JP4984123B2 - Method for recovering gold or platinum group elements from SiC-based materials - Google Patents

Method for recovering gold or platinum group elements from SiC-based materials Download PDF

Info

Publication number
JP4984123B2
JP4984123B2 JP2006267145A JP2006267145A JP4984123B2 JP 4984123 B2 JP4984123 B2 JP 4984123B2 JP 2006267145 A JP2006267145 A JP 2006267145A JP 2006267145 A JP2006267145 A JP 2006267145A JP 4984123 B2 JP4984123 B2 JP 4984123B2
Authority
JP
Japan
Prior art keywords
molten
furnace
sic
oxide
gold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006267145A
Other languages
Japanese (ja)
Other versions
JP2008088452A (en
Inventor
武 松本
健一 田山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Metals and Mining Co Ltd
Nippon PGM Co Ltd
Original Assignee
Dowa Metals and Mining Co Ltd
Nippon PGM Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Metals and Mining Co Ltd, Nippon PGM Co Ltd filed Critical Dowa Metals and Mining Co Ltd
Priority to JP2006267145A priority Critical patent/JP4984123B2/en
Publication of JP2008088452A publication Critical patent/JP2008088452A/en
Application granted granted Critical
Publication of JP4984123B2 publication Critical patent/JP4984123B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Description

本発明は、排ガス浄化用触媒の廃棄物などのSiC系物質からその中に担持などの形態で含有される金または白金族元素を回収する方法に関するものである。   The present invention relates to a method for recovering gold or platinum group elements contained in a form such as supported from a SiC-based material such as waste of an exhaust gas purification catalyst.

最近、SiCを金または白金族元素の担体(基体)物質として用いた触媒を使用する排ガス浄化システムの実用化が進められている。SiCは耐熱性に優れるため、特にディーゼルエンジンの排ガスのPM燃焼用触媒の担体物質として用いると触媒の性能・耐久性が向上するものと期待されているが、触媒としての使命を終えた使用後の触媒廃棄物からその中に含有される金または白金族元素を回収する方法については下記のように種々提案されてはいるものの、SiCは融点が2700℃以上であること且つ化学的に不活性であることなどの点から、適切な回収方法はまだ開発されるに至っていないのが現状である。
特開平06−182214号公報 特開平10−076162号公報 特開2001−349211号公報 特開2003−262118号公報
Recently, an exhaust gas purification system using a catalyst using SiC as a carrier (substrate) material for a gold or platinum group element has been put into practical use. Since SiC is excellent in heat resistance, it is expected to improve the performance and durability of the catalyst, especially when used as a carrier material for PM combustion catalysts in diesel engine exhaust gas. Although various methods have been proposed for recovering the gold or platinum group element contained therein from the catalyst waste of SiC, SiC has a melting point of 2700 ° C. or higher and is chemically inert. In view of this, an appropriate recovery method has not yet been developed.
Japanese Patent Laid-Open No. 06-182214 JP-A-10-076162 JP 2001-349111 A JP 2003-262118 A

さらにSiCは乾式プロセスの溶融スラグ中に溶解させにくいという問題がある。本発明者らの実験によると、SiC系物質を単独で電気炉内の溶融スラグに投入したところ、SiC系物質は固体のまま溶融スラグ表面上に浮遊し、強制的にSiC系物質を溶融スラグ中に没入させる操作を行わない限り、溶融スラグ中に完全に溶解させることは困難である。また溶解したとしても、未反応のSiCがスラグ中に残存することがあり、これでは廃棄物触媒等のSiC系物質を処理し、含有される金または白金族元素を回収することはできない。したがって、今後使用が増えるであろうと予測されるSiCを担体(基体)物質として用いた排ガス浄化用触媒の使用済み材料を処理し含有される金または白金族元素を回収する方法の確立が急務となっている。
本発明は、このような現状に鑑み、SiC系物質に含有される金または白金族元素の回収を行う方法を提供しようというものである。
Furthermore, there is a problem that SiC is difficult to dissolve in the molten slag of the dry process. According to the experiments by the present inventors, when the SiC-based material was put alone into the molten slag in the electric furnace, the SiC-based material remained solid on the surface of the molten slag, and the SiC-based material was forcibly removed from the molten slag. Unless the operation of immersing in is performed, it is difficult to completely dissolve in the molten slag. Further, even if dissolved, unreacted SiC may remain in the slag, and this makes it impossible to treat the SiC-based material such as a waste catalyst and recover the contained gold or platinum group elements. Therefore, there is an urgent need to establish a method for treating used materials of exhaust gas purification catalysts using SiC, which is expected to be used in the future, as a carrier (substrate) substance and recovering contained gold or platinum group elements. It has become.
In view of such a current situation, the present invention intends to provide a method for recovering gold or platinum group elements contained in SiC-based materials.

SiC系物質を処理し含有される金または白金族元素を回収するためには、SiCを分解して溶融スラグ成分とし、かつSiC系物質に含有されていた金または白金族元素を金属銅中に移行させることが有効であり、この場合酸化されてスラグ中に移行した銅分の回収を行えばさらに有効である。発明者らはこれらの知見を基に種々検討の結果、以下の発明を見出した。   In order to recover the gold or platinum group element contained by treating the SiC-based material, SiC is decomposed into a molten slag component, and the gold or platinum group element contained in the SiC-based material is contained in the metallic copper. It is effective to transfer, and in this case, it is more effective to recover the copper content that has been oxidized and transferred to the slag. As a result of various studies based on these findings, the inventors have found the following invention.

