filter 2 and a dehumidifier 3, and the taken-in air is pressurized to a constant pressure by the compressor 1 and sent to the oxygen concentrating unit 4. Is stored in the product tank 5.
When supplying oxygen-enriched air, the pressure is adjusted to a predetermined pressure through the pressure regulator 6, and the flow rate is adjusted through the flow rate setting device 7. Pressure detection ends 8a and 8b of the differential pressure sensor 8 are attached to the inlet side and the outlet side of the product tank 5, the detection value of the differential pressure sensor 8 is calculated by the flow rate calculation unit A, and the supplied flow rate and the set flow rate are compared with the comparison unit B. By comparing the difference between the above and the rotation speed control section C of the compressor control section 9 by using the inverter to control the rotation speed of the compressor 1, the oxygen flow to be supplied is maintained at the set flow rate, and efficient operation is achieved. Is also realized.
JP 2000-60973 (page 2-4, FIG. 1)

特許文献1に開示されている従来の低消費電力化方法では、供給する酸素流量と設定流量の差より圧縮機モータの回転数をインバータを用い制御し効率運転を行っている。このとき、圧縮機モータが磁極位置検出器を備えたブラシレスDCモータであり、前記ブラシレスDCモータを制御するインバータが前記磁極位置検出器の磁極位置検出信号から得られる位置情報により駆動位相を制御するものである場合、前記磁極位置検出器の配置誤差などにより、磁極位置検出信号により得られる位置情報が最適位相と離れている場合、制御する駆動位相と最適駆動位相とのずれが生じ、結果モータ駆動時の無効電流が増大し、従来方法の回転数制御部Cによる回転数制御を実施しても効率的運転とならないという問題があった。   In the conventional method for reducing power consumption disclosed in Patent Document 1, the number of rotations of the compressor motor is controlled by using an inverter based on the difference between the supplied oxygen flow rate and the set flow rate, thereby performing efficient operation. At this time, the compressor motor is a brushless DC motor having a magnetic pole position detector, and the inverter that controls the brushless DC motor controls the drive phase based on position information obtained from the magnetic pole position detection signal of the magnetic pole position detector. If the position information obtained from the magnetic pole position detection signal is away from the optimum phase due to the arrangement error of the magnetic pole position detector, a deviation between the drive phase to be controlled and the optimum drive phase occurs, resulting in the motor The reactive current at the time of driving increases, and there is a problem that even if the rotational speed control by the rotational speed controller C of the conventional method is performed, the operation is not efficient.

本発明はこのような問題点に鑑みてなされたものであり、圧縮機モータが磁極位置検出器付きブラシレスDCモータであり、磁極位置検出器の配置誤差などにより磁極位相検出信号から得られる位置情報が最適位相から離れている場合でも、圧縮機の効率化運転を行う部を備えた酸素濃縮器を提供することを目的とする。   The present invention has been made in view of such problems. The compressor motor is a brushless DC motor with a magnetic pole position detector, and position information obtained from a magnetic pole phase detection signal due to an arrangement error of the magnetic pole position detector or the like. An object of the present invention is to provide an oxygen concentrator provided with a section that performs an efficient operation of the compressor even when the phase is away from the optimum phase.

上記問題を解決するため、請求項1記載の酸素濃縮器の発明は、モータ駆動により空気の圧縮を行う空気圧縮部と、前記空気圧縮部から送り出された圧縮空気の流量を開閉制御する流量調整部と、前記流量調整部によって流量調整された圧縮空気が送られて酸素を濃縮する酸素濃縮部と、前記モータを駆動制御するインバータと、を備えた酸素濃縮器において、前記インバータは、前記流量調整部の制御周期毎における前記インバータの積算出力電流値が最小になるように前記モータの駆動位相を調整する駆動位相調整部を備えたことを特徴としている。
請求項記載の発明は、請求項1記載の酸素濃縮器において、前記流量調整部が電磁弁であることを特徴としている。
請求項記載の発明は、請求項1記載の酸素濃縮器において、前記酸素濃縮部が酸素よりも窒素を選択的に吸着する窒素吸着剤を備えたことを特徴としている。
請求項記載の発明は、請求項1記載の酸素濃縮器において、前記駆動位相調整部が前記モータの駆動位相を前記積算出力電流値が減少する方向に所定量ずつ変化させ、前記積算出力電流値が減少から増加に転じる前の駆動位相を最適位相とする駆動位相調整処理を実行することを特徴としている。
In order to solve the above problem, an oxygen concentrator invention according to claim 1 includes an air compression unit that compresses air by driving a motor , and a flow rate that controls opening and closing of a flow rate of compressed air sent from the air compression unit. an adjustment unit, and the flow rate adjuster oxygen concentrating unit that is sent compressed air flow rate is adjusted to concentrate the oxygen by the oxygen concentrator comprising an inverter, a driving controlling said motor, said inverter, said A drive phase adjustment unit is provided that adjusts the drive phase of the motor so that the integrated output current value of the inverter is minimized in each control cycle of the flow rate adjustment unit .
According to a second aspect of the present invention, in the oxygen concentrator according to the first aspect, the flow rate adjusting unit is a solenoid valve.
According to a third aspect of the present invention, in the oxygen concentrator according to the first aspect, the oxygen concentrating section includes a nitrogen adsorbent that selectively adsorbs nitrogen over oxygen.
According to a fourth aspect of the present invention, in the oxygen concentrator according to the first aspect, the driving phase adjustment unit changes the driving phase of the motor by a predetermined amount in a direction in which the integrated output current value decreases, and the integrated output current It is characterized in that drive phase adjustment processing is performed in which the drive phase before the value changes from decrease to increase is the optimum phase.

