JP4986530B2 - Shape measuring method and measuring jig - Google Patents

Shape measuring method and measuring jig Download PDF

Info

Publication number
JP4986530B2
JP4986530B2 JP2006210690A JP2006210690A JP4986530B2 JP 4986530 B2 JP4986530 B2 JP 4986530B2 JP 2006210690 A JP2006210690 A JP 2006210690A JP 2006210690 A JP2006210690 A JP 2006210690A JP 4986530 B2 JP4986530 B2 JP 4986530B2
Authority
JP
Japan
Prior art keywords
measured
lens
shape
measurement
back surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006210690A
Other languages
Japanese (ja)
Other versions
JP2008039455A (en
Inventor
圭司 久保
隆憲 舟橋
隆行 倉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2006210690A priority Critical patent/JP4986530B2/en
Publication of JP2008039455A publication Critical patent/JP2008039455A/en
Application granted granted Critical
Publication of JP4986530B2 publication Critical patent/JP4986530B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • A Measuring Device Byusing Mechanical Method (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method capable of measuring the attitude and the shape of a measuring object at high precision without receiving the effect of the tilt of a positioning tool, dust and the chamfering of the tool etc., on the basis of the contour or the backside of the measurement object in a three-dimensional shape measurement apparatus for measuring a surface shape from an upper surface. <P>SOLUTION: The method is capable of measuring the attitude and the shape of a measurement object at high precision on the basis of the contour or the backside of the measurement object with three contour positioning bodies disposed at the outer side of the contour of the measurement object and a cylindrical support member contacted to the contour of the measurement object to support the backside of the contour of the measurement object. <P>COPYRIGHT: (C)2008,JPO&amp;INPIT

Description

本発明は、被測定物、例えばレンズ形状を、レンズの外形(例えば、レンズが円形の場合には外径)を基準にレンズ面の姿勢及び形状を測定する方法に関し、上面から形状測定するプローブを有する形状測定機、あるいは上面から光を当てその反射光より形状を測定する3次元形状測定装置において、昨今小型化するカメラ付携帯電話、デジタルスチルカメラ、あるいは短波長化したDVDレンズ等の製造品質管理で、被測定物、例えばレンズ面の外形あるいは裏面を基準に、レンズ面の偏心とチルトの姿勢などのレンズの形状及び姿勢を測定する、形状測定方法及び測定用治具に関するものである。   The present invention relates to a method for measuring the posture and shape of a lens surface with respect to an object to be measured, such as a lens shape, based on the outer shape of the lens (for example, the outer diameter when the lens is circular), and a probe for measuring the shape from the upper surface. Manufacturing of mobile phone with camera, digital still camera, DVD lens with shorter wavelength, etc. The present invention relates to a shape measuring method and a measuring jig for measuring the shape and posture of a lens such as the eccentricity and tilting posture of a lens surface with respect to an object to be measured, for example, the outer shape or the back surface of the lens surface, in quality control. .

従来のレンズ面の外径と裏面を基準に、レンズ面の姿勢を測定するレンズ形状の測定方法としては、頂点を半円球状に加工し、その下部の側面を円筒に、さらにその下部に平面で構成したピン(位置決め治具)を3個準備し、この3個の位置決め治具の上に測定するレンズを設置し、測定したものがあった(例えば、特許文献1参照)。図14A〜図14Dは、前記特許文献1に記載された従来のレンズ形状測定方法を示すものである。   As a method of measuring the lens shape, which measures the posture of the lens surface based on the outer diameter and back surface of the conventional lens surface, the apex is processed into a semi-spherical shape, the lower side surface is made into a cylinder, and the lower surface is flat. There are three pins (positioning jigs) configured as described above, a lens to be measured is installed on the three positioning jigs, and measurements are made (for example, see Patent Document 1). 14A to 14D show a conventional lens shape measuring method described in Patent Document 1. FIG.

図14A〜図14Dにおいて、3個の位置決め治具120により支持されたレンズ102の上面を測定し、レンズ102の設計式との比較からレンズ面のXYZ位置と、X軸を回転中心としたA軸、Y軸を回転中心としたB軸、Z軸を回転中心としたC軸、の各値すなわち姿勢を決定する。   14A to 14D, the upper surface of the lens 102 supported by the three positioning jigs 120 is measured, and the XYZ position of the lens surface and the A axis with the X axis as the center of rotation are compared with the design formula of the lens 102. Each value of the axis, the B axis with the Y axis as the rotation center, and the C axis with the Z axis as the rotation center, that is, the posture is determined.

さらに3つの治具120の半球部分120aを測定し、半球部分120aのデータより予め測定された治具120の、半球面頂上と、レンズ102が接する側面位置120bまでの距離と、レンズ裏面が接する位置(レンズ裏面支持部)120cとの距離hのパラメータを用い、レンズ側面と裏面位置を算出し、この位置に対するレンズ102の姿勢を算出していた。 Further, the hemispherical portion 120a of the three jigs 120 is measured, and the distance between the top of the hemispherical surface of the jig 120 measured in advance from the data of the hemispherical portion 120a and the side surface position 120b with which the lens 102 contacts is in contact with the rear surface of the lens. Using the parameter of the distance h 1 with respect to the position (lens back surface support portion) 120c, the lens side surface and the back surface position are calculated, and the attitude of the lens 102 with respect to this position is calculated.

特開2002−71344(第6頁、図5)JP 2002-71344 (6th page, FIG. 5)

しかしながら、前記の図14A〜図14Dに示す、位置決め治具120によるレンズ102の球面102aを測定することによる従来の構成では、位置決め治具120がそれぞれ微妙に傾いた場合、レンズ側面とレンズ位置決め治具120の上側か下側かのどちらかに微小な隙間ができ、治具120の頂点の半球の位置がレンズ外径102cの位置とはずれてしまい、正しい外径位置を決定できず計測誤差を生じる。   However, in the conventional configuration shown in FIG. 14A to FIG. 14D by measuring the spherical surface 102a of the lens 102 by the positioning jig 120, when the positioning jig 120 is slightly tilted, the lens side surface and the lens positioning jig are corrected. A minute gap is formed on either the upper side or the lower side of the tool 120, and the position of the hemisphere at the apex of the jig 120 deviates from the position of the lens outer diameter 102c. Arise.

また、位置決め治具120のレンズ裏面支持部102cが加工の行いやすい平面で構成されていることにより、平面部とレンズ裏面の間にミクロなゴミをはさみやすく、傾き方向の姿勢の測定で誤差が生じやすいという課題があった。   Further, since the lens back surface support portion 102c of the positioning jig 120 is configured with a plane that can be easily processed, micro dust is easily sandwiched between the flat surface portion and the lens back surface, and an error is caused in the measurement of the posture in the tilt direction. There was a problem that it was likely to occur.

さらに、レンズ外径102cも3mm程度と小型化することにより、支持できるレンズコバ部103も0.4mm程度と小さくなっており、裏面支持部120cと側面を支持する円筒部120bで構成されるコーナー部のR加工123も小さくすることが難しくなり、レンズコバ部103のエッジ104と干渉することにより、レンズコバ部103の裏面が裏面支持部120cで支持されることなく宙に浮き、測定誤差を生じる。   Further, by reducing the lens outer diameter 102c to about 3 mm, the lens edge portion 103 that can be supported is also reduced to about 0.4 mm, and the corner portion configured by the back surface support portion 120c and the cylindrical portion 120b that supports the side surface. Also, it becomes difficult to reduce the R processing 123, and by interfering with the edge 104 of the lens edge portion 103, the back surface of the lens edge portion 103 floats in the air without being supported by the back surface support portion 120c, resulting in a measurement error.

本発明は、前記従来の課題を解決するもので、上面からのみ測定するプローブを有する形状測定機、あるいは上面から光を当てその反射光より形状を測定する3次元形状測定装置において、被測定物の外形あるいは裏面を基準に、被測定物の姿勢などの被測定物の形状を測定する形状測定方法及び測定用治具を提供することを目的とする。   The present invention solves the above-mentioned conventional problems, and in a shape measuring machine having a probe that measures only from the upper surface, or a three-dimensional shape measuring device that measures the shape from reflected light by applying light from the upper surface, It is an object of the present invention to provide a shape measuring method and a measuring jig for measuring the shape of an object to be measured such as the posture of the object to be measured based on the outer shape or the back surface of the object.

前記目的を達成するために、本発明は以下のように構成する。   In order to achieve the above object, the present invention is configured as follows.

本発明の第1態様によれば、被測定物の外周部の外側に当接させる外形位置決め球と前記被測定物の外周部の裏面を支持する裏面支持部材とからなる保持ユニットを3つ備えた測定治具に前記被測定物を載置し、前記3つの保持ユニットの内の少なくとも1つの保持ユニットが、前記被測定物を残りの2つの保持ユニットに対して一定の力で押えるように前記被測定物を保持させ、
前記被測定物の上面と前記3つの外形位置決め球を測定して、前記被測定物の上面の位置座標と前記3つの外形位置決め球の位置座標とを求め、
予め設定された前記3つの外形位置決め球の各半径と、前記3つの外形位置決め球の位置座標のデータより、前記3つの外形位置決め球が前記被測定物に接する位置を求め、
予め設定された前記3つの保持ユニットのそれぞれの裏面支持部材と前記外形位置決め球の高さの差と、前記3つの外形位置決め球のそれぞれの位置座標のデータを用いて、前記被測定物の裏面を基準とした前記被測定物の傾きを求め、
前記3つの外形位置決め球が前記被測定物に接する位置と前記傾きと、前記被測定物の位置座標のデータより、前記被測定物の外形を基準に前記被測定物の姿勢と形状を求めることを特徴とする形状測定方法を提供する。
According to the first aspect of the present invention, there are provided three holding units comprising an outer shape positioning sphere to be brought into contact with the outer periphery of the object to be measured and a back surface supporting member for supporting the back surface of the outer periphery of the object to be measured. The measurement object is placed on a measuring jig so that at least one of the three holding units holds the measurement object against the remaining two holding units with a constant force. Holding the object to be measured;
Measuring the upper surface of the object to be measured and the three outer positioning spheres to obtain the position coordinates of the upper surface of the object to be measured and the position coordinates of the three outer positioning balls;
From the radius of each of the three contour positioning spheres set in advance and the position coordinate data of the three contour positioning spheres, the position where the three contour positioning spheres contact the object to be measured is obtained.
The back surface of the object to be measured is obtained by using the difference between the heights of the back surface supporting members of the three holding units set in advance and the heights of the outer shape positioning balls and the data of the position coordinates of the three outer shape positioning balls. Obtain the inclination of the object to be measured with reference to
The posture and shape of the object to be measured are determined based on the outer shape of the object to be measured, based on the position of the three outer shape positioning balls in contact with the object to be measured, the inclination, and the position coordinate data of the object to be measured. A shape measuring method is provided.

本発明の第2態様によれば、被測定物の外周部の外側に当接させる中央に円錐状の凹部を有する円筒型の外形位置決め体と前記被測定物の外周部の裏面を支持する裏面支持部材とからなる保持ユニットを3つ備えた測定治具に前記被測定物を載置し、前記3つの保持ユニットの内の少なくとも1つの保持ユニットが、前記被測定物を残りの2つの保持ユニットに対して一定の力で押えるように前記被測定物を保持させ、
前記被測定物の上面と前記3つの外形位置決め体の円錐状の前記凹部を上方より測定して、前記被測定物の上面の位置座標と前記3つの外形位置決め体の位置座標とを求め、
予め設定された前記3つの外形位置決め体の円筒部分の各半径と、前記3つの外形位置決め体の位置座標のデータより、前記3つの外形位置決め体が前記被測定物に接する位置を求め、
予め設定された前記3つの保持ユニットのそれぞれの裏面支持部材と前記外形位置決め体の前記凹部の高さの差と、前記3つの外形位置決め体のそれぞれの位置座標のデータを用いて、前記被測定物の裏面を基準とした前記被測定物の傾きを求め、
前記3つの外形位置決め体が前記被測定物に接する位置と前記傾きと、前記被測定物の位置座標のデータより、前記被測定物の外形を基準に前記被測定物の姿勢と形状を求めることを特徴とする形状測定方法を提供する。
According to the second aspect of the present invention, the cylindrical outer shape positioning body having a conical recess at the center to be in contact with the outer periphery of the object to be measured, and the back surface supporting the back surface of the outer periphery of the object to be measured. The object to be measured is placed on a measuring jig provided with three holding units composed of support members, and at least one of the three holding units holds the object to be measured. Hold the measured object so that it can be pressed against the unit with a certain force,
Measure the upper surface of the object to be measured and the conical recesses of the three outer shape positioning bodies from above to obtain the position coordinates of the upper surface of the object to be measured and the position coordinates of the three outer shape positioning bodies,
From the radius of the cylindrical portion of the three contour positioning bodies set in advance and the position coordinate data of the three contour positioning bodies, the position where the three contour positioning bodies contact the object to be measured is obtained.
Using the preset difference between the heights of the concave portions of the back support member and the outer shape positioning body of the three holding units and the position coordinate data of the three outer shape positioning bodies, the measured object Obtain the inclination of the measured object with respect to the back side of the object,
The posture and shape of the object to be measured are obtained based on the outer shape of the object to be measured, based on the position of the three outer shape positioning bodies in contact with the object to be measured, the inclination, and the position coordinate data of the object to be measured. A shape measuring method is provided.

本発明の第3態様によれば、前記被測定物の形状測定を行なった後、前記被測定物を前記保持ユニットに対して所定の角度で回転させて前記被測定物の支持位置を変更した後、再度、前記被測定物の形状測定を行なうことを特徴とする、第1又は2の態様に記載の形状測定方法を提供する。   According to the third aspect of the present invention, after measuring the shape of the object to be measured, the position to be measured is changed by rotating the object to be measured at a predetermined angle with respect to the holding unit. Then, the shape measurement method according to the first or second aspect is provided, wherein the shape measurement of the object to be measured is performed again.

本発明の第4態様によれば、前記測定治具は、表面と裏面よりそれぞれ位置座標が測定できる位置に3つの偏心位置測定用基準球が設置されており、前記被測定物の表面側より前記被測定物の表面の形状と前記3つの偏心位置測定用基準球の中心座標と傾きとを測定したのち、前記被測定物の裏面側より前記被測定物の裏面の形状と前記3つの偏心位置測定用基準球の中心座標と傾きとを測定し、前記被測定物の表面と裏面の座標のずれを求めて前記被測定物の形状を求めることを特徴とする、第1から3のいずれか1つの態様に記載の形状測定方法を提供する。   According to the fourth aspect of the present invention, the measurement jig is provided with three eccentric position measurement reference spheres at positions where the position coordinates can be measured from the front surface and the back surface, respectively, from the surface side of the object to be measured. After measuring the shape of the surface of the object to be measured and the central coordinates and inclination of the three eccentric position measurement reference spheres, the shape of the back surface of the object to be measured and the three eccentricities from the back surface side of the object to be measured. Any one of the first to third aspects is characterized in that a center coordinate and an inclination of a reference sphere for position measurement are measured, and a deviation in coordinates between the front surface and the back surface of the object to be measured is obtained to obtain the shape of the object to be measured. A shape measuring method according to one embodiment is provided.

本発明の第5態様によれば、被測定物の外周部の外側に当接する外形位置決め球と、
前記被測定物の外周部の裏面を支持する裏面支持部材とからなる保持ユニットを3つ備え、
前記3つの保持ユニットの内の少なくとも1つの保持ユニットが、前記被測定物を残りの2つの保持ユニットに対して一定の力で押える押圧手段を備えた測定用治具を提供する。
According to the fifth aspect of the present invention, the outer shape positioning sphere that contacts the outside of the outer periphery of the object to be measured;
Three holding units composed of a back surface supporting member that supports the back surface of the outer peripheral portion of the object to be measured are provided,
At least one holding unit among the three holding units provides a measuring jig provided with pressing means for pressing the object to be measured against the remaining two holding units with a constant force.

本発明の第6態様によれば、被測定物の外周部の外側に当接する中央に円錐状の凹部を有する円筒型の外形位置決め体と、
前記被測定物の外周部の裏面を支持する裏面支持部材とからなる保持ユニットを3つ備え、
前記3つの保持ユニットの内の少なくとも1つの保持ユニットが、前記被測定物を残りの2つの保持ユニットに対して一定の力で押える押圧手段を備えた測定用治具を提供する。
According to the sixth aspect of the present invention, a cylindrical outer shape positioning body having a conical recess at the center contacting the outside of the outer peripheral portion of the object to be measured;
Three holding units composed of a back surface supporting member that supports the back surface of the outer peripheral portion of the object to be measured are provided,
At least one holding unit among the three holding units provides a measuring jig provided with pressing means for pressing the object to be measured against the remaining two holding units with a constant force.

本発明の第7態様によれば、前記測定治具は、表面と裏面よりそれぞれ位置座標が測定できる位置に3つの偏心位置測定用基準球をさらに備えた、第5又は6の態様に記載の測定用治具を提供する。   According to a seventh aspect of the present invention, in the fifth or sixth aspect, the measurement jig further includes three eccentric position measurement reference spheres at positions where position coordinates can be measured from the front surface and the back surface, respectively. Provide measurement jigs.