すなわち本発明は第1に、金または白金族元素を含有するSiC系物質から該金または白金族元素を回収する方法において、前記SiC系物質を金属銅と共に第1炉内で酸化処理し、Si酸化物と銅酸化物を含有する溶融酸化物層と前記金または白金族元素を含有する溶融残留金属銅層とに分離する第1工程、該分離された酸化物(溶融酸化物層)を第2炉内で還元処理して新たな溶融金属銅層と溶融残留酸化物層とに分離する第2工程、および該新たな金属銅(新たな溶融金属銅層)を前記第1工程の前記金属銅の一部または全部として繰返す第3工程からなることを特徴とする金または白金族元素の回収方法;第2に、金または白金族元素を含有するSiC系物質から該金または白金族元素を回収する方法において、前記SiC系物質を溶融金属銅と共に第1炉内で酸化処理し、該炉内の上層溶融層としてSi酸化物と銅酸化物を主体とする溶融酸化物層を、該炉内の下層溶融層として前記金または白金族元素を含有する溶融残留金属銅層を形成させて分離することによって、該溶融残留金属銅層中に該金または白金族元素を回収する第1工程、該分離された酸化物(溶融酸化物層)を第2炉内で還元処理し、該炉内の下層溶融層として新たな溶融金属銅層を、該炉内の上層溶融層として溶融残留酸化物層を形成させて分離する第2工程、および該新たな溶融金属銅(層)を前記第1工程の前記溶融金属銅の一部または全部として繰返す第3工程からなることを特徴とする金または白金族元素の回収方法;第3に、前記溶融酸化物層が未反応の前記SiC系物質を含有する前記第1または2記載の回収方法;第4に、前記第1炉内に装入する前記SiC系物質/前記金属銅の質量比が0.65以下である前記第1〜3のいずれかに記載の回収方法;第5に、前記酸化処理は酸素ガスまたは酸素含有ガスを前記第1炉内に導入して行う前記第1〜4のいずれかに記載の回収方法;第6に、前記酸化処理は前記第1炉内の温度を1100〜1600℃に維持して行う前記第1〜5のいずれかに記載の回収方法;第7に、前記第1炉内に装入する前記SiC系物質は5mm目の篩を通過する粒度である前記第1〜6のいずれかに記載の回収方法;第8に、前記SiC系物質は金または白金族元素を担持したSiCを主体とする排ガス浄化用触媒廃棄物である前記第1〜7のいずれかに記載の回収方法;第9に、前記第1工程の前記溶融酸化物層を前記第1炉内から排出した後に水と接触させることによって粉粒体とし、得られた酸化物粉粒体を前記第2工程の前記酸化物とする前記第1〜8のいずれかに記載の回収方法を提供する。   That is, according to the present invention, first, in a method for recovering a gold or platinum group element from an SiC type material containing gold or a platinum group element, the SiC type material is oxidized in a first furnace together with metallic copper, and Si A first step of separating a molten oxide layer containing an oxide and a copper oxide and a molten residual metal copper layer containing the gold or platinum group element, the separated oxide (molten oxide layer) A second step of reducing in a furnace to separate a new molten metal copper layer and a molten residual oxide layer, and the new metal copper (new molten metal copper layer) is the metal of the first step A method for recovering gold or platinum group elements comprising a third step repeated as a part or all of copper; and second, the gold or platinum group elements from a SiC-based material containing gold or platinum group elements. In the recovery method, the SiC-based material is Oxidation treatment in the first furnace together with molten metal copper, a molten oxide layer mainly composed of Si oxide and copper oxide as the upper molten layer in the furnace, and the gold or platinum as the lower molten layer in the furnace A first step of recovering the gold or platinum group element in the molten residual metal copper layer by forming and separating a molten residual metal copper layer containing a group element, the separated oxide (molten oxide) A second step in which a new molten metal copper layer is formed as a lower molten layer in the furnace, and a molten residual oxide layer is formed as an upper molten layer in the furnace. And a third step of recovering the gold or platinum group element comprising repeating the new molten metal copper (layer) as a part or all of the molten metal copper in the first step; The molten oxide layer contains the unreacted SiC-based material. The collection method according to 1 or 2; fourth, the mass ratio of the SiC-based material charged into the first furnace / the metallic copper is 0.65 or less. Recovery method; Fifth, the oxidation treatment is performed by introducing oxygen gas or an oxygen-containing gas into the first furnace. Sixth, the oxidation treatment includes The recovery method according to any one of 1 to 5 above, wherein the temperature in the first furnace is maintained at 1100 to 1600 ° C .; seventh, the SiC-based material charged into the first furnace is 5 mm The recovery method according to any one of 1 to 6 above, which has a particle size that passes through a sieve of eyes; The recovery method according to any one of 1 to 7 above, which is a product; The molten oxide layer is discharged from the first furnace and then brought into contact with water to form powder, and the obtained oxide powder is used as the oxide in the second step. A recovery method according to any one of the above is provided.

