JP2011032553A - METHOD OF RECOVERING GOLD AND/OR PLATINUM GROUP ELEMENT FROM SiC-BASED SUBSTANCE - Google Patents

METHOD OF RECOVERING GOLD AND/OR PLATINUM GROUP ELEMENT FROM SiC-BASED SUBSTANCE Download PDF

Info

Publication number
JP2011032553A
JP2011032553A JP2009181335A JP2009181335A JP2011032553A JP 2011032553 A JP2011032553 A JP 2011032553A JP 2009181335 A JP2009181335 A JP 2009181335A JP 2009181335 A JP2009181335 A JP 2009181335A JP 2011032553 A JP2011032553 A JP 2011032553A
Authority
JP
Japan
Prior art keywords
slag
molten
platinum group
oxide
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009181335A
Other languages
Japanese (ja)
Inventor
Benko Yamaguchi
勉功 山口
Shigeki Suzuki
茂樹 鈴木
Masahiko Ogino
正彦 荻野
Takeshi Matsumoto
武 松本
Yuzuru Nakamura
譲 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Metals and Mining Co Ltd
Original Assignee
Dowa Metals and Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Metals and Mining Co Ltd filed Critical Dowa Metals and Mining Co Ltd
Priority to JP2009181335A priority Critical patent/JP2011032553A/en
Publication of JP2011032553A publication Critical patent/JP2011032553A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • Y02W30/54

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve such a problem that it is an urgent necessity to establish a method in which the used material of a catalyst for purifying waste gas, using SiC being supposed to increase hereinafter as a carrier (base) material is treated to efficiently recover contained gold and/or platinum group element, because SiC is inactive and difficult to be oxidized. <P>SOLUTION: An SiC-based substance containing gold and/or platinum group element is fused and oxidized together with a slag having a composition in a range surrounded by points 1 to 5 of prescribed positions in a ternary phase diagram of CaO-SiO<SB>2</SB>-Al<SB>2</SB>O<SB>3</SB>or a slag comprising primarily the slag in a first furnace to produce a fused oxide, and the produced oxide is fused and reduced together with a reductant and metal copper or copper oxide in a second furnace to fractionate the produced oxide into a fused oxide layer and a fused metal layer and, thereby, the gold and/or platinum group element is extracted into the fused metal layer. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、金および/または白金族元素を担持などの形態で含有する炭化珪素(SiCという。)を用いた排ガス浄化用触媒であって触媒としての使命を終えた使用後の触媒廃棄物や何らかの理由により使命を終える前に廃棄された触媒廃棄物などの金および/または白金族元素を含有するSiC系物質から該金および/または白金族元素を効率的に回収する方法に関するものである。   The present invention relates to an exhaust gas purifying catalyst using silicon carbide (referred to as SiC) containing gold and / or platinum group elements in a supported form, and after use as a catalyst waste, The present invention relates to a method for efficiently recovering gold and / or platinum group elements from a SiC-based material containing gold and / or platinum group elements such as catalyst waste discarded before the mission is finished for some reason.

近年、特許文献1〜4などに記載されるように、SiCを金および/または白金族元素の担体(基体)物質として用いた触媒を使用する排ガス浄化システムの実用化が進められている。SiCは耐熱性に優れるため、特にディーゼルエンジンの排ガスのPM燃焼用触媒の担体物質として用いると触媒の性能・耐久性が向上するものと期待され開発が急速に進んで普及して来ている。   In recent years, as described in Patent Documents 1 to 4 and the like, an exhaust gas purification system using a catalyst using SiC as a carrier (substrate) material for a gold and / or platinum group element has been put into practical use. Since SiC is excellent in heat resistance, it is expected to improve the performance and durability of the catalyst, particularly when used as a carrier material for a PM combustion catalyst for exhaust gas from a diesel engine, and its development is rapidly progressing and spreading.

一方、上記の触媒としての使命を終えた使用後の触媒廃棄物や何らかの理由により使命を終える前に廃棄された触媒廃棄物などのSiC系物質から金および/または白金族元素を回収する方法については、特許文献5〜7などに有望な回収方法が開発され実用化されているが、SiCは融点が2700℃以上で且つ化学的に不活性であって本質的に処理されにくく、なお一層効率的なSiC系物質の処理方法が望まれている。   On the other hand, a method for recovering gold and / or platinum group elements from SiC-based materials such as catalyst waste after use that has finished its mission as a catalyst and catalyst waste that has been discarded before any mission has been completed Although a promising recovery method has been developed and put to practical use in Patent Documents 5 to 7, etc., SiC has a melting point of 2700 ° C. or higher, is chemically inert, and is essentially difficult to process, and is even more efficient. A method for treating a SiC-based material is desired.

特開平6−182214号公報JP-A-6-182214 特開平10−76162号公報JP-A-10-76162 特開2001−349211号公報JP 2001-349111 A 特開2003−262118号公報JP 2003-262118 A 特開2007−224336号公報JP 2007-224336 A 特開2008−88450号公報JP 2008-88450 A 特開2008−88452号公報JP 2008-88452 A

SiCは乾式プロセスにおいて溶解させにくいという問題があり、前述の酸化銅スラグを用いる特許文献5によればSiC/Cu2Oの質量比は最大で0.2であるため、SiC系物質の処理量が限定されていた。 There is a problem that SiC is difficult to dissolve in a dry process, and according to Patent Document 5 using the above-described copper oxide slag, the mass ratio of SiC / Cu 2 O is 0.2 at the maximum. Was limited.

したがって、今後使用が一層増えるであろうSiCを担体(基体)物質として用いた排ガス浄化用触媒の使用済み材料を処理し含有される金および/または白金族元素を一層効率的に回収する方法の確立が急務となっている。
本発明は、このような現状に鑑み、SiC系物質に含有される金および/または白金族元素を一層効率的に回収する方法を提供しようというものである。
Therefore, a method for treating the used material of the exhaust gas purification catalyst using SiC as a support (substrate) substance, which will be used more in the future, and recovering contained gold and / or platinum group elements more efficiently. Establishment is urgently needed.
In view of such a current situation, the present invention is intended to provide a method for recovering gold and / or platinum group elements contained in SiC-based materials more efficiently.

本発明者等はSiCの溶解に適した組成のスラグを検討しこれに酸素ガスまたは酸素を富化した空気を吹き込んで酸化することによってSiC系物質を効率よく酸化して金、白金族元素を回収することを見出し、本発明を完成するに至った。   The inventors of the present invention have studied a slag having a composition suitable for dissolving SiC, and injecting oxygen gas or oxygen-enriched air into the slag to oxidize the SiC-based material efficiently, thereby converting gold and platinum group elements. The inventors have found that it can be recovered and have completed the present invention.

すなわち本発明は第1に、金および/または白金族元素(「金および/または白金族元素」を「貴金属」ということがある。)を含有するSiC系物質から該金および/または白金族元素を回収する方法において、前記SiC系物質を、CaO−SiO2−Al233元状態図におけるCaO、SiO2、Al23の組成(質量%で示す。以下同様。)がそれぞれ、26.0%、27.0%、47.0%の点1、55.0%、35.0%、10.0%の点2、31.5%、62.5%、6.0%の点3、0.0%、77.0%、23.0%の点4、8.0%、45.0%、47.0%の点5によって囲まれる範囲内の組成を有するスラグまたは該スラグを主成分とするスラグと共に第1炉内で溶融及び酸化処理して溶融酸化物を生成し、該生成された酸化物を還元剤と金属銅又は酸化銅と共に第2炉内で溶融及び還元処理して溶融酸化物層と溶融金属層とに分別することによって前記金および/または白金族元素を該溶融金属層に抽出させることを特徴とする金および/または白金族元素の回収方法を、第2に、金および/または白金族元素を含有するSiC系物質から該金および/または白金族元素を回収する方法において、前記SiC系物質を、CaO−SiO2−Al233元状態図におけるCaO、SiO2、Al23の組成がそれぞれ、26.0%、27.0%、47.0%の点1、55.0%、35.0%、10.0%の点2、31.5%、62.5%、6.0%の点3、0.0%、77.0%、23.0%の点4、8.0%、45.0%、47.0%の点5によって囲まれる範囲内の組成を有するスラグまたは該スラグを主成分とするスラグと共に第1炉内で溶融及び酸化処理して溶融酸化物を生成し、該生成された酸化物を還元剤と金属銅又は酸化銅と共に第2炉内で溶融及び還元処理して溶融酸化物層と溶融金属層とに分別することによって前記金および/または白金族元素を該溶融金属層に抽出させた後、該溶融酸化物層の少なくとも一部を前記スラグの原料として前記第1炉で用いることを特徴とする金および/または白金族元素の回収方法を提供する。 That is, the present invention firstly provides a gold and / or platinum group element from a SiC-based material containing gold and / or a platinum group element (“gold and / or platinum group element” is sometimes referred to as “noble metal”). a method of recovering, the SiC-based material, CaO in CaO-SiO 2 -Al 2 O 3 3 binary phase diagram, the composition of SiO 2, Al 2 O 3 (shown by mass%. forth.), respectively, 26.0%, 27.0%, 47.0% points 1, 55.0%, 35.0%, 10.0% points 2, 31.5%, 62.5%, 6.0% A slag having a composition within the range surrounded by point 3, 0.0%, 77.0%, 23.0% point 4, 8.0%, 45.0%, 47.0% point 5 A molten oxide is produced by melting and oxidizing in the first furnace together with the slag containing the slag as a main component, The produced oxide is melted and reduced in a second furnace together with a reducing agent and metallic copper or copper oxide, and separated into a molten oxide layer and a molten metal layer, whereby the gold and / or platinum group elements are obtained. A method for recovering gold and / or platinum group elements characterized by extracting the molten metal layer, and second, the gold and / or platinum group elements from a SiC-based material containing gold and / or platinum group elements. a method of recovering, the SiC-based material, CaO in CaO-SiO 2 -Al 2 O 3 3 binary phase diagram, the composition of SiO 2, Al 2 O 3, respectively, 26.0% 27.0% 47 0.0% point 1, 55.0%, 35.0%, 10.0% point 2, 31.5%, 62.5%, 6.0% point 3, 0.0%, 77. 0%, 23.0% point 4, 8.0%, 45.0%, 47.0% to point 5 And a slag having a composition within a range surrounded by the slag or a slag containing the slag as a main component, and melted and oxidized in the first furnace to form a molten oxide, and the generated oxide is reduced to a reducing agent and a metal. The gold and / or platinum group elements are extracted into the molten metal layer by melting and reducing treatment in a second furnace together with copper or copper oxide to separate the molten oxide layer and the molten metal layer, Provided is a method for recovering gold and / or platinum group elements, wherein at least a part of a molten oxide layer is used as a raw material for the slag in the first furnace.