以上のように、本発明の形状測定方法及び測定用治具によれば、被測定物の側面の垂直な面、あるいは被測定物裏面を直接測定できない場合でも、被測定物の外周部の外側に当接された3つの保持ユニットのそれぞれの、外形位置決め球又は外形位置決め体と、被測定物の外周部の裏面を支持する円筒形などの裏面支持部材により、被測定物面の外形を基準に、被測定物面の姿勢と形状の測定を高精度に行うことが出来る。   As described above, according to the shape measuring method and the measuring jig of the present invention, even when the surface perpendicular to the side surface of the object to be measured or the back surface of the object to be measured cannot be directly measured, the outer side of the outer periphery of the object to be measured The outer shape of the object to be measured is determined by the outer shape positioning ball or the outer shape positioning body of each of the three holding units in contact with the outer surface and the cylindrical back surface supporting member that supports the rear surface of the outer periphery of the object to be measured. In addition, the posture and shape of the surface to be measured can be measured with high accuracy.

また、被測定物の外周部の外側に配置された3つの円筒型の外形位置決め体と、前記外形位置決め体の中央に開けられた測定用の円錐状の凹部を、円筒型の外形位置決め体の側面の被測定物外形の支持高さに近い位置に設置するようにすれば、外形位置決め体が多少傾いてもXY方向の誤差を最小として被測定物の姿勢と形状を測定することができる。   Further, three cylindrical outer shape positioning bodies arranged outside the outer peripheral portion of the object to be measured, and a conical concave portion for measurement opened in the center of the outer shape positioning body are provided in the cylindrical outer shape positioning body. If it is installed at a position close to the support height of the outer shape of the object to be measured on the side surface, the posture and shape of the object to be measured can be measured with a minimum error in the XY directions even if the outer shape positioning body is slightly inclined.

以下に、本発明にかかる実施の形態を図面に基づいて詳細に説明する。   Embodiments according to the present invention will be described below in detail with reference to the drawings.

(第1実施形態)
図1は、本発明の第1実施形態における被測定物例えば測定用治具の構成図である。図2Aは、本発明の第1実施形態における測定用治具をその上面から見た平面図であり、3個の保持爪でレンズの外周部の3方向より支持されている図である。図3及び図4Aは、それぞれ、前記1つの保持爪の概略構成の斜視図及び拡大断面側面図である。
(First embodiment)
FIG. 1 is a configuration diagram of an object to be measured, for example, a measurement jig, according to the first embodiment of the present invention. FIG. 2A is a plan view of the measurement jig according to the first embodiment of the present invention as viewed from above, and is supported by three holding claws from three directions on the outer peripheral portion of the lens. 3 and 4A are a perspective view and an enlarged cross-sectional side view of the schematic configuration of the one holding claw, respectively.

図1において、1は測定物であるレンズ(例えば、直径3〜7mmの円形の球面又は非球面のレンズ)、2は公知の3次元形状測定装置70に連結されかつレンズ1の上方よりXY方向(上下方向と直交する横方向沿いでかつ互いに直交する2つの方向)に走査し、Z方向(上下方向)にフォーカスがかかりレンズ1のレンズ面1a等の形状を測定するスタイラス、3は横方向沿いに被測定物に当接するように配置された被測定物のレンズ1の周囲に等間隔で配置され(例えば3個配置される場合には、120度間隔でそれぞれ配置され)かつレンズ1の外周部の側面(レンズコバ部7が有る場合にはレンズコバ部7の側面、レンズコバ部7が無い場合にはレンズ自体の外周部の側面)とレンズ1の外周部の裏面をそれぞれ支持する、保持ユニットの一例としての、保持爪であり、4は保持爪3の一部を構成しかつ横方向に対して斜めに(例えば20°〜45°の傾斜角度で)レンズ載置位置A0側に突出した外径位置基準球支持部材4Aの先端の円錐部4bに支持された、外形位置決め球の一例としての、外径位置基準球で、これらの3個の外径位置基準球4のそれぞれの球面の側面をレンズ1の外周部の側面に接触してレンズ1の外周部の側面を支持することにより、3個の外径位置基準球4のそれぞれの球面の、レンズ1の外周部の側面に対する姿勢が変わっても、レンズ1の径方向の位置を3個の外径位置基準球4により精確に支持することができる。3個の外径位置基準球4は同一の直径を有している。   In FIG. 1, reference numeral 1 denotes a lens as a measurement object (for example, a circular spherical or aspherical lens having a diameter of 3 to 7 mm), and 2 is connected to a known three-dimensional shape measuring apparatus 70 and from above the lens 1 in the XY directions. A stylus that scans in two directions (in two directions perpendicular to the vertical direction and perpendicular to each other), focuses in the Z direction (vertical direction), and measures the shape of the lens surface 1a and the like of the lens 1, and 3 is a horizontal direction. Are arranged at equal intervals around the lens 1 of the object to be measured so as to be in contact with the object to be measured along (for example, when three are arranged, they are arranged at intervals of 120 degrees) and the lens 1 A holding unit that supports a side surface of the outer peripheral portion (a side surface of the lens edge portion 7 when the lens edge portion 7 is provided, a side surface of the outer peripheral portion of the lens itself when the lens edge portion 7 is not provided) and a back surface of the outer peripheral portion of the lens 1. An example of a holding claw is a holding claw, and 4 is a part of the holding claw 3 and is oblique to the lateral direction (for example, at an inclination angle of 20 ° to 45 °) toward the lens placement position A0. Each of the three outer diameter position reference spheres 4 is an outer diameter position reference sphere as an example of an outer shape positioning sphere supported by the conical portion 4b at the tip of the protruding outer diameter position reference sphere support member 4A. By supporting the side surface of the outer peripheral portion of the lens 1 by contacting the side surface of the spherical surface with the side surface of the outer peripheral portion of the lens 1, the side surface of the outer peripheral portion of the lens 1 of each of the three outer diameter position reference spheres 4 Even if the attitude to the lens changes, the radial position of the lens 1 can be accurately supported by the three outer diameter position reference balls 4. The three outer diameter position reference spheres 4 have the same diameter.

3個の保持爪3は、3本の外径位置基準球支持部材4Aでそれぞれ1つずつ支持された合計3個の外径位置基準球4の他に、レンズ1の外周部の裏面を支持する裏面支持部材の一例として機能する3本の円筒横方向ピン5を備えて構成している。3本の円筒横方向ピン5は、同一の直径を有し、それぞれレンズ載置位置A0側に向けて横方向沿いに突出しており、レンズ1のレンズ1の外周部の裏面を3本の円筒横方向ピン5のそれぞれの先端の円筒面で支持することにより、平面でレンズ1の外周部の裏面を支持する場合に比べて、レンズ1と円筒横方向ピン5との間の接触面積が少なくなり、レンズ1の外周部の裏面と円筒横方向ピン5との間にごみ等が挟みにくくなり、レンズ1の外周部のレンズ裏面の位置をダイレクトに支持することができる。   The three holding claws 3 support the back surface of the outer peripheral portion of the lens 1 in addition to the three outer diameter position reference spheres 4 supported one by one by the three outer diameter position reference sphere support members 4A. 3 is provided with three cylindrical lateral pins 5 that function as an example of a back support member. The three cylindrical lateral pins 5 have the same diameter, respectively project along the lateral direction toward the lens placement position A0, and the back surface of the outer peripheral portion of the lens 1 of the lens 1 has three cylinders. By supporting by the cylindrical surface of each tip of the lateral pin 5, the contact area between the lens 1 and the cylindrical lateral pin 5 is smaller than when supporting the back surface of the outer peripheral portion of the lens 1 with a flat surface. Thus, dust or the like is less likely to be sandwiched between the back surface of the outer peripheral portion of the lens 1 and the cylindrical lateral pin 5, and the position of the lens back surface of the outer peripheral portion of the lens 1 can be directly supported.

さらに、保持爪3には長さ調整機構6を備えて、長さ調整機構6により、レンズ載置位置A0側に向けてそれぞれ突出した外径位置基準球支持部材4A及び円筒横方向ピン5の突出量を、それぞれ独立して調整できるようにしている。具体的には、外径位置基準球支持部材4Aは、横方向に対して斜めにレンズ載置位置A0側に突出可能に、長さ調整機構用ケーシング6cの第1貫通穴6dに進退自在に挿入され、長さ調整機構用ケーシング6cにねじ込まれている第1調整ねじ6aをねじ込むことにより、第1調整ねじ6aの内側端部が第1貫通穴6d内の外径位置基準球支持部材4Aの側面に接触して押圧し、外径位置基準球支持部材4Aを第1貫通穴6d内で固定するようにしている。逆に、第1調整ねじ6aを長さ調整機構用ケーシング6cに対して緩めれば、長さ調整機構用ケーシング6cの第1貫通穴6d内で外径位置基準球支持部材4Aを進退させて長さ調整(突出量調整)を行なうことができる。この結果、外径位置基準球支持部材4Aの先端に固定された外径位置基準球4はXZ面で斜めに位置を自在に調整することが可能で、レンズ1の外周部の側面の支持高さをレンズコバ部7の高さ寸法に応じて、レンズ形状測定前に好適な支持位置に調整することが可能である。   Further, the holding claw 3 is provided with a length adjusting mechanism 6, and the length adjusting mechanism 6 includes an outer diameter position reference sphere support member 4 </ b> A and a cylindrical lateral pin 5 that respectively protrude toward the lens placement position A <b> 0 side. The amount of protrusion can be adjusted independently. Specifically, the outer diameter position reference sphere support member 4A can be projected to the first through hole 6d of the length adjustment mechanism casing 6c so as to be able to protrude obliquely to the lens placement position A0 with respect to the lateral direction. By screwing the first adjustment screw 6a inserted and screwed into the length adjustment mechanism casing 6c, the inner end of the first adjustment screw 6a has an outer diameter position reference ball support member 4A in the first through hole 6d. The outer diameter position reference sphere support member 4A is fixed in the first through hole 6d by contacting and pressing the side surface of the outer diameter position reference sphere support member 4A. Conversely, if the first adjustment screw 6a is loosened with respect to the length adjustment mechanism casing 6c, the outer diameter position reference ball support member 4A is advanced and retracted in the first through hole 6d of the length adjustment mechanism casing 6c. Length adjustment (projection amount adjustment) can be performed. As a result, the outer diameter position reference sphere 4 fixed to the distal end of the outer diameter position reference sphere support member 4A can be freely adjusted in position obliquely on the XZ plane, and the support height of the side surface of the outer peripheral portion of the lens 1 can be adjusted. It is possible to adjust the height to a suitable support position before measuring the lens shape according to the height dimension of the lens edge portion 7.

また、長さ調整機構6により、レンズ載置位置A0側に向けてそれぞれ突出した外径位置基準球支持部材4A及び円筒横方向ピン5の突出量を、それぞれ独立して調整できるようにしている。具体的には、円筒横方向ピン5は、横方向にレンズ載置位置A0側に突出可能に、長さ調整機構用ケーシング6cの第2貫通穴6eに進退自在に挿入され、長さ調整機構用ケーシング6cにねじ込まれている第2調整ねじ6bをねじ込むことにより、第2調整ねじ6bの内側端部が第2貫通穴6e内の円筒横方向ピン5の側面に接触して押圧し、円筒横方向ピン5を第2貫通穴6e内で固定するようにしている。逆に、第2調整ねじ6bを長さ調整機構用ケーシング6cに対して緩めれば、長さ調整機構用ケーシング6cの第2貫通穴6e内で円筒横方向ピン5を進退させて長さ調整(突出量調整)を行なうことができる。この結果、円筒横方向ピン5の先端の位置は横方向沿いにXY平面内での位置を自在に調整することが可能で、レンズ1の外周部のレンズコバ部7の幅に合わせて、レンズ形状測定前に好適な支持位置に調整することが可能である。なお、さらに具体的な長さ調整の手順については、後述する。   Further, the length adjustment mechanism 6 can independently adjust the protrusion amounts of the outer diameter position reference ball support member 4A and the cylindrical lateral pin 5 that protrude toward the lens placement position A0. . Specifically, the cylindrical lateral pin 5 is inserted in the second through hole 6e of the length adjustment mechanism casing 6c so as to be able to protrude in the lateral direction toward the lens placement position A0, and is thus length-adjusted. By screwing the second adjustment screw 6b screwed into the casing 6c, the inner end portion of the second adjustment screw 6b contacts and presses the side surface of the cylindrical lateral pin 5 in the second through hole 6e, and the cylinder The lateral pin 5 is fixed in the second through hole 6e. Conversely, if the second adjusting screw 6b is loosened with respect to the length adjusting mechanism casing 6c, the cylindrical lateral pin 5 is advanced and retracted in the second through hole 6e of the length adjusting mechanism casing 6c to adjust the length. (Projection amount adjustment) can be performed. As a result, the position of the tip of the cylindrical lateral pin 5 can be freely adjusted along the lateral direction in the XY plane, and the lens shape is adjusted to the width of the lens edge portion 7 on the outer peripheral portion of the lens 1. It is possible to adjust to a suitable support position before the measurement. A more specific length adjustment procedure will be described later.

また、各保持爪3は、各保持爪3の上部に外径位置基準球支持部材4Aの軸方向沿いに延びたレンズ押さえばね8を備えて、レンズ押さえばね8にて、レンズコバ部7の上面を支持し、レンズ1がガタつかない様に支持する。図2Bに示すように、レンズ押さえばね8のレンズ側の先端には、円形の貫通穴8aを有して、貫通穴8a内に外径基準球4が位置して、図1のA1及びA2の位置に示すように、貫通穴8aの上方からスタイラス2の先端が貫通穴8a内に挿入されてスタイラス2の下端が外径基準球4に接触して、スタイラス2に連結された3次元形状測定装置70で外径位置基準球4の位置座標をそれぞれ測定できるようにしている。このとき、レンズ押さえばね8の付勢力でレンズ1を歪ませないようにするため、各円筒横方向ピン5の上方の位置で、レンズコバ部7の上方よりレンズコバ部7をレンズ押さえばね8の先端が支持するようにしている。   Each holding claw 3 includes a lens pressing spring 8 that extends along the axial direction of the outer diameter position reference ball support member 4 </ b> A at the top of each holding claw 3. The lens 1 is supported so as not to rattle. As shown in FIG. 2B, the lens holding spring 8 has a circular through hole 8a at the lens end, and the outer diameter reference sphere 4 is located in the through hole 8a. A1 and A2 in FIG. The three-dimensional shape connected to the stylus 2 with the tip of the stylus 2 inserted into the through hole 8a from above the through hole 8a and the lower end of the stylus 2 contacting the outer diameter reference sphere 4 as shown in FIG. The measurement device 70 can measure the position coordinates of the outer diameter position reference sphere 4. At this time, in order to prevent the lens 1 from being distorted by the urging force of the lens pressing spring 8, the lens edge portion 7 is placed at the tip of the lens pressing spring 8 from above the lens edge portion 7 at a position above each cylindrical lateral pin 5. Is trying to support.

各保持爪3は、レンズ1の外周部の側面を支持する3個の外径基準球4と、レンズ1の外周部の裏面を先端でそれぞれ支持する3個の円筒横方向ピン5と、3個のレンズ押さえばね8とより構成されて、これらの部材を一体的にレンズ1の径方向沿いに進退させることができる。   Each holding claw 3 includes three outer diameter reference spheres 4 that support the side surface of the outer peripheral portion of the lens 1, three cylindrical lateral pins 5 that respectively support the rear surface of the outer peripheral portion of the lens 1 at the tip, The lens holding spring 8 and the members can be integrally moved back and forth along the radial direction of the lens 1.

11は押圧手段の一例としての保持爪予圧付勢ばねであり、3個ある保持爪3のうちの1つの保持爪3(例えば図2Aでは右下の保持爪3)を、保持爪予圧付勢ばね11の付勢力によりレンズ1の中心方向(左上向きの矢印11A沿い)に一定の力でレンズ1の外周部の側面に対して押さえ付けて、保持爪予圧付勢ばね11の付勢力により一定力で与圧を付勢し、3つの保持爪3の均等な力でレンズ1の外周部の側面を押えて支持する。   Reference numeral 11 denotes a holding claw preload urging spring as an example of a pressing means, and one holding claw 3 (for example, the lower right holding claw 3 in FIG. 2A) of the three holding claws 3 is held by a holding claw preload urging. The spring 11 is pressed against the side surface of the outer periphery of the lens 1 with a constant force in the center direction of the lens 1 (along the arrow 11A pointing upward to the left) by the biasing force of the spring 11, and is constant with the biasing force of the holding claw preload biasing spring 11. The pressure is applied by force, and the side surface of the outer peripheral portion of the lens 1 is pressed and supported by the equal force of the three holding claws 3.

なお、一例として、外径位置基準球4の直径は1mmであり、その加工精度は0.1μm以下の精度(例えば50nm以下の精度)の真球度を有するものであり、レンズコバ部7の幅は0.4mm〜0.5mm程度である。   As an example, the diameter of the outer diameter position reference sphere 4 is 1 mm, and its processing accuracy has a sphericity of 0.1 μm or less (for example, 50 nm or less), and the width of the lens edge portion 7. Is about 0.4 mm to 0.5 mm.

前記したように、測定用治具は、3個の保持爪3と、1つの保持爪予圧付勢ばね11と、支持プレート10とより大略構成している。   As described above, the measuring jig generally includes three holding claws 3, one holding claw preload biasing spring 11, and the support plate 10.