本発明によれば、第1炉内において被処理原料の主成分であるSiCの酸化分解に伴う発熱および当初の溶融金属銅の酸化熱などによって熱エネルギーコストが節減され、且つ、SiCのC分は燃焼して排ガスとなって系外へ排出され、またSiCのSi分が酸化されて生じるSi酸化物(SiO2)はフラックス成分であるために新たなフラックスは不要であって溶融酸化物層(スラグともいう。)の発生量が少なくなり、操業面で有利となる。その上で、SiC系物質中に含有される金または白金族元素を溶融残留金属銅層の中に高い回収率で効率的に回収することができる。
さらに、第2炉内においては、第1炉内において酸化されてスラグ(溶融酸化物層)中に移行した銅分を還元によって新たな金属銅として回収して第1工程へ繰返すことによって当初の金属銅をロス無く繰返し使用することができ、また、第1炉内において酸化されずにスラグに混入した未反応のSiCは第2工程の第2炉内において還元剤として作用して酸化分解されるとともにこの未反応のSiC中に含有されていた金または白金族元素をこの新たな溶融金属銅中に移行させて、引き続き第1工程に繰返して使用してこの金または白金族元素を回収することによってSiCの処理量を増大させることができる。
According to the present invention, the heat energy cost is reduced by the heat generated by the oxidative decomposition of SiC, which is the main component of the raw material to be treated, and the initial heat of oxidation of the molten metal copper in the first furnace. Is burned and discharged as exhaust gas, and Si oxide (SiO 2 ) generated by oxidizing the Si content of SiC is a flux component, so no new flux is required and the molten oxide layer The amount of generated (also referred to as slag) is reduced, which is advantageous in terms of operation. In addition, gold or platinum group elements contained in the SiC-based material can be efficiently recovered in the molten residual metal copper layer with a high recovery rate.
Further, in the second furnace, the copper content that has been oxidized in the first furnace and transferred into the slag (molten oxide layer) is recovered as new metallic copper by reduction and repeated to the first step. Metal copper can be used repeatedly without any loss, and unreacted SiC mixed in the slag without being oxidized in the first furnace acts as a reducing agent in the second furnace of the second step and is oxidatively decomposed. At the same time, the gold or platinum group element contained in the unreacted SiC is transferred to the new molten metal copper and subsequently used repeatedly in the first step to recover the gold or platinum group element. As a result, the throughput of SiC can be increased.

本発明における白金族元素は元素の周期表第VIII族に属するルテニウムRu、ロジウムRh、パラジウムPd、オスミウムOs、イリジウムIr、白金Ptの6元素を示す。本明細書中で金とこの白金族元素を総称して貴金属ということがある。   The platinum group element in the present invention represents six elements of ruthenium Ru, rhodium Rh, palladium Pd, osmium Os, iridium Ir, and platinum Pt belonging to Group VIII of the periodic table of elements. In the present specification, gold and this platinum group element are sometimes collectively referred to as noble metals.

本発明において「(金または白金族元素を含有する)SiC系物質」とは、(金または白金族元素を担持等の種々の形態で含有する)SiCを主体とする物質の総称であって、好ましくはSiCを50質量%を超えて含有するSiC主体の材料であり、他の添加物質やPM(ディーゼルエンジンからの排ガス中の粒子状物質)などが含有される場合がある。このSiC系物質としては、例えば、上記のディーゼルエンジンの排ガス浄化用触媒の廃棄物、さらに電子部品廃棄物等が挙げられる。   In the present invention, the “SiC-based material (containing gold or platinum group element)” is a general term for substances mainly containing SiC (containing various forms such as supporting gold or platinum group element) Preferably, it is a SiC-based material containing SiC in excess of 50% by mass, and may contain other additive substances, PM (particulate matter in exhaust gas from diesel engines), and the like. Examples of the SiC-based material include waste of the exhaust gas purification catalyst of the diesel engine, and electronic component waste.

本発明において第1工程で当初用いられる(溶融)金属銅は純度に制限はなく、勿論、金または白金族元素が含有されていても、さらには、鉄、クロム等の不純物元素が含有されていても不都合なく使用することができる(後述の実施例1、2ではいずれも実質的に純度100質量%の金属銅を使用した)。   The (molten) metallic copper initially used in the first step in the present invention is not limited in purity, and of course, even if it contains gold or platinum group elements, it further contains impurity elements such as iron and chromium. However, it can be used without any inconvenience (in Examples 1 and 2 described later, metallic copper having a purity of substantially 100% by mass was used).

本発明における第1工程の第1炉(酸化炉ということがある。)として転炉または回転炉を用いると、必要に応じて傾動または回転させることによってSiC系物質と溶融金属銅の接触・混合を促進させることができ、かつ、酸素ガスまたは酸素含有ガスをランスによって表面上から吹き付けて酸化処理することができ、さらには、酸化処理後に傾動させることによって最初に溶融酸化物層を抜き出し、その後溶融残留金属銅層を抜き出すことができるので、両層を容易に分離することができる。
また、炉内の溶体中に酸素ガスまたは酸素含有ガスを直接に吹き込むことによって、溶体の撹拌を促し、SiCの酸化速度を速めることもできる。
なお、酸化処理後の溶融酸化物は溶融残留金属銅より比重が小さいので、酸化処理後の溶融酸化物と溶融残留金属銅との混合溶融体(液相)を炉内で静置することにより、溶融酸化物は上層、溶融残留金属銅は下層となって容易に相互に分離される。
When a converter or rotary furnace is used as the first furnace (sometimes referred to as an oxidation furnace) in the first step of the present invention, the SiC-based material and molten metal copper are contacted and mixed by tilting or rotating as necessary. And can be oxidized by blowing oxygen gas or oxygen-containing gas over the surface with a lance, and further, the molten oxide layer is first extracted by tilting after the oxidation treatment, and then Since the molten residual metal copper layer can be extracted, both layers can be easily separated.
Further, by directly blowing oxygen gas or oxygen-containing gas into the solution in the furnace, stirring of the solution can be promoted, and the oxidation rate of SiC can be increased.
Since the molten oxide after the oxidation treatment has a specific gravity smaller than that of the molten residual metal copper, the mixed melt (liquid phase) of the molten oxide and the molten residual metal copper after the oxidation treatment is allowed to stand in a furnace. The molten oxide becomes an upper layer and the molten residual copper becomes a lower layer and is easily separated from each other.