また本発明は第3に、金および/または白金族元素を含有するSiC系物質から該金および/または白金族元素を回収する方法において、前記SiC系物質を、CaO−SiO2−Al233元状態図におけるCaO、SiO2、Al23の組成がそれぞれ、26.0%、27.0%、47.0%の点1、55.0%、35.0%、10.0%の点2、31.5%、62.5%、6.0%の点3、0.0%、77.0%、23.0%の点4、8.0%、45.0%、47.0%の点5によって囲まれる範囲内の組成を有するスラグまたは該スラグを主成分とするスラグと金属銅と共に第1炉内で溶融及び酸化処理して該金属銅の少なくとも一部と該SiC系物質を酸化させ酸化物の溶融層と金属の溶融層とに分別することによって前記金および/または白金族元素を該金属の溶融層に抽出させた後、該酸化物を還元剤と共に第2炉内で溶融及び還元処理して溶融酸化物層と溶融金属層とに分別することによって前記金および/または白金族元素を該溶融金属層に抽出させることを特徴とする金および/または白金族元素の回収方法を、第4に、金および/または白金族元素を含有するSiC系物質から該金および/または白金族元素を回収する方法において、前記SiC系物質を、CaO−SiO2−Al233元状態図におけるCaO、SiO2、Al23の組成がそれぞれ、26.0%、27.0%、47.0%の点1、55.0%、35.0%、10.0%の点2、31.5%、62.5%、6.0%の点3、0.0%、77.0%、23.0%の点4、8.0%、45.0%、47.0%の点5によって囲まれる範囲内の組成を有するスラグまたは該スラグを主成分とするスラグと金属銅と共に第1炉内で溶融及び酸化処理して該金属銅の少なくとも一部と該SiC系物質を酸化させ酸化物の溶融層と金属の溶融層とに分別することによって前記金および/または白金族元素を該金属の溶融層に抽出させた後、該酸化物を還元剤と共に第2炉内で溶融及び還元処理して溶融酸化物層と溶融金属層とに分別することによって前記金および/または白金族元素を該溶融金属層に抽出させた後、該溶融金属層を前記金属銅として前記第1炉で用いることを特徴とする金および/または白金族元素の回収方法を提供する。 In addition, the present invention thirdly relates to a method for recovering the gold and / or platinum group element from the SiC type material containing gold and / or platinum group element, wherein the SiC type material is CaO—SiO 2 —Al 2 O. 3 Points 1, 55.0%, 35.0%, 10. Where the compositions of CaO, SiO 2 and Al 2 O 3 in the ternary phase diagram are 26.0%, 27.0% and 47.0%, respectively. 0% point 2, 31.5%, 62.5%, 6.0% point 3, 0.0%, 77.0%, 23.0% point 4, 8.0%, 45.0 %, 47.0% of the slag having a composition in the range surrounded by the point 5 or slag mainly composed of the slag and metallic copper, and melted and oxidized in a first furnace to at least part of the metallic copper And oxidizing the SiC-based material into a molten layer of oxide and a molten layer of metal to thereby separate the gold And / or after the platinum group element is extracted into the molten layer of the metal, the oxide is melted and reduced in the second furnace together with the reducing agent to separate the molten oxide layer and the molten metal layer. The method for recovering gold and / or platinum group elements, characterized by extracting the gold and / or platinum group elements into the molten metal layer. Fourth, a SiC-based material containing gold and / or platinum group elements a method of recovering gold and / or platinum group elements from the SiC-based material, CaO in CaO-SiO 2 -Al 2 O 3 3 binary phase diagram, the composition of SiO 2, Al 2 O 3, respectively, 26 0.0%, 27.0%, 47.0% points 1, 55.0%, 35.0%, 10.0% points 2, 31.5%, 62.5%, 6.0% Point 3, 0.0%, 77.0%, 23.0% Point 4, 8.0%, 4 0.05% or 47.0% of the slag having a composition within the range surrounded by the point 5 or slag mainly composed of the slag and metallic copper, and melted and oxidized in a first furnace, and at least the metallic copper The gold and / or platinum group elements are extracted into the molten layer of the metal by oxidizing a part of the SiC-based material and separating it into a molten layer of the oxide and a molten layer of the metal, The gold and / or platinum group elements are extracted into the molten metal layer by melting and reducing treatment in a second furnace together with a reducing agent and separating into a molten oxide layer and a molten metal layer, and then the molten metal Provided is a method for recovering gold and / or platinum group elements, wherein a layer is used as the metallic copper in the first furnace.

さらに本発明は第5に、金および/または白金族元素を含有するSiC系物質から該金および/または白金族元素を回収する方法において、前記SiC系物質を、CaO−SiO2−Al233元状態図におけるCaO、SiO2、Al23の組成がそれぞれ、26.0%、27.0%、47.0%の点1、55.0%、35.0%、10.0%の点2、31.5%、62.5%、6.0%の点3、0.0%、77.0%、23.0%の点4、8.0%、45.0%、47.0%の点5によって囲まれる範囲内の組成を有するスラグまたは該スラグを主成分とするスラグと金属銅と共に第1炉内で溶融及び酸化処理して該金属銅の少なくとも一部と該SiC系物質を酸化させ酸化物の溶融層と金属の溶融層とに分別することによって前記金および/または白金族元素を該金属の溶融層に抽出させた後、該酸化物を還元剤と共に第2炉内で溶融及び還元処理して溶融酸化物層と溶融金属層とに分別し、該溶融酸化物層の少なくとも一部を前記スラグの原料として前記第1炉で用いることを特徴とする金および/または白金族元素の回収方法を、第6に、金および/または白金族元素を含有するSiC系物質から該金および/または白金族元素を回収する方法において、前記SiC系物質を、CaO−SiO2−Al233元状態図におけるCaO、SiO2、Al23の組成がそれぞれ、26.0%、27.0%、47.0%の点1、55.0%、35.0%、10.0%の点2、31.5%、62.5%、6.0%の点3、0.0%、77.0%、23.0%の点4、8.0%、45.0%、47.0%の点5によって囲まれる範囲内の組成を有するスラグまたは該スラグを主成分とするスラグと金属銅と共に第1炉内で溶融及び酸化処理して該金属銅の少なくとも一部と該SiC系物質を酸化させ酸化物の溶融層と金属の溶融層とに分別することによって前記金および/または白金族元素を該金属の溶融層に抽出させた後、該酸化物を還元剤と共に第2炉内で溶融及び還元処理して溶融酸化物層と溶融金属層とに分別し、該溶融金属層を前記金属銅とし該溶融酸化物層の少なくとも一部を前記スラグの原料としてともに前記第1炉で用いることを特徴とする金および/または白金族元素の回収方法を提供する。 Further, according to the fifth aspect of the present invention, in the method for recovering the gold and / or platinum group element from the SiC-based material containing gold and / or platinum group element, the SiC-based material is CaO—SiO 2 —Al 2 O. 3 Points 1, 55.0%, 35.0%, 10. Where the compositions of CaO, SiO 2 and Al 2 O 3 in the ternary phase diagram are 26.0%, 27.0% and 47.0%, respectively. 0% point 2, 31.5%, 62.5%, 6.0% point 3, 0.0%, 77.0%, 23.0% point 4, 8.0%, 45.0 %, 47.0% of the slag having a composition in the range surrounded by the point 5 or slag mainly composed of the slag and metallic copper, and melted and oxidized in a first furnace to at least part of the metallic copper And oxidizing the SiC-based material into a molten layer of an oxide and a molten layer of a metal. And / or after extracting the platinum group element into the molten layer of the metal, the oxide is melted and reduced in a second furnace together with a reducing agent to separate into a molten oxide layer and a molten metal layer, A method for recovering gold and / or platinum group elements, characterized in that at least a part of a molten oxide layer is used in the first furnace as a raw material for the slag. Sixth, containing gold and / or platinum group elements a method of recovering gold and / or platinum group elements from the SiC-based material which, the SiC-based material, CaO in CaO-SiO 2 -Al 2 O 3 3 binary phase diagram, the composition of SiO 2, Al 2 O 3 26.0%, 27.0%, 47.0% points 1, 55.0%, 35.0%, 10.0% points 2, 31.5%, 62.5%, 6 0.0% point 3, 0.0%, 77.0%, 23.0% point 4, 8.0 45.0%, 47.0% of the slag having a composition surrounded by the point 5 or the slag containing the slag as a main component and the metallic copper by melting and oxidizing in the first furnace And extracting the gold and / or platinum group elements into the molten layer of metal by oxidizing at least a part of the SiC-based material and separating the oxide-based material into a molten layer of oxide and a molten layer of metal, and then oxidizing the oxidized material. The product is melted and reduced in a second furnace together with a reducing agent, and is separated into a molten oxide layer and a molten metal layer, the molten metal layer is the metal copper, and at least a part of the molten oxide layer is the slag. A method for recovering gold and / or platinum group elements, characterized in that both are used in the first furnace as raw materials.