図2Aにおいて、9は、前記測定用治具において、レンズ1の表裏の偏心位置を測定するときに使用する治具であって、上面と下面より測定可能な3つの偏心位置測定用基準球であり、レンズ1の表裏の偏心位置を測定する際に使用する。10は、前記測定用治具の一部を構成する支持プレートであり、この支持プレート10に前記3個の保持爪3等及び偏心位置測定用基準球9を設置する。偏心位置測定用基準球9は支持プレート10の貫通穴10b内に支持されており、支持プレート10の両面に偏心位置測定用基準球9が露出して、支持プレート10の表裏両面側からスタイラス2が接触可能としている。支持プレート10の中央には貫通穴10aが形成されており、後述する、円筒横方向ピン5の長さ調整と外径位置基準球支持部材4Aの長さ調整をそれぞれ行なう図12A、図12Bに示す長さ調整用治具60を嵌合可能としている。11は、前記したように、保持爪3をレンズ中心方向に一定力で与圧を付勢し、3つの保持爪3で均等な力でレンズ1を押えるための、保持爪与圧付勢ばねである。   In FIG. 2A, 9 is a jig used for measuring the eccentric positions of the front and back surfaces of the lens 1 in the measuring jig, and includes three eccentric position measuring reference balls that can be measured from the upper surface and the lower surface. Yes, used when measuring the eccentric position of the front and back of the lens 1. Reference numeral 10 denotes a support plate constituting a part of the measurement jig, and the three holding claws 3 and the like and the eccentric position measurement reference sphere 9 are installed on the support plate 10. The eccentric position measuring reference sphere 9 is supported in the through hole 10 b of the support plate 10, and the eccentric position measuring reference sphere 9 is exposed on both surfaces of the support plate 10, so that the stylus 2 is exposed from both the front and back sides of the support plate 10. Can be contacted. A through hole 10a is formed at the center of the support plate 10, and the length adjustment of the cylindrical lateral pin 5 and the length adjustment of the outer diameter position reference ball support member 4A, which will be described later, are performed in FIGS. 12A and 12B, respectively. The illustrated length adjusting jig 60 can be fitted. 11, as described above, the holding claw pressure biasing spring for biasing the holding claw 3 with a constant force toward the center of the lens and pressing the lens 1 with a uniform force by the three holding claws 3. It is.

なお、図4Aに示すように、レンズコバ部7のエッジの先端は、斜めに支持された外径基準球4と円筒横方向ピン5の間には隙間50があるので、外径基準球4と円筒横方向ピン5とが機械的に互いに干渉することがなく、レンズ1を安定して設置することが可能である。   As shown in FIG. 4A, the tip of the edge of the lens edge portion 7 has a gap 50 between the outer diameter reference sphere 4 and the cylindrical lateral pin 5 supported obliquely. The cylindrical lateral pin 5 does not mechanically interfere with each other, and the lens 1 can be stably installed.

前記構造を有する前記レンズ形状測定治具を使用して実施するレンズ形状測定動作の手順を、図4B及び図4Cを用いて説明する。   The procedure of the lens shape measurement operation performed using the lens shape measurement jig having the structure will be described with reference to FIGS. 4B and 4C.

レンズ1の外周部の側面が、3個の保持爪3のうちの2個の保持爪3の外径位置基準球4にそれぞれ接触するように、支持プレート10の中央のレンズ載置位置A0にレンズ1を載置したのち、残りの1個の保持爪3の外径位置基準球4を与圧付勢ばね11の付勢力によりレンズ1の外周部の側面に接触させて、3個の保持爪3により、レンズ1をその外周より一定力で押えてレンズ載置位置A0に保持する。   At the lens mounting position A0 at the center of the support plate 10 such that the side surface of the outer peripheral portion of the lens 1 is in contact with the outer diameter position reference sphere 4 of two of the three holding claws 3. After placing the lens 1, the outer diameter position reference sphere 4 of the remaining one holding claw 3 is brought into contact with the side surface of the outer peripheral portion of the lens 1 by the urging force of the pressure urging spring 11 to hold the three pieces. The claw 3 holds the lens 1 from the outer periphery with a constant force and holds it at the lens placement position A0.

この状態で、まず、3次元形状測定装置70の記憶部71から3つの外径位置基準球4のXYZ位置座標を取得する(ステップS1)。   In this state, first, the XYZ position coordinates of the three outer diameter position reference spheres 4 are acquired from the storage unit 71 of the three-dimensional shape measuring apparatus 70 (step S1).

次いで、取得されたXYZ位置座標を基に、3次元形状測定装置70のスタイラス2を移動させて、スタイラス2を、3個の保持爪3の先端の3つの外径位置基準球4のうちの1つの外径位置基準球4に接触させて(図1のA1又はA2の位置に示すスタイラス2を参照。)、外径位置基準球4のXYZ位置座標をスタイラス2に連結された3次元形状測定装置70により測定して、測定結果を3次元形状測定装置70の記憶部71に記憶する。   Next, based on the acquired XYZ position coordinates, the stylus 2 of the three-dimensional shape measuring apparatus 70 is moved, and the stylus 2 is moved out of the three outer diameter position reference spheres 4 at the tips of the three holding claws 3. A three-dimensional shape in which the XYZ position coordinates of the outer diameter position reference sphere 4 are connected to the stylus 2 by contacting one outer diameter position reference sphere 4 (see the stylus 2 shown at the position A1 or A2 in FIG. 1). Measurement is performed by the measurement device 70 and the measurement result is stored in the storage unit 71 of the three-dimensional shape measurement device 70.

この測定は、外径位置基準球4の上面の頂点を中心として、XY面内で同心円状にスタイラス2を走査することにより、外径位置基準球4の上面の頂点付近のXYZ位置座標が3次元形状測定装置70により測定され、事前に求めておいた外径位置基準球4の半径を用いて、外径位置基準球4の円弧中心及び外径位置基準球4のZ位置高さを、それぞれ、3次元形状測定装置70に接続された演算部72で算出し(ステップS2)、当該外径位置基準球4のXYZ位置を決定する。これにより、1つ目の外径位置基準球4のXYZデータ(XYZ位置座標データ)(X,Y,Z)を算出して、算出結果を3次元形状測定装置70の記憶部71に記憶する(ステップS3)。 This measurement is performed by scanning the stylus 2 concentrically within the XY plane with the top of the top surface of the outer diameter position reference sphere 4 as the center, so that the XYZ position coordinates near the top surface of the outer diameter position reference sphere 4 are 3 The arc center of the outer diameter position reference sphere 4 and the Z position height of the outer diameter position reference sphere 4 are measured using the radius of the outer diameter position reference sphere 4 measured by the dimension shape measuring apparatus 70 and obtained in advance. Each is calculated by the calculation unit 72 connected to the three-dimensional shape measuring apparatus 70 (step S2), and the XYZ position of the outer diameter position reference sphere 4 is determined. Thereby, XYZ data (XYZ position coordinate data) (X 1 , Y 1 , Z 1 ) of the first outer diameter position reference sphere 4 is calculated, and the calculation result is stored in the storage unit 71 of the three-dimensional shape measuring apparatus 70. (Step S3).

次いで、残りの2個の外径位置基準球4も順次同様に測定して、3個の外径位置基準球4のすべてのXYZ位置座標をそれぞれ測定して算出し、3個の外径位置基準球4のXYZデータ(XYZ位置座標データ)(X,Y,Z)、(X,Y,Z)、(X,Y,Z)をそれぞれ得て、記憶部71に記憶する(ステップS4)。 Next, the remaining two outer diameter position reference spheres 4 are sequentially measured in the same manner, and all the XYZ position coordinates of the three outer diameter position reference spheres 4 are respectively measured and calculated. XYZ data (XYZ position coordinate data) (X 1 , Y 1 , Z 1 ), (X 2 , Y 2 , Z 2 ), (X 3 , Y 3 , Z 3 ) of the reference sphere 4 are obtained and stored. Store in the unit 71 (step S4).

その後、レンズ1のレンズ面1aをスタイラス2でXY軸上に走査してXYZ位置座標を3次元形状測定装置70で測定し(図1のA3の位置に示すスタイラス2を参照。)、レンズ測定中心を演算部72で求めて、記憶部71に記憶する(ステップS5)。レンズ1を3次元形状測定装置70に対して、サブミクロン以下の精度で例えば水平に取り付けることは不可能であり、斜めに取り付けられたレンズ1では、頂点がレンズ1の中心にはならない。そこで、XY軸上に複数点のデータ測定を行い、レンズ1が非球面の場合、この測定データからレンズ1の傾き、レンズ1の傾いた状態でのレンズ1の中心位置を計算で求めることができる。具体的には、設計式と測定データの差の2乗の和が最小になるように、XY位置、XY軸まわりの傾き、Z位置を変化させて、レンズ1の姿勢を求めることができる。   Thereafter, the lens surface 1a of the lens 1 is scanned on the XY axes with the stylus 2, and the XYZ position coordinates are measured with the three-dimensional shape measuring device 70 (see the stylus 2 shown at the position A3 in FIG. 1). The center is obtained by the calculation unit 72 and stored in the storage unit 71 (step S5). For example, it is impossible to attach the lens 1 horizontally to the three-dimensional shape measuring apparatus 70 with sub-micron accuracy or less. With the lens 1 attached obliquely, the apex does not become the center of the lens 1. Therefore, data measurement is performed at a plurality of points on the XY axes, and when the lens 1 is an aspherical surface, the tilt of the lens 1 and the center position of the lens 1 in the tilted state of the lens 1 can be obtained by calculation from this measurement data. it can. Specifically, the posture of the lens 1 can be obtained by changing the XY position, the inclination about the XY axis, and the Z position so that the sum of the squares of the differences between the design formula and the measurement data is minimized.

次いで、この測定中心を測定座標の開始点とし、レンズ面1aを同心円状にレンズ面1aの全面のXYZ位置座標を測定して、レンズ1の形状データを取得して記憶部71に記憶する(ステップS6)。   Next, using this measurement center as the start point of the measurement coordinates, the XYZ position coordinates of the entire lens surface 1a are measured concentrically with the lens surface 1a, and the shape data of the lens 1 is acquired and stored in the storage unit 71 ( Step S6).

次いで、演算部72により、測定した形状データと測定対象のレンズ1の設計式との差を求め、その差の2乗和が最小になるように、設計座標(設計式で定義されたレンズ面上のXYZ座標、又は、レンズ1の形状を定義する設計座標)を、XYZ方向に平行移動あるいは、XYZ軸まわりの回転方向であるA、B、C方向にそれぞれ回転させ、最小となった値を3次元形状測定装置70の座標を基準としたアライメント量(X,Y,Z,A,B,C)として算出して記憶部71に記憶する(ステップS7)。 Next, the calculation unit 72 obtains a difference between the measured shape data and the design equation of the lens 1 to be measured, and design coordinates (the lens surface defined by the design equation) so that the sum of squares of the difference is minimized. The above XYZ coordinates or the design coordinates that define the shape of the lens 1 are translated in the XYZ directions or rotated in the A, B, and C directions, which are the rotation directions around the XYZ axes, respectively. Is calculated as an alignment amount (X a , Y a , Z a , A a , B a , C a ) based on the coordinates of the three-dimensional shape measuring apparatus 70 and stored in the storage unit 71 (step S7).

その後、3個の外径位置基準球4の測定で得られた、3個の外径位置基準球4のXYZデータと、予め測定された3個の外径位置基準球4の中心と円筒方向のピン上面のそれぞれの高さ(外径位置基準球4のZ位置高さ)h、h、hを用いて、演算部72により、3個の外径位置基準球4における、レンズ1の裏面が円筒横方向ピン5に接している治具面高さZ1j=Z−h、Z2j=Z−h、Z3j=Z−hを算出して、記憶部71に記憶する(ステップS8)。 Thereafter, the XYZ data of the three outer diameter position reference spheres 4 obtained by the measurement of the three outer diameter position reference spheres 4, the centers of the three outer diameter position reference spheres 4 measured in advance and the cylindrical direction Using the respective heights (Z position heights of the outer diameter position reference sphere 4) h 1 , h 2 , and h 3 of the pins, the calculation unit 72 uses the lens in the three outer diameter position reference spheres 4. The jig surface height Z 1j = Z 1 -h 1 , Z 2j = Z 2 -h 2 , Z 3j = Z 3 -h 3 where the back surface of 1 is in contact with the cylindrical lateral pin 5 is calculated and stored. It memorize | stores in the part 71 (step S8).

次いで、3個の外径位置基準球4のレンズ外径と接する位置での治具面高さZ1j、Z2j、Z3jの3点の位置座標(X,Y,Z1j)、(X,Y,Z2j)、(X,Y,Z3j)を通る平面の方程式P1を算出する(ステップS9)。 Next, position coordinates (X 1 , Y 1 , Z 1j ) of three points of jig surface heights Z 1j , Z 2j , Z 3j at positions where they contact the lens outer diameter of the three outer diameter position reference spheres 4, A plane equation P1 passing through (X 2 , Y 2 , Z 2j ), (X 3 , Y 3 , Z 3j ) is calculated (step S9).

次いで、この平面の方程式P1とX、Y各軸のなす角、すなわちレンズ1の外周部の裏面のチルト角A、Bを演算部72で算出して、記憶部71に記憶する(ステップS10)。平面の方程式より、平面の法線ベクトルは容易に求まり、求められた法線ベクトルのXZ面、YZ面で見たベクトルも容易に求まることから、この2つのベクトルと、Z軸のなす角(チルト角A、B)を内積から求めることができる。 Next, the angle formed by the plane equation P1 and the X and Y axes, that is, the tilt angles A p and B p of the back surface of the outer peripheral portion of the lens 1 are calculated by the calculation unit 72 and stored in the storage unit 71 (step 71). S10). From the plane equation, the normal vector of the plane can be easily obtained, and the vector of the obtained normal vector viewed on the XZ plane and the YZ plane can be easily obtained. Therefore, the angle formed by these two vectors and the Z axis ( Tilt angles A p , B p ) can be determined from the inner product.

次いで、レンズ1の外形形状が円形でない場合は、レンズ1の外周部の側面のうちのレンズ基準側面と定義された部分に設置された、1個目と2個目の外径位置基準球4の位置座標とX軸のなす角Cをスタイラス2で求め、レンズ1の外周部の側面のチルト角を演算部72で求めて記憶部71に記憶する(ステップS11)。ただし、レンズ1の外形形状が円形である場合には、このステップS11は省略する。 Next, when the outer shape of the lens 1 is not circular, the first and second outer diameter position reference spheres 4 installed in the portion defined as the lens reference side surface in the side surface of the outer periphery of the lens 1. the angle C p coordinates and X axis calculated by the stylus 2, stores the tilt angle of the side surface of the outer peripheral portion of the lens 1 in the storage unit 71 are acquired by computing unit 72 (step S11). However, if the outer shape of the lens 1 is circular, this step S11 is omitted.

その後、予め測定された3個の外径位置基準球4の半径R,R,Rと、先に求めた3個の外径位置基準球4のXY座標を中心とし、前記半径で描かれた3つの円に内接する円の中心座標X、Yを演算部72で算出する(ステップS12)。 Thereafter, the radii R 1 , R 2 , R 3 of the three outer diameter position reference spheres 4 measured in advance and the XY coordinates of the three outer diameter position reference spheres 4 obtained in the above are used as the centers, and the radius Center coordinates X c and Y c of the circle inscribed in the three drawn circles are calculated by the calculation unit 72 (step S12).

次いで、このX、Yの値を、先に求めた平面の方程式P1に、前記X,Yを代入し、レンズ1の外周部の側面に対する中心位置での基準高さZを演算部72で算出する(ステップS13)。 Then, the X c, the value of Y c, the plane equation P1 previously obtained, the X c, by substituting Y c, the reference height Z c at the center position with respect to the side surface of the outer peripheral portion of the lens 1 Calculation is performed by the calculation unit 72 (step S13).

次いで、前記アライメント量(X,Y,Z,A,B,C)と、前記レンズ1の外周部の裏面のチルト角A、B及び中心位置との差を演算部72で求めることにより、レンズ1の外周部基準(言い換えれば外形基準)での偏心量dX=X−X,dY=Y−Y,dZ=Z−Zと、チルト量dA=A−A,dB=B−B,dC=C−Cをそれぞれ算出して、記憶部71に記憶する(ステップS14)。なお、レンズ1の外形形状が円形である場合には、dC=C−Cは算出しない。 Next, the difference between the alignment amount (X a , Y a , Z a , A a , B a , C a ) and the tilt angles A p , B p on the back surface of the outer periphery of the lens 1 and the center position is calculated. By calculating by the portion 72, the eccentric amount dX = X a −X c , dY = Y a −Y c , dZ = Z a −Z c and the tilt amount with respect to the outer peripheral portion reference (in other words, the outer shape reference) of the lens 1. dA = A a −A p , dB = B a −B p , dC = C a −C p are calculated and stored in the storage unit 71 (step S < b > 14). If the outer shape of the lens 1 is circular, dC = C a −C p is not calculated.

この結果、算出されたレンズ1の外周部基準(言い換えれば外形基準)での偏心量とチルト量を基に、前記レンズ1の姿勢を演算部72で求めることにより、前記レンズの形状を測定することができる。   As a result, the shape of the lens 1 is measured by calculating the posture of the lens 1 by the calculation unit 72 based on the calculated eccentricity and tilt amount based on the calculated outer circumference reference (in other words, the outer shape reference) of the lens 1. be able to.