また、SiC系物質を第1工程において酸化処理するためには、当初装入される金属銅の量に応じたSiC系物質の配合比とするコントロールも重要である。炉内に装入されるSiC系物質/金属銅の質量比が0.45以下の場合には、装入されたSiC系物質が第1工程においてすべて酸化処理されるが、上記質量比が0.45を超える場合には装入されたSiC系物質が第1工程においてすべて酸化処理されきれずに未反応のSiC系物質が残留して溶融酸化物層に混在して第2工程へ持ち込まれる。ここでこの持ち込まれた未反応のSiC系物質は第2工程において酸化物に対する還元剤として作用して酸化分解されるが、全量が酸化分解されるためには前記質量比が0.65以下であることが必要である。したがって、第1工程において第1炉内に装入されるSiC系物質/金属銅の質量比は0.45を超えて0.65以下であることが好ましい。
なお、第1工程の酸化処理の操業は、金または白金族元素を溶融(残留)金属銅層に移行させるため、当初の溶融金属銅の一部を酸化させずに残して終了することが必要であり、残留する溶融金属銅量は当初の溶融金属銅量の20質量%以上、さらに好ましくは30〜50質量%が好ましい。
In addition, in order to oxidize the SiC-based material in the first step, it is also important to control the mixing ratio of the SiC-based material according to the amount of metallic copper initially charged. When the mass ratio of SiC-based material / metal copper charged in the furnace is 0.45 or less, the charged SiC-based material is all oxidized in the first step, but the mass ratio is 0 If it exceeds .45, the charged SiC-based material cannot be completely oxidized in the first step, and unreacted SiC-based material remains and is mixed in the molten oxide layer and brought into the second step. . The unreacted SiC-based material brought in here acts as a reducing agent for the oxide and is oxidatively decomposed in the second step. However, in order to oxidatively decompose the entire amount, the mass ratio is 0.65 or less. It is necessary to be. Therefore, it is preferable that the mass ratio of the SiC-based material / metal copper charged in the first furnace in the first step is more than 0.45 and not more than 0.65.
In addition, in order to transfer gold or platinum group elements to the molten (residual) metal copper layer, it is necessary to end the operation of the oxidation treatment in the first step without oxidizing part of the original molten metal copper. The amount of remaining molten metal copper is preferably 20% by mass or more, more preferably 30 to 50% by mass of the initial amount of molten metal copper.

第1工程の酸化処理時の第1炉内温度は1100〜1600℃が好ましい。1100℃未満では酸化速度が低く、且つ溶融相の上層、下層への分離が困難となる。一方、1600℃を超えると、炉内耐火物の損傷を招くようになるので好ましくない。上記炉内温度は1300〜1500℃がさらに好ましい。   The first furnace temperature during the oxidation treatment in the first step is preferably 1100 to 1600 ° C. If it is less than 1100 ° C., the oxidation rate is low, and it becomes difficult to separate the molten phase into an upper layer and a lower layer. On the other hand, if the temperature exceeds 1600 ° C., the refractory in the furnace is damaged, which is not preferable. The furnace temperature is more preferably 1300-1500 ° C.

第1工程の酸化処理反応を促進させるためには、炉内に装入されるSiC系物質は5mm目の篩を通過する粒度であることが好ましく、5mm目を超える粒度では酸化速度が低下する。
また、上記SiC系物質は炉内への装入前に破砕されて微粒が発生する場合があり、この場合には酸素含有ガスの炉内への吹き込み(酸化処理)によってその微粒が炉外へ飛散する可能性があるが、上記SiC系物質(またはその微粒)を、5mm目の篩を通過する粒度の範囲内で、造粒することによって飛散を防止することができる。
In order to promote the oxidation treatment reaction in the first step, it is preferable that the SiC-based material charged in the furnace has a particle size that passes through a 5 mm sieve, and the oxidation rate decreases when the particle size exceeds 5 mm. .
In addition, the SiC-based material may be crushed before being charged into the furnace to generate fine particles. In this case, the fine particles are moved out of the furnace by blowing oxygen-containing gas into the furnace (oxidation treatment). Although there is a possibility of scattering, it is possible to prevent scattering by granulating the SiC-based material (or its fine particles) within the range of the particle size passing through the 5 mm sieve.

また、第1工程の酸素含有ガスは酸素濃度において特に制限はないが、酸化処理速度向上の点から酸素濃度40%以上の酸素含有ガスが好ましい。   The oxygen-containing gas in the first step is not particularly limited in terms of oxygen concentration, but an oxygen-containing gas having an oxygen concentration of 40% or more is preferable from the viewpoint of improving the oxidation treatment rate.

本発明の第1工程で生成した溶融酸化物(スラグ)層はSiC系物質の酸化により生じたSi酸化物と金属銅の一部の酸化により生じた銅酸化物によって形成されるが、必要に応じて珪石等のSi酸化物、石灰等のCa酸化物、蛍石等のF化合物、Al酸化物、Fe酸化物、Na酸化物などのフラックスを少量添加して、スラグ流動性を向上させ、または操業スラグ温度を低下させて、より良好なスラグを形成することもできる。   The molten oxide (slag) layer generated in the first step of the present invention is formed by the Si oxide generated by the oxidation of the SiC-based material and the copper oxide generated by the partial oxidation of the metallic copper. Correspondingly, a small amount of fluxes such as Si oxides such as silica, Ca oxides such as lime, F compounds such as fluorite, Al oxides, Fe oxides, Na oxides, improve slag fluidity, Alternatively, the operating slag temperature can be lowered to form a better slag.