請求項記載の発明は、請求項記載の酸素濃縮器において、前記駆動位相調整部が前記駆動位相調整処理が、所定回数実施された後、各実施における最適位相の平均値を駆動位相とすることを特徴としている。
請求項記載の発明は、請求項記載の酸素濃縮器において、前記駆動位相調整処理が前記モータの加減速中以外のときに行われることを特徴としている。
請求項記載の発明は、請求項記載の酸素濃縮器において、前記駆動位相調整処理が前記空気圧縮部の起動から前記空気圧縮部の圧縮効率安定期までの間および前記空気圧縮部の圧縮効率安定後に、所定回数実施されることを特徴としている。
請求項記載の発明は、請求項1記載の酸素濃縮器において、前記酸素濃縮部で濃縮された酸素を蓄えるチャンバ部と、前記チャンバ部の酸素の監視をする酸素監視部と、前記酸素監視部の出力が入力されて前記インバータへの回転数指令を出力する制御部と、を備え、前記酸素監視部は酸素流量、ガス温度、酸素濃度の少なくとも1つを検出することを特徴としている。
請求項記載の発明は、請求項記載の酸素濃縮器において、前記酸素濃縮部の圧力を検出する圧力センサを備え、前記圧力センサの出力が前記制御部へ入力されることを特徴としている。
請求項10記載の酸素濃縮器の発明は、モータ駆動により空気の圧縮を行う空気圧縮部と、前記空気圧縮部から送り出された圧縮空気の流量を開閉制御する流量調整部と、前記流量調整部によって流量調整された圧縮空気が送られて酸素を濃縮する酸素濃縮部と、前記モータを駆動制御するインバータと、を備えた酸素濃縮器において、前記インバータが、前記空気圧縮部の起動から前記空気圧縮部の圧縮効率安定期までの間および前記空気圧縮部の圧縮効率安定後に、前記流量調整部の制御周期毎における前記インバータの積算出力電流値が最小になるように前記モータの駆動位相を調整する駆動位相調整部を備えたことを特徴としている。
According to a fifth aspect of the present invention, in the oxygen concentrator according to the fourth aspect , after the drive phase adjustment unit has performed the drive phase adjustment process a predetermined number of times, an average value of optimum phases in each implementation is defined as a drive phase. It is characterized by doing.
According to a sixth aspect of the present invention, in the oxygen concentrator according to the fifth aspect , the drive phase adjustment process is performed when the motor is not being accelerated or decelerated.
According to a seventh aspect of the present invention, in the oxygen concentrator according to the fifth aspect , the drive phase adjustment processing is performed from the start of the air compression unit to the compression efficiency stabilization period of the air compression unit and the compression of the air compression unit. It is characterized by being carried out a predetermined number of times after the efficiency is stabilized.
According to an eighth aspect of the present invention, in the oxygen concentrator according to the first aspect, a chamber unit that stores oxygen concentrated in the oxygen concentrating unit, an oxygen monitoring unit that monitors oxygen in the chamber unit, and the oxygen monitoring unit And a controller that outputs a rotational speed command to the inverter. The oxygen monitor detects at least one of an oxygen flow rate, a gas temperature, and an oxygen concentration.
According to a ninth aspect of the present invention, in the oxygen concentrator according to the eighth aspect of the present invention, the oxygen concentrator includes a pressure sensor that detects a pressure of the oxygen concentrating unit, and an output of the pressure sensor is input to the control unit. .
The invention of an oxygen concentrator according to claim 10 includes an air compression unit that compresses air by driving a motor , a flow rate adjustment unit that controls opening and closing of a flow rate of compressed air sent from the air compression unit, and the flow rate adjustment An oxygen concentrator comprising: an oxygen concentrator that concentrates oxygen by sending compressed air whose flow rate is adjusted by the unit; and an inverter that drives and controls the motor, wherein the inverter starts from the start of the air compressor. The drive phase of the motor is set so that the integrated output current value of the inverter is minimized for each control cycle of the flow rate adjustment unit until the compression efficiency stabilization period of the air compression unit and after the compression efficiency of the air compression unit is stabilized. A drive phase adjustment unit for adjustment is provided.

請求項11記載の酸素濃縮器の制御方法の発明は、モータ駆動により空気の圧縮を行う空気圧縮ステップと、前記空気圧縮ステップから送り出された圧縮空気の流量を開閉制御する流量調整ステップと、前記流量調整ステップによって流量調整された圧縮空気が送られて酸素を濃縮する酸素濃縮ステップと、前記モータを駆動制御するモータ駆動制御ステップと、を備えた酸素濃縮器の制御方法において、前記空気圧縮ステップの起動から前記空気圧縮ステップの圧縮効率安定期までの間および前記空気圧縮ステップの圧縮効率安定後に、前記流量調整ステップの制御周期毎における前記インバータの積算出力電流値が最小になるように前記モータの駆動位相を調整する駆動位相調整ステップを備えたことを特徴としている。
請求項12記載の発明は、請求項11記載の酸素濃縮器の制御方法において、前記流量調整ステップでは電磁弁を用いて実施することを特徴としている。
請求項13記載の発明は、請求項11記載の酸素濃縮器の制御方法において、前記酸素濃縮ステップでは酸素よりも窒素を選択的に吸着する吸着剤を用いることを特徴としている。
請求項14記載の発明は、請求項11記載の酸素濃縮器の制御方法において、前記駆動位相調整ステップでは、前記モータの駆動位相を前記積算出力電流値が減少する方向に所定量ずつ変化させ、前記積算出力電流値が減少から増加に転じる前の駆動位相を最適位相とする処理をすることを特徴としている。
請求項15記載の発明は、請求項14記載の酸素濃縮器の制御方法において、前記駆動位相調整ステップでは、所定回数実施された後、各実施における最適位相の平均値を駆動位相とする処理をすることを特徴としている。
請求項16記載の発明は、請求項15記載の酸素濃縮器の制御方法において、前記駆動位相調整ステップが、前記モータの加減速中以外のときに行われることを特徴としている。
The invention of the control method of the oxygen concentrator according to claim 11 includes an air compression step for compressing air by driving a motor , and a flow rate adjustment step for opening and closing a flow rate of the compressed air sent from the air compression step, In the method of controlling an oxygen concentrator, comprising: an oxygen concentration step in which compressed air whose flow rate is adjusted in the flow rate adjustment step is sent to concentrate oxygen; and a motor drive control step in which the motor is driven and controlled. The integrated output current value of the inverter is minimized between the start of the step and the compression efficiency stabilization period of the air compression step and after the compression efficiency stabilization of the air compression step for each control cycle of the flow rate adjustment step. A drive phase adjustment step for adjusting the drive phase of the motor is provided.
According to a twelfth aspect of the present invention, in the method for controlling an oxygen concentrator according to the eleventh aspect , the flow rate adjusting step is performed using a solenoid valve.
A thirteenth aspect of the invention is characterized in that, in the oxygen concentrator control method according to the eleventh aspect, an adsorbent that selectively adsorbs nitrogen rather than oxygen is used in the oxygen concentration step.
According to a fourteenth aspect of the present invention, in the method for controlling an oxygen concentrator according to the eleventh aspect , in the driving phase adjustment step, the driving phase of the motor is changed by a predetermined amount in a direction in which the integrated output current value decreases, The process is characterized in that the drive phase before the integrated output current value changes from decreasing to increasing is set as the optimum phase.
According to a fifteenth aspect of the present invention, in the method for controlling an oxygen concentrator according to the fourteenth aspect , in the driving phase adjustment step, after being executed a predetermined number of times, a process of setting an average value of optimum phases in each implementation as a driving phase. It is characterized by doing.
A sixteenth aspect of the present invention is the oxygen concentrator control method according to the fifteenth aspect , wherein the drive phase adjustment step is performed when the motor is not being accelerated or decelerated.

