JP4985795B2 - Solar power generation apparatus and solar power generation system - Google Patents

Solar power generation apparatus and solar power generation system Download PDF

Info

Publication number
JP4985795B2
JP4985795B2 JP2010018765A JP2010018765A JP4985795B2 JP 4985795 B2 JP4985795 B2 JP 4985795B2 JP 2010018765 A JP2010018765 A JP 2010018765A JP 2010018765 A JP2010018765 A JP 2010018765A JP 4985795 B2 JP4985795 B2 JP 4985795B2
Authority
JP
Japan
Prior art keywords
power generation
solar power
solar
solar cell
semiconductor switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010018765A
Other languages
Japanese (ja)
Other versions
JP2011159715A (en
Inventor
伸二 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanken Electric Co Ltd
Original Assignee
Sanken Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanken Electric Co Ltd filed Critical Sanken Electric Co Ltd
Priority to JP2010018765A priority Critical patent/JP4985795B2/en
Priority to CN2011100231182A priority patent/CN102163938B/en
Priority to TW100103279A priority patent/TWI456866B/en
Publication of JP2011159715A publication Critical patent/JP2011159715A/en
Application granted granted Critical
Publication of JP4985795B2 publication Critical patent/JP4985795B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Description

本発明は、太陽電池を直列に接続した太陽光発電装置及び太陽光発電システムに関する。   The present invention relates to a solar power generation apparatus and a solar power generation system in which solar cells are connected in series.

太陽光発電装置は、太陽光エネルギーを電気エネルギーに変換するもので、CO2を発生しないクリーンエネルギーとして注目されている。
太陽電池の単位セル(太陽電池素子)あたりの発生電圧は1V以下と低いため、複数の太陽電池素子を直列に接続したブロックを直並列に接続する。
The solar power generation device converts solar energy into electric energy, and has attracted attention as clean energy that does not generate CO2.
Since the generated voltage per unit cell (solar cell element) of the solar battery is as low as 1 V or less, blocks in which a plurality of solar cell elements are connected in series are connected in series and parallel.

直列に接続された太陽電池素子の一部が影に隠れると、その太陽電池素子は発電できないだけでなく、高抵抗となる。この場合には、直列に接続された太陽電池素子の全ての発電エネルギーの回収効率が低下する。   When a part of the solar cell elements connected in series is hidden in the shadow, the solar cell element cannot only generate power but also has high resistance. In this case, the recovery efficiency of all the power generation energy of the solar cell elements connected in series is lowered.

このため、太陽電池素子(単セル)又は数セルに対して並列にダイオードを接続し、発電エネルギーを高抵抗となる太陽電池素子から迂回させ、全体の発電エネルギーの回収効率を改善している。   For this reason, a diode is connected in parallel to the solar cell element (single cell) or several cells, and the generated energy is diverted from the high-resistance solar cell element, thereby improving the recovery efficiency of the entire generated energy.

図4は従来の太陽光発電装置の一例を示す回路構成図である(特許文献1)。図4に示す太陽光発電装置は、3つの太陽電池素子1が直列に接続された直列回路とこの直列回路の両端に並列に接続されたダイオード2(迂回ダイオード)とにより太陽電池ブロック3を構成している。   FIG. 4 is a circuit configuration diagram showing an example of a conventional solar power generation device (Patent Document 1). The solar power generation device shown in FIG. 4 comprises a solar cell block 3 by a series circuit in which three solar cell elements 1 are connected in series and a diode 2 (a bypass diode) connected in parallel at both ends of the series circuit. is doing.

この太陽電池ブロック3を直列に接続して構成された太陽光発電装置4は、負荷5に対して電力を供給する。負荷5は、蓄電池又は系統連係インバータなどにより構成され、発電されたエネルギーの蓄積や交流系統に回生する。   The solar power generation device 4 configured by connecting the solar cell blocks 3 in series supplies power to the load 5. The load 5 is configured by a storage battery or a grid-linked inverter, and regenerates the generated energy and regenerates the AC system.