本発明の第1工程によって得られた前記の金または白金族元素を含有する溶融残留金属銅層からは種々の溶融法または電解法などの公知の方法によって金または白金族元素をさらに分別回収することができる。金または白金族元素を分別回収した後の金属銅は第1工程の(当初の)金属銅として使用することができる。また、金または白金族元素を分別回収した後の銅分が銅酸化物の形態の場合には第2工程の酸化物として第2炉内で還元処理して新たな金属銅として回収し、第1工程の金属銅として使用することができる。   From the molten residual metal copper layer containing the gold or platinum group element obtained in the first step of the present invention, the gold or platinum group element is further fractionated and recovered by a known method such as various melting methods or electrolytic methods. be able to. The copper metal after the gold or platinum group element is separated and recovered can be used as the (original) metallic copper in the first step. In addition, when the copper content after separately collecting the gold or platinum group element is in the form of copper oxide, it is reduced in the second furnace as the oxide of the second step and recovered as new metallic copper, It can be used as one-step metallic copper.

第2工程の第2炉としては電気炉を用いることができる(第2炉を電気炉ということがある)。第1炉から排出された溶融酸化物をいったん冷却して固形物としてストックしたものを集積して、電気炉に装入し、還元剤と必要に応じてフラックスを加えて溶融還元する。第1工程からの溶融酸化物に混在して持ち込まれた未反応のSiC系物質は第2工程で還元剤として作用し酸化分解されるので、第2炉においては必要に応じて不足量の還元剤を添加すればよい。なお、第2工程においても、第1工程の場合と同様に、必要に応じて珪石等のSi酸化物、石灰等のCa酸化物、蛍石等のF化合物、Al酸化物、Fe酸化物、Na酸化物などのフラックスを少量添加して、スラグ流動性を向上させ、または操業スラグ温度を低下させて、より良好なスラグを形成することもできる。   An electric furnace can be used as the second furnace in the second step (the second furnace may be referred to as an electric furnace). The molten oxide discharged from the first furnace is once cooled and stocked as a solid material is collected, charged into an electric furnace, and melted and reduced by adding a reducing agent and flux as necessary. Since the unreacted SiC-based material brought in mixed with the molten oxide from the first step acts as a reducing agent in the second step and is oxidatively decomposed, in the second furnace, a deficient amount is reduced as necessary. What is necessary is just to add an agent. In the second step, as in the case of the first step, Si oxide such as silica, Ca oxide such as lime, F compound such as fluorite, Al oxide, Fe oxide, It is also possible to add a small amount of flux such as Na oxide to improve the slag fluidity or lower the operation slag temperature to form a better slag.

なお、第1炉から排出された溶融酸化物を多量の水と接触させることによって粉粒体とする(つまり水砕を行う)と、溶融酸化物中に混在して持ち込まれた未反応のSiC系物質が粉粒体の微細粒子表面に露出するので、第2炉において還元剤としての反応性が著しく促進する。   When the molten oxide discharged from the first furnace is brought into contact with a large amount of water to form a granular material (that is, granulated), unreacted SiC brought into the molten oxide. Since the system substance is exposed on the surface of the fine particles of the granular material, the reactivity as the reducing agent is significantly accelerated in the second furnace.

第2工程においては電気炉における溶融還元により酸化物中の酸化銅は金属銅に還元されて炉の底部に溶銅として溜まり、酸化物中に一部残留していた金または白金族元素、および未反応のSiC系物質が酸化分解して遊離した金または白金族元素は、いずれもこの溶銅湯溜まり中に移行する。
この電気炉での溶融還元によって酸化物中の殆どの酸化銅を金属銅として回収することができ、これを第1工程に繰返して先の第1炉での金属銅として再利用することができる。この場合、電気炉で得られた(新たな)溶融金属銅をそのまま第1炉に装入すれば大幅な熱エネルギーの節減となる。他方、電気炉から排出されたスラグ(残留酸化物)は、もはや実質的に金または白金族元素を含有せず、また銅などの他の有用成分も殆ど含有しないので経済的価値は低いものとなり、廃棄処分に回すことができる。
In the second step, the copper oxide in the oxide is reduced to metallic copper by melting reduction in an electric furnace and accumulated as molten copper at the bottom of the furnace, and the gold or platinum group element partially remaining in the oxide, and Any gold or platinum group element liberated by oxidative decomposition of the unreacted SiC-based material is transferred into the molten copper pool.
By this smelting reduction in the electric furnace, most of the copper oxide in the oxide can be recovered as metallic copper, and this can be repeated in the first step and reused as metallic copper in the previous first furnace. . In this case, if (new) molten metal copper obtained in the electric furnace is charged into the first furnace as it is, the thermal energy can be greatly reduced. On the other hand, the slag discharged from the electric furnace (residual oxide) no longer contains any gold or platinum group elements, and contains almost no other useful components such as copper, so its economic value is low. Can be sent to disposal.

一方、第1炉で得られたメタル溶湯(溶融残留金属銅)から金または白金族元素をさらに濃縮する方法として、再び溶融酸化処理を採用するのが好都合である。この場合、同じ第1炉を使用することもできるが、別の酸化炉を使用してもよい。これにより、その炉内では金または白金族元素等の貴金属をさらに濃縮した金属銅と、これらの貴金属を殆ど含有しない酸化銅が溶融状態で相分離した状態で得られるので、これを出湯して分離することにより、金または白金族元素等の貴金属をさらに濃縮した金属銅を得ることができる。また、ここで生成した酸化銅は前記の電気炉(第2炉)への装入原料に使用することにより、金属銅に還元し、第1工程へ繰返すことができる。   On the other hand, as a method of further concentrating the gold or platinum group element from the molten metal (molten residual metal copper) obtained in the first furnace, it is advantageous to adopt the melt oxidation treatment again. In this case, the same first furnace can be used, but another oxidation furnace may be used. As a result, in the furnace, metal copper obtained by further concentrating noble metals such as gold or platinum group elements and copper oxide containing almost no noble metal are obtained in a state of being phase-separated in a molten state. By separating, metallic copper further enriched with noble metals such as gold or platinum group elements can be obtained. Moreover, the copper oxide produced | generated here can be reduce | restored to metallic copper by using for the charging raw material to the said electric furnace (2nd furnace), and can be repeated to a 1st process.

