CN101107712A - Protective circuit with current bypass for solar cell module - Google Patents

Protective circuit with current bypass for solar cell module Download PDF

Info

Publication number
CN101107712A
CN101107712A CN 200680003235 CN200680003235A CN101107712A CN 101107712 A CN101107712 A CN 101107712A CN 200680003235 CN200680003235 CN 200680003235 CN 200680003235 A CN200680003235 A CN 200680003235A CN 101107712 A CN101107712 A CN 101107712A
Authority
CN
China
Prior art keywords
solar cell
protection circuit
control circuit
circuit
characterized
Prior art date
Application number
CN 200680003235
Other languages
Chinese (zh)
Inventor
D·奎德特
H·芒丁格
T·格罗森
V·格罗施
Original Assignee
冈瑟斯佩尔斯堡有限责任两合公司;因斯塔电气有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to DE102005003720.8 priority Critical
Priority to DE102005003720 priority
Priority to DE102005012213.2 priority
Priority to DE102005018463.4 priority
Application filed by 冈瑟斯佩尔斯堡有限责任两合公司;因斯塔电气有限责任公司 filed Critical 冈瑟斯佩尔斯堡有限责任两合公司;因斯塔电气有限责任公司
Publication of CN101107712A publication Critical patent/CN101107712A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

The invention relates to a protective circuit to be electrically connected to the solar cells of a solar cell module. The inventive protective circuit is characterized by comprising a controlled electronic circuit system as the protective device, thereby providing a protective circuit to be electrically connected to the solar cells of a solar cell module, which heats up only slightly during operation.

Description

太阳能电池模块的具有电流旁路的保护电路 The protection circuit has a current bypass of the solar cell module

本发明涉及一种保护电路,用于电连接到太阳能电池模块的太阳能电池上,具有一个保护设备,该保护设备在被遮蔽的太阳能电池的情况下作为该被遮蔽的太阳能电池的电流旁路起作用。 The present invention relates to a protection circuit for a solar cell module electrically connected to the solar cell, having a protective device, the protective device in the case of a solar cell as a shielding current bypass of the solar cell is shaded from effect.

用于电连接到太阳能电池模块的太阳能电池上的这种保护电路,从实践中以多种多样的扩展方案被众所周知。 Such a protection circuit for electrical connection to a solar cell module of solar cells, are well known from the practice in a wide variety of refinement. 这种电路部分地也称作为太阳能电池的连接电路。 Such a circuit connecting circuit part is also called a solar cell.

一般将多个太阳能电池联接成太阳能电池模块。 Usually a plurality of solar cells coupled to the solar cell module. 为此,在太阳能电池模块中要么存在太阳能电池的串联电路的可能性,要么存在并联电路的可能性。 For this reason, the possibility of a series circuit of a solar cell or the solar cell module is present, the likelihood of the presence or parallel circuit. 通过太阳能电池的并联,太阳能电池的各个电流相加成一个总电流。 Solar cells in parallel, each current of the solar cell are added into a total current. 当然,并联的太阳能电池在此基本上应具有相同的物理特性,使得太阳能电池的并联在实践中几乎没有得到贯彻,尤其是也因为一个单个的太阳能电池已经可以提供若干安培的电流,并且单个太阳能电池的输出电压典型地太小,以致于不能运行像家用电器那样的电气设备。 Of course, this parallel solar cells should have substantially the same physical characteristics, so that the solar cell in parallel hardly been implemented in practice, in particular also because a several amperes individual solar cells already provided, and a single solar the output voltage of the battery is typically too small to not run as home appliances such as electric equipment.

因此在由单个太阳能电池组合太阳能电池模块时,常常串联这些太阳能电池。 Therefore, when a single solar cell module of the solar cell modules, solar cells are often connected in series. 但是如果太阳能电池模块在运行中部分地被遮蔽、 即太阳能电池模块的一个太阳能电池或多个太阳能电池较少地或甚至没有得到太阳辐射,则在此可能产生问题。 However, if the solar cell module is partially masked operation, i.e. less solar cell module one solar cell or a plurality of solar cells or solar radiation are not even, then this may cause problems. 这种减少的太阳辐射的原因例如可能在于太阳能电池的污染和/或树木、建筑物设施或建筑物本身的阴影投放。 The reason of this reduction of solar radiation such as contamination may lie in the shadow of the solar cells and / or trees, buildings, facilities or the building itself running.

与均匀地在其整个面积上对太阳能电池模块的遮蔽相反,其中所述遮蔽总的来说仅导致功率减小,在部分遮蔽的情况下产生以下 In contrast to the uniformly over the entire area of ​​the interruption of the solar cell module, wherein the shield generally result in only a power reduction, the following is generated in the case of partial shading of the

问题:共同的电流流过太阳能电池模块的串联的太阳能电池,其中每个单个太阳能电池以其相应的电压对太阳能电池模块的总电压作出贡献。 : A shared current flows through the series-connected solar cell solar cell module, wherein each individual solar cell voltage corresponding to its contribution to the total voltage of the solar cell module. 如果现在太阳能电池被遮蔽,则该太阳能电池不再生成电压,并且实际上以二极管处于截止方向来对抗太阳能电池模块中的电流流通。 If now the solar cell is shaded, the solar cell voltage is no longer generated, and the diode is turned off substantially in the direction of flow against the current of the solar cell module. 但是这意味着,整个太阳能电池模块不再能够提供电流, 以致于影响到太阳能电池模块的整个功能。 This means, however, the entire solar cell module is no longer able to provide a current, so as to affect the entire solar cell module functions.