請求項1、3、4、5、8、9記載の発明によると、モータの磁極位置検出器の配置誤差等による磁極位置検出信号に誤差がある場合において、インバータの制御駆動位相ずれによる無効電流の増大を抑えることができる。
また、請求項記載の発明によると、モータ付圧縮機の負荷変動周期を基準としてインバータの出力電流を積算するため、駆動位相調整処理が同一条件で行われる。
また、請求項記載の発明によると、加減速中以外のときに駆動位相調整処理が行われるためより最適な駆動位相調整処理をすることができる。
また、請求項7、10記載の発明によると、運転初期と圧縮効率安定期で圧縮機の特性が変化するが、それぞれの領域において最適な駆動位相調整処理をすることができる。
また、請求項11、13、14、15記載の発明によると、モータの磁極位置検出器の配置誤差等による磁極位置検出信号に誤差がある場合において、インバータ27の制御駆動位相ずれによる無効電流の増大を抑えることができる。
また、請求項12記載の発明によると、圧縮機21(モータ21a)の負荷変動周期を基準としてインバータの出力電流を積算するため、駆動位相調整処理が同一条件で行われる。
また、請求項16記載の発明によると、運転初期と圧縮効率安定期で圧縮機の特性が変化するが、それぞれの領域において最適な駆動位相調整処理をすることができる。
According to the first, third , fourth , fifth , eighth , and ninth aspects of the present invention, when there is an error in the magnetic pole position detection signal due to an arrangement error of the magnetic pole position detector of the motor, the reactive current due to the control drive phase shift of the inverter Can be suppressed.
According to the second aspect of the present invention, since the output current of the inverter is integrated based on the load fluctuation period of the compressor with motor, the drive phase adjustment processing is performed under the same conditions.
According to the sixth aspect of the present invention, since the drive phase adjustment process is performed at times other than during acceleration / deceleration, a more optimal drive phase adjustment process can be performed.
According to the seventh and tenth aspects of the present invention, the characteristics of the compressor change between the initial stage of operation and the period when the compression efficiency is stable, but optimal drive phase adjustment processing can be performed in each region.
According to the invention described in claims 11, 13, 14, and 15 , when there is an error in the magnetic pole position detection signal due to the arrangement error of the magnetic pole position detector of the motor, the reactive current caused by the control drive phase shift of the inverter 27 is reduced. The increase can be suppressed.
According to the twelfth aspect of the invention, since the output current of the inverter is integrated based on the load fluctuation period of the compressor 21 (motor 21a), the drive phase adjustment process is performed under the same conditions.
According to the sixteenth aspect of the present invention, although the characteristics of the compressor change in the initial operation and the compression efficiency stable period, optimum driving phase adjustment processing can be performed in each region.

以下、本発明の実施の形態について図を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の酸素濃縮器の構成を示すブロック図である。
図1において、20は本発明の酸素濃縮器、21は空気圧縮部(圧縮機)、21aはブラシレスDCモータ、21bは磁極位置検出器、22は酸素濃縮部(窒素吸着剤)、23は流量調整部(電磁弁)、24はチャンバ部、25は酸素監視部、26は制御部、27はインバータ部、27aは回転数検出部、27bは回転数制御部、27cはPWMを増幅するインバータ部、27dは電流検出部、27eは出力電流信号積算部、27fは駆動位相調整部、28は酸素流量設定部、29は圧力センサである。
電磁弁23は、制御部26によって、周期的に開閉(所定の制御周期でオンオフ)制御される。制御周期は、空気圧縮部21を構成する圧縮機(モータ21a)の負荷変動周期で決定される。
空気圧縮部21は外気を取り込んで圧縮し、酸素濃縮部22へ加圧した空気を送り出す。酸素濃縮部22は加圧された空気の酸素濃度を上昇させて、酸素を濃縮した空気をチャンバ部24に送り込み、チャンバ部24にて濃縮酸素を蓄える。
制御部26は酸素流量設定部28からの設定を参照し、流量調整部23を構成する電磁弁を切替え、酸素濃縮部22への空気圧縮/引込みを制御し、酸素監視部25により検出される酸素流量、酸素濃度およびガス温度、ならびに圧力センサ29により検出される酸素濃縮部22の圧力のいずれか1つ以上の計測値を基に、圧縮機を構成するモータ(ブラシレスDCモータ)21aの回転数指令をインバータ27内の回転数制御部27bへ与える。
インバータ部27は、制御部26からの回転数指令に対し、圧縮機21を構成するブラシレスDCモータ21a(以後、「圧縮機モータ21a」と言う。)の回転数制御を行う。また、前記ブラシレスDCモータ21a回転数制御中、制御部26による電磁弁23への切替え周期で、圧縮機モータ21aへの駆動位相を微小に調整し、調整した駆動位相毎に、電流検出部27dにて検出した出力電流信号を出力電流信号積算部27eにて積算し、調整した駆動位相毎の電流積算結果を比較することにより、圧縮機モータ21aへの出力電流が最小となる駆動位相調整を行うことにより、圧縮機21の高効率運転を実現している。
FIG. 1 is a block diagram showing the configuration of the oxygen concentrator of the present invention.
In FIG. 1, 20 is an oxygen concentrator of the present invention, 21 is an air compressor (compressor), 21a is a brushless DC motor, 21b is a magnetic pole position detector, 22 is an oxygen concentrator (nitrogen adsorbent), and 23 is a flow rate. Adjustment unit (electromagnetic valve), 24 is a chamber unit, 25 is an oxygen monitoring unit, 26 is a control unit, 27 is an inverter unit, 27a is a rotation number detection unit, 27b is a rotation number control unit, and 27c is an inverter unit that amplifies PWM 27d is a current detection unit, 27e is an output current signal integration unit, 27f is a drive phase adjustment unit, 28 is an oxygen flow rate setting unit, and 29 is a pressure sensor.
The electromagnetic valve 23 is controlled to be opened and closed periodically (on / off at a predetermined control cycle) by the control unit 26. The control cycle is determined by the load fluctuation cycle of the compressor (motor 21a) that constitutes the air compressor 21.
The air compressor 21 takes in outside air and compresses it, and sends out pressurized air to the oxygen concentrator 22. The oxygen concentrating unit 22 raises the oxygen concentration of the pressurized air, sends the oxygen-enriched air to the chamber unit 24, and stores the concentrated oxygen in the chamber unit 24.
The control unit 26 refers to the setting from the oxygen flow rate setting unit 28, switches the electromagnetic valve constituting the flow rate adjustment unit 23, controls air compression / retraction to the oxygen concentrating unit 22, and is detected by the oxygen monitoring unit 25. The rotation of the motor (brushless DC motor) 21a constituting the compressor based on one or more measured values of the oxygen flow rate, the oxygen concentration and the gas temperature, and the pressure of the oxygen concentrating unit 22 detected by the pressure sensor 29. A number command is given to the rotation speed control unit 27 b in the inverter 27.
The inverter unit 27 controls the rotational speed of the brushless DC motor 21a (hereinafter referred to as “compressor motor 21a”) constituting the compressor 21 in response to the rotational speed command from the control unit 26. Further, during the rotation speed control of the brushless DC motor 21a, the drive phase to the compressor motor 21a is finely adjusted at the switching period to the electromagnetic valve 23 by the control unit 26, and the current detection unit 27d for each adjusted drive phase. The output current signal detected in step 1 is integrated by the output current signal integration unit 27e, and the current integration result for each adjusted drive phase is compared to adjust the drive phase that minimizes the output current to the compressor motor 21a. By doing so, high-efficiency operation of the compressor 21 is realized.