最後に本発明は第7に、前記酸化処理は酸素ガスまたは酸素富化空気を前記第1炉内に導入して行う第1〜6のいずれかに記載の回収方法を、第8に、前記第1炉内で生成された前記溶融酸化物を該炉から排出した後に水と接触させることによって粉粒体として前記第2炉に装入する第1〜7のいずれかに記載の回収方法を、第9に、前記スラグが1200〜1600℃において液相である第1〜8のいずれかに記載の回収方法を提供する。   Finally, according to the present invention, seventhly, the recovery method according to any one of first to sixth, wherein the oxidation treatment is performed by introducing oxygen gas or oxygen-enriched air into the first furnace. The recovery method according to any one of 1 to 7, wherein the molten oxide generated in the first furnace is discharged from the furnace and then brought into contact with water to be charged into the second furnace as a granular material. Ninth, the recovery method according to any one of the first to eighth aspects, wherein the slag is in a liquid phase at 1200 to 1600 ° C.

本発明によれば、大量のSiC系物質を低コストのスラグを用いて酸化処理し金および/または白金族元素を効率的に回収することができる。
また、第1炉内において被処理原料の主成分であるSiCの酸化分解に伴う発熱及び添加した金属銅の酸化熱などによって供給すべき熱エネルギーコストが節減され、且つ、SiCのC分は燃焼して排ガスとなって系外へ排出され、Si分は酸化されてフラックス成分のSi酸化物(SiO2)となるために供給すべきフラックスコストが節減されるという効果も奏する。
さらに、第2炉から排出される酸化物の少なくとも一部を第1炉においてスラグの原料として繰り返し使用すれば、スラグコストを低減させることができる。
その上、第1炉に金属銅を装入する方法において第2炉で発生する金属層を前記金属銅として繰り返し使用すれば、金属銅コストを低減させることができる。
According to the present invention, a large amount of SiC-based material can be oxidized using low-cost slag, and gold and / or platinum group elements can be efficiently recovered.
In addition, the heat energy cost to be supplied by the heat generated by the oxidative decomposition of SiC, which is the main component of the raw material to be treated, and the heat of oxidation of the added metal copper in the first furnace is reduced, and the C content of SiC is combusted. As a result, the exhaust gas is discharged out of the system, and the Si component is oxidized to become the flux component Si oxide (SiO 2 ), thereby reducing the flux cost to be supplied.
Furthermore, if at least a part of the oxide discharged from the second furnace is repeatedly used as the raw material for the slag in the first furnace, the slag cost can be reduced.
In addition, if the metal layer generated in the second furnace is repeatedly used as the metal copper in the method of charging the metal copper into the first furnace, the metal copper cost can be reduced.

本発明に係るスラグの組成を示すCaO−SiO2−Al233元状態図。 CaO-SiO 2 -Al 2 O 3 3 binary phase diagram showing the composition of the slag according to the present invention.

本発明における白金族元素は元素の周期表第VIII族に属するルテニウムRu、ロジウムRh、パラジウムPd、オスミウムOs、イリジウムIr、白金Ptの6元素をいう。   The platinum group element in the present invention refers to six elements of ruthenium Ru, rhodium Rh, palladium Pd, osmium Os, iridium Ir, and platinum Pt belonging to Group VIII of the periodic table of elements.

本発明において「金および/または白金族元素を含有するSiC系物質」とは、金および/または白金族元素を担持等の種々の形態で含有するSiCを主体とする物質の総称であって、好ましくはSiCを50質量%を超えて含有するSiC主体の材料であり、他の添加物質やPM(ディーゼルエンジンからの排ガス中の粒子状物質)などが含有される場合がある。このSiC系物質としては、例えば、上記のディーゼルエンジンの排ガス浄化用触媒の廃棄物、さらに電子部品廃棄物等が挙げられる。   In the present invention, the term “SiC-based material containing gold and / or platinum group elements” is a general term for substances mainly composed of SiC containing gold and / or platinum group elements in various forms. Preferably, it is a SiC-based material containing SiC in excess of 50% by mass, and may contain other additive substances, PM (particulate matter in exhaust gas from diesel engines), and the like. Examples of the SiC-based material include waste of the exhaust gas purification catalyst of the diesel engine, and electronic component waste.

一般的に「スラグ」とは、SiO2、CaO、MgO、Al23、FeO、MnOなどの各種の酸化物が溶融一体化されたものであって金属製錬工程において副生する所謂鉱滓であるが、本発明において第1炉に装入するスラグは、前記課題を達成すべく、CaO、SiO2、Al23を主体としその組成が特定の範囲になるように規定したものである。
この規定された組成のスラグを用いることによって、金および/または白金族元素を含有するSiC系物質を効率よく酸化処理し、更に、スラグの融点を低下させ且つ流動性を向上させることができる。
In general, “slag” is a so-called slag formed by melting and integrating various oxides such as SiO 2 , CaO, MgO, Al 2 O 3 , FeO, and MnO and by-produced in a metal smelting process. However, in the present invention, the slag charged into the first furnace is mainly composed of CaO, SiO 2 and Al 2 O 3 so as to achieve the above-mentioned problem, and is defined so that the composition is in a specific range. is there.
By using the slag having the defined composition, it is possible to efficiently oxidize a SiC-based material containing gold and / or platinum group elements, further lower the melting point of the slag, and improve the fluidity.

本発明における第1炉(酸化炉ということがある。)として転炉または回転炉を用いると、必要に応じて傾動または回転させることによってSiC系物質とスラグや金属銅との接触・混合を促進させることができ、かつ、酸素ガスまたは酸素富化空気をランスによって表面上から吹き付けて酸化処理することができ、さらには、酸化処理後に傾動させることによって最初に溶融酸化物層を抜き出し、その後溶融金属銅層を抜き出すことができるので、両層を容易に分離することができる。   When a converter or rotary furnace is used as the first furnace (sometimes referred to as an oxidation furnace) in the present invention, contact / mixing of SiC-based material with slag or metallic copper is promoted by tilting or rotating as required. And can be oxidized by blowing oxygen gas or oxygen-enriched air over the surface with a lance. Furthermore, the molten oxide layer is first extracted by tilting after the oxidation treatment and then melted. Since the metal copper layer can be extracted, both layers can be easily separated.

また、第1炉内の溶体中にランス又は羽口(Tuyere)を通じて酸素ガスまたは酸素富化空気を直接に吹き込むことによって、溶体の撹拌を促し、SiCの酸化速度を一層速めることもできる。
なお、酸化処理後の溶融酸化物は溶融金属銅より比重が小さいので、酸化処理後の溶融酸化物と溶融金属銅との混合溶融体(液相)を炉内で静置することにより、溶融酸化物は上層、溶融金属銅は下層となって容易に相互に分離される。
Further, by directly blowing oxygen gas or oxygen-enriched air into the solution in the first furnace through a lance or tuyere, stirring of the solution can be promoted, and the oxidation rate of SiC can be further increased.
In addition, since the molten oxide after the oxidation treatment has a specific gravity smaller than that of the molten metal copper, it is melted by leaving the mixed melt (liquid phase) of the molten oxide and the molten metal copper after the oxidation treatment in the furnace. The oxide becomes the upper layer and the molten metal copper becomes the lower layer and is easily separated from each other.

また、本発明における第2炉(還元炉ということがある。)としては電気炉を用いることができる。
第1炉から排出された溶融酸化物をいったん冷却して固形物としてストックしたものを集積して、第2炉である電気炉に装入し、還元剤と必要に応じてフラックスを加えて溶融還元する。第1炉からの溶融酸化物に混在して持ち込まれた未反応のSiC系物質は第2炉で還元剤として作用し酸化分解されるので、第2炉においては必要に応じて不足量の還元剤を添加すればよい。
なお、電気炉で生成した溶融酸化物と溶融金属銅は、溶融酸化物は上層、溶融金属銅は下層となって容易に相互に分離され、それぞれ炉壁に設けられた抜口(Tapping Hole)から分別回収することができる。
In addition, an electric furnace can be used as the second furnace (sometimes referred to as a reduction furnace) in the present invention.
The molten oxide discharged from the first furnace is once cooled and stocked as a solid material is collected, charged into the second furnace, the electric furnace, and melted by adding a reducing agent and flux as required. Reduce. Since the unreacted SiC-based material brought in mixed with the molten oxide from the first furnace acts as a reducing agent in the second furnace and is oxidatively decomposed, the second furnace reduces an insufficient amount as necessary. What is necessary is just to add an agent.
Note that the molten oxide and molten metal copper produced in the electric furnace are easily separated from each other, with the molten oxide as the upper layer and the molten metal copper as the lower layer. Can be collected separately.

なお、第1炉から排出された溶融酸化物を多量の水と接触させることによって粉粒体とする(つまり水砕を行う)と、溶融酸化物中に混在して持ち込まれた未反応のSiC系物質が粉粒体の微細粒子表面に露出するので、第2炉において還元剤としての反応性が著しく促進する。   When the molten oxide discharged from the first furnace is brought into contact with a large amount of water to form a granular material (that is, granulated), unreacted SiC brought into the molten oxide. Since the system substance is exposed on the surface of the fine particles of the granular material, the reactivity as the reducing agent is significantly accelerated in the second furnace.