此外适用的是,在被遮蔽的太阳能电池上施加与被遮蔽的太阳 Also suitable are applied with the sun shield in the shadowed solar cell

能电池在串联电路中的位置有关的电压。 Battery voltage in a series circuit can be related to the location. 如果施加在被遮蔽的太阳能电池上的所述电压大于其截止电压(Sperrspannng ),则在太阳能电池中导致击穿并因此导致持久的损坏。 If the voltage applied to the shadowed solar cell is greater than the cut-off voltage (Sperrspannng), leading to the breakdown of the solar cell and thus lead to lasting damage. 即使如果通过击穿不导致太阳能电池的损坏,在被遮蔽的太阳能电池中大的损耗功率被转换,使得被遮蔽的太阳能电池生热。 Even if the damage does not result in the breakdown by the solar cell, in a large shaded solar cell is converted to power loss, heat the solar cell is shaded. 这种生热也可能导致对被遮蔽的太阳能电池以及对其相邻的太阳能电池的损坏。 Such heat may cause damage to the shadowed solar cell and its adjacent solar cell. 为了避免与部分被遮蔽的太阳能电池相关联的问题,采用与太阳能电池反并联的保护设备、 一般也就是旁路二极管。 To avoid problems associated with the solar cell portion is shielded, the use of protective devices in anti-parallel with the solar cell, a bypass diode is generally. 以此方式实现,被遮蔽的太阳能电池虽然不再对太阳能电池模块的总电压提供分量,但是仍然维持电流流通。 In this way it implemented, although shadowed solar cell is no longer available to the component of the total voltage of the solar cell module, but still maintain the current flow. 太阳能电池模块因此展示出仅仅减小的工作电压,但是不完全失效。 The solar cell module thus exhibits only a reduced operating voltage, but does not fail completely. 此外,在被遮蔽的太阳能电池中不再转换功率,使得可以避免对被遮蔽的太阳能电池的损坏。 Further, in the shadowed solar cell is no longer in power conversion, such that to avoid damage to the solar cell is shaded. 原则上可以给太阳能电池模块的每一个太阳能电池分配恰好一个旁路二极管。 It can be assigned to each of the solar cell module of solar cells one bypass diode is in principle exactly. 但是常常如此来进行,使得分别由一个共同的旁路二极管来保护多个相继连接的太阳能电池、也就是所谓的太阳能电池串。 But often the case is performed, respectively, by such a common bypass diode to protect the solar cells connected to a plurality of consecutive, also called a solar cell string. 因此,用于电连接到太阳能电池模块的太阳能电池上的保护电路一般具有至少一个旁路二极管,常常具有多个旁路二极管。 Thus, a protection circuit electrically connected to the solar cells for solar cell module generally has at least one bypass diode, often having a plurality of bypass diodes. 但是与此相关联的问题是,通过在旁路二极管中所转换的功率大大使得用于电连接太阳能电池模块的太阳能电池的保护电路变热,这在不同的方面是不利的。 However, problems are associated with this, as the bypass diode through the power converter so that the protective circuit is greatly heats the solar cell for electrically connecting the solar cell module, which is disadvantageous in various aspects. 因此本发明的任务是,说明一种用于电连接到太阳能电池模块的太阳能电池上的这种保护电路,该保护电路在运行中仅少量发热。 Therefore object of the invention is to specify such a protection circuit for a solar cell is electrically connected to the solar cell module, the protective circuit only a small amount of heat during operation. 从开始时所述的保护电路出发,通过以下方式解决前述任务, 即保护电路具有受控电子开关装置作为保护设备。 Said protective circuit starting from the start, in the following manner to solve the aforementioned task, i.e., a protection circuit having electronic switching means controlled as a protective device. 因此根据本发明规定,为了避免与部分被遮蔽的太阳能电池相关联的上述问题,将受控电子开关装置采用为保护设备,使得可以减少或完全避免旁路二极管的使用。 Thus in accordance with the present invention, in order to avoid problems with the shaded portion of the solar cell is associated, the controlled electronic switching device uses to protect the device, making it possible to reduce or completely avoid the use of a bypass diode. 通过由受控电子开关装置代替旁路二极管,可以如下详述的那样实现开关装置的发热的减少,其中所述受控电子开关装置在功能上基本上与旁路二极管作用相同。 Replaced by an electronic switch controlled by a bypass diode device, as described in detail achieve a reduction in heat generation of the switching device, wherein the device is substantially the same as the controlled electronic switch acting on the bypass diode function may be as follows.

路二极管的这种在功能上的相同作用。 This way the same effect on the function of the diode. 对此,根据本发明的一种优选的改进方案规定,受控电子开关装置具有控制电路和可由控制电路控制的开关设备,其中开关设备并联于至少一个太阳能电池、优选地并联于一串太阳能电池,并且在遮蔽太阳能电池中的一个与该开关设备并联的太阳能电池的情况下由控制电路至少暂时地被加偏 In this regard, according to one preferred embodiment of the invention provides that the controlled electronic switch means having a control circuit and a switching device controlled by the control circuit, wherein the switching device connected in parallel to at least one solar cell, preferably in a series of solar cells in parallel and shading is added in the case of a solar cell of the solar cell in parallel with the switching device by the control circuit at least temporarily partial

压(aufsteuern),使得实现用于被遮蔽的太阳能电池的电流旁路。 Pressure (aufsteuern), so as to achieve a current bypass shadowed solar cell.

可以以不同的方式来实现相应的开关设备。 May be implemented in different ways corresponding switching device. 然而根据本发明的一种优选的改进方案规定,开关设备具有两个串联的并且由控制电路控制的电气或电子的开关元件。 However, according to a preferred embodiment of the present invention to improve a predetermined switching device having an electrical or electronic switching elements in series and two control by the control circuit. 根据本发明的一种优选的改进方案在此尤其规定,设置两个彼此相对极化的晶体管、优选两个MOSFET作为开关元件。 According to a preferred embodiment of the invention in this particular provision, two polarized opposite to each other transistors, preferably two MOSFET as a switching element. 此外适用的是,根据本发明的一种优选的改进方案规定,通过由太阳能电池模块的未被遮蔽的太阳能电池所生成的电流来进行对控制电路的电流供应,其中根据本发明的一种优选的改进方案尤其规定,控制电路配备有存储电容器。 Also suitable are, according to one preferred embodiment of the present invention to improve a predetermined, to the current supplied by the current control circuit is not masked by a solar cell of the solar cell module generated, wherein according to one preferred embodiment of the invention, predetermined particular refinement, the control circuit is provided with a storage capacitor.

可替代地,根据一种优选的实施形式规定,设置受控电子开关装置作为保护设备,该受控电子开关装置对于至少一串太阳能电池,具有至少一个晶体管和至少一个与之并联的DC/DC转换器,该DC/DC转换器通过储能器与控制电路相连接。 Alternatively, according to a preferred embodiment provides that the controlled electronic switch means is provided as a protective device, the controlled electronic switching device for at least one series solar cell, having at least one transistor connected in parallel therewith and at least one DC / DC converter, the DC / DC converter is connected to accumulator via the control circuit. 在这种构造中特别有利的是,保护设备具有几个有低空间需求的便宜的MOSFET,因为借助电压转换器已经从MOSFET的寄生二极管的微小的正向电压中生成对其控制所需要的电压。 In such a configuration is particularly advantageous that the protective device has a low space requirement of several inexpensive MOSFET, since the voltage converter generates a voltage thereof has been required from a micro control the forward voltage of the parasitic diode in the MOSFET by means of .