また、図5に示すように、太陽光発電装置4−1〜4−nをダイオード6−1〜6−nを介して負荷5に並列に接続することにより、図4に示す太陽光発電装置よりもさらに高出力を得ることもできる。   Moreover, as shown in FIG. 5, the solar power generation device shown in FIG. 4 is connected by connecting the solar power generation devices 4-1 to 4-n in parallel to the load 5 via the diodes 6-1 to 6-n. Even higher output can be obtained.

特開昭56−69871号公報JP 56-69871 A

しかしながら、3つの太陽電池素子1の直列回路に並列にダイオード2を接続する図4に示す太陽光発電装置では、ダイオード2の電圧降下による発熱が大きく、この発熱がシステム全体の効率を低下させていた。   However, in the photovoltaic power generation apparatus shown in FIG. 4 in which the diode 2 is connected in parallel to the series circuit of the three solar cell elements 1, heat generation due to the voltage drop of the diode 2 is large, and this heat generation reduces the efficiency of the entire system. It was.

また、太陽光発電装置4−1〜4−nを並列に接続する図5に示す太陽光発電装置では、ダイオード2のバイパスする数によって、それぞれの太陽光発電装置の発電電圧にばらつきが生ずる。   Moreover, in the solar power generation device shown in FIG. 5 in which the solar power generation devices 4-1 to 4-n are connected in parallel, the generated voltage of each solar power generation device varies depending on the number of diodes 2 that are bypassed.

この場合、最大発電電圧を発生する太陽光発電装置によって、最小発電電圧の太陽光発電装置の出力電力が低下し、太陽光発電システム全体の発電効率が低下していた。   In this case, the output power of the solar power generation device having the minimum power generation voltage is reduced by the solar power generation device that generates the maximum power generation voltage, and the power generation efficiency of the entire solar power generation system is reduced.

本発明は、迂回ダイオードによる損失を低減させるとともに、システム全体の発電効率を向上することができる太陽光発電装置及び太陽光発電システムを提供することにある。   An object of the present invention is to provide a photovoltaic power generation apparatus and a photovoltaic power generation system that can reduce loss due to a bypass diode and improve the power generation efficiency of the entire system.

前記課題を解決するために、請求項1の発明は、直列に接続された1以上の太陽電池素子と前記1以上の太陽電池素子に並列に接続されるとともに太陽光が照射されているときにオフし且つ前記太陽光が照射されているときにオンする半導体スイッチとから構成される複合素子を、複数個直列に接続してなり、前記半導体スイッチは、ノーマリオン型のスイッチからなり、前記半導体スイッチのゲート−ソース間に第2太陽電池素子を接続してなることを特徴とする。 In order to solve the above problem, the invention of claim 1 is characterized in that one or more solar cell elements connected in series and the one or more solar cell elements are connected in parallel and are irradiated with sunlight. the composite element composed of a semiconductor switch which is turned on when off and and the sunlight is irradiated, Ri Na connected to each other in series, wherein the semiconductor switch is made normally-on switch, the The second solar cell element is connected between the gate and the source of the semiconductor switch .

本発明によれば、1以上の太陽電池素子に並列に接続された半導体スイッチは、太陽光が照射されているときにオフし、太陽光が照射されていないときにオンするので、半導体スイッチのオン電圧は、迂回ダイオードの順方向電圧Vfよりも電圧降下が小さいため、1以上の太陽電池素子をバイパスする際の損失を低減できる。   According to the present invention, a semiconductor switch connected in parallel to one or more solar cell elements is turned off when sunlight is irradiated and turned on when sunlight is not irradiated. Since the on-voltage has a smaller voltage drop than the forward voltage Vf of the bypass diode, it is possible to reduce loss when bypassing one or more solar cell elements.

実施例1の太陽光発電装置を示す回路構成図である。It is a circuit block diagram which shows the solar power generation device of Example 1. FIG. 実施例1の太陽光発電装置の半導体スイッチの特性と従来のダイオードの特性とを示す図である。It is a figure which shows the characteristic of the semiconductor switch of the solar power generation device of Example 1, and the characteristic of the conventional diode. 実施例2の太陽光発電システムを示す回路構成図である。It is a circuit block diagram which shows the solar energy power generation system of Example 2. FIG. 従来の太陽光発電装置の一例を示す回路構成図である。It is a circuit block diagram which shows an example of the conventional solar power generation device. 従来の太陽光発電システムの他の一例を示す回路構成図である。It is a circuit block diagram which shows another example of the conventional solar power generation system.