以下に本発明の実施例を記載するが、本発明の技術的範囲はこの記載に限定されるものではないことは言うまでもない。   Examples of the present invention will be described below, but it goes without saying that the technical scope of the present invention is not limited to this description.

[実施例1] ハニカム形状のSiC製の基体にPt、Pd、Auの3種の貴金属を担持しSiCを95質量%含有するSiC系物質を使用した。このSiC系物質中の各貴金属含有率(質量%)を下記の表1に示す。先ず表2に示すように、酸化炉としての転炉内に溶融した金属銅501kgと破砕後に造粒して得た5mm目の篩を通過する上記SiC系物質198kgを装入した。装入後、転炉内においてランスにより酸素含有ガスとして酸素含有率40%の酸素富化空気を装入物の表面上から吹きつけ、装入物温度を1400〜1450℃に維持し、金属銅が半分程度にまで減少した時点で吹き込み(酸化処理)を終了し、その後静置させて上方が溶融酸化物層、下方が溶融メタル(残留金属銅)層の2層に分離した。転炉を傾動させて上層の溶融酸化物層を大量の水の流れる水槽内に投入して粉粒状化(つまり水砕)した後、乾燥した。炉内には溶融メタル(残留金属銅)分を残した。酸化処理前後のそれぞれの重量、貴金属含有率、含有量、分布率等を表3に示す。水砕し、乾燥した酸化物全量をフラックスの石灰と還元剤のコークスとともに電気炉で1400℃で還元溶融して(新たな)金属銅250kgを得た。還元処理前後のそれぞれの重量、貴金属含有率、含有量、分布率等を表3に併せて示す。   [Example 1] A SiC-based material containing 95% by mass of SiC in which three kinds of noble metals Pt, Pd, and Au were supported on a honeycomb-shaped SiC substrate was used. The precious metal content (% by mass) in this SiC-based material is shown in Table 1 below. First, as shown in Table 2, 501 kg of molten copper and 198 kg of the SiC material passing through a 5 mm sieve obtained by granulation after crushing were charged into a converter as an oxidation furnace. After charging, oxygen enriched air having an oxygen content of 40% is blown from the surface of the charge as an oxygen-containing gas by a lance in the converter, and the charge temperature is maintained at 1400 to 1450 ° C. Blowing (oxidation treatment) was terminated when the amount of the metal was reduced to about half, and then allowed to stand to separate into two layers, a molten oxide layer on the upper side and a molten metal (residual metal copper) layer on the lower side. The converter was tilted, and the upper molten oxide layer was put into a water tank in which a large amount of water flowed to be granulated (that is, granulated), and then dried. The molten metal (residual metal copper) was left in the furnace. Table 3 shows the weight, precious metal content, content, distribution rate, and the like before and after the oxidation treatment. The total amount of the oxide obtained by water granulation and drying was reduced and melted at 1400 ° C. in an electric furnace together with lime of flux and coke of reducing agent to obtain 250 kg of (new) metallic copper. Table 3 shows the respective weights before and after the reduction treatment, the precious metal content, the content, the distribution rate, and the like.

Figure 0004984123
Figure 0004984123

Figure 0004984123
Figure 0004984123

Figure 0004984123
Figure 0004984123

[実施例2] 実施例1と同様に表1に示したSiC系物質を使用した。表2、4に示すように、酸化炉としての転炉内に溶融した金属銅502kgと破砕後に造粒して得た5mm目の篩を通過する上記SiC系物質302kgを装入した。装入後、転炉内においてランスにより酸素含有ガスとして酸素含有率40%の酸素富化空気を装入物の表面上から吹きつけ、装入物温度を1400〜1450℃に維持し、金属銅が半分程度にまで減少した時点で吹き込み(酸化処理)を終了し、その後静置させて上方が溶融酸化物層、下方が溶融メタル(残留金属銅)層の2層に分離したが、溶融酸化物層には未反応のSiC系物質が含有されており、実施例1に比べて上層中への貴金属含有率が多くなっていた。これは酸化炉(第1炉)への装入時のSiC系物質/金属銅の質量比を0.6としたため、未反応のSiC系物質が残留したものである。この溶融酸化物層を実施例1と同様に水砕し、乾燥して全量をフラックスとともに電気炉に装入して還元溶融して(新たな)金属銅270kgを得た。前記の未反応の残留したSiC系物質は還元剤として作用して消費され、含有されていた貴金属は前記の(新たな)金属銅中に回収された。以上のそれぞれの重量、貴金属含有率、含有量、分布率等を表4に示した。   [Example 2] In the same manner as in Example 1, the SiC-based materials shown in Table 1 were used. As shown in Tables 2 and 4, 502 kg of molten copper and 302 kg of the SiC material passing through a 5 mm sieve obtained by granulation after crushing were charged into a converter as an oxidation furnace. After charging, oxygen enriched air having an oxygen content of 40% is blown from the surface of the charge as an oxygen-containing gas by a lance in the converter, and the charge temperature is maintained at 1400 to 1450 ° C. Blowing (oxidation treatment) was completed when the amount of the metal was reduced to about half, and then allowed to stand to separate into two layers, a molten oxide layer on the top and a molten metal (residual metal copper) layer on the bottom. The physical layer contained unreacted SiC-based material, and the precious metal content in the upper layer was higher than that in Example 1. This is because the unreacted SiC-based material remains because the mass ratio of the SiC-based material / metal copper at the time of charging into the oxidation furnace (first furnace) was 0.6. This molten oxide layer was subjected to water granulation in the same manner as in Example 1, dried, and the entire amount was charged together with the flux into an electric furnace and reduced and melted to obtain 270 kg of (new) metallic copper. The unreacted remaining SiC-based material acted as a reducing agent and was consumed, and the contained noble metal was recovered in the (new) copper metal. Table 4 shows the weight, precious metal content, content, distribution rate, etc. of each of the above.