此外,如果通过将保护设备集成到太阳能电池模块的至少两串太阳能电池中来实现电压转换,则是特别有利的。 Further, if the protective device is integrated into the solar cell module of the at least two series of solar cells is achieved through voltage conversion, it is particularly advantageous. 因此一方面可能的是,保护设备交替地从存在于MOSFET上的电压中充分地得以供电,因为存在多个MOSFET。 Thus it is possible on the one hand, sufficiently protective device alternately be powered from a voltage present on the MOSFET, since the presence of a plurality of MOSFET. 另一方面,在所有属于一个串的太阳能电池被遮蔽时,可以从MOSFET的寄生二极管的正向电压的总和中获取足够的电压,以便将该电压用于MOSFET的转换和控制。 On the other hand, when all the strings belonging to a solar cell is shaded, a sufficient voltage can be acquired from the sum of the forward voltage of the parasitic diode of the MOSFET, so that the MOSFET for switching and controlling the voltage. 此外有利的是,将每保护设备在反向上出现的最大电压限制为硅二极管的正向电压,这使得在对在运行中剩下的太阳能电池的不充分照射情况下、例如在漫射光情况下供电完全失效的风险最小。 Further advantageously, the maximum voltage appearing at each protection device to limit the forward voltage of the reverse diode of silicon, which is not sufficient so that in the remaining irradiated during operation of the solar cell, for example in the case of diffuse light minimum risk of complete failure of the power supply.

最后,在太阳能电池模块的太阳能电池用的保护电路的所有上述扩展方案中,根据本发明的一种优选的改进方案规定,采用一种过压保护元件用于防止保护电路以及太阳能电池免受例如通过邻近的雷击(Blitzeinschlag )引起的过电压。 Finally, in all of the above protective circuit refinement solar cell module in a solar cell, according to one preferred embodiment of the present invention to improve a predetermined, use a protective circuit for preventing overvoltage protection element and a solar cell from e.g. caused by lightning strike nearby (Blitzeinschlag) overvoltage. 详细地,现在存在扩展和改进本发明保护电路的多种可能性。 , There is an extended and improved protection circuit according to the present invention in detail now several possibilities. 为此参阅从属权利要求以及对本发明优选实施例的以下详细说明。 For this purpose see the dependent claims and the following detailed description of the preferred embodiment of the present invention. 图1示意性展示了根据本发明的第一优选实施例的保护电路, 图2在细节上展示了来自图1的控制电路的结构, 图3示意性展示了根据第二优选实施例的保护电路, 图4示意性展示了根据第三优选实施例的保护电路, 图5在细节上展示了来自图3或4的DC/DC转换器的结构,和图6在细节上展示了来自图3或4的控制电路的结构。 FIG 1 schematically illustrates a protection circuit according to a first preferred embodiment of the present invention, FIG 2 shows the structure of FIG. 1 from the control circuit in detail, FIG 3 schematically illustrates a protection circuit according to a second preferred embodiment Figure 4 schematically illustrates a protection circuit according to a third preferred embodiment, FIG. 5 shows the structure of the DC / DC converter from FIG. 3 or 4 in detail, and FIG. 6 shows a detail from FIG. 3 or 4 the structure of a control circuit. 图l展示了具有多个串联的串2的太阳能电池1,所述串2在其侧由多个未再详细示出的、同样串联的太阳能电池所组成。 Figure l shows a series of solar cell strings having a plurality of 1 2, the string 2 on which a plurality of side again not shown in detail, the same tandem solar cell composed. 对于太阳能电池模块1设置三个串2纯粹是示范性的。 For the solar cell module 1 is provided with three strings 2 are purely exemplary. 同样示范性地对于仅仅一个串2示出了通过根据本发明的一种优选实施例的保护电路的保护。 Similarly exemplarily for only one string by 2 shows a protection circuit according to a preferred embodiment of the present invention is protected. 当然可以为每一个串设置相应的保护。 Of course, protection may be provided corresponding to each string. 正如以上已经阐述的那样,目标是说明这样一种保护电路,该保护电路确保,在以其所保护的串被遮蔽的情况下实现该被遮蔽的串的电流旁路,使得太阳能电池模块1 一方面继续保持运行准备、 即提供电流,而另一方面防止被遮蔽的串2的损坏。 As already explained above, a target is a protection circuit, the protection circuit ensures that the current bypass is achieved shielded string to the string in the case where it protects the blocked, so that a solar cell module 1 aspect to maintain operational readiness, i.e. current is supplied, on the other hand to prevent damage to the string 2 is shielded. 保护电路为此具有受控电子开关装置3,该受控电子开关装置3拥有控制电路4以及开关设备5。 For this purpose a protection circuit with a controlled electronic switching device 3, the controlled electronic switching device 3 has a control circuit 4 and a switching device 5. 由两个可由控制电路4控制的开关元件、即由两个彼此相对极化的MOSFET6、 7形成开关设备5。 Switching element control circuit 4 can be controlled by the two, i.e., by two opposite each other polarization MOSFET6, 7 the switching device 5 is formed. 此外,为控制电路4设置存储电容器8,使得在由保护电路所保护的串2被遮蔽的情况下实现以下流程:在遮蔽了所保护的串2和继续照射太阳能电池模块1的剩余的串2时,由于上方MOSFET 2的寄生二极管而在下方起截止作用的MOSFET7上建立一电压。 Further, the control circuit 4 is provided a storage capacitor 8, so as to achieve the following process in the case of shielded string 2 by the protection circuit protected: shielding the protected string 2 and continuing irradiation remaining string 2 of the solar cell module 1 when, due to the establishment of a voltage across the upper MOSFET parasitic diode 2 is turned off and play the role of below MOSFET7. 现在如此设计控制电路4,使得该控制电路通过对至少MOSFET 7部分地加偏压来将该电压限制为约20 V, 从而避免所保护的串2的损坏。 Now the control circuit 4 is designed such that the control circuitry by MOSFET 7 at least in part to the bias voltage limited to about 20 V, so as to avoid damage to the protected string 2. 在该阶段中,存储电容器8从MOSFET 7上的电压中以电流受限的方式进行充电。 In this phase, the storage capacitor 8 is charged to the voltage from the current-limited manner in the 7 MOSFET. 一旦存储电容 Once the storage capacitor

器8充电到约15V,则MOSFET 6、 7净皮完全加偏压,由此施加在MOSFET 6、 7上的电压崩溃。 8 is charged to approximately 15V, the MOSFET 6, 7 is completely biased net skin, thereby applying the MOSFET 6, 7 on the voltage collapse. 从开始时的截止电压的出现直至电压崩溃的该时刻为止仅消逝了几个微秒。 From the moment it came up until the cut-off voltage of the voltage at the beginning of the collapse of the passage of only a few microseconds.