前記第1実施形態にかかる形状測定方法及び測定用治具によれば、レンズ1の外周部の側面、あるいはレンズ1の裏面を直接測定できない場合でも、レンズ1の外周部の外側に配置された3つの外径位置基準球4と、レンズ1の外周部の3カ所に設けられた前記レンズ1の裏面を支持する円筒横方向ピン5とにより、レンズ1の外径あるいは裏面を基準に、レンズ1の姿勢の測定、従って、レンズ形状測定を高精度に行うことが出来る。   According to the shape measurement method and the measurement jig according to the first embodiment, even when the side surface of the outer peripheral portion of the lens 1 or the back surface of the lens 1 cannot be directly measured, the lens is disposed outside the outer peripheral portion of the lens 1. Based on the outer diameter or the back surface of the lens 1, the three outer diameter position reference spheres 4 and cylindrical lateral pins 5 that support the back surface of the lens 1 provided at three locations on the outer periphery of the lens 1. 1 can be measured with high accuracy, and therefore the lens shape can be measured with high accuracy.

さらに、3つの外径位置基準球4が外径位置基準球支持部材4Aにより横方向に対して斜め方向からレンズ1の外周部の側面を支持し、外径位置基準球4の高さと、外径位置基準球4の半径位置を長さ調整機構6でそれぞれ可変とし、3つの円筒横方向ピン5の半径方向の位置を長さ調整機構6でそれぞれ可変とし、前記外径位置基準球4と前記円筒横方向ピン5を、1つの保持ユニットの一例としての保持爪3として構成し、かつ、3つの保持ユニットで前記測定用治具を構成することにより、前記保持爪3の保持ユニットをレンズ寸法個々に応じて作り替えることなく測定を行うことが出来る。   Further, the three outer diameter position reference spheres 4 support the outer peripheral side surface of the lens 1 from the oblique direction with respect to the lateral direction by the outer diameter position reference sphere support member 4A. The radial position of the radial position reference sphere 4 is variable by the length adjustment mechanism 6, and the radial positions of the three cylindrical lateral pins 5 are variable by the length adjustment mechanism 6. The cylindrical lateral pin 5 is configured as a holding claw 3 as an example of one holding unit, and the holding jig of the holding claw 3 is configured as a lens by configuring the measurement jig with three holding units. Measurements can be made without changing each dimension.

以下に、円筒横方向ピン5の長さ調整と外径位置基準球支持部材4Aの長さ調整について詳述する。   The length adjustment of the cylindrical lateral pin 5 and the length adjustment of the outer diameter position reference sphere support member 4A will be described in detail below.

図12Aに、3個の保持爪3のそれぞれの円筒横方向ピン5の長さ調整と外径位置基準球支持部材4Aの長さ調整をそれぞれ行なう長さ調整用治具60の構成を示す。長さ調整用治具60は、1段目の小さい方の円筒部60aと、2段目の大きい方の円筒部60bとよりなる2段の円筒形状より構成されている。1段目の小さい方の円筒部60aの外径は、レンズ1のレンズコバ部7の裏面側の内径と同じ大きさで、円筒横方向ピン5の先端の直径と同程度の厚さで作成する。さらに、測定するレンズ1の外周部の側面基準のレンズコバ部7の外径と同じになるように、レンズコバ部7のコバ幅ddだけ大きくした円筒で2段目の大きい方の円筒部60bを、レンズコバ部7の厚さと同程度の厚さで作成する。   FIG. 12A shows the configuration of a length adjusting jig 60 that adjusts the length of each of the cylindrical lateral pins 5 of the three holding claws 3 and the length of the outer diameter position reference ball support member 4A. The length adjusting jig 60 is formed of a two-stage cylindrical shape including a first-stage smaller cylindrical part 60a and a second-stage larger cylindrical part 60b. The outer diameter of the first-stage smaller cylindrical portion 60a is the same size as the inner diameter on the back surface side of the lens edge portion 7 of the lens 1 and is made to have a thickness comparable to the diameter of the tip of the cylindrical lateral pin 5. . Furthermore, the second larger cylindrical portion 60b is made of a cylinder that is enlarged by the edge width dd of the lens edge portion 7 so as to be the same as the outer diameter of the side-side reference lens edge portion 7 of the outer peripheral portion of the lens 1 to be measured. It is created with the same thickness as the lens edge portion 7.

この長さ調整用治具60の小さい方の円筒部60aを図12Bに示すように、前記測定用治具の支持プレート10の中央の貫通穴10aにはめ込むように取り付ける。次いで、長さ調整機構6で、斜めに外径位置基準球支持部材4Aに支持された外径位置基準球4が長さ調整用治具60の2段目の円筒部60bのほぼ中央に来るように長さ調整する。具体的には、第1調整ねじ6aを緩めて長さ調整機構用ケース6cに対する外径位置基準球支持部材4Aの位置調整を行なったのち、第1調整ねじ6aを締めてその位置で外径位置基準球支持部材4Aを固定する。また、円筒横方向ピン5の位置を、長さ調整用治具60の1段目の円筒部60aの側面位置に接触するように長さ調整する。具体的には、第2調整ねじ6bを緩めて長さ調整機構用ケース6cに対する円筒横方向ピン5の位置調整を行なったのち、第2調整ねじ6bを締めてその位置で円筒横方向ピン5を固定する。   As shown in FIG. 12B, the smaller cylindrical portion 60a of the length adjusting jig 60 is attached so as to fit in the central through hole 10a of the support plate 10 of the measuring jig. Next, the outer diameter position reference sphere 4 supported by the outer diameter position reference sphere support member 4 </ b> A obliquely by the length adjustment mechanism 6 comes to substantially the center of the second-stage cylindrical portion 60 b of the length adjustment jig 60. Adjust the length as follows. Specifically, after the first adjustment screw 6a is loosened to adjust the position of the outer diameter position reference ball support member 4A with respect to the length adjustment mechanism case 6c, the first adjustment screw 6a is tightened and the outer diameter is adjusted at that position. The position reference sphere support member 4A is fixed. Further, the length of the cylindrical lateral pin 5 is adjusted so as to come into contact with the side surface position of the first-stage cylindrical portion 60 a of the length adjusting jig 60. Specifically, after the second adjusting screw 6b is loosened to adjust the position of the cylindrical lateral pin 5 relative to the length adjusting mechanism case 6c, the second adjusting screw 6b is tightened and the cylindrical lateral pin 5 is tightened at that position. To fix.

このような図12Aに示す長さ調整用治具60を用いることにより、レンズコバ部7が0.4mm程度と小さくても、円筒横方向ピン5の位置を容易に調整することができる。   By using such a length adjustment jig 60 shown in FIG. 12A, the position of the cylindrical lateral pin 5 can be easily adjusted even if the lens edge portion 7 is as small as about 0.4 mm.

また、このように、3個の保持爪3の位置をそれぞれ調整可能とする(言い換えれば、外径位置基準球支持部材4Aに支持された外径位置基準球4の位置調整可能及び円筒横方向ピン5の位置調整可能とする)ことで、高精度な加工が必要な、外径位置基準球4を、測定するレンズ1の形状に応じて設計・製作する必要がなく、測定対象であるレンズ1の機種切り替え時にも、前記長さ調整用治具60により、又は、図11に示す簡便な治具60Cにより、低コストで行うことができる。   In addition, the positions of the three holding claws 3 can be adjusted in this way (in other words, the position of the outer diameter position reference sphere 4 supported by the outer diameter position reference sphere support member 4A can be adjusted, and the horizontal direction of the cylinder). It is possible to adjust the position of the pin 5), and it is not necessary to design and manufacture the outer diameter position reference sphere 4, which requires high-precision processing, according to the shape of the lens 1 to be measured. Even when the model is switched, the length adjustment jig 60 or the simple jig 60C shown in FIG. 11 can be used at low cost.

図11に示す簡便な治具60Cは、例えば、厚さが既知の円柱状のブロックゲージ60Cで構成されており、3つの外径位置基準球4と円筒横方向ピン5の高さ測定を行なうものである。このブロックゲージ60Cは、以下のようにして使用する。   A simple jig 60 </ b> C shown in FIG. 11 is constituted by, for example, a cylindrical block gauge 60 </ b> C having a known thickness, and measures the heights of the three outer diameter position reference spheres 4 and the cylindrical lateral pins 5. Is. This block gauge 60C is used as follows.

まず、ブロックゲージ60Cを使用する前に、3本の円筒横方向ピン5の位置調整を行なうために、長さ調整用治具60の1段目の小さい方の円筒部60aのみを使用する。具体的には、例えば、円筒部60aを、前記測定用治具の支持プレート10の中央の貫通穴10aに図12Bにおける上方から下方にはめ込んで、円筒部60aの側面に3本の円筒横方向ピン5の先端を接触させて、3本の円筒横方向ピン5の位置調整を行なう。   First, in order to adjust the positions of the three cylindrical lateral pins 5 before using the block gauge 60C, only the first smaller cylindrical portion 60a of the length adjusting jig 60 is used. Specifically, for example, the cylindrical portion 60a is fitted into the central through hole 10a of the support plate 10 of the measurement jig from the upper side to the lower side in FIG. The positions of the three cylindrical transverse pins 5 are adjusted by bringing the tips of the pins 5 into contact with each other.

次いで、長さ調整用治具60の円筒部60aを支持プレート10の中央の貫通穴10aから取り外したのち、図11に示すように、校正用ブロックゲージ60Cを3本の円筒横方向ピン5で支持するように載置する。   Next, after removing the cylindrical portion 60 a of the length adjusting jig 60 from the central through hole 10 a of the support plate 10, a calibration block gauge 60 C is connected with three cylindrical lateral pins 5 as shown in FIG. Place to support.

次いで、図11にA4で示すように、ブロックゲージ60Cの上面をスタイラス2が走査して上面を測定し、スタイラス2に連結された3次元形状測定装置70でブロックゲージ60Cの上面の位置座標を求めて、求められた位置座標を3次元形状測定装置70の記憶部71に記憶する。   Next, as indicated by A4 in FIG. 11, the stylus 2 scans the upper surface of the block gauge 60C to measure the upper surface, and the position coordinate of the upper surface of the block gauge 60C is measured by the three-dimensional shape measuring device 70 connected to the stylus 2. The obtained position coordinates are stored in the storage unit 71 of the three-dimensional shape measuring apparatus 70.

次いで、図11にA5及びA6で示すように、スタイラス2に連結された3次元形状測定装置70で3つの外径位置基準球4を順次走査して、それらの位置座標をそれぞれ測定して、それぞれの頂点座標を演算部72で算出して、算出結果を3次元形状測定装置70の記憶部71に記憶する。   Next, as shown by A5 and A6 in FIG. 11, the three-dimensional shape measuring device 70 connected to the stylus 2 sequentially scans the three outer diameter position reference spheres 4 and measures their position coordinates, Each vertex coordinate is calculated by the calculation unit 72 and the calculation result is stored in the storage unit 71 of the three-dimensional shape measuring apparatus 70.

次いで、ブロックゲージ60Cの上面の位置座標の測定データより求めた平面より、ブロックゲージ60Cの厚さを引いた平面の方程式に、3つの外径位置基準球4の頂点座標であるXY位置座標を代入し、このときの3つの外径位置基準球4のZ位置と3つの外径位置基準球4の各頂点高さとの差Z1d、Z2d、Z3dを校正パラメータとして演算部72で算出する。 Next, the XY position coordinates which are the vertex coordinates of the three outer diameter position reference spheres 4 are added to the plane equation obtained by subtracting the thickness of the block gauge 60C from the plane obtained from the measurement data of the position coordinates of the upper surface of the block gauge 60C. assignment, and calculated by the arithmetic unit 72 the difference between Z 1d between each vertex height of the three outer diameter position reference sphere 4 Z position and three outer diameter position reference ball 4 in this case, Z 2d, the Z 3d as calibration parameters To do.

最後に、算出されたデータを記憶部71に記憶する。   Finally, the calculated data is stored in the storage unit 71.

このようにして、記憶部71に記憶された校正パラメータを、レンズ形状測定時の校正パラメータとして使用する(治具面高さZ1j、Z2j、Z3j(予め測定された3個の外径位置基準球4の中心と円筒方向のピン上面のそれぞれの高さh、h、hに相当)と同様に扱う)。 In this way, the calibration parameters stored in the storage unit 71 are used as calibration parameters at the time of lens shape measurement (jig surface heights Z 1j , Z 2j , Z 3j (three outer diameters measured in advance). It is treated in the same manner as the heights h 1 , h 2 , and h 3 of the center of the position reference sphere 4 and the pin upper surface in the cylindrical direction).

(第2実施形態)
図5A及び図5Bは、本発明の第2実施形態における測定用治具の別の例にかかる保持爪3Aの詳細図である。第1実施形態と異なるのは、円筒横方向ピン5に代えて、先端形状が球面の球状横方向ピン13を使用する点である。
(Second Embodiment)
5A and 5B are detailed views of a holding claw 3A according to another example of the measurement jig in the second embodiment of the present invention. The difference from the first embodiment is that a spherical lateral pin 13 having a spherical tip shape is used instead of the cylindrical lateral pin 5.

図5A及び図5Bで、レンズ1Aの外周部の裏面でレンズ1Aの外周部のエッジ近傍まで、レンズ面が加工されている場合(言い換えれば、レンズコバ部が無い場合)、エッジ近傍の支持位置でのレンズ1Aの外周部の裏面は傾斜面となり、先端形状が球面13aの球状横方向ピン13にて支持する。この3つの球状横方向ピン13を、予め外径位置基準球4と球状横方向ピン13の頂点位置のXYZ位置座標を事前にスタイラス2を走査して3次元形状測定装置70で測定し、3つの保持爪3での各隣接する2つの外径位置基準球4間の距離を演算部72で算出しておく。さらに、レンズ1Aの設計式より支持点近傍のレンズ中心方向への傾きの正接を演算部72で求めておく。この傾きと1つの保持爪3を基準とし、2つの保持爪3の中心方向への距離の差を前記正接に掛けた値を、レンズ裏面支持位置の高さhとして用いる。   5A and 5B, when the lens surface is processed to the vicinity of the edge of the outer peripheral portion of the lens 1A on the back surface of the outer peripheral portion of the lens 1A (in other words, when there is no lens edge portion), at the support position near the edge. The back surface of the outer peripheral portion of the lens 1A is an inclined surface and is supported by a spherical lateral pin 13 having a tip shape of a spherical surface 13a. The three spherical lateral pins 13 are measured in advance with the three-dimensional shape measuring device 70 by scanning the stylus 2 in advance with respect to the XYZ position coordinates of the apex positions of the outer diameter position reference sphere 4 and the spherical lateral pin 13. The distance between the two adjacent outer diameter position reference spheres 4 at one holding claw 3 is calculated by the calculation unit 72. Further, the calculation unit 72 obtains the tangent of the inclination toward the lens center near the support point from the design formula of the lens 1A. A value obtained by multiplying the tangent by the difference between the distances of the two holding claws 3 in the center direction with respect to this inclination and one holding claw 3 is used as the height h of the lens back surface support position.

なお、一例として、外径位置基準球4で支持するレンズ1Aの外周部の側面の位置である高さ(レンズ裏面支持位置の高さ)hは1mm程度、球状横方向ピン13の球面13aによりレンズ1Aの裏面を支持する位置は、レンズ1Aの外周部のエッジから大略1mm内側の位置である。   As an example, the height h (the height of the lens back surface support position) h which is the position of the side surface of the outer peripheral portion of the lens 1A supported by the outer diameter position reference sphere 4 is about 1 mm, and is determined by the spherical surface 13a of the spherical lateral pin 13. The position for supporting the back surface of the lens 1A is a position approximately 1 mm inside from the edge of the outer periphery of the lens 1A.

前記第2実施形態によれば、第1実施形態の円筒横方向ピン5に代えて、レンズ1Aの裏面に接する面が球面13aの球状横方向ピン13を使用するようにしたので、円筒横方向ピン5で支持する場合よりも、レンズ1Aの裏面が平面のレンズコバ部7を有しておらず傾斜したレンズ1Aの裏面を高い精度で支持することができて、好適なレンズ形状測定を行うことができる。   According to the second embodiment, instead of the cylindrical lateral pin 5 of the first embodiment, the spherical lateral pin 13 whose spherical surface 13a is in contact with the back surface of the lens 1A is used. Compared with the case of supporting with the pin 5, the back surface of the lens 1A does not have the flat lens edge portion 7, but the back surface of the inclined lens 1A can be supported with high accuracy, and a suitable lens shape measurement is performed. Can do.

(第3実施形態)
図6は、本発明の第3実施形態における測定用治具の別の例の保持爪3Bの詳細図である。第1実施形態と異なるのは、外径位置基準球4の代わりに、凹形状の円錐面14aを中央に有する円筒型の(外形位置決め体の一例としての)凹円錐位置決めピン14を外径位置基準球支持部材4Aの先端に固定する点である。
(Third embodiment)
FIG. 6 is a detailed view of a holding claw 3B as another example of the measurement jig according to the third embodiment of the present invention. The difference from the first embodiment is that instead of the outer diameter position reference sphere 4, a cylindrical conical positioning pin 14 (as an example of an outer shape positioning body) having a concave conical surface 14 a at the center is provided at the outer diameter position. It is a point fixed to the tip of the reference sphere support member 4A.