以下、本発明の太陽光発電装置及び太陽光発電システムの実施の形態を図面を参照しながら詳細に説明する。   Hereinafter, embodiments of the photovoltaic power generation apparatus and the photovoltaic power generation system of the present invention will be described in detail with reference to the drawings.

図1は実施例1の太陽光発電装置を示す回路構成図である。図1に示す実施例1の太陽光発電装置4aは、3つの太陽電池素子1が直列に接続された直列回路と、この直列回路の両端にドレイン−ソースが接続された半導体スイッチ7と、半導体スイッチ7のゲートとソースとの間に接続された太陽電池素子1aとにより太陽電池ブロック3aを構成し、太陽電池ブロック3aを複数個直列に接続して構成されている。   FIG. 1 is a circuit configuration diagram illustrating the photovoltaic power generation apparatus according to the first embodiment. 1 includes a series circuit in which three solar cell elements 1 are connected in series, a semiconductor switch 7 in which a drain-source is connected to both ends of the series circuit, and a semiconductor. A solar cell element 3a connected between the gate and source of the switch 7 constitutes a solar cell block 3a, and a plurality of solar cell blocks 3a are connected in series.

半導体スイッチ7は、窒化ガリウム(GaN),炭化ケイ素(SiC)などのワイドバンドギャップ半導体からなるノーマリオン型のスイッチからなり、太陽光が照射されているときにオフし、太陽光が照射されていないときにオンする。   The semiconductor switch 7 is a normally-on type switch made of a wide band gap semiconductor such as gallium nitride (GaN) or silicon carbide (SiC), and is turned off when irradiated with sunlight and irradiated with sunlight. Turn on when not.

なお、GaN,SiCなどのワイドバンドギャップ半導体の代わりに、GaNによる高電子移動度トランジスタ(HEMT;High Electron Mobility Transistor)を用いても良い。   Note that a GaN high electron mobility transistor (HEMT) may be used instead of a wide band gap semiconductor such as GaN or SiC.

次に、このように構成された実施例1の太陽光発電装置の動作を説明する。太陽光が太陽電池素子1に照射されていないときには、太陽電池素子1に電圧が発生し、半導体スイッチ7のゲート−ソース間は、略零であるので、半導体スイッチ7はオンする。   Next, operation | movement of the solar power generation device of Example 1 comprised in this way is demonstrated. When the solar cell element 1 is not irradiated with sunlight, a voltage is generated in the solar cell element 1 and the gap between the gate and source of the semiconductor switch 7 is substantially zero, so the semiconductor switch 7 is turned on.

一方、太陽光が太陽電池素子1に照射されたときには、半導体スイッチ7のゲート−ソース間に陰極電圧が印加されるため、半導体スイッチ7はオフになる。このため、太陽電池素子1の発電電力が出力される。   On the other hand, when the solar cell element 1 is irradiated with sunlight, a cathode voltage is applied between the gate and source of the semiconductor switch 7, so that the semiconductor switch 7 is turned off. For this reason, the generated electric power of the solar cell element 1 is output.

このように実施例1の太陽光発電装置によれば、半導体スイッチ7は、太陽光が照射されているときにオフし、太陽光が照射されていないときにオンするので、図2に示すように、半導体スイッチ7のオン電圧Von7は、迂回ダイオード2の順方向電圧Vf2よりも電圧降下が小さいため、1以上の太陽電池素子1をバイパスする際の損失を低減できる。   Thus, according to the solar power generation device of Example 1, the semiconductor switch 7 is turned off when sunlight is irradiated, and is turned on when sunlight is not irradiated, so as shown in FIG. Moreover, since the voltage drop of the on-voltage Von7 of the semiconductor switch 7 is smaller than the forward voltage Vf2 of the bypass diode 2, it is possible to reduce the loss when bypassing one or more solar cell elements 1.