由于控制电路4的自身电流消耗,在存储电容器8上的和在MOSFET 6、 7的栅极处的电压緩慢下降。 Since the current consumption of the control circuit 4 itself, on the storage capacitor 8 and 6, 7 of the voltage at the gate drops slowly MOSFET. 一旦未超过不再确保对MOSFET 6、7的完全加偏压的电压,则控制电路4至少关断MOSFET 7。 Once no longer ensured not exceed the bias voltage applied to complete the MOSFET 6,7, the control circuit 4 is turned off at least a MOSFET 7. 于是在MOSFET 7上建立又如上所述的受限制的电压。 So restricted and establish a voltage as described above in the MOSFET 7. MOSFET 6、 7的导通阶段持续几十毫秒。 MOSFET conduction phase 6, 7 sustained tens of milliseconds. 由于与导通阶段相比较很短的电压受限的截止阶段,因此在截止阶段期间在MOSFET 6、 7上的瞬时的高损耗功率相对于导通损耗几乎不起决定作用,使得获得明显低于肖特基二极管的损耗的总损耗。 Since the conduction phase comparing stage is a short cut-off voltage is limited, and therefore during the off phase of the MOSFET 6, the instantaneous power loss in the high-7 with respect to the conduction loss is almost not decisive, significantly lower than that obtained total loss loss Schottky diode.

此外如此设计控制电路4,使得在照射以其所保护的串2时不对该控制电路供电,以致于MOSFET 6、 7截止。 Further the control circuit 4 is designed such that the irradiated without the string 2 it protects the control circuitry, so that the cut-off in the MOSFET 6, 7. 因此,除了MOSFET 6、 7的微小截止电流之外,通过受控电子开关装置3而不出现任何损耗,使得总损耗在实际上甚至低于肖特基二极管的损耗。 Thus, in addition to the fine off-current MOSFET 6, 7, and 3 without any loss by a controlled electronic switching device, so that the total loss is actually even lower than the loss of the Schottky diode. 除此之外,在根据本发明的优选实施例的当前所述的保护电路中,重要的是,在电压受限的截止阶段中受控电开关装置从剩余的、即还受照射的串2中得以供电,使得不需要外部供电。 In addition, the current protection circuit according to a preferred embodiment of the present invention, it is important that the voltage controlled electrical switching means limited off from the remaining phases, i.e. also illuminated string 2 to the power supply, so that no external power supply.

为了实现上述的功能性,控制电路4基本上具有由MOSFET 7 的漏极供电的施密特触发器。 To achieve the above functionality, the control circuit 4 has a substantially MOSFET drain supply 7 Schmitt trigger. 该施密特触发器负责,只有当在电容器8上施加有电压时,才对MOSFET6、 7加偏压。 The Schmitt trigger is responsible for, only when a voltage is applied to the capacitor 8, fishes MOSFET6, 7 biased. 从施密特触发器的滞后和与电容器8的电容相关联的、开关装置3的自身电流消耗中得出脉冲间歇比(Puls國Pauseen画Verhaitnis )。 Their current consumption from the capacitance associated with the capacitor 8 and a hysteresis Schmitt trigger associated with the switching device 3 stars pulse pause ratio (Puls States Pauseen Videos Verhaitnis).

控制电路4可以特别简单地例如用电压监控器(Voltage-Supervisor )IC (例如Maxim Integrated Products的MAX6462 )来实现。 The control circuit 4 is particularly easy to use, for example, a voltage monitor (Voltage-Supervisor) IC (e.g. of Maxim Integrated Products MAX6462) is achieved. 在采用这种电压监控器IC时,仅仅需要具有二极管的简单的附加布线,其中只要还未接通MOSFET,所述二极管就防止电路免受在所照射的串中有规则极化的工作电压和限制流经该二极管的电流的电阻的损害。 When such a voltage monitor using the IC, need only have a simple diode additional wiring, which has not been turned on as long as the MOSFET, said diode circuit is prevented from operating voltage of the regular sequence polarization is irradiated and damage resistance limits current flowing through the diode. 与在控制电路4的输出端处的电阻相连接的二极管限制MOSFET6、 7上的电压,而电容器8上的电压才建立。 Resistance of the diode at the output of the control circuit 4 is connected to limit MOSFET 6, 7 on the voltage, the voltage on the capacitor 8 was established.

控制电路4因此总体基本上表现为一种比较器电路,该比较器电路在细节上也可以像从图2中可看出的那样来构造。 The control circuit 4 therefore behaves substantially as a whole comparator circuit, the comparator circuit as in the details may be constructed as in Figure 2 can be seen. 该电路基本 The basic circuit