本発明を実施するため、圧縮機21を運転するシーケンスを運転初期および圧縮効率安定期に区分し、それぞれに応じた周期で駆動位相を変化させ、運転を継続する。各駆動位相変化の周期に応じた駆動電流の積算値を比較することにより、最小となる駆動電流位相に調整することとしている。この動作を運転初期および圧縮効率安定期それぞれの領域で実施した結果の平均値を最適値として調整を行うこととしている。
すなわち、高効率運転処理として、(1)圧縮機21の起動から圧縮機21の圧縮効率安定期までの初期駆動位相調整と、(2)圧縮機21の圧縮効率安定後の安定駆動位相調整の2段階の処理にて実現している。このように(1)の運転初期および(2)の圧縮効率安定期でそれぞれ位相調整を行うのは、運転初期と圧縮効率安定期では、それぞれ圧縮機の特性(電流特性)が変化するためである。
In order to carry out the present invention, the sequence for operating the compressor 21 is divided into an initial operation period and a stable compression efficiency period, the drive phase is changed at a period corresponding to each, and the operation is continued. The drive current phase is adjusted to the minimum by comparing the integrated values of the drive currents corresponding to the respective drive phase change periods. Adjustment is made with an average value of results obtained by performing this operation in each of the initial operation period and the compression efficiency stable period as an optimum value.
That is, as high-efficiency operation processing, (1) initial drive phase adjustment from the start of the compressor 21 to the compression efficiency stabilization period of the compressor 21 and (2) stable drive phase adjustment after the compressor 21 stabilizes the compression efficiency. This is realized by a two-stage process. The phase adjustment is performed in the initial stage of operation (1) and the compression efficiency stable period of (2) as described above, because the characteristics (current characteristics) of the compressor change in the initial stage of operation and the stable period of compression efficiency. is there.

図2は、本発明の酸素濃縮器20の効率運転を実施するためのフローチャートである。
なお、運転初期の駆動位相調整は運転初期調整モードとして、圧縮効率安定期の駆動位相調整は安定調整モードとして、ソフトウェア上のフラグを管理している。また、後述するステップS19〜S22は、運転初期調整モードでないとき、すなわち、安定運転調整モード時のみ実行される処理である。
FIG. 2 is a flowchart for carrying out the efficient operation of the oxygen concentrator 20 of the present invention.
The flag on the software is managed by setting the driving phase adjustment at the initial stage of operation as the initial driving adjustment mode and the driving phase adjustment at the compression efficiency stable period as the stable adjustment mode. Steps S19 to S22 to be described later are processes that are executed only when not in the initial operation adjustment mode, that is, in the stable operation adjustment mode.

ステップS1では、駆動位相調整が完了したかどうかを確認し、駆動位相調整が完了している場合には処理は実行せず終了し、完了していない場合はステップS2に進む。
次にステップS2では、圧縮機安定運転待ちフラグを確認し、圧縮機安定待ちでない場合はステップS3に進み、圧縮機安定待ちであればステップS24へ進む。
In step S1, it is confirmed whether or not the drive phase adjustment has been completed. If the drive phase adjustment has been completed, the process is terminated without being executed, and if it has not been completed, the process proceeds to step S2.
Next, in step S2, the compressor stable operation waiting flag is confirmed. If it is not waiting for the compressor stability, the process proceeds to step S3, and if it is waiting for the compressor stability, the process proceeds to step S24.

〈ステップS3〜S5:モータが加減速中は調整をしないためのステップ〉
次にステップS3では、制御部26(図1)からの回転数指令に対し圧縮機モータ21aの回転数が到達しているかを確認し、指令回転数に到達すると、ステップS4に進む。
次にステップS4は駆動位相調整開始ステップで、次のステップS5にて制御部26からの回転数指令が変更されていないかを確認する。回転数指令が変更されている場合、それまでの出力電流の積算値をクリアしてステップS3に戻り、変更されていない場合はステップS6へ進む。
すなわち、ステップS3〜S5は、モータ21aが加減速中は調整を行わないための判断ステップである。
<Steps S3 to S5: Steps for not adjusting while the motor is accelerating / decelerating>
Next, in step S3, it is confirmed whether the rotation speed of the compressor motor 21a has reached the rotation speed command from the control unit 26 (FIG. 1). If the rotation speed command is reached, the process proceeds to step S4.
Next, step S4 is a drive phase adjustment start step, and it is confirmed in the next step S5 whether or not the rotational speed command from the control unit 26 has been changed. If the rotational speed command is changed, the integrated value of the output current so far is cleared, and the process returns to step S3. If not changed, the process proceeds to step S6.
That is, steps S3 to S5 are determination steps for not performing adjustment while the motor 21a is accelerating / decelerating.

次にステップS6ではインバータ27の出力電流値を積算する。
ステップS7では予め得た制御部26の電磁弁23切替え周期であるかを確認し、電磁弁23の切替え周期時間が経過すると、ステップS8へ進み、今回の駆動位相での出力電流積算値と前回の駆動位相での出力電流積算値との比較を行う。なお、電磁弁23の切替え周期で比較をするのは、この周期が、圧縮機21(モータ21a)の負荷変動周期と一致するからである。
Next, in step S6, the output current value of the inverter 27 is integrated.
In step S7, it is confirmed whether the switching period of the solenoid valve 23 of the control unit 26 obtained in advance is reached. When the switching period of the solenoid valve 23 has elapsed, the process proceeds to step S8, where the output current integrated value in the current drive phase is compared with the previous time. Comparison with the output current integrated value at the drive phase is performed. The reason why the comparison is made with the switching period of the electromagnetic valve 23 is that this period coincides with the load fluctuation period of the compressor 21 (motor 21a).