図6において、レンズ1の外周部の側面に接触する、凹円錐位置決めピン14の側面が円筒形に構成され、円筒型の凹円錐位置決めピン14がレンズ1の外周部の側面に接触する部分の高さと同じ高さに、凹形状の円錐面14aが凹円錐位置決めピン14の内部に設けられたものである。また、各凹円錐位置決めピン14の円錐面14aのテーパ角と凹円錐位置決めピン14の外径は、予め別途測定しておくものとする。一例として、凹円錐位置決めピン14は外径1mmとし、凹形状の円錐面14aの精度は1μm以下とする。一例として、凹形状の円錐面14aは、厚さ0.5mm〜1.0mmに対して0.3mm凹ませた形状とする。   In FIG. 6, the side surface of the concave cone positioning pin 14 that contacts the side surface of the outer peripheral portion of the lens 1 is configured in a cylindrical shape, and the portion of the cylindrical concave cone positioning pin 14 that contacts the side surface of the outer peripheral portion of the lens 1. A concave conical surface 14 a is provided in the concave cone positioning pin 14 at the same height as the height. The taper angle of the conical surface 14a of each concave cone positioning pin 14 and the outer diameter of the concave cone positioning pin 14 are separately measured in advance. As an example, the concave cone positioning pin 14 has an outer diameter of 1 mm, and the accuracy of the concave conical surface 14a is 1 μm or less. As an example, the concave conical surface 14a has a shape that is recessed by 0.3 mm with respect to a thickness of 0.5 mm to 1.0 mm.

図6の凹円錐位置決めピン14を用いた第3実施形態における測定用治具におけるレンズ形状測定の手順を、図7A及び図7Bを用いて説明する。   The procedure for measuring the lens shape of the measurement jig in the third embodiment using the concave cone positioning pin 14 of FIG. 6 will be described with reference to FIGS. 7A and 7B.

レンズ1を図6の形態でそれぞれ構成された3個の保持爪3Bを、図2と同じ上面からの構成の測定用治具の支持プレート10に設置し、レンズ1の外周部より一定力でレンズ1を3個の保持爪3Bで押えて支持する。   The three holding claws 3B each having the lens 1 configured in the form of FIG. 6 are placed on the support plate 10 of the measuring jig having the same configuration as that of FIG. The lens 1 is supported by three holding claws 3B.

この状態で、まず、3次元形状測定装置70の記憶部71から3本の凹円錐位置決めピン14のXYZ位置座標を取得する(ステップS21)。   In this state, first, the XYZ position coordinates of the three concave cone positioning pins 14 are acquired from the storage unit 71 of the three-dimensional shape measuring apparatus 70 (step S21).

次いで、取得されたXYZ位置座標を基に、3次元形状測定装置70のスタイラス2を移動させて、スタイラス2を、3個の保持爪3の先端の3本の凹円錐位置決めピン14のうちの1本の凹円錐位置決めピン14にスタイラス2を接触させて(図1のA1又はA2の位置に示すスタイラス2を参照。)、凹円錐位置決めピン14のXYZ位置座標をスタイラス2に連結された3次元形状測定装置70により測定して、測定結果を3次元形状測定装置70の記憶部71に記憶する。   Next, based on the acquired XYZ position coordinates, the stylus 2 of the three-dimensional shape measuring apparatus 70 is moved, and the stylus 2 is moved out of the three concave cone positioning pins 14 at the tips of the three holding claws 3. The stylus 2 is brought into contact with one concave cone positioning pin 14 (see the stylus 2 shown in the position of A1 or A2 in FIG. 1), and the XYZ position coordinates of the concave cone positioning pin 14 are connected to the stylus 2. Measurement is performed by the three-dimensional shape measuring apparatus 70 and the measurement result is stored in the storage unit 71 of the three-dimensional shape measuring apparatus 70.

この測定は、凹円錐位置決めピン14の円錐面14aで円錐の頂点を中心として、XY面内で同心円状にスタイラス2を走査することにより、凹円錐位置決めピン14の上面の頂点付近のXYZ位置座標が3次元形状測定装置70により測定され、事前に求めておいた凹円錐位置決めピン14のテーパ角(傾斜角)を用いて、凹円錐位置決めピン14の円弧中心及び凹円錐位置決めピン14のZ位置高さを、それぞれ、3次元形状測定装置70に接続された演算部72で算出し(ステップS22)、当該凹円錐位置決めピン14のXYZ位置を決定する。これにより、1本目の凹円錐位置決めピン14のXYZデータ(XYZ位置座標データ)(X,Y,Z)を算出して、算出結果を3次元形状測定装置70の記憶部71に記憶する(ステップS23)。 This measurement is performed by scanning the stylus 2 concentrically within the XY plane around the apex of the cone on the conical surface 14a of the concave cone positioning pin 14 to obtain XYZ position coordinates near the apex of the upper surface of the concave cone positioning pin 14. Is measured by the three-dimensional shape measuring device 70, and the arc position of the concave cone positioning pin 14 and the Z position of the concave cone positioning pin 14 are obtained using the taper angle (inclination angle) of the concave cone positioning pin 14 obtained in advance. The height is calculated by the calculation unit 72 connected to the three-dimensional shape measuring apparatus 70 (step S22), and the XYZ position of the concave cone positioning pin 14 is determined. Thus, XYZ data (XYZ position coordinate data) (X 1 , Y 1 , Z 1 ) of the first concave cone positioning pin 14 is calculated, and the calculation result is stored in the storage unit 71 of the three-dimensional shape measuring apparatus 70. (Step S23).

次いで、残りの2本の凹円錐位置決めピン14も順次同様に測定して、3本の凹円錐位置決めピン14のすべてのXYZ位置座標をそれぞれ測定して算出し、3本の凹円錐位置決めピン14のXYZデータ(XYZ位置座標データ)(X,Y,Z)、(X,Y,Z)、(X,Y,Z)をそれぞれ得て、記憶部71に記憶する(ステップS24)。 Next, the remaining two concave cone positioning pins 14 are similarly measured sequentially, and all the XYZ position coordinates of the three concave cone positioning pins 14 are respectively measured and calculated, and the three concave cone positioning pins 14 are calculated. XYZ data (XYZ position coordinate data) (X 1 , Y 1 , Z 1 ), (X 2 , Y 2 , Z 2 ), (X 3 , Y 3 , Z 3 ) are obtained and stored in the storage unit 71. Store (step S24).

その後、レンズ1のレンズ面1aをスタイラス2でXY軸上に走査してXYZ位置座標を3次元形状測定装置70で測定し(図1のA3の位置に示すスタイラス2を参照。)、レンズ測定中心を演算部72で求めて、記憶部71に記憶する(ステップS25)。レンズ1を3次元形状測定装置70に対して、サブミクロン以下の精度で例えば水平に取り付けることは不可能であり、斜めに取り付けられたレンズ1では、頂点がレンズ1の中心にはならない。そこで、XY軸上に複数点のデータ測定を行い、レンズ1が非球面の場合、この測定データからレンズ1の傾き、レンズ1の傾いた状態でのレンズ1の中心位置を計算で求めることができる。具体的には、設計式と測定データの差の2乗の和が最小になるように、XY位置、XY軸まわりの傾き、Z位置を変化させて、レンズ1の姿勢を求めることができる。   Thereafter, the lens surface 1a of the lens 1 is scanned on the XY axes with the stylus 2, and the XYZ position coordinates are measured with the three-dimensional shape measuring device 70 (see the stylus 2 shown at the position A3 in FIG. 1). The center is obtained by the calculation unit 72 and stored in the storage unit 71 (step S25). For example, it is impossible to attach the lens 1 horizontally to the three-dimensional shape measuring apparatus 70 with sub-micron accuracy or less. With the lens 1 attached obliquely, the apex does not become the center of the lens 1. Therefore, data measurement is performed at a plurality of points on the XY axes, and when the lens 1 is an aspherical surface, the tilt of the lens 1 and the center position of the lens 1 in the tilted state of the lens 1 can be obtained by calculation from this measurement data. it can. Specifically, the posture of the lens 1 can be obtained by changing the XY position, the inclination about the XY axis, and the Z position so that the sum of the squares of the differences between the design formula and the measurement data is minimized.

次いで、この測定中心を測定座標の開始点とし、レンズ面1aを同心円状にレンズ面1aの全面のXYZ位置座標を測定して、レンズ1の形状データを取得して記憶部71に記憶する(ステップS26)。   Next, using this measurement center as the start point of the measurement coordinates, the XYZ position coordinates of the entire lens surface 1a are measured concentrically with the lens surface 1a, and the shape data of the lens 1 is acquired and stored in the storage unit 71 ( Step S26).

次いで、演算部72により、測定した形状データと測定対象のレンズ1の設計式との差を求め、その差の2乗和が最小になるように、設計座標(設計式で定義されたレンズ面上のXYZ座標、又は、レンズ1の形状を定義する設計座標)を、XYZ方向に平行移動あるいは、XYZ軸まわりの回転方向であるA、B、C方向に回転させ、最小となった値を3次元形状測定装置70の座標を基準としたアライメント量(X,Y,Z,A,B,C)として算出して記憶部71に記憶する(ステップS27)。 Next, the calculation unit 72 obtains a difference between the measured shape data and the design equation of the lens 1 to be measured, and design coordinates (the lens surface defined by the design equation) so that the sum of squares of the difference is minimized. The XYZ coordinates above or the design coordinates that define the shape of the lens 1 are translated in the XYZ directions or rotated in the A, B, and C directions that are rotation directions around the XYZ axes. An alignment amount (X a , Y a , Z a , A a , B a , C a ) based on the coordinates of the three-dimensional shape measuring apparatus 70 is calculated and stored in the storage unit 71 (step S27).

その後、3本の凹円錐位置決めピン14の測定で得られた、3本の凹円錐位置決めピン14のXYZデータと、予め測定された3本の凹円錐位置決めピン14のそれぞれのテーパ高さ(凹円錐位置決めピン14のZ位置高さ)h、h、hを用いて、演算部72により、3本の凹円錐位置決めピン14における、レンズ1の裏面が円筒横方向ピン5に接している治具面高さZ1j=Z−h、Z2j=Z−h、Z3j=Z−hを算出して、記憶部71に記憶する(ステップS28)。 Thereafter, the XYZ data of the three concave cone positioning pins 14 obtained by the measurement of the three concave cone positioning pins 14 and the taper height (recessed) of each of the three concave cone positioning pins 14 measured in advance. Using the calculation unit 72, the back surface of the lens 1 in the three concave cone positioning pins 14 is in contact with the cylindrical lateral pin 5 by using the Z position height h 1 , h 2 , h 3 of the cone positioning pin 14. The jig surface heights Z 1j = Z 1 -h 1 , Z 2j = Z 2 -h 2 , Z 3j = Z 3 -h 3 are calculated and stored in the storage unit 71 (step S28).

次いで、3本の凹円錐位置決めピン14のレンズ外径と接する位置での治具面高さZ1j、Z2j、Z3jの3点の位置座標(X,Y,Z1j)、(X,Y,Z2j)、(X,Y,Z3j)を通る平面の方程式P1を算出する(ステップS29)。 Next, the position coordinates (X 1 , Y 1 , Z 1j ) of the three points of the jig surface heights Z 1j , Z 2j , and Z 3j at the positions in contact with the lens outer diameter of the three concave cone positioning pins 14, ( X 2 , Y 2 , Z 2j ), (X 3 , Y 3 , Z 3j ) is calculated as a plane equation P1 (step S29).

次いで、この平面の方程式P1とX、Y各軸のなす角、すなわちレンズ1の外周部の裏面のチルト角A、Bを演算部72で算出して、記憶部71に記憶する(ステップS30)。平面の方程式より、平面の法線ベクトルは容易に求まり、求められた法線ベクトルのXZ面、YZ面で見たベクトルも容易に求まることから、この2つのベクトルと、Z軸のなす角(チルト角A、B)を内積から求めることができる。 Next, the angle formed by the plane equation P1 and the X and Y axes, that is, the tilt angles A p and B p of the back surface of the outer peripheral portion of the lens 1 are calculated by the calculation unit 72 and stored in the storage unit 71 (step 71). S30). From the plane equation, the normal vector of the plane can be easily obtained, and the vector of the obtained normal vector viewed on the XZ plane and the YZ plane can be easily obtained. Therefore, the angle formed by these two vectors and the Z axis ( Tilt angles A p , B p ) can be determined from the inner product.

次いで、レンズ1の外形が円形でない場合は、レンズ1の外周部の側面のうちのレンズ基準側面と定義された部分に設置された、1本目と2本目の凹円錐位置決めピン14の位置座標とX軸のなす角Cをスタイラス2で求め、レンズ1の外周部の側面のチルト角を演算部72で求めて記憶部71に記憶する(ステップS31)。ただし、レンズ1の外形形状が円形である場合には、このステップS11は省略する。 Next, when the outer shape of the lens 1 is not circular, the position coordinates of the first and second concave conical positioning pins 14 installed on the portion defined as the lens reference side surface of the outer peripheral side surface of the lens 1 obtains an angle C p in the X-axis with the stylus 2, stores the tilt angle of the side surface of the outer peripheral portion of the lens 1 in the storage unit 71 are acquired by computing unit 72 (step S31). However, if the outer shape of the lens 1 is circular, this step S11 is omitted.

その後、予め測定された3本の凹円錐位置決めピン14のレンズ1に接する位置の半径R,R,Rと、先に求めた3本の凹円錐位置決めピン14のXY座標を中心とし、前記半径で描かれた3つの円に内接する円の中心座標X、Yを演算部72で算出する(ステップS32)。 Thereafter, the radii R 1 , R 2 , R 3 of the positions of the three concave cone positioning pins 14 that are in contact with the lens 1 and the XY coordinates of the three concave cone positioning pins 14 obtained in advance are set as the centers. The central coordinates X c and Y c of the circle inscribed in the three circles drawn with the radius are calculated by the calculation unit 72 (step S32).

次いで、このX、Yの値を、先に求めた平面の方程式P1に、前記X,Yを代入し、レンズ1の外周部の側面に対する中心位置での基準高さZを演算部72で算出する(ステップS33)。 Then, the X c, the value of Y c, the plane equation P1 previously obtained, the X c, by substituting Y c, the reference height Z c at the center position with respect to the side surface of the outer peripheral portion of the lens 1 Calculation is performed by the calculation unit 72 (step S33).

次いで、前記アライメント量(X,Y,Z,A,B,C)と、前記レンズ1の外周部の裏面のチルト角A、B及び中心位置との差を演算部72で求めることにより、レンズ1の外周部基準(言い換えれば外形基準)での偏心量dX=X−X,dY=Y−Y,dZ=Z−Zと、チルト量dA=A−A,dB=B−B,dC=C−Cをそれぞれ算出して、記憶部71に記憶する(ステップS34)。なお、レンズ1の外形形状が円形である場合には、dC=C−Cは算出しない。 Next, the difference between the alignment amount (X a , Y a , Z a , A a , B a , C a ) and the tilt angles A p , B p on the back surface of the outer periphery of the lens 1 and the center position is calculated. By calculating by the portion 72, the eccentric amount dX = X a −X c , dY = Y a −Y c , dZ = Z a −Z c and the tilt amount with respect to the outer peripheral portion reference (in other words, the outer shape reference) of the lens 1. dA = A a −A p , dB = B a −B p , dC = C a −C p are calculated and stored in the storage unit 71 (step S34). If the outer shape of the lens 1 is circular, dC = C a −C p is not calculated.

この結果、算出されたレンズ1の外周部基準(言い換えれば外形基準)での偏心量とチルト量を基に、前記レンズ1の姿勢を演算部72で求めることにより、前記レンズの形状を測定することができる。   As a result, the shape of the lens 1 is measured by calculating the posture of the lens 1 by the calculation unit 72 based on the calculated eccentricity and tilt amount based on the calculated outer circumference reference (in other words, the outer shape reference) of the lens 1. be able to.

前記第3実施形態にかかる形状測定方法及び測定用治具によれば、レンズ1の外周部の外側に配置された3本の円筒型の位置決め体の一例である凹円錐位置決めピン14と、前記凹円錐位置決めピン14の中央に開けられた測定用の凹形状の円錐面14aを、凹円錐位置決めピン14の側面のレンズ1の外周部の側面の支持高さに近い位置に設置することにより、凹円錐位置決めピン14が多少傾いてもXY方向の誤差が最小になり、高い精度でレンズ形状測定を行なうことができる。   According to the shape measuring method and the measuring jig according to the third embodiment, the concave cone positioning pin 14 which is an example of three cylindrical positioning bodies arranged outside the outer peripheral portion of the lens 1; By setting the concave conical surface 14a for measurement opened in the center of the concave cone positioning pin 14 at a position close to the supporting height of the side surface of the outer peripheral portion of the lens 1 on the side surface of the concave cone positioning pin 14, Even if the concave cone positioning pin 14 is slightly inclined, the error in the XY direction is minimized, and the lens shape can be measured with high accuracy.

(第4実施形態)
図8は、本発明の第4実施形態における測定用治具のさらに別の例の保持爪3Cの詳細図である。第3実施形態と異なるのは、凹形状の円錐面14aを有する円筒型の凹円錐位置決めピン14の代わりに、凹形状の円錐面15aを中央に有する球形の(外形位置決め体の別の例としての)凹円錐位置決めピン15を外径位置基準球支持部材4Aの先端に固定する点である。
(Fourth embodiment)
FIG. 8 is a detailed view of a holding claw 3C as still another example of the measurement jig according to the fourth embodiment of the present invention. A difference from the third embodiment is that instead of the cylindrical concave cone positioning pin 14 having a concave conical surface 14a, a spherical shape having another concave conical surface 15a in the center (as another example of the outer shape positioning body). The concave conical positioning pin 15 is fixed to the tip of the outer diameter position reference sphere support member 4A.