上是一种具有同样上述附加布线的前述电压监控器ic的分立等效电路。 On a wiring having the same said additional voltage monitor ic discrete equivalent circuit. 以下说明具有一个或两个DC/DC转换器的本发明第二和第三优选实施例。 The following description of the present invention, the second and third preferred having one or two DC / DC converter according to an embodiment. 正如从图3和4中得出的那样,太阳能电池模块通常具有多个串联的串A、 B..... X,给所述串至少分配开关装置100作为保护设备。 As drawn in FIG. 3 and 4, the solar cell module generally has a plurality of series strings A, B ..... X, the string is assigned at least to the switching means 100 as a protective device. 在此只明显示出了串A、 B,而只用点表示串X并且应该表明, 原则上可以串联任意多的串。 This clearly shows that only in the sequence A, B, only the point indicated by X and the sequence should indicate, any number of strings in series in principle. 每个串AX都由多个串联的太阳能电池ln所组成。 Each string consists of several series AX ln consisting of a solar cell. 正如尤其是从图3中得出的那样,根据本发明的第二优选实施例,电路装置对于每一个串AX具有MOSFET 10和DC/DC转换器20作为保护设备,该DC/DC转换器通过储能器30与控制电路40相连接。 As derived in particular from FIG. 3, a second preferred embodiment of the present invention, the circuit means for each string having AX MOSFET 10 and DC / DC converter 20 as a protective device, the DC / DC converter by accumulator 30 is connected to the control circuit 40. 如所述,MOSFET 10分别并联于串AX,并且通过其栅极与控制电路40相连接。 As described, MOSFET 10 are connected in parallel to the series AX, and through the gate 40 is connected to the control circuit. 将所有串AX组合成一个太阳能电池模块并且分配给逆变器UM。 All strings AX combined into a solar cell module and assigned to the inverter UM. 正如尤其是从图4中得出的那样,根据本发明的第三优选实施例,分别将串AX中的两个、即分别将两个串A和B以及C和D共同分配给一个保护设备。 As derived in particular from FIG. 4, according to a third preferred embodiment of the present invention, the two strings are respectively in AX, i.e. jointly assigned to two strings A and B and C and D to a protective device . 每一个太阳能电池组A和B或C和D都具有并联的MOSFET 10。 Each solar cell group A and B or C and D are connected in parallel with MOSFET 10. 两个MOSFET 10通过其栅极分别与共同的控制电路40相连接,其中通过给串AX的每两个所分配的DC/DC 转换器20来实现控制电路40的供电,所述DC/DC转换器20并联于串AX的串联电路,其中给DC/DC转换器20中的一个分配储能器30。 Two MOSFET 10 40 are connected by their gates to the common control circuit, wherein the DC-AX by a string allocated every two / DC converter 20 to implement the power supply control circuit 40, the DC / DC converter 20 in parallel with the series circuit of the AX series, wherein a DC / DC converter in a dispensing accumulator 20 30. 因此一方面可能的是,串AX中的两个用的共同保护设备交替地从存在于MOSFET 10上的电压中充足地得以供电,因为对每一个保护设备存在两个MOSFET 10。 Thus it is possible on the one hand, the common protective device with two strings in AX alternately from the supply voltage is sufficiently present on of MOSFET 10, the MOSFET 10 because there are two for each protection device. 另一方面,可以在遮蔽了所有属于一个保护设备的串时从MOSFET 10的寄生二极管的正向电压的总和中获取足够的电压,以便将该电压用于MOSFET 10的转换和控制。 On the other hand, a sufficient voltage can be acquired from the sum of the forward voltage of the parasitic diode of the MOSFET 10 of the shield when all the strings belonging to a protective apparatus for use in controlling and converting the voltage of MOSFET 10. 这里也将所有的串AX组合成一个太阳能电池模块并且分配给一个逆变器UM。 Here will be all combined into a string AX solar cell module and assigned to one inverter UM. 从图5中现在可以看出,如何可以在细节上构造图3的DC/DC 转换器20。 As can be seen from FIG. 5 Now, how can be configured FIG DC / DC converter 20 in detail. 3. 将在串AX被遮蔽时在MOSFET IO的内部二极管上所产生的电压转换成适用于控制MOSFET 10的电压的DC/DC转换器 When a voltage is shielded on the string AX internal diode of the MOSFET IO generated is converted into a voltage applied to the control of MOSFET 10 of the DC / DC converter

20,应该以低于0.7V的输入电压工作,以便确保旁路功能。 20, should be lower than the input voltage of 0.7V, in order to ensure that the bypass function. 例如用锗晶体管50建立的Meissner振荡器可以用于此目的,该Meissner 振荡器的变换器含有第三绕组。 Meissner oscillator 50 to establish, for example, with germanium transistors may be used for this purpose, the Meissner oscillator inverter comprising a third winding. 关于Meissner振荡器可以参阅U.Tietze和Ch.Schenk的教科书"Halbleiter國Schaltungstechnik "(第9版,第461页及随后页)。 About Meissner oscillator can be found in textbooks U.Tietze and Ch.Schenk of "Halbleiter country Schaltungstechnik" (9th ed., Pp. 461 and subsequent pages). 经由变换器的第三绕组和单向整流,可以通过选择变换比来抽取MOSFET 10用的足够大的控制。 Via the third winding and a unidirectional rectifying converter, can be extracted with a sufficient control of MOSFET 10 by selecting the ratio of transformation. 反并联于晶体管50的基极发射极段布置的硅二极管60用于防止晶体管50免受在所照射的串AX中所产生的反向输入电压。 Anti-parallel to the base of the transistor 50 emitter section 60 disposed silicon diodes for preventing a reverse voltage of the transistor 50 from the input string in AX is irradiated generated.

在最简单的情况下,控制电路40基本上由施密特触发器组成, 该施密特触发器在超过某个阈电压时经由电容器30将该电压施加到MOSFET 10的栅极上,并且在未超过该阈电压时以由滞后所给定的值对栅极放电。 In the simplest case, the control circuit 40 is composed essentially of a Schmitt trigger, the Schmitt trigger is exceeded a certain threshold voltage is applied to the gate of MOSFET 10 via the capacitor 30 voltage, and in the given hysteresis gate when the value of the discharge voltage does not exceed the threshold. 施密特触发器负责,只有当在电容器30处施加处于MOSFET 10的阈电压之上的电压时,才对MOSFET 10加偏压。 Schmitt trigger responsible for, only when the capacitor 30 is applied at a voltage above the threshold voltage of MOSFET 10, MOSFET 10 is biased fishes. 从施密特触发器的滞后和与电容器30的电容相关联的、整个电路的自身电流消耗中得出脉冲间歇比。 Derived from its own current consumption of the whole circuit with hysteresis and a capacitance of the capacitor 30 associated with the Schmitt trigger pulse pause ratio.