〈ステップS9〜S11:インバータ出力電流積算値が前回値よりも大きい場合と小さい場合の各位相調整ステップ〉
ステップS9では、インバータ出力電流積算値の比較結果で、今回の出力電流積算値が大きい場合ステップS10へ進み、今回の電流積算値が小さい場合はステップS11へ進む。
ステップS10では、駆動位相調整方向を切替えるステップで、ステップS12へ進む。
一方、ステップS11では、駆動位相調整値をさらに加える。
すなわち、ステップS9から11は、インバータ出力電流積算値が前回値よりも大きい場合は、位相調整が過大であるので元に戻す方向に調整し(S10)、小さい場合は、さらに調整が不足しているので、さらに調整する(S11)ステップである。
<Steps S9 to S11: Each phase adjustment step when the inverter output current integrated value is larger and smaller than the previous value>
In step S9, if the current output current integrated value is large in the comparison result of the inverter output current integrated value, the process proceeds to step S10, and if the current current integrated value is small, the process proceeds to step S11.
In step S10, the process proceeds to step S12 in the step of switching the drive phase adjustment direction.
On the other hand, in step S11, a drive phase adjustment value is further added.
That is, in steps S9 to S11, when the inverter output current integrated value is larger than the previous value, the phase adjustment is excessive, so the adjustment is made to return to the original value (S10). Therefore, this is a step of further adjusting (S11).

ステップS12では、駆動位相調整方向切替え点が前回の駆動位相調整方向切替え点かを確認し、前回切替え点でない場合ステップS14へ進む。前回の切替え点の場合は、ステップS13へ進み、後述するステップS15、S19の電流比較が規定回数を満たしていなくても最適調整と判断し調整を終了したものとみなす。この判断ステップは、位相調整に要する時間を短縮するのである。   In step S12, it is confirmed whether the drive phase adjustment direction switching point is the previous drive phase adjustment direction switching point. If it is not the previous switching point, the process proceeds to step S14. In the case of the previous switching point, the process proceeds to step S13, and even if the current comparison in steps S15 and S19, which will be described later, does not satisfy the specified number of times, it is determined that the adjustment is optimal and the adjustment is considered to have been completed. This determination step reduces the time required for phase adjustment.

次にステップS14では、圧縮機運転初期での駆動位相調整モードであるかを確認し、運転初期調整モードの場合、ステップS15へ進み、運転初期調整モードでない場合、ステップS19へ進む。ステップS15では、運転初期調整モードの出力電流比較を規定回数実施しているかを確認し、規定回数実施の場合、ステップS16へ進み、規定回数実施に満たない場合、ステップS23へ進む。   Next, in step S14, it is confirmed whether the drive phase adjustment mode is in the initial stage of compressor operation. If the operation initial adjustment mode is selected, the process proceeds to step S15. If not, the process proceeds to step S19. In step S15, it is confirmed whether the output current comparison in the operation initial adjustment mode has been performed a specified number of times. If the specified number of times has been performed, the process proceeds to step S16, and if not, the process proceeds to step S23.

ステップS13では、運転初期調整モードであるかを確認し、運転初期調整モードである場合ステップS16へ進み、運転初期調整モードでない場合ステップS20へ進む。   In step S13, it is confirmed whether or not the operation initial adjustment mode is selected. If the operation initial adjustment mode is selected, the process proceeds to step S16. If the operation initial adjustment mode is not selected, the process proceeds to step S20.

ステップS16では、駆動位相調整を実施した際の駆動位相切替え点の平均値計算結果を駆動位相調整値へ反映し、1回の駆動位相調整の完了として、ステップS17へ進む。次にステップS17では、運転初期調整実施回数を確認し、運転初期調整実施規定回数である場合、ステップS18へ進み、運転初期調整実施規定回数に満たない場合はステップS23へ進む。
ステップS18では、運転初期調整モードを完了とし、圧縮機21の圧縮効率安定待ちフラグをセットし、ステップS23へ進む。
ステップS23では、磁極位置検出信号から得られた位置情報に前記までに調整した駆動位相調整値を加算する。
In step S16, the average value calculation result of the drive phase switching points when the drive phase adjustment is performed is reflected in the drive phase adjustment value, and the process proceeds to step S17 as the completion of one drive phase adjustment. Next, in step S17, the number of times of initial operation adjustment is confirmed. If it is the specified number of initial operation adjustments, the process proceeds to step S18. If the predetermined number of initial operation adjustments is not satisfied, the process proceeds to step S23.
In step S18, the operation initial adjustment mode is completed, the compression efficiency stabilization waiting flag of the compressor 21 is set, and the process proceeds to step S23.
In step S23, the drive phase adjustment value adjusted so far is added to the position information obtained from the magnetic pole position detection signal.

〈ステップS19〜S22:安定運転調整モード時のみ実行される処理〉
また、ステップS19では、安定運転調整モードの出力電流比較規定回数を実施しているかを確認し、規定回数実施の場合、ステップS20へ進み、規定回数実施に満たない場合、ステップS23へ進む。
ステップS20では、駆動位相調整を実施した際の駆動位相切替え点の平均値計算結果を駆動位相調整値へ格納し、今回の駆動位相調整を完了とし、ステップS21へ進む。
次にステップS21では、安定運転調整実施回数を確認し、安定運転調整実施規定回数である場合、ステップS22へ進み、安定運転調整実施規定回数に満たない場合はステップS23へ進む。
ステップS22では、駆動位相調整の完了処理を行う。
<Steps S19 to S22: Processing executed only in the stable operation adjustment mode>
In step S19, it is confirmed whether the output current comparison specified number of times in the stable operation adjustment mode has been implemented. If the specified number of times has been implemented, the process proceeds to step S20, and if not, the process proceeds to step S23.
In step S20, the average value calculation result of the drive phase switching points when the drive phase adjustment is performed is stored in the drive phase adjustment value, the current drive phase adjustment is completed, and the process proceeds to step S21.
Next, in step S21, the number of times of stable operation adjustment execution is confirmed, and if it is the prescribed number of times of stable operation adjustment execution, the process proceeds to step S22, and if it is less than the prescribed number of times of stable operation adjustment execution, the process proceeds to step S23.
In step S22, a drive phase adjustment completion process is performed.