図8において、凹円錐位置決めピン15の、レンズ1の外周部の側面部分に接触する部分が球形で形成され、レンズ1の外周部の側面に接触する部分の高さと同じ高さに設けられた、凹形状の円錐面15aを有するように、凹円錐位置決めピン15が構成されている。また、各凹円錐位置決めピン15のテーパ角と外径は予め別途測定しておくものとする。   In FIG. 8, the portion of the concave cone positioning pin 15 that contacts the side surface portion of the outer peripheral portion of the lens 1 is formed in a spherical shape, and is provided at the same height as the height of the portion that contacts the side surface of the outer peripheral portion of the lens 1. The concave cone positioning pin 15 is configured to have a concave conical surface 15a. The taper angle and outer diameter of each concave cone positioning pin 15 are separately measured in advance.

図8の凹円錐位置決めピン15を用いた測定用治具における測定の手順は図6の測定用治具と同様である。   The measurement procedure in the measurement jig using the concave cone positioning pin 15 of FIG. 8 is the same as that of the measurement jig of FIG.

第4実施形態によれば、凹円錐位置決めピン15の外形部分を球形に構成することにより、レンズ1の外周部の側面に接触する部分の加工精度をより高めることができて、より高精度にレンズ形状測定を行なうことができる。   According to the fourth embodiment, by forming the outer shape portion of the concave cone positioning pin 15 in a spherical shape, the processing accuracy of the portion that contacts the side surface of the outer peripheral portion of the lens 1 can be further increased, and the accuracy can be increased. Lens shape measurement can be performed.

(第5実施形態)
本発明の第5実施形態における測定用治具として、図9A〜図9Cに、それぞれ、レンズ1の外周部の裏面を支持する円筒横方向ピン5の先端上に設けられた裏面支持部材の3つの例を示す。
(Fifth embodiment)
As measurement jigs in the fifth embodiment of the present invention, FIGS. 9A to 9C each show a back support member 3 provided on the tip of a cylindrical lateral pin 5 that supports the back surface of the outer periphery of the lens 1. Here are two examples.

まず、図9A及び図9Bは三角錐状に加工した、裏面支持部材5A,5Bにてレンズ1の外周部のレンズコバ部7の裏面をそれぞれ支持するものである。裏面支持部材5Aは、斜辺が斜め右上方向沿いに向けられた直角三角形の側面を有するのに対して、裏面支持部材5Bは斜辺が円筒横方向ピン5の先端に固定された直角三角形の側面を有するものである点で異なるが、いずれも、裏面支持部材5A,5Bの三角錐の上端の頂点でレンズ1の外周部のレンズコバ部7の裏面を支持する。   First, FIG. 9A and FIG. 9B each support the back surface of the lens edge part 7 of the outer peripheral part of the lens 1 with the back surface support members 5A and 5B processed into a triangular pyramid shape. The back support member 5A has a right triangular side face whose oblique side is oriented obliquely along the upper right direction, whereas the back support member 5B has a right triangular side face whose oblique side is fixed to the tip of the cylindrical transverse pin 5. Although different in that they have, both support the back surface of the lens edge portion 7 on the outer peripheral portion of the lens 1 at the top of the triangular pyramid of the back surface support members 5A and 5B.

図9Cは四角錐状に加工した裏面支持部材5Cの四角錐の上端の頂点でレンズ1の外周部のレンズコバ部7の裏面を支持する。   9C supports the back surface of the lens edge portion 7 on the outer peripheral portion of the lens 1 at the top of the quadrangular pyramid of the back surface support member 5C processed into a quadrangular pyramid shape.

前記第5実施形態における測定用治具は以下のようにして使用される。例えば、前記第1実施形態にかかる前記測定用治具において、図1で、裏面を支持する円筒横方向ピン5を、図9Aに示すように先端に裏面支持部材5Aが固定された円筒横方向ピン5に変更した場合、裏面支持部材5Aの三角錐尖った頂点の上端のレンズ裏面支持高さを、予め外径位置基準球4の頂点位置と裏面支持部材5Aの頂点位置のXYZ位置座標を事前にスタイラス2で走査して3次元形状測定装置70で測定し、3つの保持爪3での各Z位置高さの距離を算出しておき、裏面支持位置のZ位置高さとして用いればよい。   The measurement jig in the fifth embodiment is used as follows. For example, in the measurement jig according to the first embodiment, in FIG. 1, the cylindrical lateral pin 5 that supports the back surface is the cylindrical lateral direction in which the back surface support member 5 </ b> A is fixed to the tip as shown in FIG. 9A. When the pin 5 is changed, the lens back surface support height at the upper end of the apex of the triangular pyramid of the back surface support member 5A is set in advance, and the XYZ position coordinates of the vertex position of the outer diameter position reference sphere 4 and the vertex position of the back surface support member 5A are preliminarily determined. Scanning with the stylus 2 and measuring with the three-dimensional shape measuring device 70 in advance, calculating the distance of each Z position height with the three holding claws 3, and using it as the Z position height of the back surface support position. .

この構成により、レンズ1の底面部分にゴミ等が付着していても、尖った形状の裏面支持部材5Aにより支持することにより、ゴミ等を跳ね除け、レンズ面を直接支持することが可能で、レンズ1を傾けることなく支持することが可能となり、高精度な測定を行うことが可能となる。   With this configuration, even if dust or the like adheres to the bottom surface portion of the lens 1, the lens surface can be supported directly by supporting the lens surface with the pointed back support member 5 </ b> A so that the lens surface can be directly supported. It becomes possible to support 1 without inclining, and it becomes possible to perform highly accurate measurement.

(第6実施形態)
本発明の第6実施形態における測定用治具を使用しての形状測定方法において、図10A〜図10Dに、前記測定用治具上に設けられた、3個の表裏偏心位置測定用基準球9を用い、レンズ1の表面に対するレンズ1の裏面のレンズ1の偏心量とチルト量で表されるレンズ1の姿勢の測定フローを示す。
(Sixth embodiment)
In the shape measuring method using the measuring jig in the sixth embodiment of the present invention, three reference spheres for measuring the front and back eccentric positions provided on the measuring jig are shown in FIGS. 10A to 10D. 9 shows a measurement flow of the posture of the lens 1 represented by the amount of eccentricity and the amount of tilt of the lens 1 on the back surface of the lens 1 with respect to the surface of the lens 1.

図10A及び図10Bのフローはレンズ外径基準での測定方法で、前記図7A及び図7Bと同じ手順で測定する。すなわち、図10A及び図10BのフローにおけるステップS41〜S54での動作は、図7A及び図7BのフローにおけるステップS21〜S34での動作と同一である。   The flow in FIGS. 10A and 10B is a measurement method based on the lens outer diameter, and the measurement is performed in the same procedure as in FIGS. 7A and 7B. That is, the operations in steps S41 to S54 in the flows of FIGS. 10A and 10B are the same as the operations in steps S21 to S34 in the flows of FIGS. 7A and 7B.

ステップS54の後、レンズ1の表面側から、3つの偏心位置測定用基準球9(ただし、図10C〜図10Dでは単に「基準3球」と称する。)を測定する(ステップS55)。このステップS55は基準3球の測定を1つずつ順次行うことを意味しており、具体的には、以下のステップS56〜S59の測定動作を行なうことを意味する。   After step S54, three eccentric position measurement reference spheres 9 (referred to simply as “reference three spheres” in FIGS. 10C to 10D) are measured from the surface side of the lens 1 (step S55). This step S55 means that the measurement of the three reference balls is sequentially performed one by one, and specifically, the measurement operation of the following steps S56 to S59 is performed.

次いで、3次元形状測定装置70の記憶部71から3つの偏心位置測定用基準球9のXYZ位置座標を取得する(ステップS56)。   Next, the XYZ position coordinates of the three eccentric position measurement reference spheres 9 are acquired from the storage unit 71 of the three-dimensional shape measuring apparatus 70 (step S56).

次いで、取得されたXYZ位置座標を基に、3次元形状測定装置70のスタイラス2を移動させて、スタイラス2を、3個の偏心位置測定用基準球9のうちの1つ目の偏心位置測定用基準球9の頂点近くの部分に接触させてXY軸上を走査して、前記1つ目の偏心位置測定用基準球9のXYZ位置座標をスタイラス2に連結された3次元形状測定装置70により測定して、測定結果を3次元形状測定装置70の記憶部71に記憶する(ステップS57)。   Next, based on the acquired XYZ position coordinates, the stylus 2 of the three-dimensional shape measuring apparatus 70 is moved, and the stylus 2 is measured for the first eccentric position of the three eccentric position measuring reference balls 9. A three-dimensional shape measuring apparatus 70 in which the XYZ position coordinates of the first eccentric position measuring reference sphere 9 are connected to the stylus 2 by making contact with a portion near the apex of the reference sphere 9 for scanning and scanning on the XY axis. And the measurement result is stored in the storage unit 71 of the three-dimensional shape measuring apparatus 70 (step S57).

次いで、前記1つ目の偏心位置測定用基準球9の頂点を基準にXY軸上あるいは同心円状にスタイラス2で前記1つ目の偏心位置測定用基準球9を走査して、前記1つ目の偏心位置測定用基準球9の上面の頂点付近のXYZ位置座標を3次元形状測定装置70により測定し、予め測定していた前記1つ目の偏心位置測定用基準球9の半径を用いて、レンズ1の表面側より測定した前記1つ目の偏心位置測定用基準球9の中心のXYZデータ(XYZ位置座標データ)、すなわち、1球目の偏心位置測定用基準球9のXYZ位置座標:(X1f,Y1f,Z1f)を算出して、算出結果を3次元形状測定装置70の記憶部71に記憶する(ステップS58)。 Next, the first eccentric position measuring reference sphere 9 is scanned with the stylus 2 on the XY axis or concentrically with the apex of the first eccentric position measuring reference sphere 9 as a reference. XYZ position coordinates near the top of the upper surface of the eccentric position measuring reference sphere 9 are measured by the three-dimensional shape measuring device 70, and the radius of the first eccentric position measuring reference sphere 9 measured in advance is used. XYZ data (XYZ position coordinate data) of the center of the first eccentric position measuring reference sphere 9 measured from the surface side of the lens 1, that is, the XYZ position coordinates of the first eccentric position measuring reference sphere 9 : (X 1f , Y 1f , Z 1f ) is calculated, and the calculation result is stored in the storage unit 71 of the three-dimensional shape measuring apparatus 70 (step S58).

次いで、残りの2個の偏心位置測定用基準球9も順次同様に測定して、3個の偏心位置測定用基準球9のすべてのXYZ位置座標をそれぞれ測定して算出し、3個の偏心位置測定用基準球9のXYZデータ(XYZ位置座標データ)(X1f,Y1f,Z1f)、(X2f,Y2f,Z2f)、(X3f,Y3f,Z3f)をそれぞれ得て、記憶部71に記憶する(ステップS59)。 Next, the remaining two eccentric position measurement reference spheres 9 are sequentially measured in the same manner, and all the XYZ position coordinates of the three eccentric position measurement reference spheres 9 are respectively measured and calculated. XYZ data (XYZ position coordinate data) (X 1f , Y 1f , Z 1f ), (X 2f , Y 2f , Z 2f ), (X 3f , Y 3f , Z 3f ) of the position measurement reference sphere 9 are obtained. And stored in the storage unit 71 (step S59).

次に、前記測定用治具ごと、レンズ1を表裏反転させ(言い換えれば、前記測定用治具にレンズ1を保持した状態のまま、前記測定用治具を表裏反転させ)、図7A及び図7Bと同様の手順で、裏面側のレンズ1の裏面をXY軸上に測定して測定中心を算出する(ステップS60)。   Next, for each of the measurement jigs, the lens 1 is turned upside down (in other words, the measurement jig is turned upside down while holding the lens 1 on the measurement jig), FIG. 7A and FIG. In the same procedure as 7B, the back surface of the lens 1 on the back surface side is measured on the XY axes to calculate the measurement center (step S60).

次いで、レンズ1の裏面上を測定して、レンズ1の裏面の形状データを取得する(ステップS61)。   Next, the back surface of the lens 1 is measured, and the shape data of the back surface of the lens 1 is acquired (step S61).

次いで、予め記憶部71に記憶されたレンズ1の裏面形状の設計式と、測定データとの差が最小になるように、設計座標(設計式で定義されたレンズ面上のXYZ座標、又は、レンズ1の形状を定義する設計座標)を、XYZ方向に平行移動あるいは、XYZ軸まわりの回転方向であるA、B、C方向に回転させ、各測定点での差の2乗和が最小となった値を3次元形状測定装置70の座標を基準としたアライメント量(Xab,Yab,Zab,Aab,Bab,Cab)として算出して記憶部71に記憶する(ステップS62)。 Next, design coordinates (XYZ coordinates on the lens surface defined by the design formula, or so as to minimize the difference between the design formula of the back surface shape of the lens 1 stored in the storage unit 71 and the measurement data in advance, or The design coordinates that define the shape of the lens 1 are translated in the XYZ directions or rotated in the A, B, and C directions that are rotation directions around the XYZ axes, and the sum of squares of the differences at each measurement point is minimized. The obtained value is calculated as an alignment amount (X ab , Y ab , Z ab , A ab , B ab , C ab ) based on the coordinates of the three-dimensional shape measuring apparatus 70 and stored in the storage unit 71 (step S62). ).

その後、前記測定用治具の位置をずらせることなく、レンズ1の裏面側より、表裏偏心位置測定用基準球9を前記と同様の手法で測定する。すなわち、まず、レンズ1の裏面側から、3つの偏心位置測定用基準球9を測定する(ステップS63)。このステップS63は基準3球の測定を1つずつ順次行うことを意味しており、具体的には、以下のステップS64〜S67の測定動作を行なうことを意味する。   Thereafter, the front and back eccentric position measurement reference sphere 9 is measured from the back side of the lens 1 by the same method as described above without shifting the position of the measurement jig. That is, first, three eccentric position measuring reference spheres 9 are measured from the back side of the lens 1 (step S63). This step S63 means that the measurement of the three reference balls is sequentially performed one by one, and specifically, the measurement operation of the following steps S64 to S67 is performed.

次いで、3次元形状測定装置70の記憶部71から3つの偏心位置測定用基準球9のXYZ位置座標を取得する(ステップS64)。   Next, the XYZ position coordinates of the three eccentric position measurement reference spheres 9 are acquired from the storage unit 71 of the three-dimensional shape measuring apparatus 70 (step S64).

次いで、取得されたXYZ位置座標を基に、3次元形状測定装置70のスタイラス2を移動させて、スタイラス2を、3個の偏心位置測定用基準球9のうちの1つ目の偏心位置測定用基準球9の頂点近くの部分に接触させてXY軸上を走査して、前記1つ目の偏心位置測定用基準球9のXYZ位置座標をスタイラス2に連結された3次元形状測定装置70により測定して、測定結果を3次元形状測定装置70の記憶部71に記憶する(ステップS65)。   Next, based on the acquired XYZ position coordinates, the stylus 2 of the three-dimensional shape measuring apparatus 70 is moved, and the stylus 2 is measured for the first eccentric position of the three eccentric position measuring reference balls 9. A three-dimensional shape measuring apparatus 70 in which the XYZ position coordinates of the first eccentric position measuring reference sphere 9 are connected to the stylus 2 by making contact with a portion near the apex of the reference sphere 9 for scanning and scanning on the XY axis. The measurement result is stored in the storage unit 71 of the three-dimensional shape measuring apparatus 70 (step S65).

次いで、前記1つ目の偏心位置測定用基準球9の頂点を基準にXY軸上あるいは同心円状にスタイラス2で前記1つ目の偏心位置測定用基準球9を走査して、前記1つ目の偏心位置測定用基準球9の上面の頂点付近のXYZ位置座標を3次元形状測定装置70により測定し、予め測定していた前記1つ目の偏心位置測定用基準球9の半径を用いて、レンズ1の裏面側より測定した前記1つ目の偏心位置測定用基準球9の中心のXYZデータ(XYZ位置座標データ)、すなわち、1球目の偏心位置測定用基準球9のXYZ位置座標:(X1b,Y1b,Z1b)を算出して、算出結果を3次元形状測定装置70の記憶部71に記憶する(ステップS66)。 Next, the first eccentric position measuring reference sphere 9 is scanned with the stylus 2 on the XY axis or concentrically with the apex of the first eccentric position measuring reference sphere 9 as a reference. XYZ position coordinates near the top of the upper surface of the eccentric position measuring reference sphere 9 are measured by the three-dimensional shape measuring device 70, and the radius of the first eccentric position measuring reference sphere 9 measured in advance is used. XYZ data (XYZ position coordinate data) of the center of the first eccentric position measuring reference sphere 9 measured from the back side of the lens 1, that is, the XYZ position coordinates of the first eccentric position measuring reference sphere 9 : (X 1b , Y 1b , Z 1b ) is calculated, and the calculation result is stored in the storage unit 71 of the three-dimensional shape measuring apparatus 70 (step S66).

次いで、残りの2個の偏心位置測定用基準球9も順次同様に測定して、3個の偏心位置測定用基準球9のすべてのXYZ位置座標をそれぞれ測定して算出し、3個の偏心位置測定用基準球9のXYZデータ(XYZ位置座標データ)(X1b,Y1b,Z1b)、(X2b,Y2b,Z2b)、(X3b,Y3b,Z3b)をそれぞれ得て、記憶部71に記憶する(ステップS67)。 Next, the remaining two eccentric position measurement reference spheres 9 are sequentially measured in the same manner, and all the XYZ position coordinates of the three eccentric position measurement reference spheres 9 are respectively measured and calculated. XYZ data (XYZ position coordinate data) (X 1b , Y 1b , Z 1b ), (X 2b , Y 2b , Z 2b ), (X 3b , Y 3b , Z 3b ) of the position measurement reference sphere 9 are obtained. And stored in the storage unit 71 (step S67).