Figure 0004984123
Figure 0004984123

上記のとおり、SiC系物質中の白金族元素(Pt、Pd)および金を実施例1ではそれぞれ99.87%、99.69%、99.27%、実施例2ではそれぞれ99.25%、98.81%、98.47%という高収率且つ高濃度で溶融金属銅中に移行させて回収することができ、さらに酸化炉(第1炉)の酸化反応で発生した酸化銅は、電気炉(還元炉、第2炉)においてほぼ全量が還元され(新たな)金属銅に再生されて第1炉で繰り返し使用できることがわかる。   As described above, platinum group elements (Pt, Pd) and gold in the SiC-based material are 99.87%, 99.69%, 99.27% in Example 1, and 99.25% in Example 2, respectively. It can be recovered by being transferred to molten metal copper at a high yield and high concentration of 98.81% and 98.47%, and the copper oxide generated in the oxidation reaction of the oxidation furnace (first furnace) It can be seen that almost the entire amount is reduced in the furnace (reduction furnace, second furnace), regenerated to (new) copper, and can be used repeatedly in the first furnace.

Claims (9)

金または白金族元素を含有するSiC系物質から該金または白金族元素を回収する方法において、前記SiC系物質を金属銅と共に第1炉内で酸化処理し、Si酸化物と銅酸化物を含有する溶融酸化物層と前記金または白金族元素を含有する溶融残留金属銅層とに分離する第1工程、該分離された酸化物を第2炉内で還元処理して新たな溶融金属銅層と溶融残留酸化物層とに分離する第2工程、および該新たな金属銅を前記第1工程の前記金属銅の一部または全部として繰返す第3工程からなることを特徴とする金または白金族元素の回収方法。   In the method for recovering the gold or platinum group element from the SiC-based material containing gold or platinum group element, the SiC-based material is oxidized together with metallic copper in the first furnace, and contains Si oxide and copper oxide. A first step of separating the molten oxide layer into a molten residual metal copper layer containing the gold or platinum group element, and a new molten metal copper layer by reducing the separated oxide in a second furnace A gold or platinum group comprising: a second step of separating the molten copper into a molten residual oxide layer; and a third step of repeating the new metallic copper as part or all of the metallic copper in the first step Element recovery method. 金または白金族元素を含有するSiC系物質から該金または白金族元素を回収する方法において、前記SiC系物質を溶融金属銅と共に第1炉内で酸化処理し、該炉内の上層溶融層としてSi酸化物と銅酸化物を主体とする溶融酸化物層を、該炉内の下層溶融層として前記金または白金族元素を含有する溶融残留金属銅層を形成させて分離することによって、該溶融残留金属銅層中に該金または白金族元素を回収する第1工程、該分離された酸化物を第2炉内で還元処理し、該炉内の下層溶融層として新たな溶融金属銅層を、該炉内の上層溶融層として溶融残留酸化物層を形成させて分離する第2工程、および該新たな溶融金属銅を前記第1工程の前記溶融金属銅の一部または全部として繰返す第3工程からなることを特徴とする金または白金族元素の回収方法。   In the method for recovering the gold or platinum group element from the SiC-based material containing gold or platinum group element, the SiC-based material is oxidized in the first furnace together with the molten metal copper to form an upper molten layer in the furnace. The molten oxide layer mainly composed of Si oxide and copper oxide is separated by forming a molten residual metal copper layer containing the gold or platinum group element as a lower molten layer in the furnace. A first step of recovering the gold or platinum group element in the residual metal copper layer, the separated oxide is reduced in a second furnace, and a new molten metal copper layer is formed as a lower molten layer in the furnace. A second step of forming and separating a molten residual oxide layer as an upper molten layer in the furnace, and a third step of repeating the new molten metal copper as part or all of the molten metal copper in the first step Gold or white characterized by comprising a process Recovery method of family element. 前記溶融酸化物層が未反応の前記SiC系物質を含有する、請求項1または2記載の回収方法。   The recovery method according to claim 1 or 2, wherein the molten oxide layer contains the unreacted SiC-based material. 前記第1炉内に装入する前記SiC系物質/前記金属銅の質量比が0.65以下である、請求項1〜3のいずれかに記載の回収方法。   The recovery method according to any one of claims 1 to 3, wherein a mass ratio of the SiC-based material / the metallic copper charged in the first furnace is 0.65 or less. 前記酸化処理は酸素ガスまたは酸素含有ガスを前記第1炉内に導入して行う、請求項1〜4のいずれかに記載の回収方法。   The recovery method according to claim 1, wherein the oxidation treatment is performed by introducing oxygen gas or oxygen-containing gas into the first furnace. 前記酸化処理は前記第1炉内の温度を1100〜1600℃に維持して行う、請求項1〜5のいずれかに記載の回収方法。   The said oxidation process is a collection | recovery method in any one of Claims 1-5 performed by maintaining the temperature in a said 1st furnace at 1100-1600 degreeC. 前記第1炉内に装入する前記SiC系物質は5mm目の篩を通過する粒度である、請求項1〜6のいずれかに記載の回収方法。   The recovery method according to claim 1, wherein the SiC-based material charged into the first furnace has a particle size that passes through a 5 mm sieve. 前記SiC系物質は金または白金族元素を担持したSiCを主体とする排ガス浄化用触媒廃棄物である、請求項1〜7のいずれかに記載の回収方法。   The recovery method according to any one of claims 1 to 7, wherein the SiC-based material is exhaust gas purification catalyst waste mainly composed of SiC supporting gold or a platinum group element. 前記第1工程の前記溶融酸化物層を前記第1炉内から排出した後に水と接触させることによって粉粒体とし、得られた酸化物粉粒体を前記第2工程の前記酸化物とする、請求項1〜8のいずれかに記載の回収方法。   The molten oxide layer in the first step is discharged from the first furnace and then brought into contact with water to form powder, and the obtained oxide powder is used as the oxide in the second step. The collection method according to any one of claims 1 to 8.
JP2006267145A 2006-09-29 2006-09-29 Method for recovering gold or platinum group elements from SiC-based materials Active JP4984123B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006267145A JP4984123B2 (en) 2006-09-29 2006-09-29 Method for recovering gold or platinum group elements from SiC-based materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006267145A JP4984123B2 (en) 2006-09-29 2006-09-29 Method for recovering gold or platinum group elements from SiC-based materials