金および/または白金族元素を含有するSiC系物質を、CaO−SiO2−Al233元状態図におけるCaO、SiO2、Al23の組成がそれぞれ、26.0%、27.0%、47.0%の点1、55.0%、35.0%、10.0%の点2、31.5%、62.5%、6.0%の点3、0.0%、77.0%、23.0%の点4、8.0%、45.0%、47.0%の点5によって囲まれる範囲内の組成を有するスラグまたは該スラグを主成分とするスラグと共に第1炉内で溶融及び酸化処理して溶融酸化物を生成し、該生成された酸化物を還元剤と金属銅又は酸化銅と共に第2炉内で溶融及び還元処理して溶融酸化物層と溶融金属層とに分別することによって前記金および/または白金族元素を該溶融金属層に抽出させ、必要に応じて、該溶融酸化物層の少なくとも一部を前記スラグの原料として前記第1炉で用いる発明をさらに具体的にいえば、以下のとおりである。 The SiC-based material containing gold and / or platinum group element, CaO in CaO-SiO 2 -Al 2 O 3 3 binary phase diagram, the composition of SiO 2, Al 2 O 3, respectively 26.0% 27. 0%, 47.0% point 1, 55.0%, 35.0%, 10.0% point 2, 31.5%, 62.5%, 6.0% point 3, 0.0 %, 77.0%, 23.0% point 4, 8.0%, 45.0%, 47.0%, or a slag having a composition within a range surrounded by point 5 or the slag as a main component The molten oxide is produced by melting and oxidizing treatment in the first furnace together with the slag, and the produced oxide is melted and reduced in the second furnace together with the reducing agent and metallic copper or copper oxide to obtain the molten oxide. The gold and / or platinum group elements are extracted into the molten metal layer by separating into a molten metal layer and a molten metal layer. Correspondingly, speaking invention in more detail using at least a portion of the molten oxide layer in the first furnace as a raw material for the slag, it is as follows.

1.SiC系物質と、上記スラグを酸化炉(第1炉)に装入し、酸素ガス又は酸素富化空気で酸化しながら、一様な酸化物溶体を形成する。
なお、本発明において酸素富化空気は酸素濃度において特に制限はないが、酸化処理速度向上の点から酸素濃度40%(容積比で表す。以下同じ。)以上の酸素濃度が好ましい。
2.本発明において酸化物溶体は水砕して粉粒状として乾燥し、還元炉(第2炉、好ましくは電気炉)にフラックス、金属銅又は酸化銅、コークスとともに装入して、溶融及び還元処理し、金、白金族元素の融解した溶融金属層(溶銅ともいう。)と溶融酸化物(溶融スラグともいう。)の2層に分離させる。
3.電気炉で生成した溶銅中にほとんどの金、白金族元素が移行する。
4.電気炉から排出された溶融スラグはほとんど金、白金族元素を含まないので、廃棄する又は路盤材等に再利用することもできるが、その少なくとも一部を前記スラグの原料として第1炉に繰り返し装入することができる。
5.電気炉で生成された溶銅は、さらに酸化処理し銅分を酸化させながら、金、白金族元素を一層濃縮する。
1. The SiC-based material and the slag are charged into an oxidation furnace (first furnace), and a uniform oxide solution is formed while oxidizing with oxygen gas or oxygen-enriched air.
In the present invention, the oxygen-enriched air is not particularly limited in terms of oxygen concentration, but an oxygen concentration of 40% (represented by volume ratio, the same applies hereinafter) or higher is preferable from the viewpoint of improving the oxidation treatment speed.
2. In the present invention, the oxide solution is granulated and dried as a powder, charged into a reduction furnace (second furnace, preferably an electric furnace) with flux, metallic copper or copper oxide, coke, and melted and reduced. The molten metal layer (also referred to as molten copper) and molten oxide (also referred to as molten slag) in which gold and platinum group elements are melted are separated into two layers.
3. Most of the gold and platinum group elements migrate into the molten copper produced in the electric furnace.
4). Since the molten slag discharged from the electric furnace contains almost no gold or platinum group elements, it can be discarded or reused for roadbed materials, etc., but at least a part of the molten slag is repeatedly used in the first furnace as the raw material of the slag. Can be charged.
5). The molten copper produced in the electric furnace is further oxidized to further concentrate the gold and platinum group elements while oxidizing the copper content.

金および/または白金族元素を含有するSiC系物質を、CaO−SiO2−Al233元状態図におけるCaO、SiO2、Al23の組成がそれぞれ、26.0%、27.0%、47.0%の点1、55.0%、35.0%、10.0%の点2、31.5%、62.5%、6.0%の点3、0.0%、77.0%、23.0%の点4、8.0%、45.0%、47.0%の点5によって囲まれる範囲内の組成を有するスラグまたは該スラグを主成分とするスラグと金属銅と共に第1炉内で溶融及び酸化処理して該金属銅の少なくとも一部と該SiC系物質を酸化させ酸化物の溶融層と金属の溶融層とに分別することによって前記金および/または白金族元素を該金属の溶融層に抽出させた後、該酸化物を還元剤と共に第2炉内で溶融及び還元処理して溶融酸化物層と溶融金属層とに分別し、必要に応じて、該溶融金属層を前記金属銅とし該溶融酸化物層の少なくとも一部を前記スラグの原料として前記第1炉で用いる発明をさらに具体的にいえば、以下のとおりである。 The SiC-based material containing gold and / or platinum group element, CaO in CaO-SiO 2 -Al 2 O 3 3 binary phase diagram, the composition of SiO 2, Al 2 O 3, respectively 26.0% 27. 0%, 47.0% point 1, 55.0%, 35.0%, 10.0% point 2, 31.5%, 62.5%, 6.0% point 3, 0.0 %, 77.0%, 23.0% point 4, 8.0%, 45.0%, 47.0%, or a slag having a composition within a range surrounded by point 5 or the slag as a main component The gold and the metal copper are melted and oxidized in a first furnace together with slag and oxidized to separate at least a part of the metal copper and the SiC-based material into a molten oxide layer and a molten metal layer. After extracting the platinum group element into the molten layer of the metal, the oxide is melted in the second furnace together with the reducing agent. And reducing the molten oxide layer and the molten metal layer, and if necessary, the molten metal layer is the metal copper and at least a part of the molten oxide layer is the raw material for the slag. More specifically, the invention used in the furnace is as follows.

1.SiC系物質、上記スラグ、及び金属銅(第2炉で生成した金属銅や、銅線を2〜3mmに破砕したナゲット銅のような不純分を含むものでもよい。)を第1炉に装入し酸素ガス又は酸素富化空気で酸化しながら、金属銅の少なくとも一部と該SiC系物質を酸化させて酸化物溶体層と溶銅を中心とする溶融メタル層の2層に分離させる。
この場合に、装入された金属銅の10〜70%を酸化するのが好ましく、15〜55%を酸化するのが一層好ましい。
2.溶銅中にほとんどの金、白金族元素が移行する。
3.溶銅は、さらに酸化処理を行って銅分を酸化させながら、金、白金族元素を一層濃縮する。
4.酸化物溶体は水砕して粉粒状として乾燥し、還元炉(第2炉、好ましくは電気炉)にフラックス、コークスとともに装入する。
5.電気炉から排出される溶融スラグはほとんど金、白金族元素を含まないので、廃棄する又は路盤材等に再利用することもできるが、その少なくとも一部を前記スラグの原料として第1炉に繰り返し装入することができる。
6.電気炉で生成した溶銅を金属銅として第1炉へ装入すれば、新たな金属銅を節減でき、コスト低減を図ることができる。
1. The first furnace is loaded with SiC-based material, the slag, and metallic copper (which may contain impurities such as metallic copper produced in the second furnace or nugget copper obtained by crushing a copper wire to 2 to 3 mm). While entering and oxidizing with oxygen gas or oxygen-enriched air, at least a part of metallic copper and the SiC-based material are oxidized and separated into two layers of an oxide solution layer and a molten metal layer centered on the molten copper.
In this case, it is preferable to oxidize 10 to 70% of the charged metal copper, and it is more preferable to oxidize 15 to 55%.
2. Most gold and platinum group elements migrate into the molten copper.
3. The molten copper is further oxidized to further concentrate the gold and platinum group elements while oxidizing the copper content.
4). The oxide solution is granulated and dried as a powder and charged into a reduction furnace (second furnace, preferably an electric furnace) together with flux and coke.
5). Since the molten slag discharged from the electric furnace contains almost no gold or platinum group elements, it can be discarded or reused for roadbed materials, etc., but at least a part of the molten slag is repeatedly used in the first furnace as the raw material for the slag. Can be charged.
6). If the molten copper produced | generated with the electric furnace is inserted into a 1st furnace as metallic copper, new metallic copper can be saved and cost reduction can be aimed at.

本発明において用いるスラグは、CaO−SiO2−Al233元状態図におけるCaO、SiO2、Al23の組成がそれぞれ、26.0%、27.0%、47.0%の点1、55.0%、35.0%、10.0%の点2、31.5%、62.5%、6.0%の点3、0.0%、77.0%、23.0%の点4、8.0%、45.0%、47.0%の点5によって囲まれる範囲内の組成を有するスラグまたは該スラグを主成分(好ましくは該スラグの含有量を80質量%以上)とするスラグである。この特定組成のスラグは1200〜1600℃で溶融して、金および/または白金族元素を含有するSiC系物質を効率よく酸化処理し、更に、スラグの流動性を向上させることができる。
上記の所定範囲外のスラグでは、低融点、酸化処理効率、高流動性をすべて充足することができない。
In the slag used in the present invention, the composition of CaO, SiO 2 and Al 2 O 3 in the CaO—SiO 2 —Al 2 O 3 ternary phase diagram is 26.0%, 27.0% and 47.0%, respectively. Point 1, 55.0%, 35.0%, 10.0% Point 2, 31.5%, 62.5%, 6.0% Point 3, 0.0%, 77.0%, 23 Slag having a composition within a range surrounded by points 5 of 0.0% point 4, 8.0%, 45.0%, 47.0% or the slag as a main component (preferably the content of the slag is 80 Mass% or more). The slag having this specific composition can be melted at 1200 to 1600 ° C. to efficiently oxidize a SiC-based material containing gold and / or platinum group elements, and further improve the fluidity of the slag.
If the slag is outside the above predetermined range, all of the low melting point, the oxidation treatment efficiency, and the high fluidity cannot be satisfied.