この後、前記、レンズ1の表面側から測定した3つの偏心位置測定用基準球9を基準にレンズ1の表面の位置座標を決定し、さらに、レンズ1の裏面側から測定した3つの偏心位置測定用基準球9を基準にレンズ1の裏面の位置座標を決定し、各偏心位置測定用基準球9の中心は同一であることから、レンズ1の裏面の座標変換を行い、レンズ1の表面基準でレンズ1の裏面の偏心量、チルト量の算出を行うことにより、レンズ1の表面に対する裏面のレンズ1の偏心量とチルト量で表されるレンズ1の姿勢の算出を行う(ステップS68)。この算出方法は公知であり、例えば、特開2000−71344号公報の[0013]以降などに記載されている。   Thereafter, the position coordinates of the surface of the lens 1 are determined with reference to the three eccentric position measurement reference spheres 9 measured from the front surface side of the lens 1, and the three eccentric positions measured from the back surface side of the lens 1. The position coordinates of the back surface of the lens 1 are determined with reference to the measurement reference sphere 9, and the center of each eccentric position measurement reference sphere 9 is the same. By calculating the decentering amount and tilt amount of the back surface of the lens 1 on the basis, the attitude of the lens 1 represented by the decentering amount and tilt amount of the lens 1 on the back surface with respect to the front surface of the lens 1 is calculated (step S68). . This calculation method is known, and is described in, for example, [0013] et seq. In JP-A-2000-71344.

この構成により、レンズ1の外形基準での偏心とチルトの姿勢のみならず、レンズの表面に対する裏面の偏心とチルトの姿勢も測定が可能となる。   With this configuration, it is possible to measure not only the eccentricity and tilt attitude of the lens 1 based on the outer shape but also the eccentricity and tilt attitude of the back surface with respect to the lens surface.

(第7実施形態)
本発明の第7実施形態における測定用治具を使用しての形状測定方法における、前記測定用治具の校正手順を図11に示す。図11において、保持爪3は、斜めに外径位置基準球支持部材4Aで支持された外径位置基準球4と、円筒横方向ピン5とにより構成されている第1実施形態の例で説明するが、第2〜5実施形態などにかかる図5A及び図5B、図6、図8、図9A〜図9Cの構成の保持爪3A,3B,3Cなどでも、ほぼ同様の校正手順で前記測定用治具の校正(3つの外径位置基準球4の位置調整)を行なうことができる。
(Seventh embodiment)
FIG. 11 shows a calibration procedure of the measuring jig in the shape measuring method using the measuring jig in the seventh embodiment of the present invention. In FIG. 11, the holding claw 3 is described with an example of the first embodiment configured by an outer diameter position reference sphere 4 that is diagonally supported by an outer diameter position reference sphere support member 4 </ b> A and a cylindrical lateral pin 5. However, in the holding claws 3A, 3B, and 3C having the configurations of FIGS. 5A and 5B, FIG. 6, FIG. 8, and FIGS. 9A to 9C according to the second to fifth embodiments, the measurement is performed with substantially the same calibration procedure. Calibration of the jig can be performed (position adjustment of the three outer diameter position reference spheres 4).

保持爪3の3本の円筒横方向ピン5で、厚さが既知の円柱状のブロックゲージ60Cを支持するように3本の円筒横方向ピン5の上に載置する。   The three cylindrical lateral pins 5 of the holding claws 3 are placed on the three cylindrical lateral pins 5 so as to support a columnar block gauge 60C having a known thickness.

次いで、図11にA4で示すように、ブロックゲージ60Cの上面をスタイラス2が走査して上面を測定し、スタイラス2に連結された3次元形状測定装置70でブロックゲージ60Cの上面の位置座標を求めて、この求められた位置座標のデータより平面の方程式P2を3次元形状測定装置70の演算部72で算出して、3次元形状測定装置70の記憶部71に記憶する。   Next, as indicated by A4 in FIG. 11, the stylus 2 scans the upper surface of the block gauge 60C to measure the upper surface, and the position coordinate of the upper surface of the block gauge 60C is measured by the three-dimensional shape measuring device 70 connected to the stylus 2. The plane equation P2 is calculated by the calculation unit 72 of the three-dimensional shape measuring apparatus 70 from the obtained position coordinate data, and stored in the storage unit 71 of the three-dimensional shape measuring apparatus 70.

次いで、図11にA5及びA6で示すように、スタイラス2に連結された3次元形状測定装置70で3つの外径位置基準球4を順次走査して、それらの位置座標をそれぞれ測定して、それぞれの頂点座標を演算部72で算出して、算出結果を記憶部71に記憶する。   Next, as shown by A5 and A6 in FIG. 11, the three-dimensional shape measuring device 70 connected to the stylus 2 sequentially scans the three outer diameter position reference spheres 4 and measures their position coordinates, Each vertex coordinate is calculated by the calculation unit 72, and the calculation result is stored in the storage unit 71.

次いで、ブロックゲージ60Cの上面の位置座標の測定データより求めた平面に関する前記平面の方程式P2より、ブロックゲージ60Cの厚さを引いた平面の方程式P3に、3つの外径位置基準球4の頂点座標であるXY位置座標を代入し、この時の3つの外径位置基準球4のZ位置と3つの外径位置基準球4の各頂点高さの差Z1d、Z2d、Z3dを校正パラメータとして演算部72で算出し、記憶部71へ記憶して、レンズ形状測定時の校正パラメータとする。 Next, the vertex P of the three outer diameter position reference spheres 4 is changed to the plane equation P3 obtained by subtracting the thickness of the block gauge 60C from the plane equation P2 regarding the plane obtained from the measurement data of the position coordinates of the upper surface of the block gauge 60C. By substituting the XY position coordinates as coordinates, the differences Z 1d , Z 2d , and Z 3d between the Z positions of the three outer diameter position reference spheres 4 and the vertex heights of the three outer diameter position reference spheres 4 at this time are calibrated. The calculation unit 72 calculates it as a parameter, stores it in the storage unit 71, and sets it as a calibration parameter at the time of lens shape measurement.

このように、ブロックゲージ60Cを基準に、第1実施形態で説明したような前記手法でこれらのパラメータを校正することにより、ナノメートルオーダでの3つの外径位置基準球4の高さ位置の校正が可能となる。   Thus, by calibrating these parameters with the above-described method as described in the first embodiment on the basis of the block gauge 60C, the height positions of the three outer diameter position reference spheres 4 on the nanometer order are obtained. Calibration is possible.

(第8実施形態)
本発明の第8実施形態における測定用治具を使用しての形状測定方法において、前記測定用治具に対してレンズ1を回転させ、それぞれレンズ面と3つの外径位置決め体を測定することにより、より高精度に外径基準でのレンズ1の姿勢を測定する方法を、図13に基づいて説明する。
(Eighth embodiment)
In the shape measuring method using the measuring jig according to the eighth embodiment of the present invention, the lens 1 is rotated with respect to the measuring jig, and the lens surface and the three outer diameter positioning bodies are respectively measured. Thus, a method of measuring the attitude of the lens 1 on the basis of the outer diameter with higher accuracy will be described with reference to FIG.

前記測定用治具に対し、レンズ1を、前記レンズ1の外形を支持する保持爪3に対し所定の角度(例えば90°〜180°)で回転させ、各回転角での姿勢データを元の位置へ回転座標変換し、姿勢データの平均を求めることにより、高精度な測定を行うことが可能となる。例えば、前記測定でレンズ1を前記測定用治具に対して、レンズ1の上面より、0°位置から90°ずつ回転した4つの位置(0°位置、90°位置、180°位置、270°位置)でそれぞれレンズ1の姿勢を測定し、それぞれの回転位置での姿勢データを元の0°位置へ回転座標変換し、姿勢データの平均を求める。また、別の例では、レンズ1の上面より、0°位置から180°ずつ回転した2つの位置(0°位置、180°位置)でそれぞれレンズ1の姿勢を測定し、それぞれの回転位置での姿勢データを元の0°位置へ回転座標変換し、姿勢データの平均を求める。具体的には、それぞれ測定した、0°位置での偏心量dX、dY、チルトdA、dB、90°位置での偏心量dX90、dY90、チルトdA90、dB90、180°位置での偏心量dX180、dY180、チルトdA180、dB180、270°位置での偏心量dX270、dY270、チルトdA270、dB270、とすると、レンズの平均の偏心dXは、dX=(dX+dX90+dX180+dX270)/4で求められる。同様に、偏心dY=(dY+dY90+dY180+dY270)/4、チルトdA=(dA+dA90+dA180+dA270)/4、チルトdB=(dB+dB90+dB180+dB270)/4、として求めることができる。 The lens 1 is rotated at a predetermined angle (for example, 90 ° to 180 °) with respect to the holding claw 3 that supports the outer shape of the lens 1 with respect to the measurement jig, and the posture data at each rotation angle is the original. It is possible to perform highly accurate measurement by converting rotational coordinates to a position and obtaining an average of posture data. For example, in the measurement, the lens 1 is rotated from the upper surface of the lens 1 by 90 ° with respect to the measurement jig at four positions (0 ° position, 90 ° position, 180 ° position, 270 °). At each position, the attitude of the lens 1 is measured, and the attitude data at each rotational position is converted to the original 0 ° rotational coordinates, and the average of the attitude data is obtained. In another example, the posture of the lens 1 is measured at two positions (0 ° position and 180 ° position) rotated from the 0 ° position by 180 ° from the upper surface of the lens 1, and at each rotated position. Rotation coordinates are converted to the original 0 ° position of the posture data, and the average of the posture data is obtained. Specifically, the eccentric amounts dX 0 , dY 0 , tilt dA 0 , dB 0 at the 0 ° position, and eccentric amounts dX 90 , dY 90 , tilt dA 90 , dB 90 , 180 at the 90 ° position, respectively. Decentering amounts dX 180 , dY 180 , tilt dA 180 , dB 180 at 270 ° positions, and decentering amounts dX 270 , dY 270 , tilt dA 270 , dB 270 at 270 ° positions, the average decentering dX a of the lens is , DX a = (dX 0 + dX 90 + dX 180 + dX 270 ) / 4. Similarly, eccentric dY a = (dY 0 + dY 90 + dY 180 + dY 270) / 4, tilt dA a = (dA 0 + dA 90 + dA 180 + dA 270) / 4, tilt dB a = (dB 0 + dB 90 + dB 180 + dB 270 ) / 4.

第8実施形態によれば、前記測定でレンズ1を治具に対して、レンズ1の上面より、0°位置と、前記0°位置からレンズ1を180°回転した180°位置とで、それぞれのレンズ1の姿勢を測定し、前記180°の位置での姿勢を座標変換し、前記0°位置での姿勢と比較して、姿勢データの平均を求めることにより、より高精度な測定を行うことが出来る。   According to the eighth embodiment, the lens 1 is measured with respect to the jig at the 0 ° position from the upper surface of the lens 1 and the 180 ° position obtained by rotating the lens 1 180 ° from the 0 ° position. The posture of the lens 1 is measured, the posture at the position of 180 ° is coordinate-converted, and compared with the posture at the position of 0 °, and the average of the posture data is obtained, thereby performing higher-precision measurement. I can do it.

なお、前記0°位置は、プラスチックの成形品レンズの場合、成型時に発生するプラスチックの流し込み部があり、レンズの回転方向を一意に決めることができる。この場合、レンズの設計座標と、3次元形状測定装置の座標系が一致するレンズの方向を0度としてマークすることができる。一方、レンズがガラスの成形品の場合、レンズは見た目は回転対象に成型されている。この場合、回転方向の位置をレンズの形状のみでは特定できないため、評価のために、簡易的にマジックインキ等で回転方向の位置を指定し、このマジックインキで指定された位置を基準に、例えば、0°位置はマークが手前、90°位置はマークが右などと指定し、レンズを回転させることができる。   In the case of a plastic molded lens, the 0 ° position has a plastic pouring portion that is generated during molding, and can uniquely determine the rotation direction of the lens. In this case, the direction of the lens in which the design coordinates of the lens coincide with the coordinate system of the three-dimensional shape measuring apparatus can be marked as 0 degrees. On the other hand, when the lens is a molded product of glass, the lens is molded to be rotated. In this case, since the position in the rotation direction cannot be specified only by the shape of the lens, for evaluation, the position in the rotation direction is simply designated with magic ink or the like, and the position designated with this magic ink is used as a reference, for example. The 0 ° position can be designated as the front of the mark, the 90 ° position can be designated as the right of the mark, and the lens can be rotated.

なお、前記様々な実施形態のうちの任意の実施形態を適宜組み合わせることにより、それぞれの有する効果を奏するようにすることができる。   It is to be noted that, by appropriately combining any of the various embodiments, the effects possessed by them can be produced.

本発明の形状測定方法及び測定用治具は、上面より表面形状を測定する3次元形状測定装置において、被測定物、例えば、レンズの外周部の外側に配置された3つの保持ユニットのそれぞれの外形位置決め球又は外形位置決め体と、レンズの外周部の裏面を支持する円筒形などの裏面支持部材により、レンズ面の外形(例えば外径)あるいは裏面を基準に、レンズ面の姿勢及びレンズ形状の測定を高精度に行うことが出来る。   The shape measuring method and the measuring jig of the present invention are each a three-dimensional shape measuring apparatus for measuring a surface shape from the upper surface, and each of three holding units arranged outside the outer peripheral portion of a measured object, for example, a lens. With the outer shape positioning sphere or the outer shape positioning body and the back surface supporting member such as a cylindrical shape that supports the back surface of the outer peripheral portion of the lens, the orientation of the lens surface and the lens shape of the lens surface with reference to the outer shape (for example, outer diameter) or the back surface Measurement can be performed with high accuracy.

本発明の第1実施形態における形状測定方法を実施可能な測定用治具の概略構成図Schematic configuration diagram of a measuring jig capable of performing the shape measuring method in the first embodiment of the present invention 本発明の前記第1実施形態における前記測定用治具の概略平面図Schematic plan view of the measurement jig in the first embodiment of the present invention 本発明の前記第1実施形態における前記測定用治具のレンズ押さえばねの平面図The top view of the lens pressing spring of the said jig for a measurement in the said 1st Embodiment of this invention 本発明の前記第1実施形態における前記測定用治具の1つの保持爪の概略構成を示す斜視図The perspective view which shows schematic structure of one holding nail | claw of the said measuring jig in the said 1st Embodiment of this invention. 本発明の前記第1実施形態における前記測定用治具の前記1つの保持爪の概略構成を示す拡大断面側面図The expanded sectional side view which shows schematic structure of the said 1 holding nail | claw of the said measurement jig | tool in the said 1st Embodiment of this invention. 本発明の前記第1実施形態における前記測定用治具を使用して実施するレンズ形状測定動作のフローチャートFlowchart of lens shape measurement operation performed using the measurement jig in the first embodiment of the present invention. 図4Bのフローの続きであって、本発明の前記第1実施形態における前記測定用治具を使用して実施するレンズ形状測定動作のフローチャートFIG. 4B is a continuation of the flow of FIG. 4B, and a flowchart of the lens shape measurement operation performed using the measurement jig in the first embodiment of the present invention. 本発明の第2実施形態における測定用治具の1つの保持爪の概略構成を示す斜視図The perspective view which shows schematic structure of one holding nail | claw of the measurement jig | tool in 2nd Embodiment of this invention. 本発明の第2実施形態における測定用治具の1つの保持爪の概略構成を示す拡大断面側面図The expanded sectional side view which shows schematic structure of one holding nail | claw of the jig | tool for measurement in 2nd Embodiment of this invention. 本発明の第3実施形態における測定用治具の保持爪の概略構成例を示す拡大断面側面図The expanded sectional side view which shows the schematic structural example of the holding nail | claw of the jig | tool for a measurement in 3rd Embodiment of this invention. 本発明の前記第3実施形態における前記測定用治具を使用して実施するレンズ形状測定動作のフローチャートFlowchart of lens shape measurement operation performed using the measurement jig in the third embodiment of the present invention. 図7Aのフローの続きであって、本発明の前記第3実施形態における前記測定用治具を使用して実施する前記レンズ形状測定動作のフローチャートFIG. 7A is a continuation of the flowchart of FIG. 7A and is a flowchart of the lens shape measurement operation performed using the measurement jig in the third embodiment of the present invention. 本発明の第4実施形態における測定用治具の保持爪の概略構成例を示す拡大断面側面図The expanded sectional side view which shows the schematic structural example of the holding nail | claw of the jig | tool for measurement in 4th Embodiment of this invention. 本発明の第5実施形態における測定用治具の裏面支持部材の構成例を示す拡大側面図The expanded side view which shows the structural example of the back surface supporting member of the jig | tool for a measurement in 5th Embodiment of this invention. 本発明の第5実施形態における前記測定用治具の裏面支持部材の別の構成例を示す拡大側面図The expanded side view which shows another structural example of the back surface supporting member of the said jig | tool for a measurement in 5th Embodiment of this invention. 本発明の第5実施形態における前記測定用治具の裏面支持部材のさらに別の構成例を示す拡大側面図The expanded side view which shows another structural example of the back surface supporting member of the said jig | tool for a measurement in 5th Embodiment of this invention. 本発明の第6実施形態における形状測定方法における、外径基準測定及び表裏偏心測定のフローチャートFlowchart of outer diameter reference measurement and front / back eccentricity measurement in the shape measurement method according to the sixth embodiment of the present invention. 図10Aのフローの続きであって、本発明の第6実施形態における前記形状測定方法における、前記外径基準測定及び前記表裏偏心測定のフローチャートFIG. 10A is a continuation of the flow of FIG. 10A, and is a flowchart of the outer diameter reference measurement and the front / back eccentricity measurement in the shape measurement method according to the sixth embodiment of the present invention. 図10Bのフローの続きであって、本発明の第6実施形態における前記形状測定方法における、前記外径基準測定及び前記表裏偏心測定のフローチャートFIG. 10B is a continuation of the flow of FIG. 10B, and is a flowchart of the outer diameter reference measurement and the front / back eccentricity measurement in the shape measurement method according to the sixth embodiment of the present invention. 図10Cのフローの続きであって、本発明の第6実施形態における前記形状測定方法における、前記外径基準測定及び前記表裏偏心測定のフローチャートFIG. 10C is a continuation of the flow of FIG. 10C and is a flowchart of the outer diameter reference measurement and the front / back eccentricity measurement in the shape measurement method according to the sixth embodiment of the present invention. 本発明の第7実施形態におけるレンズの形状測定用治具を使用しての形状測定方法における、治具校正の手順を示す説明図Explanatory drawing which shows the procedure of jig | tool calibration in the shape measuring method using the jig for lens shape measurement in 7th Embodiment of this invention. 本発明の前記第1実施形態における前記測定用治具における、長さ調整用治具を示す斜視図The perspective view which shows the jig for length adjustment in the said jig for a measurement in the said 1st Embodiment of this invention. 前記長さ調整用治具の使用状態を示す斜視図The perspective view which shows the use condition of the said jig for length adjustment 本発明の第8実施形態におけるレンズの形状測定用治具を使用しての形状測定方法における、高精度測定の手順を示す説明図Explanatory drawing which shows the procedure of the high precision measurement in the shape measurement method using the jig | tool for shape measurement of the lens in 8th Embodiment of this invention. 従来の外径基準の測定方法を説明するための平面図Plan view for explaining a conventional measuring method based on the outer diameter 従来の外径基準の測定方法を説明するための位置決め治具の側面図Side view of positioning jig for explaining conventional outer diameter standard measuring method 従来の外径基準の測定方法を説明するための位置決め治具によるレンズ測定状態の側面図Side view of a lens measurement state with a positioning jig for explaining a conventional outer diameter reference measurement method 従来の外径基準の測定方法を説明するための位置決め治具によるレンズ測定状態の側面図Side view of a lens measurement state with a positioning jig for explaining a conventional outer diameter reference measurement method

符号の説明Explanation of symbols

1,1A レンズ
2 スタイラス
3,3A,3B,3C 保持爪
4 斜めに支持された外径位置基準球
4A 外径位置基準球支持部材
4b 円錐部
5 円筒横方向ピン
5A,5B,5C 裏面支持部材
6 長さ調整機構
6a 第1調整ねじ
6b 第2調整ねじ
6c 長さ調整機構用ケース
6d 第1貫通穴
6e 第2貫通穴
7 レンズコバ部
8 レンズ押さえばね
8a 貫通穴
9 偏心位置測定用基準球
10 支持プレート
10a 貫通穴
10b 貫通穴
11 与圧付勢ばね
13 球状横方向ピン
14 凹円錐位置決めピン
14a 凹形状の円錐面
50 隙間
60 長さ調整用治具
60a 小さい方の円筒部
60b 大きい方の円筒部
60C ブロックゲージ
70 3次元形状測定装置
71 記憶部
72 演算部
103 レンズコバ部裏面
120 位置決め治具
120c 裏面支持部
DESCRIPTION OF SYMBOLS 1,1A Lens 2 Stylus 3, 3A, 3B, 3C Holding claw 4 Outer diameter position reference sphere supported diagonally 4A Outer diameter position reference sphere support member 4b Conical part 5 Cylindrical lateral pin 5A, 5B, 5C Back surface support member 6 Length adjusting mechanism 6a First adjusting screw 6b Second adjusting screw 6c Length adjusting mechanism case 6d First through hole 6e Second through hole 7 Lens edge 8 Lens holding spring 8a Through hole 9 Eccentric position measuring reference ball 10 Support plate 10a Through hole 10b Through hole 11 Pressure biasing spring 13 Spherical lateral pin 14 Concave cone positioning pin 14a Conical surface of concave shape 50 Gap 60 Length adjusting jig 60a Small cylindrical portion 60b Larger cylinder Unit 60C Block gauge 70 Three-dimensional shape measuring device 71 Storage unit 72 Calculation unit 103 Lens edge unit back surface 120 Positioning jig 120 c Back support

Claims (7)

被測定物の外周部の外側に当接させる外形位置決め球と前記被測定物の外周部の裏面を支持する裏面支持部材とからなる保持ユニットを3つ備えた測定治具に前記被測定物を載置し、前記3つの保持ユニットの内の少なくとも1つの保持ユニットが、前記被測定物を残りの2つの保持ユニットに対して一定の力で押えるように前記被測定物を保持させ、
前記被測定物の上面と前記3つの外形位置決め球を測定して、前記被測定物の上面の位置座標と前記3つの外形位置決め球の位置座標とを求め、
予め設定された前記3つの外形位置決め球の各半径と、前記3つの外形位置決め球の位置座標のデータより、前記3つの外形位置決め球が前記被測定物に接する位置を求め、
予め設定された前記3つの保持ユニットのそれぞれの裏面支持部材と前記外形位置決め球の高さの差と、前記3つの外形位置決め球のそれぞれの位置座標のデータを用いて、前記被測定物の裏面を基準とした前記被測定物の傾きを求め、
前記3つの外形位置決め球が前記被測定物に接する位置と前記傾きと、前記被測定物の位置座標のデータより、前記被測定物の外形を基準に前記被測定物の姿勢と形状を求めることを特徴とする形状測定方法。
The measurement object is placed on a measurement jig provided with three holding units each composed of an outer shape positioning sphere to be brought into contact with the outer periphery of the measurement object and a back surface support member for supporting the back surface of the outer periphery of the measurement object. And placing the object to be measured so that at least one of the three holding units presses the object to be measured against the remaining two holding units with a constant force.
Measuring the upper surface of the object to be measured and the three outer positioning spheres to obtain the position coordinates of the upper surface of the object to be measured and the position coordinates of the three outer positioning balls;
From the radius of each of the three contour positioning spheres set in advance and the position coordinate data of the three contour positioning spheres, the position where the three contour positioning spheres contact the object to be measured is obtained.
The back surface of the object to be measured is obtained by using the difference between the heights of the back surface supporting members of the three holding units set in advance and the heights of the outer shape positioning balls and the data of the position coordinates of the three outer shape positioning balls. Obtain the inclination of the object to be measured with reference to
The posture and shape of the object to be measured are determined based on the outer shape of the object to be measured, based on the position of the three outer shape positioning balls in contact with the object to be measured, the inclination, and the position coordinate data of the object to be measured. A shape measuring method characterized by the above.
被測定物の外周部の外側に当接させる中央に円錐状の凹部を有する円筒型の外形位置決め体と前記被測定物の外周部の裏面を支持する裏面支持部材とからなる保持ユニットを3つ備えた測定治具に前記被測定物を載置し、前記3つの保持ユニットの内の少なくとも1つの保持ユニットが、前記被測定物を残りの2つの保持ユニットに対して一定の力で押えるように前記被測定物を保持させ、
前記被測定物の上面と前記3つの外形位置決め体の円錐状の前記凹部を上方より測定して、前記被測定物の上面の位置座標と前記3つの外形位置決め体の位置座標とを求め、
予め設定された前記3つの外形位置決め体の円筒部分の各半径と、前記3つの外形位置決め体の位置座標のデータより、前記3つの外形位置決め体が前記被測定物に接する位置を求め、
予め設定された前記3つの保持ユニットのそれぞれの裏面支持部材と前記外形位置決め体の前記凹部の高さの差と、前記3つの外形位置決め体のそれぞれの位置座標のデータを用いて、前記被測定物の裏面を基準とした前記被測定物の傾きを求め、
前記3つの外形位置決め体が前記被測定物に接する位置と前記傾きと、前記被測定物の位置座標のデータより、前記被測定物の外形を基準に前記被測定物の姿勢と形状を求めることを特徴とする形状測定方法。
Three holding units comprising a cylindrical outer shape positioning body having a conical recess at the center to be brought into contact with the outer periphery of the object to be measured and a back surface supporting member for supporting the back surface of the outer periphery of the object to be measured. The object to be measured is placed on a measuring jig provided, and at least one of the three holding units presses the object to be measured against the remaining two holding units with a constant force. Holding the object to be measured,
Measure the upper surface of the object to be measured and the conical recesses of the three outer shape positioning bodies from above to obtain the position coordinates of the upper surface of the object to be measured and the position coordinates of the three outer shape positioning bodies,
From the radius of the cylindrical portion of the three contour positioning bodies set in advance and the position coordinate data of the three contour positioning bodies, the position where the three contour positioning bodies contact the object to be measured is obtained.
Using the preset difference between the heights of the concave portions of the back support member and the outer shape positioning body of the three holding units and the position coordinate data of the three outer shape positioning bodies, the measured object Obtain the inclination of the measured object with respect to the back side of the object,
The posture and shape of the object to be measured are obtained based on the outer shape of the object to be measured, based on the position of the three outer shape positioning bodies in contact with the object to be measured, the inclination, and the position coordinate data of the object to be measured. A shape measuring method characterized by the above.
前記被測定物の形状測定を行なった後、前記被測定物を前記保持ユニットに対して所定の角度で回転させて前記被測定物の支持位置を変更した後、再度、前記被測定物の形状測定を行なうことを特徴とする、請求項1又は2に記載の形状測定方法。   After measuring the shape of the object to be measured, after changing the support position of the object to be measured by rotating the object to be measured at a predetermined angle with respect to the holding unit, again, the shape of the object to be measured The shape measurement method according to claim 1, wherein measurement is performed. 前記測定治具は、表面と裏面よりそれぞれ位置座標が測定できる位置に3つの偏心位置測定用基準球が設置されており、前記被測定物の表面側より前記被測定物の表面の形状と前記3つの偏心位置測定用基準球の中心座標と傾きとを測定したのち、前記被測定物の裏面側より前記被測定物の裏面の形状と前記3つの偏心位置測定用基準球の中心座標と傾きとを測定し、前記被測定物の表面と裏面の座標のずれを求めて前記被測定物の形状を求めることを特徴とする、請求項1から3のいずれか1つに記載の形状測定方法。   The measurement jig is provided with three eccentric position measurement reference spheres at positions where the position coordinates can be measured from the front surface and the back surface, respectively, and the shape of the surface of the object to be measured from the surface side of the object to be measured After measuring the center coordinates and inclination of the three eccentric position measurement reference spheres, the shape of the back surface of the object to be measured and the center coordinates and inclinations of the three eccentric position measurement reference balls from the back surface side of the object to be measured. The shape measuring method according to any one of claims 1 to 3, wherein the shape of the object to be measured is obtained by measuring the difference between the coordinates of the front and back surfaces of the object to be measured. . 被測定物の外周部の外側に当接する外形位置決め球と、
前記被測定物の外周部の裏面を支持する裏面支持部材とからなる保持ユニットを3つ備え、
前記3つの保持ユニットの内の少なくとも1つの保持ユニットが、前記被測定物を残りの2つの保持ユニットに対して一定の力で押える押圧手段を備えた測定用治具。
An outer positioning ball that contacts the outside of the outer periphery of the object to be measured;
Three holding units composed of a back surface supporting member that supports the back surface of the outer peripheral portion of the object to be measured are provided,
A measuring jig provided with pressing means for pressing at least one holding unit of the three holding units against the remaining two holding units with a constant force.
被測定物の外周部の外側に当接する中央に円錐状の凹部を有する円筒型の外形位置決め体と、
前記被測定物の外周部の裏面を支持する裏面支持部材とからなる保持ユニットを3つ備え、
前記3つの保持ユニットの内の少なくとも1つの保持ユニットが、前記被測定物を残りの2つの保持ユニットに対して一定の力で押える押圧手段を備えた測定用治具。
A cylindrical outer shape positioning body having a conical concave portion at the center contacting the outside of the outer peripheral portion of the object to be measured;
Three holding units composed of a back surface supporting member that supports the back surface of the outer peripheral portion of the object to be measured are provided,
A measuring jig provided with pressing means for pressing at least one holding unit of the three holding units against the remaining two holding units with a constant force.
前記測定治具は、表面と裏面よりそれぞれ位置座標が測定できる位置に3つの偏心位置測定用基準球をさらに備えた、請求項5又は6に記載の測定用治具。
The measurement jig according to claim 5 or 6, further comprising three eccentric position measurement reference spheres at positions where position coordinates can be measured respectively from the front surface and the back surface.
JP2006210690A 2006-08-02 2006-08-02 Shape measuring method and measuring jig Active JP4986530B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006210690A JP4986530B2 (en) 2006-08-02 2006-08-02 Shape measuring method and measuring jig

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006210690A JP4986530B2 (en) 2006-08-02 2006-08-02 Shape measuring method and measuring jig

Publications (2)

Publication Number Publication Date
JP2008039455A JP2008039455A (en) 2008-02-21
JP4986530B2 true JP4986530B2 (en) 2012-07-25

Family

ID=39174655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006210690A Active JP4986530B2 (en) 2006-08-02 2006-08-02 Shape measuring method and measuring jig

Country Status (1)

Country Link
JP (1) JP4986530B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102074701B1 (en) * 2019-10-28 2020-02-07 황상현 Device for measuring the deviation of inner diameter and outer diameter
US11092422B2 (en) 2018-06-22 2021-08-17 Mitutoyo Corporation Measuring apparatus and measuring method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5627991B2 (en) * 2010-10-27 2014-11-19 シャープ株式会社 The camera module
CN114994081B (en) * 2022-06-22 2023-09-01 辽宁中科力勒检测技术服务有限公司 Cemented carbide disc circumferential defect detection tool and detection system
CN114986256B (en) * 2022-07-18 2022-12-13 成都飞机工业(集团)有限责任公司 Multifunctional finish machining roughness on-machine measuring device and measuring method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3679582B2 (en) * 1997-12-08 2005-08-03 キヤノン株式会社 Shape measuring apparatus and method
JP3768688B2 (en) * 1998-07-29 2006-04-19 キヤノン株式会社 3D shape measuring apparatus and 3D shape measuring method
JP3827493B2 (en) * 1999-11-02 2006-09-27 松下電器産業株式会社 Lens mold tilt measurement method
JP2002071344A (en) * 2000-08-28 2002-03-08 Matsushita Electric Ind Co Ltd Method and instrument for measuring shape
JP2002250622A (en) * 2000-12-18 2002-09-06 Olympus Optical Co Ltd Shape-measuring method and device for optical element, and its type
JP2005114705A (en) * 2003-03-10 2005-04-28 Pentax Corp Apparatus and method for measuring eccentricity of lens
JP4520276B2 (en) * 2004-10-26 2010-08-04 オリンパス株式会社 Measuring jig

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11092422B2 (en) 2018-06-22 2021-08-17 Mitutoyo Corporation Measuring apparatus and measuring method
KR102074701B1 (en) * 2019-10-28 2020-02-07 황상현 Device for measuring the deviation of inner diameter and outer diameter

Also Published As

Publication number Publication date
JP2008039455A (en) 2008-02-21

Similar Documents

Publication Publication Date Title
JP4480769B2 (en) Shape measurement method
CN102042813B (en) Surface texture measuring machine and a surface texture measuring method
JP4986530B2 (en) Shape measuring method and measuring jig
JP2007515641A (en) Method for calibrating the geometry of a multi-axis measurement system
JP2002357415A (en) Shape measuring method and device, and manufacturing method of object to be measured
JP3679472B2 (en) Calibration method for coordinate measuring apparatus having two rotation axes
US20210223020A1 (en) Inspection master
EP1674822A1 (en) Device and method for non-contact scanning of contact lens mold geometry
US20070201037A1 (en) Lens measuring method and device for determining decenter and tilt of the lens
US9134105B2 (en) Contour shape measurement method
JP2006119121A (en) Shape measurement method and device for optical member
JP4835149B2 (en) Optical element measuring jig, and optical element shape measuring apparatus and method
JPH06249641A (en) Calibration of rotary table for coordinate measuring machine
JP2007085914A (en) Method, device, and program of measuring aspheric lens, method of manufacturing aspheric lens, and aspheric lens
JP2002071344A (en) Method and instrument for measuring shape
JP3827493B2 (en) Lens mold tilt measurement method
CN108562226B (en) Coordinate system establishing device and method
JP2006078398A (en) Method and device for measuring eccentricity and inclination of both sides
CN114279303B (en) Device and method for detecting verticality of double-sided micro-cylindrical lens array
CN115164793A (en) Coordinate unified calibrator for micro-nano composite measurement and calibration method
JP6800442B2 (en) 3D shape measurement system
JP2007127473A (en) Measuring method, device, and program of aspheric lens, manufacturing method of aspheric lens, and aspheric lens
JP2010151538A (en) Tooth face measurement reference setting device, and method for setting measurement reference of tooth face
TWI375139B (en)
KR102192182B1 (en) Multi axis stage apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120417

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120424

R150 Certificate of patent or registration of utility model

Ref document number: 4986530

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3