一方、図2の右上へ戻って、ステップS24では、圧縮機21の圧縮効率安定待ちカウンタをカウントアップしステップS25へ進む。
ステップS25では、圧縮機21の圧縮効率安定待ち時間経過であるかを確認し、待ち時間経過である場合ステップS26へ進み、待ち時間経過に満たない場合はステップS1へ戻る。
ステップS26では、圧縮機21圧縮効率安定待ちモードおよび、初期運転調整モードのフラグをリセットし安定運転調整モードとする。
On the other hand, returning to the upper right of FIG. 2, in step S24, the compression efficiency stabilization waiting counter of the compressor 21 is counted up and the process proceeds to step S25.
In step S25, it is confirmed whether or not the compression efficiency stabilization waiting time of the compressor 21 has elapsed. If the waiting time has elapsed, the process proceeds to step S26, and if the waiting time has not elapsed, the process returns to step S1.
In step S26, the compressor 21 compression efficiency stabilization waiting mode and the initial operation adjustment mode flags are reset to enter the stable operation adjustment mode.

以降、酸素濃縮器20に備えた圧縮機21の運転において、駆動位相の調整目的が圧縮機モータ21aに搭載されている磁極位置検出器21bの配置ずれ調整であることから、圧縮機モータ21aと酸素濃縮器20に搭載されているインバータ27との組み合せが変更されたと判定されるまでは、駆動位相調整完了ステップS22にて決定された駆動位相調整量を適用することができる。   Thereafter, in the operation of the compressor 21 provided in the oxygen concentrator 20, the purpose of adjusting the drive phase is to adjust the displacement of the magnetic pole position detector 21b mounted on the compressor motor 21a. Until it is determined that the combination with the inverter 27 mounted on the oxygen concentrator 20 is changed, the drive phase adjustment amount determined in the drive phase adjustment completion step S22 can be applied.

本発明が特許文献1と異なる部分は以下の通りである。
特許文献1では、圧縮機を搭載した酸素濃縮器の低消費電力化を行う方法として、設定流量と製品タンクの流量比較結果または、圧縮機への負荷に応じて、圧縮機モータの回転数をインバータを用い制御することにより、低消費電力化を実現しているが、本発明では、圧縮機モータが磁極位置検出器付きブラシレスDCモータの場合において、圧縮機モータの駆動位相を酸素濃縮周期に同期し変化させ、各駆動位相における出力電流をサンプリング、積算、比較することにより、圧縮機モータへの出力電流を最低限に抑えることで、酸素濃縮器の低消費電力化を図っている部分である。
The differences between the present invention and Patent Document 1 are as follows.
In Patent Document 1, as a method of reducing the power consumption of an oxygen concentrator equipped with a compressor, the rotation speed of the compressor motor is set according to the comparison result of the set flow rate and the product tank flow rate or the load on the compressor. In the present invention, when the compressor motor is a brushless DC motor with a magnetic pole position detector, the drive phase of the compressor motor is set to the oxygen concentration cycle. In the part that reduces the power consumption of the oxygen concentrator by minimizing the output current to the compressor motor by sampling, integrating, and comparing the output current in each drive phase by changing in synchronization. is there.

以上のように、本発明によれば、磁極位置検出器付きブラシレスDCモータの磁極位置検出器の配置ずれ量を調整できるため、ホールIC等の磁極位置検出器付きブラシレスDCモータを搭載した圧縮機搭載の装置に対しての低消費電力化に適用することができる。   As described above, according to the present invention, since the displacement amount of the magnetic pole position detector of the brushless DC motor with the magnetic pole position detector can be adjusted, the compressor equipped with the brushless DC motor with the magnetic pole position detector such as the Hall IC. It can be applied to lower power consumption for the on-board device.

本発明の酸素濃縮器の構成を表すブロック図である。It is a block diagram showing the structure of the oxygen concentrator of this invention. 本発明の酸素濃縮器の効率運転を実施するためのフローチャートである。It is a flowchart for implementing the efficient driving | operation of the oxygen concentrator of this invention. 従来例の酸素濃縮器の構成を表すブロック図である。It is a block diagram showing the structure of the oxygen concentrator of a prior art example.

符号の説明Explanation of symbols

21 空気圧縮部(圧縮機)
21a ブラシレスDCモータ
21b 磁極位置検出器
22 酸素濃縮部(窒素吸着剤入り)
23 流量調整部(電磁弁)
24 チャンバ部
25 酸素監視部
26 制御部
27 インバータ
27a 回転数検出部
27b 回転数制御部
27c インバータ部
27d 電流検出部
27e 電流積算部
27f 駆動位相調整部
28 酸素流量設定部
29 圧力センサ
S1 駆動位相調整完了確認ステップ
S2 安定調整待ち確認ステップ
S3 回転数到達確認ステップ
S4 駆動位相調整開始ステップ
S5 指令回転数変更確認ステップ
S6 検出電流積算ステップ
S7 電磁弁切替え周期確認ステップ
S8 積算電流値比較ステップ
S9 積算電流値比較結果確認ステップ
S10 駆動位相調整方向切替えステップ
S11 駆動位相調整値加算ステップ
S12 駆動位相調整切替え点確認ステップ
S13 運転初期調整モード確認ステップ
S14 運転初期調整モード確認ステップ
S15 電流比較回数確認ステップ
S16 駆動位相調整結果平均化ステップ
S17 初期調整実施回数確認ステップ
S18 安定調整待ちフラグ設定フテップ
S19 電流比較回数確認ステップ
S20 駆動位相調整結果平均化ステップ
S21 安定調整実施回数確認ステップ
S22 駆動位相調整完了ステップ
S23 駆動調整位相加算ステップ
S24 安定調整待ちカウントステップ
S25 安定調整待ち時間確認ステップ
S26 安定調整モード切替えステップ
21 Air compressor (compressor)
21a Brushless DC motor 21b Magnetic pole position detector 22 Oxygen concentrator (with nitrogen adsorbent)
23 Flow rate adjuster (solenoid valve)
24 chamber unit 25 oxygen monitoring unit 26 control unit 27 inverter 27a rotation speed detection unit 27b rotation speed control unit 27c inverter unit 27d current detection unit 27e current integration unit 27f drive phase adjustment unit 28 oxygen flow rate setting unit 29 pressure sensor S1 drive phase adjustment Completion confirmation step S2 Stability adjustment wait confirmation step S3 Speed arrival confirmation step S4 Drive phase adjustment start step S5 Command rotation speed change confirmation step S6 Detection current integration step S7 Solenoid valve switching cycle confirmation step S8 Integration current value comparison step S9 Integration current value Comparison result confirmation step S10 Driving phase adjustment direction switching step S11 Driving phase adjustment value addition step S12 Driving phase adjustment switching point confirmation step S13 Operation initial adjustment mode confirmation step S14 Operation initial adjustment mode confirmation step S15 Current comparison number confirmation Step S16 Drive phase adjustment result averaging step S17 Initial adjustment execution number confirmation step S18 Stability adjustment wait flag setting step S19 Current comparison number confirmation step S20 Drive phase adjustment result averaging step S21 Stability adjustment execution number confirmation step S22 Drive phase adjustment completion step S23 Drive adjustment phase addition step S24 Stability adjustment wait count step S25 Stability adjustment wait time confirmation step S26 Stability adjustment mode switching step