なお、本発明において所定スラグを用いて処理されるSiC系物質量、即ち、SiC/スラグの質量比は最大1.14であって、好ましくは0.03〜0.67である。
また、本発明におけるSiC系物質は5mm目の篩を通過する粒度であることが好ましく、更に好ましくは0.1〜3.0mm径である。
In the present invention, the amount of SiC-based material processed using the predetermined slag, that is, the mass ratio of SiC / slag is 1.14 at the maximum, preferably 0.03 to 0.67.
Moreover, it is preferable that the SiC type | system | group substance in this invention is a particle size which passes a 5 mm sieve, More preferably, it is a 0.1-3.0 mm diameter.

以下の実施例すべてにおいて、CaO、SiO2、Al23の組成がそれぞれ、30.0%、35.0%、35.0%のスラグを用いた。 In all the following examples, slag having a composition of CaO, SiO 2 and Al 2 O 3 of 30.0%, 35.0% and 35.0%, respectively, was used.

[実施例1−1]
SiC系物質(SiC原料ともいう。)の組成(固体の組成は%及びppmとも質量比で表す。)はSiC95%であり、金、白金族元素(Pt、Pd、Rh)の含有量を表1に示す。
[Example 1-1]
The composition of the SiC-based material (also referred to as SiC raw material) (the solid composition is expressed by mass ratio in both% and ppm) is SiC 95%, and represents the content of gold and platinum group elements (Pt, Pd, Rh). It is shown in 1.

Figure 2011032553
Figure 2011032553

以下に操作手順を示す。
1.前記の所定組成のスラグ285kgを酸化炉に装入した。
2.SiC原料263kgを酸化炉に装入した。
3.装入後24時間、重油バーナーで加熱しながら、酸素40%(気体の組成は容積比。)の酸素富化空気を55m3/時間で吹き込んだ。
4.上記吹き込み終了後、酸化炉を傾転させ、溶融酸化物を取り出した。取り出した酸化物は水砕して乾燥した。その結果、675kgの乾燥した酸化物が得られた。
5.得られた酸化物の全量と、酸化銅210kg、生石灰170kg、コークス20kgを電気炉に装入し、1350℃で溶融還元した。
6.溶融還元の結果、上層の酸化物と下層の溶融メタルに分離した。
7.下層の溶融メタルの質量は168kgであった。
8.上層の酸化物(スラグ)中の銅品位は0.5%、Pt、Pd、Rh、Au品位は表2のとおり10ppm未満であり、回収率は99%以上であることを確認した。
9.電気炉から排出されたスラグ850kgの少なくとも一部を酸化炉へスラグの原料として繰返した。この場合、酸化炉においては必要に応じて所定のスラグ組成を構成するに必要なフラックス成分を添加してスラグ組成を調整した。
The operation procedure is shown below.
1. 285 kg of the slag having the predetermined composition was charged into an oxidation furnace.
2. 263 kg of SiC raw material was charged into an oxidation furnace.
3. For 24 hours after charging, oxygen-enriched air of 40% oxygen (gas composition is volume ratio) was blown at 55 m 3 / hour while heating with a heavy oil burner.
4). After completion of the blowing, the oxidation furnace was tilted to take out the molten oxide. The extracted oxide was water-crushed and dried. As a result, 675 kg of dried oxide was obtained.
5). The total amount of the oxide obtained, 210 kg of copper oxide, 170 kg of quicklime, and 20 kg of coke were charged into an electric furnace and melted and reduced at 1350 ° C.
6). As a result of the smelting reduction, it was separated into an upper layer oxide and a lower layer molten metal.
7). The mass of the molten metal in the lower layer was 168 kg.
8). It was confirmed that the copper quality in the upper layer oxide (slag) was 0.5%, the Pt, Pd, Rh, and Au quality was less than 10 ppm as shown in Table 2, and the recovery rate was 99% or more.
9. At least a part of 850 kg of slag discharged from the electric furnace was repeated to the oxidation furnace as a raw material for slag. In this case, in the oxidation furnace, a slag composition was adjusted by adding a flux component necessary for constituting a predetermined slag composition as needed.

Figure 2011032553
Figure 2011032553

[実施例1−2]
SiC原料の組成はSiC95%であり、白金族元素(Pt、Ru)の含有量を表3に示す。
[Example 1-2]
The composition of the SiC raw material is SiC 95%, and the content of platinum group elements (Pt, Ru) is shown in Table 3.

Figure 2011032553
Figure 2011032553

以下に操作手順を示す。
1.前記の所定組成のスラグ228kgを酸化炉に装入した。
2.SiC原料210kgを酸化炉に装入した。
3.装入後24時間、重油バーナーで加熱しながら、酸素40%の酸素富化空気を44m3/時間で吹き込んだ。
4.上記吹き込み終了後、酸化炉を傾転させ、溶融酸化物を取り出した。取り出した酸化物は水砕して乾燥した。その結果、540kgの乾燥した酸化物が得られた。
5.得られた酸化物の全量と、酸化銅168kg、生石灰137kg、コークス15kgを電気炉に装入し、1350℃で溶融還元した。
6.溶融還元の結果、上層の酸化物と下層の溶融メタルに分離した。
7.下層の溶融メタルの質量は135kgであった。
8.上層の酸化物(スラグ)中の銅品位は0.5%、Pt、Ru品位は表4のとおり10ppm未満であり、回収率は99%以上であることを確認した。
9.電気炉から排出されたスラグ678kgの少なくとも一部を酸化炉へスラグの原料として繰返した。この場合、酸化炉においては必要に応じて所定のスラグ組成を構成するに必要なフラックス成分を添加してスラグ組成を調整した。
The operation procedure is shown below.
1. 228 kg of the slag having the predetermined composition was charged into an oxidation furnace.
2. 210 kg of SiC raw material was charged into an oxidation furnace.
3. 24 hours after charging, oxygen-enriched air of 40% oxygen was blown at 44 m 3 / hour while heating with a heavy oil burner.
4). After completion of the blowing, the oxidation furnace was tilted to take out the molten oxide. The extracted oxide was water-crushed and dried. As a result, 540 kg of dried oxide was obtained.
5). The total amount of the oxide obtained, 168 kg of copper oxide, 137 kg of quicklime, and 15 kg of coke were charged into an electric furnace and melted and reduced at 1350 ° C.
6). As a result of the smelting reduction, it was separated into an upper layer oxide and a lower layer molten metal.
7). The mass of the molten metal in the lower layer was 135 kg.
8). It was confirmed that the copper grade in the upper layer oxide (slag) was 0.5%, the Pt and Ru grades were less than 10 ppm as shown in Table 4, and the recovery rate was 99% or more.
9. At least a part of 678 kg of slag discharged from the electric furnace was repeated to the oxidation furnace as slag raw material. In this case, in the oxidation furnace, a slag composition was adjusted by adding a flux component necessary for constituting a predetermined slag composition as needed.

Figure 2011032553
Figure 2011032553

[実施例1−3]
SiC原料の組成はSiC95%であり、白金族元素(Pt、Ir)の含有量を表5に示す。
[Example 1-3]
The composition of the SiC raw material is SiC 95%, and the content of platinum group elements (Pt, Ir) is shown in Table 5.

Figure 2011032553
Figure 2011032553

以下に操作手順を示す。
1.前記の所定組成のスラグ172kgを酸化炉に装入した。
2.SiC原料158kgを酸化炉に装入した。
3.装入後24時間、重油バーナーで加熱しながら、酸素40%の酸素富化空気を33m3/時間で吹き込んだ。
4.上記吹き込み終了後、酸化炉を傾転させ、溶融酸化物を取り出した。取り出した酸化物は水砕して乾燥した。その結果、405kgの乾燥した酸化物が得られた。
5.得られた酸化物の全量と、酸化銅126kg、生石灰100kg、コークス12kgを電気炉に装入し、1350℃で溶融還元した。
6.溶融還元の結果、上層の酸化物と下層の溶融メタルに分離した。
7.下層の溶融メタルの質量は100kgであった。
8.上層の酸化物(スラグ)中の銅品位は0.5%、Pt、Ir品位は表6のとおり10ppm未満であり、回収率は99%以上であることを確認した。
9.電気炉から排出されたスラグ512kgの少なくとも一部を酸化炉へスラグの原料として繰返した。この場合、酸化炉においては必要に応じて所定のスラグ組成を構成するに必要なフラックス成分を添加してスラグ組成を調整した。
The operation procedure is shown below.
1. 172 kg of slag having the predetermined composition was charged into an oxidation furnace.
2. 158 kg of SiC raw material was charged into an oxidation furnace.
3. 24 hours after charging, oxygen-enriched air of 40% oxygen was blown at 33 m 3 / hour while heating with a heavy oil burner.
4). After completion of the blowing, the oxidation furnace was tilted to take out the molten oxide. The extracted oxide was water-crushed and dried. As a result, 405 kg of dried oxide was obtained.
5). The total amount of the oxide obtained, 126 kg of copper oxide, 100 kg of quicklime, and 12 kg of coke were charged into an electric furnace and melted and reduced at 1350 ° C.
6). As a result of the smelting reduction, it was separated into an upper layer oxide and a lower layer molten metal.
7). The mass of the molten metal in the lower layer was 100 kg.
8). It was confirmed that the copper grade in the upper layer oxide (slag) was 0.5%, the Pt and Ir grades were less than 10 ppm as shown in Table 6, and the recovery rate was 99% or more.
9. At least a part of 512 kg of slag discharged from the electric furnace was repeated to the oxidation furnace as a raw material for slag. In this case, in the oxidation furnace, a slag composition was adjusted by adding a flux component necessary for constituting a predetermined slag composition as needed.