また、半導体スイッチ7をオフさせるために、ゲート電圧をマイナス電位にするのみで、ゲート駆動損失を発生せず、太陽光発電時の効率を低下させない。   Further, in order to turn off the semiconductor switch 7, only the gate voltage is set to a negative potential, no gate drive loss occurs, and the efficiency during solar power generation is not reduced.

即ち、ダイオード2を使用していた従来の太陽光発電装置に比較して、半導体スイッチ7によるバイパス回路の抵抗が小さいため、太陽電池素子1が日陰などで隠れたときでも、太陽光発電システム全体に与える影響は少ない。   That is, since the resistance of the bypass circuit by the semiconductor switch 7 is small as compared with the conventional solar power generation apparatus using the diode 2, even when the solar cell element 1 is hidden in the shade or the like, the entire solar power generation system Has little effect on

図3は実施例2の太陽光発電システムを示す回路構成図である。図3に示す太陽光発電システムは、太陽光発電装置4a−1〜4a−4をダイオード6−1〜6−4を介して負荷5に並列に接続することにより構成されている。なお、太陽光発電装置の並列数は4個に限定されるものではない。   FIG. 3 is a circuit configuration diagram illustrating the photovoltaic power generation system according to the second embodiment. The solar power generation system shown in FIG. 3 is configured by connecting solar power generation devices 4a-1 to 4a-4 in parallel to a load 5 via diodes 6-1 to 6-4. In addition, the parallel number of photovoltaic power generation devices is not limited to four.

太陽光発電装置4a−1〜4a−4の各々は、3つの太陽電池素子1が直列に接続された直列回路と、この直列回路の両端にドレイン−ソースが接続された半導体スイッチ7と、半導体スイッチ7のゲートとソースとの間に接続された太陽電池素子1aとにより太陽電池ブロック3a−1〜3a−4を構成し、太陽電池ブロック3a−1〜3a−4を複数個直列に接続して構成されている。   Each of the solar power generation devices 4a-1 to 4a-4 includes a series circuit in which three solar cell elements 1 are connected in series, a semiconductor switch 7 in which drain and source are connected to both ends of the series circuit, and a semiconductor. A solar cell block 3a-1 to 3a-4 is constituted by the solar cell element 1a connected between the gate and source of the switch 7, and a plurality of solar cell blocks 3a-1 to 3a-4 are connected in series. Configured.

太陽光発電装置4a−1〜4a−4の各々には、直列に電流検出抵抗8−1〜8−4(検出部)が接続されている。電流検出抵抗8−1〜8−4で検出された電流信号は制御回路10に入力される。   Current detection resistors 8-1 to 8-4 (detection units) are connected in series to each of the solar power generation devices 4a-1 to 4a-4. The current signals detected by the current detection resistors 8-1 to 8-4 are input to the control circuit 10.

なお、太陽光発電装置4a−1〜4a−4に流れる電流を検出する代わりに、太陽光発電装置4a−1〜4a−4の電圧を検出しても良い。
実施例2では、制御回路10に最も近い太陽電池ブロック3a−1〜3a−4内の半導体スイッチ7−1〜7−4のゲートとソースとは制御回路10に接続されている。
In addition, you may detect the voltage of solar power generation device 4a-1-4a-4 instead of detecting the electric current which flows into solar power generation device 4a-1-4a-4.
In the second embodiment, the gates and sources of the semiconductor switches 7-1 to 7-4 in the solar cell blocks 3a-1 to 3a-4 closest to the control circuit 10 are connected to the control circuit 10.

制御回路10は、複数の電流検出抵抗8−1〜8−4から複数の電流を入力して比較し、複数の電流値に基づいて、複数の電流値の内の最も小さい電流値を除く残りの電流値に対応する太陽光発電装置内の半導体スイッチ7のゲートとソースとの間に制御信号を印加することにより、その半導体スイッチ7をオンさせる。   The control circuit 10 inputs and compares a plurality of currents from the plurality of current detection resistors 8-1 to 8-4, and based on the plurality of current values, removes the remaining current value among the plurality of current values. The semiconductor switch 7 is turned on by applying a control signal between the gate and the source of the semiconductor switch 7 in the photovoltaic power generation apparatus corresponding to the current value.