Claims (16)

モータ駆動により空気の圧縮を行う空気圧縮部と、前記空気圧縮部から送り出された圧縮空気の流量を開閉制御する流量調整部と、前記流量調整部によって流量調整された圧縮空気が送られて酸素を濃縮する酸素濃縮部と、前記モータを駆動制御するインバータと、を備えた酸素濃縮器において、
前記インバータは、前記流量調整部の制御周期毎における前記インバータの積算出力電流値が最小になるように前記モータの駆動位相を調整する駆動位相調整部を備えたことを特徴とする酸素濃縮器。
An air compression unit that compresses air by driving a motor , a flow rate adjustment unit that controls opening and closing of a flow rate of compressed air sent from the air compression unit, and compressed air adjusted by the flow rate adjustment unit is sent. In an oxygen concentrator comprising an oxygen concentrating section for concentrating oxygen and an inverter for driving and controlling the motor,
The oxygen concentrator includes a drive phase adjustment unit that adjusts a drive phase of the motor so that an integrated output current value of the inverter becomes minimum for each control cycle of the flow rate adjustment unit .
前記流量調整部は電磁弁であることを特徴とする請求項1記載の酸素濃縮器。 The oxygen concentrator according to claim 1, wherein the flow rate adjusting unit is a solenoid valve . 前記酸素濃縮部は酸素よりも窒素を選択的に吸着する窒素吸着剤を備えたことを特徴とする請求項1記載の酸素濃縮器。 The oxygen concentrator according to claim 1, wherein the oxygen concentrating unit includes a nitrogen adsorbent that selectively adsorbs nitrogen over oxygen. 前記駆動位相調整部は、前記モータの駆動位相を前記積算出力電流値が減少する方向に所定量ずつ変化させ、前記積算出力電流値が減少から増加に転じる前の駆動位相を最適位相とする駆動位相調整処理を実行することを特徴とする請求項1記載の酸素濃縮器。 The drive phase adjustment unit changes the drive phase of the motor by a predetermined amount in a direction in which the integrated output current value decreases, and drives with the drive phase before the integrated output current value starts to increase from the decrease as an optimum phase. The oxygen concentrator according to claim 1, wherein phase adjustment processing is executed . 前記駆動位相調整部は、前記駆動位相調整処理が、所定回数実施された後、各実施における最適位相の平均値を駆動位相とすることを特徴とする請求項記載の酸素濃縮器。 5. The oxygen concentrator according to claim 4, wherein the drive phase adjustment unit sets an average value of optimum phases in each implementation as a drive phase after the drive phase adjustment processing is performed a predetermined number of times . 前記駆動位相調整処理は、前記モータの加減速中以外のときに行われることを特徴とする請求項記載の酸素濃縮器。 The oxygen concentrator according to claim 5, wherein the drive phase adjustment process is performed at a time other than during acceleration / deceleration of the motor . 前記駆動位相調整処理は、前記空気圧縮部の起動から前記空気圧縮部の圧縮効率安定期までの間および前記空気圧縮部の圧縮効率安定後に、所定回数実施されることを特徴とする請求項記載の酸素濃縮器。 The driving phase adjustment process, after compression efficiency stability of the between and the air compression unit from the start of the air compressor unit to the compression efficiency plateau of the air compressor unit, according to claim 5, characterized in that the predetermined number of times performed The oxygen concentrator as described. 前記酸素濃縮部で濃縮された酸素を蓄えるチャンバ部と、前記チャンバ部の酸素の監視をする酸素監視部と、前記酸素監視部の出力が入力されて前記インバータへの回転数指令を出力する制御部と、を備え、前記酸素監視部は酸素流量、ガス温度、酸素濃度の少なくとも1つを検出することを特徴とする請求項1記載の酸素濃縮器。 A chamber for storing oxygen concentrated in the oxygen concentrating unit, an oxygen monitoring unit for monitoring oxygen in the chamber unit, and a control for outputting a rotation speed command to the inverter by inputting an output of the oxygen monitoring unit The oxygen concentrator according to claim 1 , wherein the oxygen monitoring unit detects at least one of an oxygen flow rate, a gas temperature, and an oxygen concentration. 前記酸素濃縮部の圧力を検出する圧力センサを備え、前記圧力センサの出力が前記制御部へ入力されることを特徴とする請求項記載の酸素濃縮器。 The oxygen concentrator according to claim 8 , further comprising a pressure sensor that detects a pressure of the oxygen concentrating unit, and an output of the pressure sensor is input to the control unit . モータの駆動により空気の圧縮を行う空気圧縮部と、前記空気圧縮部から送り出された圧縮空気の流量を開閉制御する流量調整部と、前記流量調整部によって流量調整された圧縮空気が送られて酸素を濃縮する酸素濃縮部と、前記モータを駆動制御するインバータと、を備えた酸素濃縮器において、
前記インバータは、前記空気圧縮部の起動から前記空気圧縮部の圧縮効率安定期までの間および前記空気圧縮部の圧縮効率安定後に、前記流量調整部の制御周期毎における前記インバータの積算出力電流値が最小になるように前記モータの駆動位相を調整する駆動位相調整部を備えたことを特徴とする酸素濃縮器。
An air compression unit that compresses air by driving a motor, a flow rate adjustment unit that controls opening and closing of a flow rate of compressed air sent from the air compression unit, and compressed air adjusted by the flow rate adjustment unit is sent. In an oxygen concentrator comprising an oxygen concentrating section for concentrating oxygen and an inverter for driving and controlling the motor,
The inverter is an integrated output current value of the inverter during a control period of the flow rate adjustment unit from the start of the air compression unit to the compression efficiency stabilization period of the air compression unit and after the compression efficiency of the air compression unit is stabilized. An oxygen concentrator comprising a drive phase adjustment unit that adjusts the drive phase of the motor so as to minimize gas.
モータの駆動により空気の圧縮を行う空気圧縮ステップと、前記空気圧縮ステップから送り出された圧縮空気の流量を開閉制御する流量調整ステップと、前記流量調整ステップによって流量調整された圧縮空気が送られて酸素を濃縮する酸素濃縮ステップと、前記モータを駆動制御するモータ駆動制御ステップと、を備えた酸素濃縮器の制御方法において、
前記空気圧縮ステップの起動から前記空気圧縮ステップの圧縮効率安定期までの間および前記空気圧縮ステップの圧縮効率安定後に、前記流量調整ステップの制御周期毎における前記インバータの積算出力電流値が最小になるように前記モータの駆動位相を調整する駆動位相調整ステップを備えたことを特徴とする酸素濃縮器の制御方法。
An air compression step for compressing air by driving a motor , a flow rate adjustment step for opening and closing a flow rate of compressed air sent from the air compression step, and compressed air adjusted in flow rate by the flow rate adjustment step In an oxygen concentrator control method comprising: an oxygen concentration step for concentrating oxygen; and a motor drive control step for driving and controlling the motor.
The integrated output current value of the inverter is minimized between the start of the air compression step and the compression efficiency stabilization period of the air compression step and after the compression efficiency stabilization of the air compression step and every control cycle of the flow rate adjustment step. A control method for an oxygen concentrator comprising a drive phase adjustment step for adjusting the drive phase of the motor as described above .
前記流量調整ステップでは電磁弁を用いて実施することを特徴とする請求項11記載の酸素濃縮器の制御方法。 12. The method of controlling an oxygen concentrator according to claim 11, wherein the flow rate adjusting step is performed using a solenoid valve . 前記酸素濃縮ステップでは酸素よりも窒素を選択的に吸着する吸着剤を用いることを特徴とする請求項11記載の酸素濃縮器の制御方法。 12. The method of controlling an oxygen concentrator according to claim 11, wherein an adsorbent that selectively adsorbs nitrogen rather than oxygen is used in the oxygen concentration step . 前記駆動位相調整ステップでは、前記モータの駆動位相を前記積算出力電流値が減少する方向に所定量ずつ変化させ、前記積算出力電流値が減少から増加に転じる前の駆動位相を最適位相とする処理をすることを特徴とする請求項11記載の酸素濃縮器の制御方法。 In the drive phase adjustment step, a process of changing the drive phase of the motor by a predetermined amount in a direction in which the integrated output current value decreases, and setting the drive phase before the integrated output current value changes from decreasing to increasing as an optimal phase The method for controlling an oxygen concentrator according to claim 11, wherein: 前記駆動位相調整ステップでは、所定回数実施された後、各実施における最適位相の平均値を駆動位相とする処理をすることを特徴とする請求項14記載の酸素濃縮器の制御方法。 15. The method of controlling an oxygen concentrator according to claim 14, wherein, in the drive phase adjustment step, after being executed a predetermined number of times, a process of setting an average value of optimum phases in each implementation as a drive phase is performed . 前記駆動位相調整ステップは、前記モータの加減速中以外のときに行われることを特徴とする請求項15記載の酸素濃縮器の制御方法。 16. The method of controlling an oxygen concentrator according to claim 15, wherein the drive phase adjustment step is performed at a time other than during acceleration / deceleration of the motor .
JP2007082150A 2007-03-27 2007-03-27 Oxygen concentrator and control method thereof Active JP4986672B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007082150A JP4986672B2 (en) 2007-03-27 2007-03-27 Oxygen concentrator and control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007082150A JP4986672B2 (en) 2007-03-27 2007-03-27 Oxygen concentrator and control method thereof