Figure 2011032553
Figure 2011032553

[実施例2−1]
SiC原料は実施例1−1と同一組成のもの(表1)を用いた。また、銅線を2〜3mmに破砕して得られたナゲット銅はCu99.9%であり、Pt、Pd、Rh、Au、Ru、Irを含有しない。
[Example 2-1]
The SiC raw material having the same composition as in Example 1-1 (Table 1) was used. Moreover, the nugget copper obtained by crushing a copper wire to 2-3 mm is Cu 99.9%, and does not contain Pt, Pd, Rh, Au, Ru, and Ir.

以下に操作手順を示す。
1.ナゲット銅600kgを酸化炉に装入した。
2.前記の所定組成のスラグ285kgを酸化炉に装入した。
3.SiC原料263kgを酸化炉に装入した。
4.装入後、重油バーナーで加熱しながら、酸素40%の酸素富化空気を55m3/時間で吹き込むのを、装入された金属銅量が50%になるまで継続した。
5.上記吹き込み終了後、酸化炉を静置させて溶融酸化物層と溶融金属銅層に分離させた後、酸化炉を傾転させ、溶融酸化物を取り出した。取り出した酸化物は水砕して乾燥した。その結果、1010kgの乾燥した酸化物が得られた。
6.上記溶融金属銅は300kgであって、この中にほとんどの金、白金族元素が移行した。
7.得られた酸化物の全量と、生石灰170kg、コークス28kgを電気炉に装入し、1300℃で溶融還元した。
7.溶融還元の結果、上層の酸化物と下層の溶融メタルに分離した。
8.電気炉で生成した溶融メタルの質量は320kgであった。
9.電気炉から排出された酸化物(スラグ)中の銅品位は0.5%、Pt、Pd、Rh、Au品位は表7のとおり10ppm未満であり、回収率は99%以上であることを確認した。
10.電気炉で得られた溶融メタルはナゲット銅の少なくとも一部に代えて金属銅として酸化炉に装入した。
11.電気炉から排出されたスラグ820kgの少なくとも一部を酸化炉へスラグの原料として繰返した。この場合、酸化炉においては必要に応じて所定のスラグ組成を構成するに必要なフラックス成分を添加してスラグ組成を調整した。
The operation procedure is shown below.
1. 600 kg of nugget copper was charged into the oxidation furnace.
2. 285 kg of the slag having the predetermined composition was charged into an oxidation furnace.
3. 263 kg of SiC raw material was charged into an oxidation furnace.
4). After charging, while heating with a heavy oil burner, oxygen-enriched air of 40% oxygen was blown at 55 m 3 / hour until the amount of charged metal copper reached 50%.
5). After completion of the blowing, the oxidation furnace was allowed to stand and separated into a molten oxide layer and a molten metal copper layer, and then the oxidation furnace was tilted to take out the molten oxide. The extracted oxide was water-crushed and dried. As a result, 1010 kg of dried oxide was obtained.
6). The molten metal copper was 300 kg, and most of the gold and platinum group elements were transferred therein.
7). The total amount of the oxide obtained, 170 kg of quicklime, and 28 kg of coke were charged into an electric furnace and melt-reduced at 1300 ° C.
7). As a result of the smelting reduction, it was separated into an upper layer oxide and a lower layer molten metal.
8). The mass of the molten metal produced in the electric furnace was 320 kg.
9. Confirmed that the copper grade in the oxide (slag) discharged from the electric furnace is 0.5%, Pt, Pd, Rh, Au grade is less than 10ppm as shown in Table 7, and the recovery rate is 99% or more. did.
10. The molten metal obtained in the electric furnace was charged into the oxidation furnace as metallic copper instead of at least part of the nugget copper.
11. At least a part of 820 kg of slag discharged from the electric furnace was repeated to the oxidation furnace as a raw material for slag. In this case, in the oxidation furnace, a slag composition was adjusted by adding a flux component necessary for constituting a predetermined slag composition as needed.

Figure 2011032553
Figure 2011032553

[実施例2−2]
SiC原料は実施例1−2と同一組成のものを用いた。また、ナゲット銅はCu99.9%であり、Pt、Pd、Rh、Au、Ru、Irを含有しない。
[Example 2-2]
The SiC raw material having the same composition as in Example 1-2 was used. Moreover, nugget copper is Cu 99.9% and does not contain Pt, Pd, Rh, Au, Ru, and Ir.

以下に操作手順を示す。
1.ナゲット銅480kgを酸化炉に装入した。
2.前記の所定組成のスラグ228kgを酸化炉に装入した。
3.SiC原料210kgを酸化炉に装入した。
4.上記の装入後、重油バーナーで加熱しながら、酸素40%の酸素富化空気を44m3/時間で吹き込むのを、装入された金属銅量が50%になるまで継続した。
5.上記吹き込み終了後、酸化炉を静置させて溶融酸化物層と溶融金属銅層に分離させた後、酸化炉を傾転させ、溶融酸化物を取り出した。取り出した酸化物は水砕して乾燥した。その結果、810kgの乾燥した酸化物が得られた。
6.上記溶融金属銅は240kgであって、この中にほとんどの金、白金族元素が移行した。
7.得られた酸化物の全量と、生石灰135kg、コークス22kgを電気炉に装入し、1300℃で溶融還元した。
8.溶融還元の結果、上層の酸化物と下層の溶融メタルに分離した。
9.電気炉で得られた溶融メタルの質量は255kgであった。
10.電気炉から排出された酸化物(スラグ)中の銅品位は0.5%、Pt、Ru品位は表8のとおり10ppm未満であり、回収率は99%以上であることを確認した。
11.電気炉で得られた溶融メタルはナゲット銅の一部に代えて金属銅として酸化炉に装入した。
12.電気炉から排出されたスラグ657kgの少なくとも一部を酸化炉へスラグの原料として繰返した。この場合、酸化炉においては必要に応じてスラグを構成するフラックス成分を添加してスラグ組成を調整した。
The operation procedure is shown below.
1. 480 kg of nugget copper was charged into the oxidation furnace.
2. 228 kg of the slag having the predetermined composition was charged into an oxidation furnace.
3. 210 kg of SiC raw material was charged into an oxidation furnace.
4). After the above charging, oxygen enriched air of 40% oxygen was blown at 44 m 3 / hour while heating with a heavy oil burner until the amount of charged metal copper reached 50%.
5). After completion of the blowing, the oxidation furnace was allowed to stand and separated into a molten oxide layer and a molten metal copper layer, and then the oxidation furnace was tilted to take out the molten oxide. The extracted oxide was water-crushed and dried. As a result, 810 kg of dried oxide was obtained.
6). The molten metal copper was 240 kg, and most of the gold and platinum group elements were transferred therein.
7). The total amount of the oxide obtained, 135 kg of quicklime, and 22 kg of coke were charged into an electric furnace and melted and reduced at 1300 ° C.
8). As a result of the smelting reduction, it was separated into an upper layer oxide and a lower layer molten metal.
9. The mass of the molten metal obtained in the electric furnace was 255 kg.
10. It was confirmed that the copper quality in the oxide (slag) discharged from the electric furnace was 0.5%, the Pt and Ru quality was less than 10 ppm as shown in Table 8, and the recovery rate was 99% or more.
11. The molten metal obtained in the electric furnace was charged into the oxidation furnace as metallic copper instead of part of the nugget copper.
12 At least a part of 657 kg of slag discharged from the electric furnace was repeated to the oxidation furnace as slag raw material. In this case, in the oxidation furnace, the slag composition was adjusted by adding a flux component constituting the slag as necessary.

Figure 2011032553
Figure 2011032553

[実施例2−3]
SiC原料は実施例1−3と同一組成のものを用いた。また、ナゲット銅はCu99.9%であり、Pt、Pd、Rh、Au、Ru、Irを含有しない。
[Example 2-3]
The SiC raw material having the same composition as in Example 1-3 was used. Moreover, nugget copper is Cu 99.9% and does not contain Pt, Pd, Rh, Au, Ru, and Ir.

以下に操作手順を示す。
1.ナゲット銅360kgを酸化炉に装入した。
2.前記の所定組成のスラグ172kgを酸化炉に装入した。
3.SiC原料158kgを酸化炉に装入した。
4.上記の装入後、重油バーナーで加熱しながら、酸素40%の酸素富化空気を33m3/時間で吹き込むのを、装入された金属銅量が83%になるまで継続した。
5.上記吹き込み終了後、酸化炉を静置させて溶融酸化物層と溶融金属銅層に分離させた後、酸化炉を傾転させ、溶融酸化物を取り出した。取り出した酸化物は水砕して乾燥した。その結果、605kgの乾燥した酸化物が得られた。
6.上記溶融金属銅は300kgであって、この中にほとんどの金、白金族元素が移行した。
7.得られた酸化物の全量と、生石灰100kg、コークス6kgを電気炉に装入し、1300℃で溶融還元した。
8.溶融還元の結果、上層の酸化物と下層の溶融メタルに分離した。
9.電気炉で得られた溶融メタルの質量は193kgであった。
10.電気炉から排出された酸化物(スラグ)中の銅品位は0.5%、Pt、Ir品位は表9のとおり10ppm未満であり、回収率は99%以上であることを確認した。
11.電気炉で得られた溶融メタルはナゲット銅の少なくとも一部に代えて金属銅として酸化炉に装入した。
12.電気炉から排出されたスラグ495kgの少なくとも一部を酸化炉へスラグの原料として繰返した。この場合、酸化炉においては必要に応じてスラグを構成するフラックス成分を添加してスラグ組成を調整した。
The operation procedure is shown below.
1. 360 kg of nugget copper was charged into the oxidation furnace.
2. 172 kg of slag having the predetermined composition was charged into an oxidation furnace.
3. 158 kg of SiC raw material was charged into an oxidation furnace.
4). After the above charging, oxygen enriched air of 40% oxygen was blown at 33 m 3 / hour while heating with a heavy oil burner until the amount of charged metal copper reached 83%.
5). After completion of the blowing, the oxidation furnace was allowed to stand and separated into a molten oxide layer and a molten metal copper layer, and then the oxidation furnace was tilted to take out the molten oxide. The extracted oxide was water-crushed and dried. As a result, 605 kg of dried oxide was obtained.
6). The molten metal copper was 300 kg, and most of the gold and platinum group elements were transferred therein.
7). The total amount of the oxide obtained, 100 kg of quicklime, and 6 kg of coke were charged into an electric furnace and melted and reduced at 1300 ° C.
8). As a result of the smelting reduction, it was separated into an upper layer oxide and a lower layer molten metal.
9. The mass of the molten metal obtained in the electric furnace was 193 kg.
10. It was confirmed that the copper grade in the oxide (slag) discharged from the electric furnace was 0.5%, the Pt and Ir grades were less than 10 ppm as shown in Table 9, and the recovery rate was 99% or more.
11. The molten metal obtained in the electric furnace was charged into the oxidation furnace as metallic copper instead of at least part of the nugget copper.
12 At least a part of 495 kg of slag discharged from the electric furnace was repeated to the oxidation furnace as slag raw material. In this case, in the oxidation furnace, the slag composition was adjusted by adding a flux component constituting the slag as necessary.