类似于图1中的以上进一步所述的控制电路4,在本发明的当前所述的优选实施例中,可以特别简单地用电压监控器IC、例如用已经说明的Maxim Integrated Products的MAX6462来实现施密特触发器。 Similar to the control circuit 1 in FIG. 4, further described above, in this embodiment, is particularly easy to monitor voltage IC according to the current embodiment of the present invention is preferably, for example of Maxim Integrated Products MAX6462 achieved already described Schmitt trigger. 此外在此适用的是,正如也适用于本发明的前述优选实施例那样,尤其是通过采用逻辑电平MOSFET来实现适当的施密特触发器电路。 Also here applies that, as also applies to the preferred embodiment of the present invention as particularly suitable to achieve through the use of the Schmitt trigger circuit a logic level MOSFET. 从图6中现在在细节上可以看出控制电路40的实例,该控制 Examples can be seen in detail from the control circuit 40 in FIG. 6 now controls the

电路实际上对应于电压监控器IC的分立等效电路。 Actually corresponds to the equivalent circuit is a discrete circuit voltage monitor IC.

结果是,通过本发明因此提供了太阳能电池模块的太阳能电池用的保护电路,所述保护电路可以像具有旁路二极管的保护电路那样同样亳无问题地被使用,但是具有显著较少的损耗功率,使得可以保障显著较高的电流。 As a result, the present invention thus provides a protective circuit of a solar cell module with a solar cell, the same as the protection circuit may be used without any problems Bo as a bypass diode protection circuit, but with significantly less power loss , making it possible to guarantee a significantly higher current.

Claims (12)

1.保护电路,用于电连接太阳能电池模块(1)的太阳能电池,具有保护设备,所述保护设备在被遮蔽的太阳能电池情况下作为用于被遮蔽的太阳能电池的电流旁路起作用,其特征在于,所述保护电路具有受控电子开关装置(3,100)作为保护设备。 1. Protection circuit for electrically connecting the solar cell module (1) a solar cell having a protective device, the protective device acts as a current bypass for the shadowed solar cell in a case where the solar cell is shaded, characterized in that said protection circuit having a controlled electronic switching device (3,100) as a protective device.
2. 按权利要求1的保护电路,其特征在于,所述受控电子开关装置(3, 100)具有控制电路(4, 40)、和可由所述控制电路(4, 40) 控制的开关设备(5, 10),其中所述开关设备(5, 10)与至少一个太阳能电池并联,并且在该太阳能电池被遮蔽的情况下由所述控制电路(4, 40)至少暂时地加偏压,使得实现用于被遮蔽的太阳能电池的电流旁路。 2. The protection circuit as claimed in claim 1, characterized in that the controlled electronic switch means (3, 100) having a control circuit (4, 40), and a switching device controlled by said control circuit (4, 40) (5, 10), wherein said switching device (5, 10) connected in parallel with the at least one solar cell, and in the case of this solar cell is at least temporarily shielded by said bias control circuit (4, 40), so as to achieve a current bypass shadowed solar cell.
3. 按权利要求2的保护电路,其特征在于,开关设备(5)具有两个串联的并且由控制电路(4)控制的电气的或电子的开关元件(6, 7)。 3. The protection circuit as claimed in claim 2, characterized in that the switching apparatus (5) having two series and by a control circuit (4) electric or electronic control of the switching element (6, 7).
4. 按权利要求3的保护电路,其特征在于,设置两个彼此相对极化的晶体管、优选地MOSFET作为开关元件(6, 7)。 4. A protection circuit as claimed in claim 3, characterized in that the two transistors arranged opposite one another polarization, preferably as a MOSFET switching element (6, 7).
5. 按权利要求2至4之一的保护电路,其特征在于,通过由太阳能电池模块(1)的未被遮蔽的太阳能电池所生成的电流来实现对所述控制电路(4)的电流供应。 5. The protection circuit according to any one of claims 2 4, characterized in that, to achieve the current supply to the control circuit (4) by the current generated by the solar cell module (1) is not shaded solar cell generated .
6. 按权利要求2至5之一的保护电路,其特征在于,为所述控制电路(4)设置存储电容器(8)。 6. The protection circuit according to any one of claims 2 5, wherein (4) is provided a storage capacitor (8) of the control circuit.
7. 按权利要求1或2的保护电路,其特征在于,所述保护设备具有至少一个晶体管(10)和至少一个与之并联的DC/DC转换器(20), 该DC/DC转换器(20 )通过储能器(30 )与控制电路(40 )相连接。 7. The protection circuit as claimed in claim 1 or 2, characterized in that the protective device having at least one transistor (10) in parallel therewith and at least one DC / DC converter (20), the DC / DC converter ( 20) connected through the accumulator (30) and a control circuit (40).
8. 按权利要求7的保护电路,其特征在于,设置MOSFET作为晶体管(10)。 8. The protection circuit as claimed in claim 7, wherein the MOSFET is provided as the transistor (10).
9. 按权利要求7或8的保护电路,其特征在于,给多个太阳能电池串(AX)共同分配一个保护设备,该保护设备具有每串(AX) 一个并联的晶体管UO),所述晶体管(10)通过其相应的栅极分别与控制电路(40)相连接。 9. A protection circuit as claimed in claim 7 or 8, wherein a plurality of solar cell strings (AX) jointly assigned a protective device, the protective device having each string (AX) a UO transistors connected in parallel), the transistor (10) are respectively connected to the control circuit (40) through its respective gate.
10. 按权利要求9的保护电路,其特征在于,每串(AX)通过相应的DC/DC转换器(20)来实现对控制电路(40)的供电,其中所述DC/DC转换器(20)并联于串(AX)的串联电路。 10. A protection circuit as claimed in claim 9, characterized in that each string (AX) to realize the power supply to the control circuit (40) through a respective DC / DC converter (20), wherein the DC / DC converter ( 20) in parallel with the strings (AX) of the series circuit.
11. 按权利要求10的保护电路,其特征在于,给所述DC/DC转换器(20)中的至少一个分配储能器(30)。 11. The protection circuit as claimed in claim 10, characterized in that the energy store assigned to at least one (30) of the DC / DC converter (20).
12. 按权利要7至ll之一的保护电路,其特征在于,电子电路装置的控制电路(40)具有微控制器。 12. The protection circuit according to one of claims 7 to ll, characterized in that the control circuit (40) of the electronic circuit device has a microcontroller.
CN 200680003235 2005-01-26 2006-01-24 Protective circuit with current bypass for solar cell module CN101107712A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE102005003720.8 2005-01-26
DE102005003720 2005-01-26
DE102005012213.2 2005-03-15
DE102005018463.4 2005-04-20