Publications (2)

Publication Number Publication Date
JP2008237543A JP2008237543A (en) 2008-10-09
JP4986672B2 true JP4986672B2 (en) 2012-07-25

Family

ID=39909588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007082150A Active JP4986672B2 (en) 2007-03-27 2007-03-27 Oxygen concentrator and control method thereof

Country Status (1)

Country Link
JP (1) JP4986672B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019218042A1 (en) * 2019-11-22 2021-05-27 Robert Bosch Gmbh Method for controlling and / or regulating a component through which fluid flows, a component through which fluid flows and a fuel cell system
CN114893901B (en) * 2022-05-20 2023-11-07 四川长虹空调有限公司 Control method for improving operation reliability of variable frequency compressor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0458782A (en) * 1990-06-28 1992-02-25 Toshiba Corp Ac motor driver
JP2000209888A (en) * 1999-01-13 2000-07-28 Fujitsu General Ltd Controller for brushless motor
JP2002238293A (en) * 2001-02-14 2002-08-23 Mitsubishi Electric Corp Motor control apparatus
JP2006115678A (en) * 2004-09-16 2006-04-27 Matsushita Electric Ind Co Ltd Motor drive control unit
JP2006263441A (en) * 2005-02-24 2006-10-05 Ngk Spark Plug Co Ltd Oxygen enricher

Also Published As

Publication number Publication date
JP2008237543A (en) 2008-10-09

Similar Documents

Publication Publication Date Title
JP3506601B2 (en) Energy recovery system in vacuum pressure fluctuation type adsorption equipment
KR102016777B1 (en) Anti-surge speed control of a compressor in a vpsa apparatus
KR101602263B1 (en) Method of controlling a brushless motor
US10989210B2 (en) Anti-surge speed control for two or more compressors
JPH09121590A (en) Rotary compressor provided with counter-current braking mechanism
JP4986672B2 (en) Oxygen concentrator and control method thereof
EP2928073B1 (en) Electromagnetic rotating device and vacuum pump equipped with electromagnetic rotating device
KR101988088B1 (en) Control method and system for motor driving and control method for air compresser in fuel cell system using the same
US20130323082A1 (en) Anti-surge speed control
JP5682157B2 (en) Motor drive device and pump system for vacuum pump
JP6915152B2 (en) Gas compressor
JPH11351143A (en) Driving device for linear compressor
JP3887927B2 (en) Oxygen concentrator and control method thereof
JP3672457B2 (en) Control device for permanent magnet type synchronous motor
JP2013070548A (en) Motor controller, compressor and heat pump device
JP2004040987A (en) Gas turbine power generation system and control method therefor
WO2021065938A1 (en) Motor driving method and motor driving device
JP4625664B2 (en) Inverter drive blower controller
JP2001163605A (en) Concentrating method and device for gaseous oxygen
JP6747302B2 (en) Vacuum valve
JP2003002787A (en) Device for evacuating single crystal pulling vessel
JP2006263441A (en) Oxygen enricher
JPH0787773A (en) Control method of commutatorless motor
JP5468972B2 (en) Oxygen concentrator
CN217682396U (en) Fan capable of adjusting air quantity in large range

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090619

A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20090619

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120424

R150 Certificate of patent or registration of utility model

Ref document number: 4986672

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350