Figure 2011032553
Figure 2011032553

Claims (9)

金および/または白金族元素を含有するSiC系物質から該金および/または白金族元素を回収する方法において、前記SiC系物質を、CaO−SiO2−Al233元状態図におけるCaO、SiO2、Al23の組成がそれぞれ、26.0%、27.0%、47.0%の点1、55.0%、35.0%、10.0%の点2、31.5%、62.5%、6.0%の点3、0.0%、77.0%、23.0%の点4、8.0%、45.0%、47.0%の点5によって囲まれる範囲内の組成を有するスラグまたは該スラグを主成分とするスラグと共に第1炉内で溶融及び酸化処理して溶融酸化物を生成し、該生成された酸化物を還元剤と金属銅又は酸化銅と共に第2炉内で溶融及び還元処理して溶融酸化物層と溶融金属層とに分別することによって前記金および/または白金族元素を該溶融金属層に抽出させることを特徴とする金および/または白金族元素の回収方法。 A method of recovering gold and / or platinum group elements from the SiC-based material containing gold and / or platinum group element, the SiC-based material, CaO in CaO-SiO 2 -Al 2 O 3 3 binary phase diagram, The composition of SiO 2 and Al 2 O 3 is 26.0%, 27.0%, 47.0% points 1, 55.0%, 35.0%, 10.0% points 2, 31. 5%, 62.5%, 6.0% point 3, 0.0%, 77.0%, 23.0% point 4, 8.0%, 45.0%, 47.0% point 5 is melted and oxidized in the first furnace together with slag having a composition within a range surrounded by 5 or a slag mainly composed of the slag to produce a molten oxide, and the produced oxide is reduced with a reducing agent and a metal. Fused and reduced in the second furnace together with copper or copper oxide to separate into molten oxide layer and molten metal layer Gold and / or recovery of PGM, characterized in that to extract the gold and / or platinum group element into the molten metal layer by a. 金および/または白金族元素を含有するSiC系物質から該金および/または白金族元素を回収する方法において、前記SiC系物質を、CaO−SiO2−Al233元状態図におけるCaO、SiO2、Al23の組成がそれぞれ、26.0%、27.0%、47.0%の点1、55.0%、35.0%、10.0%の点2、31.5%、62.5%、6.0%の点3、0.0%、77.0%、23.0%の点4、8.0%、45.0%、47.0%の点5によって囲まれる範囲内の組成を有するスラグまたは該スラグを主成分とするスラグと共に第1炉内で溶融及び酸化処理して溶融酸化物を生成し、該生成された酸化物を還元剤と金属銅又は酸化銅と共に第2炉内で溶融及び還元処理して溶融酸化物層と溶融金属層とに分別することによって前記金および/または白金族元素を該溶融金属層に抽出させた後、該溶融酸化物層の少なくとも一部を前記スラグの原料として前記第1炉で用いることを特徴とする金および/または白金族元素の回収方法。 A method of recovering gold and / or platinum group elements from the SiC-based material containing gold and / or platinum group element, the SiC-based material, CaO in CaO-SiO 2 -Al 2 O 3 3 binary phase diagram, The composition of SiO 2 and Al 2 O 3 is 26.0%, 27.0%, 47.0% points 1, 55.0%, 35.0%, 10.0% points 2, 31. 5%, 62.5%, 6.0% point 3, 0.0%, 77.0%, 23.0% point 4, 8.0%, 45.0%, 47.0% point 5 is melted and oxidized in the first furnace together with slag having a composition within a range surrounded by 5 or a slag mainly composed of the slag to produce a molten oxide, and the produced oxide is reduced with a reducing agent and a metal. Fused and reduced in the second furnace together with copper or copper oxide to separate into molten oxide layer and molten metal layer And the gold and / or platinum group element is extracted into the molten metal layer by using at least a part of the molten oxide layer as a raw material for the slag in the first furnace. Or a platinum group element recovery method. 金および/または白金族元素を含有するSiC系物質から該金および/または白金族元素を回収する方法において、前記SiC系物質を、CaO−SiO2−Al233元状態図におけるCaO、SiO2、Al23の組成がそれぞれ、26.0%、27.0%、47.0%の点1、55.0%、35.0%、10.0%の点2、31.5%、62.5%、6.0%の点3、0.0%、77.0%、23.0%の点4、8.0%、45.0%、47.0%の点5によって囲まれる範囲内の組成を有するスラグまたは該スラグを主成分とするスラグと金属銅と共に第1炉内で溶融及び酸化処理して該金属銅の少なくとも一部と該SiC系物質を酸化させ酸化物の溶融層と金属の溶融層とに分別することによって前記金および/または白金族元素を該金属の溶融層に抽出させた後、該酸化物を還元剤と共に第2炉内で溶融及び還元処理して溶融酸化物層と溶融金属層とに分別することによって前記金および/または白金族元素を該溶融金属層に抽出させることを特徴とする金および/または白金族元素の回収方法。 A method of recovering gold and / or platinum group elements from the SiC-based material containing gold and / or platinum group element, the SiC-based material, CaO in CaO-SiO 2 -Al 2 O 3 3 binary phase diagram, The composition of SiO 2 and Al 2 O 3 is 26.0%, 27.0%, 47.0% points 1, 55.0%, 35.0%, 10.0% points 2, 31. 5%, 62.5%, 6.0% point 3, 0.0%, 77.0%, 23.0% point 4, 8.0%, 45.0%, 47.0% point And slag having a composition within a range surrounded by 5 or slag mainly composed of the slag and metallic copper, and melted and oxidized in a first furnace to oxidize at least a part of the metallic copper and the SiC-based material. The gold and / or platinum group by separating into a molten layer of oxide and a molten layer of metal After the element is extracted into the molten layer of the metal, the oxide and the reducing agent are melted and reduced in a second furnace and separated into a molten oxide layer and a molten metal layer. A method for recovering gold and / or platinum group elements, comprising extracting platinum group elements into the molten metal layer. 金および/または白金族元素を含有するSiC系物質から該金および/または白金族元素を回収する方法において、前記SiC系物質を、CaO−SiO2−Al233元状態図におけるCaO、SiO2、Al23の組成がそれぞれ、26.0%、27.0%、47.0%の点1、55.0%、35.0%、10.0%の点2、31.5%、62.5%、6.0%の点3、0.0%、77.0%、23.0%の点4、8.0%、45.0%、47.0%の点5によって囲まれる範囲内の組成を有するスラグまたは該スラグを主成分とするスラグと金属銅と共に第1炉内で溶融及び酸化処理して該金属銅の少なくとも一部と該SiC系物質を酸化させ酸化物の溶融層と金属の溶融層とに分別することによって前記金および/または白金族元素を該金属の溶融層に抽出させた後、該酸化物を還元剤と共に第2炉内で溶融及び還元処理して溶融酸化物層と溶融金属層とに分別することによって前記金および/または白金族元素を該溶融金属層に抽出させた後、該溶融金属層を前記金属銅として前記第1炉で用いることを特徴とする金および/または白金族元素の回収方法。 A method of recovering gold and / or platinum group elements from the SiC-based material containing gold and / or platinum group element, the SiC-based material, CaO in CaO-SiO 2 -Al 2 O 3 3 binary phase diagram, The composition of SiO 2 and Al 2 O 3 is 26.0%, 27.0%, 47.0% points 1, 55.0%, 35.0%, 10.0% points 2, 31. 5%, 62.5%, 6.0% point 3, 0.0%, 77.0%, 23.0% point 4, 8.0%, 45.0%, 47.0% point And slag having a composition within a range surrounded by 5 or slag mainly composed of the slag and metallic copper, and melted and oxidized in a first furnace to oxidize at least a part of the metallic copper and the SiC-based material. The gold and / or platinum group by separating into a molten layer of oxide and a molten layer of metal After the element is extracted into the molten layer of the metal, the oxide and the reducing agent are melted and reduced in a second furnace and separated into a molten oxide layer and a molten metal layer. A method for recovering gold and / or platinum group elements, wherein after the platinum group elements are extracted into the molten metal layer, the molten metal layer is used as the metallic copper in the first furnace. 金および/または白金族元素を含有するSiC系物質から該金および/または白金族元素を回収する方法において、前記SiC系物質を、CaO−SiO2−Al233元状態図におけるCaO、SiO2、Al23の組成がそれぞれ、26.0%、27.0%、47.0%の点1、55.0%、35.0%、10.0%の点2、31.5%、62.5%、6.0%の点3、0.0%、77.0%、23.0%の点4、8.0%、45.0%、47.0%の点5によって囲まれる範囲内の組成を有するスラグまたは該スラグを主成分とするスラグと金属銅と共に第1炉内で溶融及び酸化処理して該金属銅の少なくとも一部と該SiC系物質を酸化させ酸化物の溶融層と金属の溶融層とに分別することによって前記金および/または白金族元素を該金属の溶融層に抽出させた後、該酸化物を還元剤と共に第2炉内で溶融及び還元処理して溶融酸化物層と溶融金属層とに分別し、該溶融酸化物層の少なくとも一部を前記スラグの原料として前記第1炉で用いることを特徴とする金および/または白金族元素の回収方法。 A method of recovering gold and / or platinum group elements from the SiC-based material containing gold and / or platinum group element, the SiC-based material, CaO in CaO-SiO 2 -Al 2 O 3 3 binary phase diagram, The composition of SiO 2 and Al 2 O 3 is 26.0%, 27.0%, 47.0% points 1, 55.0%, 35.0%, 10.0% points 2, 31. 5%, 62.5%, 6.0% point 3, 0.0%, 77.0%, 23.0% point 4, 8.0%, 45.0%, 47.0% point And slag having a composition within a range surrounded by 5 or slag mainly composed of the slag and metallic copper, and melted and oxidized in a first furnace to oxidize at least a part of the metallic copper and the SiC-based material. The gold and / or platinum group by separating into a molten layer of oxide and a molten layer of metal After the element is extracted into the molten layer of the metal, the oxide is melted and reduced in the second furnace together with the reducing agent to separate into a molten oxide layer and a molten metal layer. A method for recovering gold and / or platinum group elements, wherein at least a part is used as a raw material for the slag in the first furnace. 金および/または白金族元素を含有するSiC系物質から該金および/または白金族元素を回収する方法において、前記SiC系物質を、CaO−SiO2−Al233元状態図におけるCaO、SiO2、Al23の組成がそれぞれ、26.0%、27.0%、47.0%の点1、55.0%、35.0%、10.0%の点2、31.5%、62.5%、6.0%の点3、0.0%、77.0%、23.0%の点4、8.0%、45.0%、47.0%の点5によって囲まれる範囲内の組成を有するスラグまたは該スラグを主成分とするスラグと金属銅と共に第1炉内で溶融及び酸化処理して該金属銅の少なくとも一部と該SiC系物質を酸化させ酸化物の溶融層と金属の溶融層とに分別することによって前記金および/または白金族元素を該金属の溶融層に抽出させた後、該酸化物を還元剤と共に第2炉内で溶融及び還元処理して溶融酸化物層と溶融金属層とに分別し、該溶融金属層を前記金属銅とし該溶融酸化物層の少なくとも一部を前記スラグの原料としてともに前記第1炉で用いることを特徴とする金および/または白金族元素の回収方法。 A method of recovering gold and / or platinum group elements from the SiC-based material containing gold and / or platinum group element, the SiC-based material, CaO in CaO-SiO 2 -Al 2 O 3 3 binary phase diagram, The composition of SiO 2 and Al 2 O 3 is 26.0%, 27.0%, 47.0% points 1, 55.0%, 35.0%, 10.0% points 2, 31. 5%, 62.5%, 6.0% point 3, 0.0%, 77.0%, 23.0% point 4, 8.0%, 45.0%, 47.0% point And slag having a composition within a range surrounded by 5 or slag mainly composed of the slag and metallic copper, and melted and oxidized in a first furnace to oxidize at least a part of the metallic copper and the SiC-based material. The gold and / or platinum group by separating into a molten layer of oxide and a molten layer of metal After the element is extracted into the molten layer of the metal, the oxide is melted and reduced in a second furnace together with a reducing agent to separate the molten oxide layer and the molten metal layer, A method for recovering gold and / or platinum group elements, characterized by using metallic copper and at least a part of the molten oxide layer as a raw material for the slag in the first furnace. 前記酸化処理は酸素ガスまたは酸素富化空気を前記第1炉内に導入して行う、請求項1〜6のいずれかに記載の回収方法。   The recovery method according to claim 1, wherein the oxidation treatment is performed by introducing oxygen gas or oxygen-enriched air into the first furnace. 前記第1炉内で生成された前記溶融酸化物を該炉から排出した後に水と接触させることによって粉粒体として前記第2炉に装入する、請求項1〜7のいずれかに記載の回収方法。   The molten oxide generated in the first furnace is charged into the second furnace as a granular material by contacting with water after being discharged from the furnace. Collection method. 前記スラグが1200〜1600℃において液相である、請求項1〜8のいずれかに記載の回収方法。   The recovery method according to any one of claims 1 to 8, wherein the slag is in a liquid phase at 1200 to 1600 ° C.
JP2009181335A 2009-08-04 2009-08-04 METHOD OF RECOVERING GOLD AND/OR PLATINUM GROUP ELEMENT FROM SiC-BASED SUBSTANCE Pending JP2011032553A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009181335A JP2011032553A (en) 2009-08-04 2009-08-04 METHOD OF RECOVERING GOLD AND/OR PLATINUM GROUP ELEMENT FROM SiC-BASED SUBSTANCE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009181335A JP2011032553A (en) 2009-08-04 2009-08-04 METHOD OF RECOVERING GOLD AND/OR PLATINUM GROUP ELEMENT FROM SiC-BASED SUBSTANCE