Publications (1)

Publication Number Publication Date
CN101107712A true CN101107712A (en) 2008-01-16

Family

ID=39000620

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200680003235 CN101107712A (en) 2005-01-26 2006-01-24 Protective circuit with current bypass for solar cell module

Country Status (1)

Country Link
CN (1) CN101107712A (en)

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102163938A (en) * 2010-01-29 2011-08-24 三垦电气株式会社 Sunshine power generation device and sunshine power generation system
CN102569430A (en) * 2012-01-12 2012-07-11 苏州清莲纳米环保科技有限公司 Solar battery pack
CN102738281A (en) * 2012-07-05 2012-10-17 浙江美晶科技有限公司 Solar battery module protection circuit, solar junction box and power generation system
CN103208916A (en) * 2012-01-11 2013-07-17 太阳能安吉科技有限公司 Photovoltaic Module
CN103227588A (en) * 2012-01-30 2013-07-31 太阳能安吉科技有限公司 Photovoltaic panel circuitry
CN103400882A (en) * 2013-08-18 2013-11-20 苏州快可光电科技有限公司 Photovoltaic assembly junction box with electrical connection protection
CN103972864A (en) * 2014-05-15 2014-08-06 电子科技大学 Bypass circuit for solar cell
CN104009713A (en) * 2014-05-26 2014-08-27 扬州虹扬科技发展有限公司 Circuit device capable of automatically recognizing hot spot effect of photovoltaic cell panel assembly
CN105264733A (en) * 2013-06-28 2016-01-20 艾思玛太阳能技术股份公司 Circuit arrangement for inline voltage supply, use of such a circuit arrangement and device having such a circuit arrangement
US9362743B2 (en) 2008-05-05 2016-06-07 Solaredge Technologies Ltd. Direct current power combiner
US9368964B2 (en) 2006-12-06 2016-06-14 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US9401599B2 (en) 2010-12-09 2016-07-26 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power
US9407161B2 (en) 2007-12-05 2016-08-02 Solaredge Technologies Ltd. Parallel connected inverters
US9537445B2 (en) 2008-12-04 2017-01-03 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US9543889B2 (en) 2006-12-06 2017-01-10 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9548619B2 (en) 2013-03-14 2017-01-17 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
US9590526B2 (en) 2006-12-06 2017-03-07 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US9639106B2 (en) 2012-03-05 2017-05-02 Solaredge Technologies Ltd. Direct current link circuit
US9647442B2 (en) 2010-11-09 2017-05-09 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
CN106656033A (en) * 2016-10-27 2017-05-10 上海电机学院 Photovoltaic crystal plate online fault monitoring method
US9680304B2 (en) 2006-12-06 2017-06-13 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US9812984B2 (en) 2012-01-30 2017-11-07 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US9831824B2 (en) 2007-12-05 2017-11-28 SolareEdge Technologies Ltd. Current sensing on a MOSFET
US9853565B2 (en) 2012-01-30 2017-12-26 Solaredge Technologies Ltd. Maximized power in a photovoltaic distributed power system
US9853538B2 (en) 2007-12-04 2017-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9866098B2 (en) 2011-01-12 2018-01-09 Solaredge Technologies Ltd. Serially connected inverters
US9869701B2 (en) 2009-05-26 2018-01-16 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US9876430B2 (en) 2008-03-24 2018-01-23 Solaredge Technologies Ltd. Zero voltage switching
US9948233B2 (en) 2006-12-06 2018-04-17 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9960731B2 (en) 2006-12-06 2018-05-01 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US9966766B2 (en) 2006-12-06 2018-05-08 Solaredge Technologies Ltd. Battery power delivery module
US10061957B2 (en) 2016-03-03 2018-08-28 Solaredge Technologies Ltd. Methods for mapping power generation installations
US10116217B2 (en) 2007-08-06 2018-10-30 Solaredge Technologies Ltd. Digital average input current control in power converter
US10184965B2 (en) 2006-12-06 2019-01-22 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US10230310B2 (en) 2016-04-05 2019-03-12 Solaredge Technologies Ltd Safety switch for photovoltaic systems
US10396662B2 (en) 2011-09-12 2019-08-27 Solaredge Technologies Ltd Direct current link circuit