Publications (2)

Publication Number Publication Date
JP2008088452A JP2008088452A (en) 2008-04-17
JP4984123B2 true JP4984123B2 (en) 2012-07-25

Family

ID=39372918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006267145A Active JP4984123B2 (en) 2006-09-29 2006-09-29 Method for recovering gold or platinum group elements from SiC-based materials

Country Status (1)

Country Link
JP (1) JP4984123B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011032510A (en) * 2009-07-30 2011-02-17 Dowa Metals & Mining Co Ltd METHOD OF RECOVERING GOLD AND/OR PLATINUM GROUP ELEMENT FROM SiC-BASED SUBSTANCE
JP2011032553A (en) * 2009-08-04 2011-02-17 Dowa Metals & Mining Co Ltd METHOD OF RECOVERING GOLD AND/OR PLATINUM GROUP ELEMENT FROM SiC-BASED SUBSTANCE
JP5851700B2 (en) * 2011-02-14 2016-02-03 Dowaメタルマイン株式会社 Method for recovering platinum group elements from SiC-based materials
WO2023175535A1 (en) * 2022-03-15 2023-09-21 Sibanye Stillwater Limited A method of treating a silicon carbide bearing

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61223138A (en) * 1985-03-28 1986-10-03 Tanaka Kikinzoku Kogyo Kk Method for recovering platinum from fuel cell
JPS63161129A (en) * 1986-12-23 1988-07-04 Tanaka Kikinzoku Kogyo Kk Method for recovering platinum from fuel cell electrode
JPH01189348A (en) * 1988-01-22 1989-07-28 Agency Of Ind Science & Technol Recovery of catalytically active component and carrier from waste catalyst
JP3222894B2 (en) * 1991-04-10 2001-10-29 田中貴金属工業株式会社 Platinum group metal recovery method
JP3516604B2 (en) * 1999-02-26 2004-04-05 同和鉱業株式会社 Recovery of platinum group elements from metal-based catalysts
JP2003301225A (en) * 2002-04-11 2003-10-24 Asahi Pretec Corp Method for recovering noble metal
JP3734779B2 (en) * 2002-08-05 2006-01-11 同和鉱業株式会社 Dry recovery of platinum group elements
JP2004269936A (en) * 2003-03-06 2004-09-30 Dowa Mining Co Ltd Method for refining raw material containing noble metal, and metal for recovering noble metal
JP3903141B2 (en) * 2003-03-14 2007-04-11 Dowaメタルマイン株式会社 Methods for recovering platinum group elements

Also Published As

Publication number Publication date
JP2008088452A (en) 2008-04-17

Similar Documents

Publication Publication Date Title
JP3734779B2 (en) Dry recovery of platinum group elements
CN110846505A (en) Method for recovering platinum group metal from VOCs (volatile organic compounds) waste catalyst
JP2018145479A (en) Recovery method of platinum group metals
JP4852749B2 (en) Processing method of SiC-based material
JP4984123B2 (en) Method for recovering gold or platinum group elements from SiC-based materials
JP2009024263A (en) Device for recovering platinum group element
JP3516604B2 (en) Recovery of platinum group elements from metal-based catalysts
JP5196095B2 (en) Precious metal recovery method and recovered precious metal
JP5077517B2 (en) Precious metal recovery method and recovered precious metal
JP2005113253A (en) Method for recovering platinum group metal
JP4984122B2 (en) Method for recovering gold or platinum group elements from SiC-based materials
JP3906333B2 (en) Precious metal recovery method
JP5263483B2 (en) Precious metal recovery method
JP2011032553A (en) METHOD OF RECOVERING GOLD AND/OR PLATINUM GROUP ELEMENT FROM SiC-BASED SUBSTANCE
JP7269754B2 (en) How to recover precious metals
JP2007521393A (en) Mechanical separation of volatile metals at high temperatures.
CN113631740B (en) Method for producing PGM trapping agent alloy
JP4284124B2 (en) Methods for recovering platinum group elements
JP2023019519A (en) Method for recovering platinum group metals
JP4525453B2 (en) Slag fuming method
JP2011032510A (en) METHOD OF RECOVERING GOLD AND/OR PLATINUM GROUP ELEMENT FROM SiC-BASED SUBSTANCE
JP2009155677A (en) Method for recovering noble metal, and recovered noble metal
JP2005113193A (en) Method for recovering platinum group metal
JP5851700B2 (en) Method for recovering platinum group elements from SiC-based materials
KR100877090B1 (en) Operation method of copper smelting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120321

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120327

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120411

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120411

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120412

R150 Certificate of patent or registration of utility model

Ref document number: 4984123

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250