Publications (1)

Publication Number Publication Date
JP2011032553A true JP2011032553A (en) 2011-02-17

Family

ID=43761915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009181335A Pending JP2011032553A (en) 2009-08-04 2009-08-04 METHOD OF RECOVERING GOLD AND/OR PLATINUM GROUP ELEMENT FROM SiC-BASED SUBSTANCE

Country Status (1)

Country Link
JP (1) JP2011032553A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012111563A1 (en) * 2011-02-14 2012-08-23 Dowaメタルマイン株式会社 Method for recovering platinum group elements from sic-based substance
US8882881B2 (en) 2012-04-24 2014-11-11 Korea Institute Of Geoscience And Mineral Resources (Kigam) Method for concentrating and recovering precious metals from spent mobile phone PCBS and spent auto-catalysts using waste nonferrous slag
CN106238440A (en) * 2016-08-19 2016-12-21 中国环境科学研究院 A kind of cyaniding gold tailings method for innocent treatment and device thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007224336A (en) * 2006-02-22 2007-09-06 Dowa Holdings Co Ltd METHOD FOR TREATING SiC BASED SUBSTANCE
JP2008088452A (en) * 2006-09-29 2008-04-17 Dowa Holdings Co Ltd METHOD FOR RECOVERING GOLD OR PLATINUM GROUP ELEMENT FROM SiC-BASED SUBSTANCE

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007224336A (en) * 2006-02-22 2007-09-06 Dowa Holdings Co Ltd METHOD FOR TREATING SiC BASED SUBSTANCE
JP2008088452A (en) * 2006-09-29 2008-04-17 Dowa Holdings Co Ltd METHOD FOR RECOVERING GOLD OR PLATINUM GROUP ELEMENT FROM SiC-BASED SUBSTANCE

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012111563A1 (en) * 2011-02-14 2012-08-23 Dowaメタルマイン株式会社 Method for recovering platinum group elements from sic-based substance
JP2012167323A (en) * 2011-02-14 2012-09-06 Dowa Metals & Mining Co Ltd METHOD FOR RECOVERING PLATINUM GROUP ELEMENT FROM SiC-BASED SUBSTANCE
US8882881B2 (en) 2012-04-24 2014-11-11 Korea Institute Of Geoscience And Mineral Resources (Kigam) Method for concentrating and recovering precious metals from spent mobile phone PCBS and spent auto-catalysts using waste nonferrous slag
CN106238440A (en) * 2016-08-19 2016-12-21 中国环境科学研究院 A kind of cyaniding gold tailings method for innocent treatment and device thereof
CN106238440B (en) * 2016-08-19 2019-05-07 中国环境科学研究院 A kind of cyaniding gold tailings method for innocent treatment and its device

Similar Documents

Publication Publication Date Title
EP1553193B1 (en) Method of recovering platinum group element
JP2018145479A (en) Recovery method of platinum group metals
CN113881856A (en) Method for recovering platinum group metal from waste catalyst of alumina carrier
JP4852749B2 (en) Processing method of SiC-based material
JP2011032553A (en) METHOD OF RECOVERING GOLD AND/OR PLATINUM GROUP ELEMENT FROM SiC-BASED SUBSTANCE
JP4984123B2 (en) Method for recovering gold or platinum group elements from SiC-based materials
WO2021014946A1 (en) Pgm recovery method
JP5196095B2 (en) Precious metal recovery method and recovered precious metal
CN116814974A (en) Method for recycling platinum group metals in automobile waste catalysts by taking ferronickel tailings as flux through pyrogenic process
CN115323188B (en) Method for trapping platinum group metals in spent catalyst by copper
JP3906333B2 (en) Precious metal recovery method
JP4984122B2 (en) Method for recovering gold or platinum group elements from SiC-based materials
JP7269754B2 (en) How to recover precious metals
JP2011032510A (en) METHOD OF RECOVERING GOLD AND/OR PLATINUM GROUP ELEMENT FROM SiC-BASED SUBSTANCE
JP4525453B2 (en) Slag fuming method
KR102598776B1 (en) Method for recovering platinum group metals from catalysts containing silicon carbide
JP5851700B2 (en) Method for recovering platinum group elements from SiC-based materials
JP2005113193A (en) Method for recovering platinum group metal
JP2009155677A (en) Method for recovering noble metal, and recovered noble metal
JP4274069B2 (en) Reuse method of copper alloy and mat obtained by slag fuming method
JP4274067B2 (en) Method for removing impurity metal from copper alloy and slag fuming method using the same
Shi et al. Synchronous extraction of Pt, Zr and Ce from spent catalysts via SoG-Si scraps melting collection by regulating Si reduction based on a new fluorine-containing slag
JP2021080514A (en) Method for recovering non-ferrous metal
JP2004277791A (en) Method for concentrating gold or platinum group element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130730

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140204