又は、制御回路10は、太陽発電装置4a−1〜4a−4の電圧を入力して比較し、複数の電圧値に基づいて、複数の電圧値の内の最も小さい電圧値を除く残りの電圧値に対応する太陽光発電装置内の半導体スイッチ7のゲートとソースとの間に制御信号を印加することにより、その半導体スイッチ7をオンさせる。   Alternatively, the control circuit 10 inputs and compares the voltages of the solar power generation devices 4a-1 to 4a-4, and based on the plurality of voltage values, the remaining voltage excluding the smallest voltage value among the plurality of voltage values. The semiconductor switch 7 is turned on by applying a control signal between the gate and the source of the semiconductor switch 7 in the photovoltaic power generation apparatus corresponding to the value.

次に、このように構成された実施例2の太陽光発電システムの動作を説明する。   Next, operation | movement of the solar energy power generation system of Example 2 comprised in this way is demonstrated.

まず、複数の電流検出抵抗8−1〜8−4により複数の太陽光発電装置4a−1〜4a−4に流れる電流が検出され、これらの電流は制御回路10に入力される。   First, currents flowing through the plurality of solar power generation devices 4 a-1 to 4 a-4 are detected by the plurality of current detection resistors 8-1 to 8-4, and these currents are input to the control circuit 10.

制御回路10は、複数の電流検出抵抗8−1〜8−4からの複数の電流値に基づいて、複数の電流値の内の最も小さい電流値、例えば電流検出抵抗8−1を流れる最も小さい電流値を除く残りの各電流値に対応する太陽光発電装置3a−2〜3a−4内の半導体スイッチ7−2〜7−4のゲートとソースとの間に制御信号を印加することにより、ゲートとソースとの間を略零にして、その半導体スイッチ7−2〜7−4をオンさせる。このため、太陽光発電装置3a−2〜3a−4の電圧が太陽光発電装置3a−1の電圧に揃うように近づけられる。   Based on the plurality of current values from the plurality of current detection resistors 8-1 to 8-4, the control circuit 10 has the smallest current value among the plurality of current values, for example, the smallest flowing through the current detection resistor 8-1. By applying a control signal between the gate and the source of the semiconductor switches 7-2 to 7-4 in the solar power generation devices 3a-2 to 3a-4 corresponding to the remaining current values excluding the current value, The gap between the gate and the source is made substantially zero, and the semiconductor switches 7-2 to 7-4 are turned on. For this reason, the voltage of the solar power generation devices 3a-2 to 3a-4 is brought close to the voltage of the solar power generation device 3a-1.

即ち、各太陽光発電装置4a−1〜4a−4の発電量を比較し、発電量の多い太陽光発電装置の一部の太陽電池ブロックを短絡し、端子電圧を低下させる。太陽光発電装置の端子電圧を低下させることにより、各ライン電圧を揃えて発電電圧の低い太陽光発電装置からの発電量を得ることで、発電電圧の低い太陽光発電装置以外の発電量の低下分を差し引いても、発電電圧の低い太陽光発電装置のラインからの発電量の方が上回る条件において半導体スイッチ7をオンさせることで、太陽光発電システム全体の発電効率を向上することができる。
なお、本発明は実施例1及び実施例2の太陽光発電装置及び太陽光発電システムに限定されるものではない。例えば、半導体スイッチ7のゲートとソースとの間にコンデンサや抵抗を挿入して、半導体スイッチ7のオン・オフに対する時定数やしきい値を調整することもできる。
That is, the power generation amount of each of the solar power generation devices 4a-1 to 4a-4 is compared, a part of the solar battery blocks of the solar power generation device with a large power generation amount is short-circuited, and the terminal voltage is reduced. By reducing the terminal voltage of the solar power generation device, the power generation amount other than the solar power generation device with low power generation voltage is reduced by aligning each line voltage and obtaining the power generation amount from the solar power generation device with low power generation voltage. Even if the amount is subtracted, the power generation efficiency of the entire photovoltaic power generation system can be improved by turning on the semiconductor switch 7 under the condition that the amount of power generation from the line of the photovoltaic power generation device having a low generation voltage is higher.
In addition, this invention is not limited to the solar power generation device and solar power generation system of Example 1 and Example 2. For example, it is possible to adjust a time constant and a threshold value for turning on / off the semiconductor switch 7 by inserting a capacitor or a resistor between the gate and the source of the semiconductor switch 7.