Cited By (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9543889B2 (en) 2006-12-06 2017-01-10 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9960731B2 (en) 2006-12-06 2018-05-01 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US9948233B2 (en) 2006-12-06 2018-04-17 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US10097007B2 (en) 2006-12-06 2018-10-09 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US9853490B2 (en) 2006-12-06 2017-12-26 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US10447150B2 (en) 2006-12-06 2019-10-15 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9368964B2 (en) 2006-12-06 2016-06-14 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US9680304B2 (en) 2006-12-06 2017-06-13 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US10184965B2 (en) 2006-12-06 2019-01-22 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US9590526B2 (en) 2006-12-06 2017-03-07 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US10230245B2 (en) 2006-12-06 2019-03-12 Solaredge Technologies Ltd Battery power delivery module
US9966766B2 (en) 2006-12-06 2018-05-08 Solaredge Technologies Ltd. Battery power delivery module
US10116217B2 (en) 2007-08-06 2018-10-30 Solaredge Technologies Ltd. Digital average input current control in power converter
US9853538B2 (en) 2007-12-04 2017-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9831824B2 (en) 2007-12-05 2017-11-28 SolareEdge Technologies Ltd. Current sensing on a MOSFET
US9407161B2 (en) 2007-12-05 2016-08-02 Solaredge Technologies Ltd. Parallel connected inverters
US9979280B2 (en) 2007-12-05 2018-05-22 Solaredge Technologies Ltd. Parallel connected inverters
US9876430B2 (en) 2008-03-24 2018-01-23 Solaredge Technologies Ltd. Zero voltage switching
US10468878B2 (en) 2008-05-05 2019-11-05 Solaredge Technologies Ltd. Direct current power combiner
US9362743B2 (en) 2008-05-05 2016-06-07 Solaredge Technologies Ltd. Direct current power combiner
US10461687B2 (en) 2008-12-04 2019-10-29 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US9537445B2 (en) 2008-12-04 2017-01-03 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US9869701B2 (en) 2009-05-26 2018-01-16 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
TWI456866B (en) * 2010-01-29 2014-10-11 Sanken Electric Co Ltd Solar power generation unit and solar power generation system
CN102163938B (en) 2010-01-29 2013-11-27 三垦电气株式会社 Sunshine power generation device and sunshine power generation system
CN102163938A (en) * 2010-01-29 2011-08-24 三垦电气株式会社 Sunshine power generation device and sunshine power generation system
US9647442B2 (en) 2010-11-09 2017-05-09 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US9401599B2 (en) 2010-12-09 2016-07-26 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power
US9935458B2 (en) 2010-12-09 2018-04-03 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power
US9866098B2 (en) 2011-01-12 2018-01-09 Solaredge Technologies Ltd. Serially connected inverters
US10396662B2 (en) 2011-09-12 2019-08-27 Solaredge Technologies Ltd Direct current link circuit
CN103208916A (en) * 2012-01-11 2013-07-17 太阳能安吉科技有限公司 Photovoltaic Module
CN103208916B (en) * 2012-01-11 2017-09-12 太阳能安吉科技有限公司 Photovoltaic module
CN102569430A (en) * 2012-01-12 2012-07-11 苏州清莲纳米环保科技有限公司 Solar battery pack
US10381977B2 (en) 2012-01-30 2019-08-13 Solaredge Technologies Ltd Photovoltaic panel circuitry
US9923516B2 (en) 2012-01-30 2018-03-20 Solaredge Technologies Ltd. Photovoltaic panel circuitry
CN103227588A (en) * 2012-01-30 2013-07-31 太阳能安吉科技有限公司 Photovoltaic panel circuitry
US9853565B2 (en) 2012-01-30 2017-12-26 Solaredge Technologies Ltd. Maximized power in a photovoltaic distributed power system
CN103227588B (en) * 2012-01-30 2017-06-30 太阳能安吉科技有限公司 Photovoltaic panel circuitry
US9812984B2 (en) 2012-01-30 2017-11-07 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US9639106B2 (en) 2012-03-05 2017-05-02 Solaredge Technologies Ltd. Direct current link circuit
US10007288B2 (en) 2012-03-05 2018-06-26 Solaredge Technologies Ltd. Direct current link circuit
CN102738281A (en) * 2012-07-05 2012-10-17 浙江美晶科技有限公司 Solar battery module protection circuit, solar junction box and power generation system
US9548619B2 (en) 2013-03-14 2017-01-17 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
CN105264733B (en) * 2013-06-28 2018-08-28 艾思玛太阳能技术股份公司 Circuit device of inline voltage supply and application thereof, the equipment with circuit device
CN105264733A (en) * 2013-06-28 2016-01-20 艾思玛太阳能技术股份公司 Circuit arrangement for inline voltage supply, use of such a circuit arrangement and device having such a circuit arrangement
CN103400882A (en) * 2013-08-18 2013-11-20 苏州快可光电科技有限公司 Photovoltaic assembly junction box with electrical connection protection
CN103972864B (en) * 2014-05-15 2017-03-15 电子科技大学 A kind of bypass circuit for solaode
CN103972864A (en) * 2014-05-15 2014-08-06 电子科技大学 Bypass circuit for solar cell
CN104009713A (en) * 2014-05-26 2014-08-27 扬州虹扬科技发展有限公司 Circuit device capable of automatically recognizing hot spot effect of photovoltaic cell panel assembly
US10061957B2 (en) 2016-03-03 2018-08-28 Solaredge Technologies Ltd. Methods for mapping power generation installations
US10230310B2 (en) 2016-04-05 2019-03-12 Solaredge Technologies Ltd Safety switch for photovoltaic systems
CN106656033A (en) * 2016-10-27 2017-05-10 上海电机学院 Photovoltaic crystal plate online fault monitoring method

Similar Documents

Publication Publication Date Title
US9324885B2 (en) Systems and methods to provide enhanced diode bypass paths
US8570017B2 (en) Voltage limiter and protection of a photovoltaic module
US20170373503A1 (en) Feedback Based Photovoltaic Conversion Systems
EP1971019A2 (en) Switching device for transformerless conversion of an electric direct current into an AC voltage with two DC/DC converters and an DC/AC converter
CN101842912B (en) Method and system for connecting solar cells or slices in a panel system
KR101197066B1 (en) Bridging unit
CN100566110C (en) Power conversion apparatus
CN103208916B (en) Photovoltaic module
DE102008004675B3 (en) Controllable switching device for solar module, has control provided to control controllable switching unit to switch switching unit in one of switch conditions using output of solar module or input at output terminal
EP1914857B1 (en) Circuit apparatus and method, in particular for photovoltaic generators
US20130010500A1 (en) Converters and inverters for photovoltaic power systems
US6320449B1 (en) Driver circuit for P-channel MOS switches
US9425783B2 (en) Systems and methods to provide enhanced diode bypass paths
US20120080943A1 (en) Photovoltaic Power Systems
CN102210088B (en) Chain-link converter, the chain-link converter starts and static compensator system
CA2110020C (en) Isolator surge protector for dc isolation and ac grounding of cathodically protected systems
US20100288327A1 (en) System and method for over-Voltage protection of a photovoltaic string with distributed maximum power point tracking
CN102598287B (en) Bypass and protection circuit for a solar module and method for controlling a solar module
US20110006232A1 (en) Low voltage drop closed loop unidirectional electronic valve
EP0867998B1 (en) A plant for transmitting electric power
WO2000051226A1 (en) Switching regulator, dc/dc converter, and lsi system with switching regulator
CN101180781B (en) Protective circuit apparatus for a solar module
KR960003529B1 (en) Chip initializing signal generating circuit of semiconductor memory device
CN101548461A (en) Semiconductor protective elements for controlling short-circuits at the DC end of voltage source converters
US20110278955A1 (en) Low on-resistance mosfet implemented, by-pass diode or circuit breaker and related self-powering and control circuit

Legal Events

Date Code Title Description
C06 Publication
C10 Request of examination as to substance
C41 Transfer of the right of patent application or the patent right
ASS Succession or assignment of patent right

Owner name: KANTHERS PELLSBAO CO. KG

Effective date: 20080328

Free format text: FORMER OWNER: KANTHERS PELLSBAO CO. KG; APPLICANT

C02 Deemed withdrawal of patent application after publication (patent law 2001)