JP4986026B2 - Metal surface bondability / connectivity evaluation method and evaluation apparatus - Google Patents

Metal surface bondability / connectivity evaluation method and evaluation apparatus Download PDF

Info

Publication number
JP4986026B2
JP4986026B2 JP2006320200A JP2006320200A JP4986026B2 JP 4986026 B2 JP4986026 B2 JP 4986026B2 JP 2006320200 A JP2006320200 A JP 2006320200A JP 2006320200 A JP2006320200 A JP 2006320200A JP 4986026 B2 JP4986026 B2 JP 4986026B2
Authority
JP
Japan
Prior art keywords
connectivity
bondability
evaluation
metals
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006320200A
Other languages
Japanese (ja)
Other versions
JP2008135544A (en
Inventor
直人 中谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Avionics Co Ltd
Original Assignee
Nippon Avionics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Avionics Co Ltd filed Critical Nippon Avionics Co Ltd
Priority to JP2006320200A priority Critical patent/JP4986026B2/en
Publication of JP2008135544A publication Critical patent/JP2008135544A/en
Application granted granted Critical
Publication of JP4986026B2 publication Critical patent/JP4986026B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、同種あるいは異種の2つの金属の固相接合の接合性や電気的な接続性の良さを評価するための金属表面の接合性・接続性評価方法と、この方法の実施に直接使用する評価装置に関するものである。   This invention is a method for evaluating the bondability / connectivity of metal surfaces to evaluate the solid-phase bondability and electrical connectability of two metals of the same or different types, and is used directly in the implementation of this method. It is related with the evaluation apparatus which performs.

プリント配線板の電極に突起電極(バンプ)や金属ワイヤを超音波接合するボンディング法が知られている。この方法は、電極表面とバンプや金属ワイヤなどの異なる2つの金属を重ね、これらの接合面に垂直な加圧力(荷重)を加えた状態で、接合面に平行な超音波振動を加えることにより接合するものである。   A bonding method is known in which bump electrodes or metal wires are ultrasonically bonded to electrodes of a printed wiring board. In this method, two different metals such as bumps and metal wires are stacked on the electrode surface, and ultrasonic vibration parallel to the joint surface is applied in a state where a pressure (load) perpendicular to the joint surface is applied. It is what is joined.

一般に接合する金属の表面には吸着物や酸化皮膜があり、保管中や部品実装工程中に汚れが付着する。また金属表面はミクロに見れば平滑ではない。例えばプリント配線板の電極では、銅箔表面にニッケルなどの下地メッキをした上、金めっきを施したものがあるが、この場合下地のニッケルが表面の金めっきに拡散し、表面に酸化物や水酸化物を形成する。   Generally, there are adsorbates and oxide films on the surfaces of the metals to be joined, and dirt adheres during storage and component mounting processes. Also, the metal surface is not smooth when viewed microscopically. For example, some printed circuit board electrodes have a copper foil surface plated with nickel or the like and then gold plated. In this case, the underlying nickel diffuses into the surface gold plating, and oxide or Form hydroxide.

超音波接合では、超音波振動によって2つの金属同志が摩擦して表面の吸着物、酸化皮膜等が破壊され、接触面が機械的にクリーニングされると共に平滑化されて接合(固相接合)が促進される。しかし実際の接合では、装置側の接合条件(超音波出力、加圧力、印加時間など)を一定とした場合であっても、金属表面の粗さや汚染度などが接合面の変形や接合強度などの接合状態に大きな影響を与える。   In ultrasonic bonding, two metals collide with each other by ultrasonic vibration to destroy the adsorbate and oxide film on the surface, and the contact surface is mechanically cleaned and smoothed to bond (solid phase bonding). Promoted. However, in actual bonding, even when the bonding conditions on the device side (ultrasonic output, applied pressure, application time, etc.) are constant, the roughness of the metal surface and the degree of contamination can be caused by deformation of the bonding surface, bonding strength, etc. This greatly affects the bonding state.

特開平9−293744JP-A-9-293744

従来よりこの固相接合における接合状態の良否を評価する方法として、特許文献1(特に段落0042〜0043)の方法が公知である。この方法は、ワイヤボンディングにより実際に2つの金属を接合(固相接合)して、一方の金属の引っ張り強度試験を用いるものである。また接合部の剪断強度試験を用いる方法も公知である。 Conventionally, as a method for evaluating the quality of the bonding state in this solid phase bonding, the method of Patent Document 1 (particularly, paragraphs 0042 to 0043) is known. In this method, two metals are actually bonded (solid phase bonding) by wire bonding , and the tensile strength test of one metal is used. A method using a shear strength test of the joint is also known.

またコネクタのように2つの金属同志を互いに接触させた状態でこの接触部(接続部)の電気接続を行うものでは、従来の接合部の評価方法(引っ張り強度試験や剪断強度試験を用いる方法)は用いることができない。このため実際に2つの金属を接触させて、実際の接触電気抵抗を、微小抵抗が測定可能な特殊な計測器を用いて測定する必要があった。   In addition, in the case where electrical connection of this contact portion (connection portion) is performed in a state where two metals are in contact with each other like a connector, a conventional method for evaluating a joint portion (method using a tensile strength test or a shear strength test). Cannot be used. For this reason, it has been necessary to measure the actual contact electric resistance using a special measuring instrument capable of measuring a minute resistance by actually bringing two metals into contact with each other.

しかし2つの金属の固相接合の接合部や2つの金属の接触部の電気的な抵抗(接合抵抗、接続抵抗)自体は接触面積などの接合・接続条件によって変化するため、一定面積の接触面に一定荷重を垂直に加えた一定の条件で測定した抵抗値を用いて比較する必要がある。このため2つの金属の組合せが同じでも接触面積や条件が異なる金属間では電気接続性の良否を評価することができない、という問題があった。すなわちこの抵抗値を実測する方法では、測定条件や測定環境が異なる測定結果では比較することができないため、接触面積などに依存せず、それぞれの金属表面に固有な接触抵抗(抵抗率)を表す指標として用いることができる評価値(評価係数)とすることができない。 However, the electrical resistance (junction resistance, connection resistance) of the two metal solid-phase junctions and the contact part of the two metals itself varies depending on the joining / connecting conditions such as the contact area. It is necessary to make a comparison using resistance values measured under a certain condition in which a constant load is applied to the vertical direction. For this reason, even if the combination of two metals was the same, there was a problem that the quality of electrical connectivity could not be evaluated between metals with different contact areas and conditions. In other words, the method of actually measuring the resistance value cannot be compared with measurement results with different measurement conditions or measurement environments, and thus represents the contact resistance (resistivity) specific to each metal surface without depending on the contact area. It cannot be an evaluation value (evaluation coefficient) that can be used as an index.

この発明はこのような事情に鑑みなされたものであり、2つの金属を固相接合する場合の接合性と2つの金属を接触させて電気接続をする場合の電気接続性を、2つの金属の接触面積などの測定条件や測定環境に依存することなく評価することを可能にする金属表面の接合性・接続性評価方法を提供することを第1の目的とする。 The present invention has been made in view of such circumstances, and the bonding property in the case where two metals are solid-phase bonded and the electric connectivity in the case where the two metals are brought into contact with each other to make an electrical connection are obtained. It is a first object of the present invention to provide a metal surface bondability / connectivity evaluation method that enables evaluation without depending on measurement conditions such as contact area and measurement environment.

またこの発明はこの方法の実施に直接使用する金属表面の接合性・接続性評価装置を提供することを第2の目的とする。   A second object of the present invention is to provide a metal surface bondability / connectivity evaluation apparatus which is directly used in the implementation of this method.

この発明によれば第1の目的は、2つの金属の固相接合の接合性および2つの金属の接触部の電気接続性を評価する金属表面の接合性・接続性評価方法であって、a)前記2つの金属を接触し、これら金属の接触面に対し垂直な圧縮荷重Fの変化に対する前記両金属の接触部の電気抵抗を含む実測抵抗Rの変化を測定する;b)求めた実測抵抗Rと荷重Fを次の式に適用することによって評価係数ρfを求める;式:R=ρf/F+C(但しρf、Cは常数)c)評価係数ρfが小さい程接合性および接続性が良いと評価する;以上のa)、b)、c)の工程を備える金属表面の接合性・接続性評価方法、により達成される。 According to the present invention, a first object is a metal surface bondability / connectivity evaluation method for evaluating the bondability of solid phase bonding of two metals and the electrical connectability of contact portions of two metals, comprising: a ) The two metals are brought into contact with each other, and the change in the measured resistance R including the electric resistance of the contact portion of both the metals with respect to the change in the compressive load F perpendicular to the contact surface of these metals is measured; b) the obtained measured resistance The evaluation coefficient ρ f is obtained by applying R and the load F to the following expression; expression: R = ρ f / F + C (where ρ f , C is a constant) c) The smaller the evaluation coefficient ρ f is, the better the connectivity and connection It is achieved by the method for evaluating the bondability / connectivity of a metal surface comprising the steps a), b) and c) described above.

同様に第2の目的は、2つの金属の固相接合の接合性および2つの金属の接触部の電気接続性を評価するための金属表面の接合性・接続性評価装置であって、前記2つの金属の接触面に対し垂直な圧縮荷重Fを加える加圧器と、前記加圧器による荷重Fを測定する圧力検出部と、前記加圧器による荷重Fを制御する荷重制御部と、前記両金属の接触部に電流Iを供給する電源と、前記両金属の接触部の電気抵抗を含む実測抵抗Rを求める抵抗測定部と、荷重Fと実測抵抗Rとを用いて、式[R=ρf/F+C](但しρf、Cは常数)から評価係数ρfを求める評価係数演算部と、求めた評価係数ρfが小さい程接合性および接続性が良いと評価する評価部と、を備えることを特徴とする金属表面の接合性・接続性評価装置、により達成される。 Similarly, the second object is a metal surface bondability / connectivity evaluation apparatus for evaluating the bondability of solid phase bonding of two metals and the electrical connectivity of contact portions of two metals, A pressurizer for applying a compressive load F perpendicular to the contact surfaces of the two metals, a pressure detection unit for measuring the load F by the pressurizer, a load control unit for controlling the load F by the pressurizer, Using the power source for supplying the current I to the contact portion, the resistance measurement portion for obtaining the actual resistance R including the electric resistance of the contact portions of the two metals, the load F and the actual resistance R, the equation [R = ρ f / F + C] (where [rho f, C is constant) comprise an evaluation coefficient calculating unit for obtaining an assessment factor [rho f from an evaluation unit for bonding properties and connectivity as determined assessment value [rho f is less evaluates to good, This is achieved by a metal surface bonding / connectivity evaluation apparatus characterized by the following.

本発明の発明者は後記するように、2つの金属の接触部に加える荷重、すなわち接触面に垂直な方向の荷重(加圧力)Fと、これらの接触部を含む直列接続回路の電気抵抗(実測抵抗)Rとの間には、式[R=ρf/F+C](但しρf、Cは常数)の関係が成立することを発見し、この発見に基づいて本発明をなしたものである。すなわちρfはほぼ一定の常数と見なせるものであって、これが金属表面の固有の塑性変形性および表面清浄度、すなわち凝着容易性を示す指標(評価係数)となることを知ったことに基づく。 As will be described later, the inventor of the present invention applies a load applied to two metal contact portions, that is, a load (pressure force) F in a direction perpendicular to the contact surface, and an electric resistance of a series connection circuit including these contact portions ( It was discovered that the relationship of the formula [R = ρ f / F + C] (where ρ f , C is a constant) holds between the measured resistance) R and the present invention was made based on this discovery. is there. In other words, ρ f can be regarded as an almost constant constant, based on knowing that this is an index (evaluation coefficient) indicating the inherent plastic deformation and surface cleanliness of the metal surface, that is, the ease of adhesion. .

従ってこの評価係数ρfの大きさに基づいて、2つの金属の接触部における接合性および電気接続性の良否を判断することができる。すなわち後記する式(7)によればこの評価係数ρfは表面の降伏応力σyに比例するから、評価係数ρfが小さい程降伏応力σyは小さくなると考えられ、塑性変形性は大きくなり、接合性および電気接続性が向上すると判断できる。また表面に酸化物や汚れが多いと接触抵抗率は大きく評価係数ρfも大きい。 Therefore, it is possible to determine whether the joining property and the electrical connectivity at the contact portion between the two metals are good or bad based on the magnitude of the evaluation coefficient ρ f . That is, according to equation (7) described later, this evaluation coefficient ρ f is proportional to the surface yield stress σ y , so the smaller the evaluation coefficient ρ f , the smaller the yield stress σ y, and the greater the plastic deformability. It can be determined that the bondability and the electrical connectivity are improved. Further, when there are a lot of oxides and dirt on the surface, the contact resistivity is large and the evaluation coefficient ρ f is also large.

請求項1の発明に係る方法によれば、このような理由からこの評価係数ρfを求めてその大きさに基づいて、すなわち求めた評価係数ρfが小さい程接合性および接続性が良いと評価することによって、2つの金属を固相接合する場合の接合性および2つの金属の接触部の電気接続性の良否を判定することができる。このため実際に接合・接続する2つの金属を実際に接合・接続して測定する必要がなくなり、測定条件や測定環境の影響を受けることなく金属表面の評価を行うことができる。
According to the method of the first aspect of the invention, for this reason, the evaluation coefficient ρ f is obtained and based on the magnitude, that is, the smaller the obtained evaluation coefficient ρ f is, the better the connectivity and connectivity are. by evaluation, it is possible to determine the quality of the electrical connection of the contact portion of the bondability and two metal in the case of solid phase bonding two metal. For this reason, it is not necessary to actually join and connect two metals to be joined and connected, and the metal surface can be evaluated without being affected by the measurement conditions and measurement environment.

また請求項8の発明に係る装置によれば、請求項1の発明の実施に直接使用する金属表面の評価装置が得られる。 Further, according to the apparatus of the eighth aspect of the invention, an apparatus for evaluating a metal surface can be obtained which is directly used for carrying out the invention of the first aspect.

原理principle

次に本発明の原理を説明する。図1において符号1はプリント配線板、2はプリント配線板1の表面に形成した銅箔回路パターンからなる電極、3はフレキシブルプリント配線板であり、その下面電極には表面に微細な凹凸が存在する。そのためここでは多数のバンプ(突起電極)4が形成されているものとして説明する。バンプ4は電極2に上から押圧されて接続される。電極2とバンプ4は本発明における2つの同種または異種の金属となる。フレキシブルプリント配線板3はバンプ4の上方から、加圧装置5に固定した加圧部材6によって電極2に荷重(圧力)Fで押圧される。この荷重Fは可変である。なお電極2やバンプ4の表面には金めっきなどのめっき膜が形成されていることが多いが、この場合は金属表面はこのめっき膜と考える。バンプ4は例えば銅のコアにニッケル下地めっきを施しその上に金めっきを施したものである。   Next, the principle of the present invention will be described. In FIG. 1, reference numeral 1 is a printed wiring board, 2 is an electrode made of a copper foil circuit pattern formed on the surface of the printed wiring board 1, and 3 is a flexible printed wiring board. To do. Therefore, here, a description will be given assuming that a large number of bumps (projection electrodes) 4 are formed. The bump 4 is pressed and connected to the electrode 2 from above. The electrode 2 and the bump 4 are the same or different metals in the present invention. The flexible printed wiring board 3 is pressed against the electrode 2 by a load (pressure) F from above the bump 4 by a pressing member 6 fixed to the pressing device 5. This load F is variable. In many cases, a plating film such as gold plating is formed on the surface of the electrode 2 or the bump 4. In this case, the metal surface is considered to be this plating film. The bump 4 is obtained by, for example, applying a nickel base plating to a copper core and performing gold plating thereon.

電極2とバンプ4との間の実測抵抗Rは、電極2とバンプ4との接触面の抵抗すなわち接触抵抗RCと、配線抵抗RPとの和である。従って次の式(1)が成立する。
R=RC+RP …(1)
Found resistance R between the electrode 2 and the bumps 4, the resistance or contact resistance R C of the contact surface between the electrode 2 and the bumps 4, the sum of the wiring resistance R P. Therefore, the following equation (1) is established.
R = R C + R P (1)

接触抵抗RCは、接触面の物理的(巨視的)接触面積Sに依存する抵抗RSと、接触面積Sに依存しない抵抗Rf(面積非依存の抵抗)との和RS+Rfとなる。すなわち
C=RS+Rf …(2)
The contact resistance R C is the resistance R S which depends on the physical (macroscopic) the contact area S of the contact surface, the sum R S + R f and does not depend on the contact area S resistance R f (resistance area-independent) Become. That is, R C = R S + R f (2)

ここに面積依存の抵抗RSは、2次元的接触抵抗率ρC(Ω・cm2)を定義すると、
S=ρC/S
と表せるから、接触抵抗RC
C=ρC/S+Rf …(3)
となる。一方接触界面が塑性変形状態であれば、接触界面の平均圧力(F/S)は一定となり、降伏圧力σyieldで表せる。
σyield=F/S …(4)
Here, the area-dependent resistance R S defines a two-dimensional contact resistivity ρ C (Ω · cm 2 ).
R S = ρ C / S
Therefore, the contact resistance R C is R C = ρ C / S + R f (3)
It becomes. On the other hand, if the contact interface is in a plastically deformed state, the average pressure (F / S) of the contact interface is constant and can be expressed by the yield pressure σ yield .
σ yield = F / S (4)

ここに降伏圧力σyieldは、塑性変形の分野で公知な「平面ひずみのすべり変形理論」により、降伏応力σyと、アスペクト比と摩擦係数で決まる常数φとを用いて次のように表されることが知られている。
σyield=φ・σy …(5)
Here, the yield pressure σ yield is expressed as follows using the yield stress σ y and the constant φ determined by the aspect ratio and the friction coefficient according to the “slip deformation theory of plane strain” known in the field of plastic deformation. It is known that
σ yield = φ · σ y (5)

式(1)〜(5)から実測抵抗Rは、
R=ρC・φ・σy・(1/F)+Rf+RP …(6)
ここで次の凝着パラメータρf(Ω・N)を定義する。
ρf=ρC・φ・σy …(7)
従って実測抵抗Rは、
R=ρf・(1/F)+C …(8)
ただしCは常数でC=(Rf+RP)である。
From the equations (1) to (5), the actually measured resistance R is
R = ρ C · φ · σ y · (1 / F) + R f + R P (6)
Here, the following adhesion parameter ρ f (Ω · N) is defined.
ρ f = ρ C · φ · σ y (7)
Therefore, the measured resistance R is
R = ρ f · (1 / F) + C (8)
However, C is a constant and C = (R f + R P ).

ここに凝着パラメータρfは、金属表面の清浄度を示す2次元的接触抵抗率ρCと、膜厚や表面形状(アスペクト比)を示す常数φと、硬度に対応する降伏応力σyとで決まるものである。従って金属表面の固有の塑性変形性、すなわち凝着容易性を示す指標と考えることができる。このためこの発明では、この凝着パラメータρfを評価係数として用いるものである。なお常数φは、荷重印加による圧縮変形過程で変化するが、2つの金属の接触においては荷重印加中もほぼ一定とみなすことができる。 Here, the adhesion parameter ρ f includes a two-dimensional contact resistivity ρ C indicating the cleanliness of the metal surface, a constant φ indicating the film thickness and surface shape (aspect ratio), and a yield stress σ y corresponding to the hardness. It is determined by. Therefore, it can be considered as an index indicating the inherent plastic deformability of the metal surface, that is, the ease of adhesion. Therefore, in the present invention, this adhesion parameter ρ f is used as an evaluation coefficient. The constant φ changes in the process of compressive deformation by applying a load, but it can be considered that the contact between two metals is almost constant during the application of the load.

前記の式(8)は、図2(A)、(B)となる。すなわち実測抵抗Rは図2(B)に示すように、荷重Fの逆数(1/F)について直線となり、その傾きが凝着パラメータρf、抵抗Rの座標軸との切片が(Rf+RP)となる。 The above equation (8) is as shown in FIGS. That is, as shown in FIG. 2B, the actually measured resistance R is a straight line with respect to the reciprocal of the load F (1 / F), the slope of which is the adhesion parameter ρ f , and the intercept of the resistance R with the coordinate axis is (R f + R P )

この発明は式(8)から、金属表面の塑性変形範囲内では実測抵抗Rは荷重Fの逆数(1/F)について一次関数(直線)となり、この直線の傾きρfが金属表面の塑性変形容易性すなわち凝着容易性を示すと考えられることに基づくものである。 According to the present invention, from the equation (8), the measured resistance R becomes a linear function (straight line) with respect to the reciprocal of the load F (1 / F) within the plastic deformation range of the metal surface, and the slope ρ f of this straight line is the plastic deformation of the metal surface. It is based on what is considered to show ease, that is, easy adhesion.

次にこの発明の原理をさらに定性的に説明する。金属同志の電気的導通において、トンネル効果などの極微小な電流を無視すれば、絶縁性または高抵抗な酸化物や汚れが存在する表面の金属接触界面に力(荷重F)が加わることでその表面の微小な凹凸の先端部が塑性変形し、この変形によって内部の金属新生面が露出する。この金属新生面同志の接触によって微視的な領域で金属接合が行われ、これが電気導通路となって電気的導通が発現する。従って荷重Fの増大に伴って、導通路の断面積が増大し電流が増加する。またこの導通路は金属接合(固相接合)された部分であるから、機械的接合強度(接続強度)も増加する。   Next, the principle of the present invention will be described further qualitatively. In the electrical conduction between metals, if a very small current such as a tunnel effect is ignored, a force (load F) is applied to the metal contact interface on the surface where an insulating or high resistance oxide or dirt exists. The tip of the minute unevenness on the surface is plastically deformed, and the internal metal new surface is exposed by this deformation. Metal contact is performed in a microscopic region by the contact between the new metal surfaces, and this serves as an electrical conduction path to develop electrical conduction. Therefore, as the load F increases, the cross-sectional area of the conduction path increases and the current increases. In addition, since this conduction path is a metal bonded (solid phase bonded) portion, the mechanical bonding strength (connection strength) also increases.

すなわち金属表面(めっき膜)の接合性あるいは接続性の品質・特性を評価するためには、この接合面積(微視的接合面積)の増加のし易さを評価すればよい。この評価手法としては前記のように機械的な強度測定(引っ張り強度試験や剪断強度試験)も考えられるが、これらの方法は対象が微視的なものであるが故に実際の測定が非常に困難であり、また前記のような問題を持つ。そこでこの発明では機械的な強度測定に代えて、接合面積の増加のし易さを電気抵抗値から評価するものである。   That is, in order to evaluate the quality / characteristics of the bondability or connectivity of the metal surface (plated film), it is only necessary to evaluate the ease of increase of the bond area (microscopic bond area). As this evaluation method, mechanical strength measurement (tensile strength test and shear strength test) can be considered as described above, but these methods are very difficult to measure because they are microscopic. And has the above-mentioned problems. Therefore, in the present invention, instead of mechanical strength measurement, the ease of increasing the bonding area is evaluated from the electrical resistance value.

この原理は前記した通りであるが、次のように説明することもできる。塑性変形面においては、加えた荷重Fと真実接触面積(電気導通路の断面積)sとの比(F/s)である界面の平均的な圧力(降伏圧力σyield)は一定である。この降伏圧力σyieldは、表面(めっき膜)の硬さを示す物性値である降伏応力σyとの関係式(σyield=φ・σy)で与えられる。ここに常数φは表面(めっき膜の膜厚)や凹凸形状(アスペクト比)に依存する。 Although this principle is as described above, it can also be explained as follows. On the plastic deformation surface, the average pressure (yield pressure σ yield ) at the interface, which is the ratio (F / s) between the applied load F and the true contact area (cross-sectional area of the electrical conduction path) s, is constant. This yield pressure σ yield is given by a relational expression (σ yield = φ · σ y ) with the yield stress σ y which is a physical property value indicating the hardness of the surface (plated film). Here, the constant φ depends on the surface (film thickness of the plating film) and the uneven shape (aspect ratio).

また二次元的接触抵抗率ρCを定義して、接触面の抵抗値(接触抵抗)RCをこのρCと巨視的な接触面積Sとの比(ρC/S)と表すと、真実接触面積sと巨視的接触面積Sの関係(s/S)は接触抵抗率ρC(∝(S/s)・F)の大小と関連づけることができる。すなわち荷重Fの増加による真実接触面積sの増加し易さが接触抵抗率ρCに対応すると考え、この接触面積sの増加し易さを示すパラメータとして式(7)に示す凝着パラメータρfを導入するものである。 Further, by defining a two-dimensional contact resistivity ρ C and representing the resistance value (contact resistance) R C of the contact surface as a ratio (ρ C / S) of this ρ C and the macroscopic contact area S, it is true The relationship (s / S) between the contact area s and the macroscopic contact area S can be related to the magnitude of the contact resistivity ρ C (∝ (S / s) · F). That is, it is considered that the increase in the true contact area s due to the increase in the load F corresponds to the contact resistivity ρ C , and the adhesion parameter ρ f shown in the equation (7) is a parameter indicating the ease of the increase in the contact area s. Is to introduce.

本発明では前記のように、評価係数ρfが小さい程接合性・接続性が良いと評価する。2つの金属のうち一方はプリント配線板の電極とし、他方をこれに固相接合されるフレキシブルプリント配線板とすることができる(請求項2)。また一方をプリント配線板の電極とし他方を圧接端子として両者の接続性を評価してもよい(請求項3)。 In the present invention, as described above, it is evaluated that the smaller the evaluation coefficient ρ f is, the better the bondability / connectivity is . One of the two metals and the electrode of the printed wiring board may be a flexible printed wiring board that is this a solid phase joining the other (claim 2). Also it may be evaluated both connectivity and the other as the electrode of one of the printed wiring board as the press contact terminal (claim 3).

接合・接続する金属の一方の表面に金めっきを施し、この金めっき層(膜)の接合性・接続性を評価することができる(請求項4)。荷重Fを連続的に増加させながら実測抵抗Rを連続的に測定してもよいし(請求項5)、荷重Fと実測抵抗Rを間欠的に測定してもよい。 Gold plating is performed on one surface of the metal to be bonded / connected, and the bondability / connectivity of this gold-plated layer (film) can be evaluated ( claim 4 ). The actual resistance R may be measured continuously while increasing the load F ( Claim 5 ), or the load F and the actual resistance R may be measured intermittently.

評価係数ρfは、1/FとRの座標系に実測値を書き込んだ時の直線の傾きから決めることができる(請求項6)。また異なるFとRの値に対して式(8)から複数の評価係数ρfを求め、求めた評価係数の平均値を最終的な評価係数ρfとすることができる(請求項7)。この場合平均値の計算は種々の数学的手法を用いて決めればよく、例えば最小二乗法を用いてもよい。請求項8の装置に用いる電源としては、接触部に直流電流Iを供給する直流電源とすることができる(請求項9)。 The evaluation coefficient ρ f can be determined from the slope of the straight line when the actual measurement value is written in the coordinate system of 1 / F and R ( claim 6 ). Further, a plurality of evaluation coefficients ρ f can be obtained from the equation (8) for different values of F and R, and the average value of the obtained evaluation coefficients can be used as the final evaluation coefficient ρ f ( claim 7 ). In this case, the calculation of the average value may be determined using various mathematical methods, and for example, the least square method may be used. The power source used in the apparatus of claim 8 can be a DC power source that supplies a direct current I to the contact portion ( claim 9 ).

図3は、本発明の方法の実施に直接使用する金属表面の評価装置の概念図である。この図において10はプリント配線板、12はその表面に形成した銅箔からなる回路パターンであり、その一部が電極14となる。この電極14の表面には金めっきなどのめっき膜が形成されている。回路パターン12の表面は絶縁材16でカバーされている。   FIG. 3 is a conceptual diagram of an apparatus for evaluating a metal surface used directly for carrying out the method of the present invention. In this figure, 10 is a printed wiring board, 12 is a circuit pattern made of copper foil formed on the surface thereof, and part of it is an electrode 14. A plating film such as gold plating is formed on the surface of the electrode 14. The surface of the circuit pattern 12 is covered with an insulating material 16.

18はフレキシブルプリント配線板であり、ベースフィルム20と銅箔からなる回路パターン22とカバーレイ24とを積層したものである。ベースフィルム20の切欠き部分には回路パターン22の一部が露出し、この露出部分がプリント配線板10の電極14に接続される電極となる。このフレキシブルプリント配線板18の電極には多数のバンプ(突起電極)26が形成されている。バンプ26はプリント配線基板10側の電極14に上から押圧され、バンプ26の微細凹凸がつぶれる(塑性変形する)ことにより電極14に固相接合される。電極14とバンプ26が本発明の2種の金属となる。   Reference numeral 18 denotes a flexible printed wiring board in which a base film 20, a circuit pattern 22 made of copper foil, and a coverlay 24 are laminated. A part of the circuit pattern 22 is exposed at the cutout portion of the base film 20, and this exposed portion becomes an electrode connected to the electrode 14 of the printed wiring board 10. A large number of bumps (projection electrodes) 26 are formed on the electrodes of the flexible printed wiring board 18. The bumps 26 are pressed from above onto the electrodes 14 on the printed wiring board 10 side, and the fine irregularities of the bumps 26 are crushed (plastically deformed), so that they are solid-phase bonded to the electrodes 14. The electrode 14 and the bump 26 are two kinds of metals of the present invention.

28はプリント配線板10の回路パターン12に接続されるクリップ、30はフレキシブルプリント配線板18の回路パターン22に接続されるクリップである。これらクリップ28、30は絶縁材16、カバーレイ24の一部を切欠いて回路パターン14、22の一部を露出させた部分を一定荷重で挟む。このためクリップ28、30と回路パターン14、22との接触抵抗は一定であり、この抵抗値は前記式(1)に示した配線抵抗RPに含まれる。 Reference numeral 28 denotes a clip connected to the circuit pattern 12 of the printed wiring board 10, and reference numeral 30 denotes a clip connected to the circuit pattern 22 of the flexible printed wiring board 18. These clips 28 and 30 sandwich a portion where the insulating material 16 and the cover lay 24 are partially cut out to expose a part of the circuit patterns 14 and 22 with a constant load. For this reason, the contact resistance between the clips 28 and 30 and the circuit patterns 14 and 22 is constant, and this resistance value is included in the wiring resistance R P shown in the equation (1).

32は加圧部材であり、その先端は平坦でフレキシブルプリント配線板18のバンプ26とプリント配線板10の電極14のと接触部(接合部)を上から押圧する。この加圧部材32の先端面の巨視的接触面積Sは一定である。加圧部材32は、圧力検出部としての圧力検出素子34を介して加圧器36により圧力(荷重)Fで接合部に押圧される。圧力検出素子34は例えばロードセル(圧電素子)で形成される。加圧器36はこの加圧力(荷重)Fを連続的または不連続的に変化できる。バンプ26と電極14との間の接触抵抗RCは圧力(荷重)Fの変化(増加)に伴って変化(減少)する。 Reference numeral 32 denotes a pressure member, the tip of which is flat and presses the contact portion (joint portion) between the bump 26 of the flexible printed wiring board 18 and the electrode 14 of the printed wiring board 10 from above. The macroscopic contact area S of the tip surface of the pressure member 32 is constant. The pressurizing member 32 is pressed against the joint by pressure (load) F by a pressurizer 36 through a pressure detecting element 34 as a pressure detecting unit. The pressure detection element 34 is formed by, for example, a load cell (piezoelectric element). The pressurizer 36 can change the applied pressure (load) F continuously or discontinuously. The contact resistance R C between the bump 26 and the electrode 14 changes (decreases) as the pressure (load) F changes (increases).

38は直流電源であり、2つのクリップ28、30の間に一定電圧Vを印加する。40は両クリップ28、30間の電圧Vを測定する電圧計、42は同じく両クリップ28、30間の電流Iを測定する電流計である。44はマイクロコンピュータからなる制御装置であり、抵抗測定部46、荷重制御部48、評価係数演算部50、制御部52を備える。抵抗測定部46は、電圧計40と電流計42で測定した電圧Vおよび電流Iに基づいて実測抵抗Rを求める。すなわちR=V/Iにより求める。   Reference numeral 38 denotes a DC power supply, which applies a constant voltage V between the two clips 28 and 30. Reference numeral 40 denotes a voltmeter for measuring the voltage V between the clips 28 and 30, and 42 is an ammeter for measuring the current I between the clips 28 and 30. Reference numeral 44 denotes a control device including a microcomputer, which includes a resistance measurement unit 46, a load control unit 48, an evaluation coefficient calculation unit 50, and a control unit 52. The resistance measurement unit 46 obtains an actual resistance R based on the voltage V and current I measured by the voltmeter 40 and the ammeter 42. That is, it is obtained by R = V / I.

ここに実測抵抗Rは前記したバンプ26と電極14間の接触抵抗RCと、配線抵抗RPとの和である。すなわちR=(RC+RP)である。接触抵抗RCは接触部(接合部)の巨視的接触面積Sに依存する抵抗である。配線抵抗RPは一定値(固定値)である。 Here the measured resistance R and the contact resistance R C between the bump 26 and the electrode 14 described above, the sum of the wiring resistance R P. That is, R = (R C + R P ). The contact resistance R C is a resistance that depends on the macroscopic contact area S of the contact portion (joint portion). The wiring resistance R P is a constant value (fixed value).

荷重制御部48は、圧力検出素子34で検出した加圧力Fが、制御部52が指令する加圧力Fとなるように加圧器36を制御する。評価係数演算部50は、前記抵抗測定部46の出力である実測抵抗R=(RC+RP)と、前記圧力検出素子34が検出する加圧力Fとに基づいて、前記凝着パラメータρfを演算する。 The load control unit 48 controls the pressurizer 36 so that the applied pressure F detected by the pressure detection element 34 becomes the applied pressure F commanded by the control unit 52. The evaluation coefficient calculation unit 50 determines the adhesion parameter ρ f based on the measured resistance R = (R C + R P ) that is the output of the resistance measurement unit 46 and the applied pressure F detected by the pressure detection element 34. Is calculated.

演算部50は前記式(8)の演算を行い、ρfを求める。例えば加圧力Fを0から次第に増大させながら実測抵抗Rを求め、図2(B)のグラフの傾きから求めることができる。また複数の加圧力Fに対する実測抵抗Rを求め、得られた複数の係数ρfに基づいて、平均値、最小二乗法など適宜の数学的手段を用いて評価係数ρfを決めることができる。 The calculation unit 50 calculates the above formula (8) to obtain ρ f . For example, the actually measured resistance R can be obtained while gradually increasing the pressure F from 0, and can be obtained from the slope of the graph of FIG. In addition, the measured resistance R with respect to a plurality of applied pressures F is obtained, and the evaluation coefficient ρ f can be determined based on the obtained plurality of coefficients ρ f using an appropriate mathematical means such as an average value or a least square method.

求めた評価係数ρfは評価部54に入力され、最終的に金属表面の評価(バンプ26と電極14の接合性の評価)を行う。すなわちこの評価係数ρfが大きいほど接合性・接続性が悪く、評価係数ρfが小さいほど接合性・接続性が良いと判定する。 The obtained evaluation coefficient ρ f is input to the evaluation unit 54 and finally the metal surface is evaluated (evaluation of the bonding property between the bump 26 and the electrode 14). That determines that the higher the evaluation coefficient [rho f is greater bondability and connection is poor, better bonding properties and connection resistance as evaluation factor [rho f is small.

その理由を定性的に説明すれば、前記式(7)を用いて次のようになる。すなわち評価係数ρfは、常数と考えられるρC、φと変数と考えられるσyの積であるから、変数σyに比例する。この変数σyは接合表面の降伏応力であり、表面の柔らかさを示すものである。従って接合表面の接合のし易さは、この降伏応力σyが小さい程大きくなる。このことから評価係数ρfが小さいほど(すなわち降伏応力σyが小さいほど)、接合性および接続性が良いと判断することができる。 The reason for this will be described qualitatively as follows using equation (7). That is, the evaluation coefficient ρ f is proportional to the variable σ y because it is a product of ρ C , φ considered as a constant and σ y considered as a variable. This variable σ y is the yield stress of the joint surface and indicates the softness of the surface. Accordingly, the ease of joining the joining surfaces increases as the yield stress σ y decreases. From this, it can be determined that the smaller the evaluation coefficient ρ f (that is, the smaller the yield stress σ y ), the better the bondability and connectivity.

図4は実測例を示す図である。この実測例では、図1に示すようにプリント配線板1にフレキシブルプリント配線板3を接合するものであり、ここに電極2は銅箔である。またバンプ4は、銅のコア(ボール)をフレキシブルプリント配線板3の銅箔からなる回路パターン上にインプリント法(金型によるプレス)により接合し、表面にニッケル下地めっきおよび金めっきを施したものである。電極2とバンプ4の間に熱硬化性の絶縁樹脂を挟んで両者を加圧し、接合するものである。   FIG. 4 is a diagram showing an example of actual measurement. In this actual measurement example, a flexible printed wiring board 3 is joined to a printed wiring board 1 as shown in FIG. 1, and the electrode 2 is a copper foil. Further, the bump 4 is formed by bonding a copper core (ball) onto a circuit pattern made of the copper foil of the flexible printed wiring board 3 by imprinting (pressing with a mold), and performing nickel base plating and gold plating on the surface. Is. A thermosetting insulating resin is sandwiched between the electrode 2 and the bump 4 to pressurize and bond them.

図4の(A)は、この金めっきの厚さをパラメータとして荷重F(単位はN)と実測抵抗R(単位はΩ)との関係を示す。また図4の(B)は荷重Fの逆数1/F(N-1)と接触抵抗RSとの関係を示すものである。ここに実測抵抗Rは製造ロットが異なると配線抵抗RPが大きく変わるため、単純にはロット間で比較することができない。このためめっき膜の塑性変形とみなせる荷重範囲を選択し、この近似直線の切片を全抵抗値Rより差し引いて荷重依存性の接触抵抗RSのみを抽出し、荷重との関係を再度整理することにより、傾きが凝着パラメータとなる直線が図4(B)のように得られる。 FIG. 4A shows the relationship between the load F (unit: N) and the measured resistance R (unit: Ω) using the thickness of the gold plating as a parameter. FIG. 4B shows the relationship between the reciprocal 1 / F (N −1 ) of the load F and the contact resistance R S. Here, the measured resistance R cannot be simply compared between lots because the wiring resistance R P changes greatly if the production lot differs. Therefore, select a load range that can be regarded as plastic deformation of the plating film, subtract the intercept of this approximate line from the total resistance value R, extract only the load-dependent contact resistance R S , and rearrange the relationship with the load. Thus, a straight line whose inclination is an adhesion parameter is obtained as shown in FIG.

この図4(B)においてロットAとロットBは端子パターンが異なる。2種類のロットA、Bで測定すると、凝着パラメータρfはロットA、B間でほとんど変化せず、めっき厚によって異なる値となることが解る。すなわち接合性の良い厚金(めっき厚が大)では凝着パラメータρfは小さく、逆に薄金(めっき厚が小)ではρfが大きな値となっている。このことから、凝着パラメータρfはめっき厚の凝着性(接合性)に関する品質指標として有効なパラメータとなることが解る。すなわち本発明の方法の信頼性が高いことが解る。 In FIG. 4B, lot A and lot B have different terminal patterns. When measured with two types of lots A and B, it can be seen that the adhesion parameter ρ f hardly changes between the lots A and B and varies depending on the plating thickness. That is, the adhesion parameter ρ f is small for thick gold with good bondability (large plating thickness), whereas ρ f is large for thin gold (small plating thickness). From this, it can be seen that the adhesion parameter ρ f is an effective parameter as a quality index regarding the adhesion (bondability) of the plating thickness. That is, it can be seen that the reliability of the method of the present invention is high.

なおこの評価部54は、測定で求めた評価係数ρfを予め決めた一定値と比較するものであっても良いし、予め決めた基準に基づいて数段階に表示するものであってもよい。また評価部54は求めた評価係数ρfを単に表示するものであってもよく、この場合はオペレータがこの表示から評価すればよい。 The evaluation unit 54 may compare the evaluation coefficient ρ f obtained by measurement with a predetermined constant value, or may display it in several stages based on a predetermined standard. . The evaluation unit 54 may simply display the obtained evaluation coefficient ρ f , and in this case, the operator may evaluate from this display.

本発明の原理説明図Principle explanatory diagram of the present invention 同じく原理説明用の抵抗Rと荷重Fの変化を示す図The figure which similarly shows the change of the resistance R for the principle explanation, and the load F 本発明の実施例1を示す図The figure which shows Example 1 of this invention 本発明の実測例を示す図The figure which shows the example of measurement of this invention

符号の説明Explanation of symbols

10 プリント配線板
14 電極(接合対象となる一方の金属)
26 バンプ(接合対象となる他方の金属)
34 圧力検出部(ロードセル)
36 加圧器
44 制御装置
46 抵抗測定部
48 荷重制御部
50 評価係数演算部
54 評価部
10 Printed wiring board 14 Electrode (one metal to be joined)
26 Bump (the other metal to be joined)
34 Pressure detector (load cell)
36 Pressurizer 44 Control Device 46 Resistance Measurement Unit 48 Load Control Unit 50 Evaluation Coefficient Calculation Unit 54 Evaluation Unit

Claims (9)