本発明は、蓄電池、インバータなどに適用可能である。   The present invention is applicable to storage batteries, inverters, and the like.

1,1a 太陽電池素子
2 ダイオード
3,3a,3a−1〜3a−4 太陽電池ブロック
4,4a,4−1〜4−n 太陽光発電装置
5 負荷
6−1〜6−n ダイオード
7,7−1〜7−4 ノーマリオン型のスイッチ
8−1〜8−4 電流検出抵抗
10 制御回路
1,1a Solar cell element
2 Diode 3, 3a, 3a-1 to 3a-4 Solar cell block 4, 4a, 4-1 to 4-n Photovoltaic power generation device 5 Load 6-1 to 6-n Diode
7,7-1 to 7-4 Normally-on type switch
8-1 to 8-4 Current detection resistor 10 Control circuit

Claims (2)

直列に接続された1以上の太陽電池素子と前記1以上の太陽電池素子に並列に接続されるとともに太陽光が照射されているときにオフし且つ前記太陽光が照射されていないときにオンする半導体スイッチとから構成される複合素子を、複数個直列に接続してなり、
前記半導体スイッチは、ノーマリオン型のスイッチからなり、前記半導体スイッチのゲート−ソース間に第2太陽電池素子を接続してなることを特徴とする太陽光発電装置。
One or more solar cell elements connected in series and the one or more solar cell elements are connected in parallel and turned off when sunlight is irradiated and turned on when the sunlight is not irradiated the composite element composed of a semiconductor switch, Ri Na connected to each other in series,
The said semiconductor switch consists of a normally-on type switch, and connects a 2nd solar cell element between the gate-source of the said semiconductor switch, The solar power generation device characterized by the above-mentioned.
請求項1記載の太陽光発電装置が複数並列に接続された並列回路と、A parallel circuit in which a plurality of photovoltaic power generation devices according to claim 1 are connected in parallel;
前記複数の太陽光発電装置に対応して設けられ、前記複数の太陽光発電装置の電流又は電圧を検出して複数の検出信号を出力する複数の検出部と、A plurality of detection units provided corresponding to the plurality of solar power generation devices, detecting currents or voltages of the plurality of solar power generation devices and outputting a plurality of detection signals;
前記複数の検出部からの複数の検出信号に基づき、前記複数の太陽光発電装置の内の1以上の前記半導体スイッチをオンさせる制御回路と、Based on a plurality of detection signals from the plurality of detection units, a control circuit for turning on one or more of the semiconductor switches in the plurality of photovoltaic power generation devices,
を備えることを特徴とする太陽光発電システム。A photovoltaic power generation system comprising:
JP2010018765A 2010-01-29 2010-01-29 Solar power generation apparatus and solar power generation system Expired - Fee Related JP4985795B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010018765A JP4985795B2 (en) 2010-01-29 2010-01-29 Solar power generation apparatus and solar power generation system
CN2011100231182A CN102163938B (en) 2010-01-29 2011-01-20 Sunshine power generation device and sunshine power generation system
TW100103279A TWI456866B (en) 2010-01-29 2011-01-28 Solar power generation unit and solar power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010018765A JP4985795B2 (en) 2010-01-29 2010-01-29 Solar power generation apparatus and solar power generation system

Publications (2)

Publication Number Publication Date
JP2011159715A JP2011159715A (en) 2011-08-18
JP4985795B2 true JP4985795B2 (en) 2012-07-25

Family

ID=44464959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010018765A Expired - Fee Related JP4985795B2 (en) 2010-01-29 2010-01-29 Solar power generation apparatus and solar power generation system