2つの金属の固相接合の接合性および2つの金属の接触部の電気接続性を評価する金属表面の接合性・接続性評価方法であって、
a)前記2つの金属を接触し、これら金属の接触面に対し垂直な圧縮荷重Fの変化に対する前記両金属の接触部の電気抵抗を含む実測抵抗Rの変化を測定する;
b)求めた実測抵抗Rと荷重Fを次の式に適用することによって評価係数ρfを求める;
式:R=ρf/F+C(但しρf、Cは常数)
c)評価係数ρfが小さい程接合性および接続性が良いと評価する;
以上のa)、b)、c)の工程を備える金属表面の接合性・接続性評価方法。
A method for evaluating the bondability / connectivity of a metal surface for evaluating the bondability of solid phase bonding of two metals and the electrical connectivity of a contact portion of two metals ,
a) contacting the two metals and measuring changes in the measured resistance R including the electric resistances of the contact portions of the two metals with respect to changes in the compressive load F perpendicular to the contact surfaces of these metals;
b) Obtain the evaluation coefficient ρ f by applying the measured resistance R and the load F obtained to the following equation;
Formula: R = ρ f / F + C (where ρ f is a constant)
c) Evaluate that the smaller the evaluation coefficient ρ f is, the better the bondability and connectivity are;
A metal surface bondability / connectivity evaluation method comprising the steps a), b), and c).
2つの金属の一方はプリント配線板の電極であり、他方はこの電極に固相接合されるフレキシブルプリント配線板であり、両者の接合性を評価する請求項1の金属表面の接合性・接続性評価方法。   One of the two metals is an electrode of a printed wiring board, and the other is a flexible printed wiring board bonded to the electrode by solid phase bonding. Evaluation methods. 2つの金属の一方はプリント配線板の電極であり、他方はこの電極に圧接接続される圧接端子であり、両者の電気接続性を評価する請求項1の金属表面の接合性・接続性評価方法。   2. The method for evaluating metal surface bondability / connectivity according to claim 1, wherein one of the two metals is an electrode of a printed wiring board, and the other is a press contact terminal connected to the electrode by press contact. . 接合・接続する金属の一方の表面には金めっきが施され、この金めっき層の接合性および電気接続性を評価する請求項2または3の金属表面の接合性・接続性評価方法。   4. The method for evaluating the bondability / connectivity of a metal surface according to claim 2 or 3, wherein one surface of the metal to be bonded / connected is subjected to gold plating, and the bondability and electrical connectability of the gold plating layer are evaluated. 請求項1の工程a)において、荷重Fを連続的に増加しつつ実測抵抗Rを連続的に測定する請求項1の金属表面の接合性・接続性評価方法。   The method for evaluating the bondability / connectivity of a metal surface according to claim 1, wherein in step a) of claim 1, the measured resistance R is continuously measured while the load F is continuously increased. 請求項1の工程b)において、荷重Fの逆数1/Fと抵抗Rとを直交座標系の2つの座標軸にとり、求めた直線の傾きを評価係数ρfとする請求項1の金属表面の接合性・接続性評価方法。 In step b) of claim 1, the reciprocal 1 / F of load F and resistance R are taken as two coordinate axes of an orthogonal coordinate system, and the slope of the obtained straight line is used as the evaluation coefficient ρ f. And connectivity evaluation method. 請求項1の工程a)において、異なる複数の荷重Fnに対する実測抵抗Rnを測定し、工程b)においてこれらの測定値に対する複数の評価係数ρfnの平均値を最終的な評価係数ρfとする請求項1の金属表面の接合性・接続性評価方法。 In step a) of claim 1, a plurality of different measured resistances R n against a load F n measured, step b) final evaluation coefficient average value of a plurality of evaluation factors [rho fn for these measurements at [rho f The metal surface bondability / connectivity evaluation method according to claim 1. 2つの金属の固相接合の接合性および2つの金属の接触部の電気接続性を評価するための金属表面の接合性・接続性評価装置であって、
前記2つの金属の接触面に対し垂直な圧縮荷重Fを加える加圧器と、
前記加圧器による荷重Fを測定する圧力検出部と、
前記加圧器による荷重Fを制御する荷重制御部と、
前記両金属の接触部に電流Iを供給する電源と、
前記両金属の接触部の電気抵抗を含む実測抵抗Rを求める抵抗測定部と、
荷重Fと実測抵抗Rとを用いて、式[R=ρf/F+C](但しρf、Cは常数)から評価係数ρfを求める評価係数演算部と、
求めた評価係数ρfが小さい程接合性および接続性が良いと評価する評価部と、
を備えることを特徴とする金属表面の接合性・接続性評価装置。
A metal surface bondability / connectivity evaluation apparatus for evaluating the bondability of two metal solid-phase bonds and the electrical connection of two metal contacts,
A pressurizer for applying a compressive load F perpendicular to the contact surface of the two metals;
A pressure detector for measuring the load F by the pressurizer;
A load control unit for controlling the load F by the pressurizer;
A power source for supplying a current I to the contact portion of the two metals;
A resistance measuring unit for obtaining an actual resistance R including the electric resistance of the contact part of the two metals;
An evaluation coefficient calculation unit for obtaining an evaluation coefficient ρ f from the formula [R = ρ f / F + C] (where ρ f is a constant) using the load F and the measured resistance R;
An evaluation unit for evaluating that the smaller the obtained evaluation coefficient ρ f is, the better the connectivity and connectivity are;
A metal surface bondability / connectivity evaluation apparatus comprising:
電源は接触部に直流電流Iを供給する直流電源である請求項8の金属表面の接合性・接続性評価装置。   The metal surface bonding / connectivity evaluation apparatus according to claim 8, wherein the power source is a DC power source that supplies a DC current I to the contact portion.
JP2006320200A 2006-11-28 2006-11-28 Metal surface bondability / connectivity evaluation method and evaluation apparatus Active JP4986026B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006320200A JP4986026B2 (en) 2006-11-28 2006-11-28 Metal surface bondability / connectivity evaluation method and evaluation apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006320200A JP4986026B2 (en) 2006-11-28 2006-11-28 Metal surface bondability / connectivity evaluation method and evaluation apparatus

Publications (2)

Publication Number Publication Date
JP2008135544A JP2008135544A (en) 2008-06-12
JP4986026B2 true JP4986026B2 (en) 2012-07-25

Family

ID=39560190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006320200A Active JP4986026B2 (en) 2006-11-28 2006-11-28 Metal surface bondability / connectivity evaluation method and evaluation apparatus

Country Status (1)

Country Link
JP (1) JP4986026B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000223534A (en) * 1999-01-29 2000-08-11 Toshiba Corp Apparatus for mounting semiconductor and method of mounting semiconductor chip
JP2004079277A (en) * 2002-08-13 2004-03-11 Shin Etsu Polymer Co Ltd Electric connector
JP4471746B2 (en) * 2004-06-24 2010-06-02 パナソニック株式会社 Semiconductor mounting method
JP2006054275A (en) * 2004-08-11 2006-02-23 Sony Corp Method for manufacturing semiconductor device and semiconductor manufacturing equipment
JP4787603B2 (en) * 2004-12-02 2011-10-05 セイコーインスツル株式会社 Ultrasonic vibration bonding apparatus and ultrasonic vibration bonding method

Also Published As

Publication number Publication date
JP2008135544A (en) 2008-06-12

Similar Documents

Publication Publication Date Title
CN102688067B (en) Ultrasonic probe and method for manufacturing ultrasonic probe
JP5310841B2 (en) Bonding quality inspection apparatus and bonding quality inspection method
US10495678B2 (en) Testing method for sheet resistance and contact resistance of connecting point of sheet material
JP4766613B2 (en) Metal surface bondability / connectivity evaluation method and evaluation apparatus
KR20190052840A (en) Method for bonding flexible sensor on fpcb, and fpcb bonded flexible sensor
JP4986026B2 (en) Metal surface bondability / connectivity evaluation method and evaluation apparatus
US7119556B2 (en) Probe for surface-resistivity measurement and method for measuring surface resistivity
TW200823465A (en) Electrical resistance measurement method and component inspection process
JP7077650B2 (en) Bonding device and bonding method
JP3518545B2 (en) Display method of resin material
Dou et al. An experimental methodology for the study of co‐planarity variation effects in anisotropic conductive adhesive assemblies
JP3731388B2 (en) Electrical characteristic measuring jig
JP2008051563A (en) Printed wiring board inspection jig
JP3453784B2 (en) Display method of resin material
KR20150054295A (en) Scratch test apparatus and adhesion measurement methods of thin film using the same
US11454650B2 (en) Probe, inspection jig, inspection device, and method for manufacturing probe
JP2020184485A (en) Electric wire with terminal and method for inspecting the same
WO2023218783A1 (en) Semiconductor testing device and method for evaluating performance of semiconductor testing device
Seefried et al. Optimization of the Process Reliability of the Ultrasonic Crimping Process by Evaluating the Mounting Conditions for Tubular Cable Lugs
JP7006578B2 (en) Inspection equipment and inspection method for electronic components
CN216900333U (en) Right-angle joint for material testing
JP2013161553A (en) Conductive sheet and substrate inspecting device
JP2021118191A (en) Semiconductor device, inspection method for semiconductor device, manufacturing method for semiconductor device, and inspection device
JPH0249651B2 (en)
TWI241669B (en) Planarizing and testing of BGA packages

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110520

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120418

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120418

R150 Certificate of patent or registration of utility model

Ref document number: 4986026

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250