Country Status (3)

Country Link
JP (1) JP4985795B2 (en)
CN (1) CN102163938B (en)
TW (1) TWI456866B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012256729A (en) * 2011-06-09 2012-12-27 Mitsubishi Electric Corp Connection box for photovoltaic power generation
CN106602504B (en) * 2017-02-28 2018-11-06 阳光电源股份有限公司 A kind of photovoltaic Quick shut-off device and photovoltaic system
ES2823590T3 (en) * 2018-01-18 2021-05-07 Soltec Energias Renovables Sl Photovoltaic system to generate electricity with an auxiliary charging module
CN109075738A (en) * 2018-02-05 2018-12-21 苏州谐通光伏科技股份有限公司 Photovoltaic module array turning off system

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1191394A (en) * 1997-02-20 1998-08-26 杨泰和 Insulated-gate bipolar transistor driven by pre-photo-electric transfer component
JP2000010648A (en) * 1998-06-18 2000-01-14 Canon Inc Electric power controller, and photovoltaic power generation system using the same
JP4117746B2 (en) * 1998-08-24 2008-07-16 シャープ株式会社 Power converter for photovoltaic power generation
JP2000228529A (en) * 1998-11-30 2000-08-15 Canon Inc Solar cell module having overvoltage preventing element and solar light power generating system using the same
JP2000174308A (en) * 1998-12-01 2000-06-23 Toshiba Corp Solar battery power generation module
CN101107712A (en) * 2005-01-26 2008-01-16 冈瑟斯佩尔斯堡有限责任两合公司 Protective circuit with current bypass for solar cell module
JP2006287164A (en) * 2005-04-05 2006-10-19 Sharp Corp Solar power generation device
DE102005036153B4 (en) * 2005-05-24 2007-03-22 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Protection switching device for a solar module
JP4841201B2 (en) * 2005-08-25 2011-12-21 京セラ株式会社 Throwaway tip
DE102006003157B3 (en) * 2006-01-24 2007-04-12 Insta Elektro Gmbh Circuit arrangement for switching electrical load, such as lighting, heater or motor on and off, uses electronic switch with parallel- or series-connected transistors

Also Published As

Publication number Publication date
CN102163938B (en) 2013-11-27
CN102163938A (en) 2011-08-24
TWI456866B (en) 2014-10-11
TW201145763A (en) 2011-12-16
JP2011159715A (en) 2011-08-18

Similar Documents

Publication Publication Date Title
US20210249867A1 (en) Photovoltaic Module
KR101925528B1 (en) Localized power point optimizer for solar cell installations
JP5521796B2 (en) Rectifier circuit
AU2014245740B2 (en) Inverter device
US20120155141A1 (en) Power converting apparatus, grid interconnection apparatus and grid interconnection system
JP2005276942A (en) Solar cell power generator and system, and control method therefor
JP2008141949A (en) Current-fed power converter including on normally-on switch
JPWO2012176403A1 (en) Buck / Boost AC / DC Converter
EP2728734A1 (en) A three-level neutral-point-clamped inverter
JP4985795B2 (en) Solar power generation apparatus and solar power generation system
US10116228B2 (en) Converter and power conversion device manufactured using the same
US20230089905A1 (en) Bridgeless power factor correction pfc circuit
JP7067155B2 (en) Power conditioner
US10938308B2 (en) Hybrid devices for boost converters
US20150214831A1 (en) Inverter and control method thereof
JP2007059423A (en) Photovoltaic power generation controller
JP6037585B1 (en) Solar power system
JP2014011386A (en) Solar battery device
JP2017143607A (en) Shunt device, electric power system, and space structure
JP6419266B2 (en) System and method for power inverter with controllable clamp
US20220123659A1 (en) Pv power converter
JP2010068606A (en) Single phase-three phase matrix converter
WO2022082769A1 (en) Backward flowing slow-start circuit of string photovoltaic inverter
JP5755418B2 (en) Solar power system
JP6375042B1 (en) Connection circuit and power conditioner

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120416

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees