JP2011032510A - METHOD OF RECOVERING GOLD AND/OR PLATINUM GROUP ELEMENT FROM SiC-BASED SUBSTANCE - Google Patents

METHOD OF RECOVERING GOLD AND/OR PLATINUM GROUP ELEMENT FROM SiC-BASED SUBSTANCE Download PDF

Info

Publication number
JP2011032510A
JP2011032510A JP2009178404A JP2009178404A JP2011032510A JP 2011032510 A JP2011032510 A JP 2011032510A JP 2009178404 A JP2009178404 A JP 2009178404A JP 2009178404 A JP2009178404 A JP 2009178404A JP 2011032510 A JP2011032510 A JP 2011032510A
Authority
JP
Japan
Prior art keywords
oxide
molten
sic
platinum group
alkali metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009178404A
Other languages
Japanese (ja)
Inventor
Benko Yamaguchi
勉功 山口
Shigeki Suzuki
茂樹 鈴木
Masahiko Ogino
正彦 荻野
Takeshi Matsumoto
武 松本
Yuzuru Nakamura
譲 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Metals and Mining Co Ltd
Original Assignee
Dowa Metals and Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Metals and Mining Co Ltd filed Critical Dowa Metals and Mining Co Ltd
Priority to JP2009178404A priority Critical patent/JP2011032510A/en
Publication of JP2011032510A publication Critical patent/JP2011032510A/en
Pending legal-status Critical Current

Links

Classifications

    • Y02W30/54

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve such a problem that it is an urgent necessity to establish a method in which the used material of a catalyst for purifying waste gas using SiC being supposed to increase hereinafter as a carrier (base) material is treated to efficiently recover contained gold and/or platinum group element, because SiC is inactive and difficult to be oxidized. <P>SOLUTION: An SiC-based substance containing gold and/or platinum group element is fused and oxidized together with at least one kind of substance selected from an alkali metal oxide, an alkali metal carbonate, an alkali metal hydroxide and an oxide consisting essentially of alkali metal oxide in a first furnace to produce a fused oxide, and the produced oxide is fused and reduced together with a reductant and metal copper or a copper oxide in a second furnace to fractionate into a fused oxide layer and a fused metal layer and, thereby, the gold and/or platinum group element is extracted into the fused metal layer. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、金および/または白金族元素を担持などの形態で含有する炭化珪素(SiCという。)を用いた排ガス浄化用触媒であって触媒としての使命を終えた使用後の触媒廃棄物や何らかの理由により使命を終える前に廃棄された触媒廃棄物などの金および/または白金族元素を含有するSiC系物質から該金および/または白金族元素を効率的に回収する方法に関するものである。   The present invention relates to an exhaust gas purifying catalyst using silicon carbide (referred to as SiC) containing gold and / or platinum group elements in a supported form, and after use as a catalyst waste, The present invention relates to a method for efficiently recovering gold and / or platinum group elements from a SiC-based material containing gold and / or platinum group elements such as catalyst waste discarded before the mission is finished for some reason.

近年、特許文献1〜4などに記載されるように、SiCを金および/または白金族元素の担体(基体)物質として用いた触媒を使用する排ガス浄化システムの実用化が進められている。SiCは耐熱性に優れるため、特にディーゼルエンジンの排ガスのPM燃焼用触媒の担体物質として用いると触媒の性能・耐久性が向上するものと期待され開発が急速に進んで普及して来ている。   In recent years, as described in Patent Documents 1 to 4 and the like, an exhaust gas purification system using a catalyst using SiC as a carrier (substrate) material for a gold and / or platinum group element has been put into practical use. Since SiC is excellent in heat resistance, it is expected to improve the performance and durability of the catalyst, particularly when used as a carrier material for a PM combustion catalyst for exhaust gas from a diesel engine, and its development is rapidly progressing and spreading.

一方、上記の触媒としての使命を終えた使用後の触媒廃棄物や何らかの理由により使命を終える前に廃棄された触媒廃棄物などのSiC系物質から金および/または白金族元素を回収する方法については、特許文献5〜7などに有望な回収方法が開発され実用化されているが、SiCは融点が2700℃以上で且つ化学的に不活性であって本質的に処理されにくく、なお一層効率的なSiC系物質の処理方法が望まれている。   On the other hand, a method for recovering gold and / or platinum group elements from SiC-based materials such as catalyst waste after use that has finished its mission as a catalyst and catalyst waste that has been discarded before any mission has been completed Although a promising recovery method has been developed and put to practical use in Patent Documents 5 to 7, etc., SiC has a melting point of 2700 ° C. or higher, is chemically inert, and is essentially difficult to process, and is even more efficient. A method for treating a SiC-based material is desired.

特開平6−182214号公報JP-A-6-182214 特開平10−76162号公報JP-A-10-76162 特開2001−349211号公報JP 2001-349111 A 特開2003−262118号公報JP 2003-262118 A 特開2007−224336号公報JP 2007-224336 A 特開2008−88450号公報JP 2008-88450 A 特開2008−88452号公報JP 2008-88452 A

SiCは乾式プロセスにおいて溶融スラグ中に溶解させにくいという問題がある。本発明者らの実験によると、SiC系物質を単独で電気炉内の溶融スラグに投入したところ、SiC系物質は固体のまま溶融スラグ表面上に浮遊し、強制的にSiC系物質を溶融スラグ中に没入させる操作を行わない限り、溶融スラグ中に完全に溶解させることは困難である。また溶解したとしても、未反応のSiCがスラグ中に残存することがあり、これでは廃棄物触媒等のSiC系物質を処理し、含有される金および/または白金族元素を回収することはできない。また、前述の特許文献5によればSiC/Cu2Oの質量比は最大で0.2であるため、SiC系物質の処理量が限られていた。 There is a problem that SiC is difficult to dissolve in molten slag in a dry process. According to the experiments by the present inventors, when the SiC-based material was put alone into the molten slag in the electric furnace, the SiC-based material floated on the surface of the molten slag as a solid, and the SiC-based material was forcibly removed from the molten slag. Unless the operation of immersing in is performed, it is difficult to completely dissolve in the molten slag. Further, even if dissolved, unreacted SiC may remain in the slag, and this makes it impossible to treat SiC-based materials such as waste catalysts and recover contained gold and / or platinum group elements. . Further, according to the above-mentioned Patent Document 5, since the mass ratio of SiC / Cu 2 O is 0.2 at the maximum, the throughput of the SiC-based material is limited.

したがって、今後使用が増えるであろうSiCを担体(基体)物質として用いた排ガス浄化用触媒の使用済み材料を処理し含有される金および/または白金族元素を一層効率的に回収する方法の確立が急務となっている。
本発明は、このような現状に鑑み、SiC系物質に含有される金および/または白金族元素を一層効率的に回収する方法を提供しようというものである。
Therefore, establishment of a method for more efficiently recovering the contained gold and / or platinum group elements by treating spent materials of exhaust gas purification catalysts using SiC as a support (substrate) substance, which will be used in the future. Is an urgent need.
In view of such a current situation, the present invention is intended to provide a method for recovering gold and / or platinum group elements contained in SiC-based materials more efficiently.

SiC系物質を効率よく酸化するには酸化ナトリウムをスラグに混合することが有効であり、この場合に酸素または酸素を富化した空気を流しながら加熱することがさらに有効であって、このような反応は酸化ナトリウムに限らず他のアルカリ金属の酸化物でも同様の作用効果があるとの知見を見出し、本発明を完成するに至った。   In order to efficiently oxidize SiC-based materials, it is effective to mix sodium oxide with slag, and in this case, it is more effective to heat while flowing oxygen or oxygen-enriched air. The present inventors have found that the reaction is not limited to sodium oxide, and other alkali metal oxides have the same action and effect, and have completed the present invention.

すなわち発明は第1に、金および/または白金族元素(「金および/または白金族元素」を「貴金属」ということがある。)を含有するSiC系物質から該金および/または白金族元素を回収する方法において、前記SiC系物質を、アルカリ金属酸化物、アルカリ金属炭酸塩、アルカリ金属水酸化物およびアルカリ金属酸化物を主成分とする酸化物からなる群から選ばれる少なくとも一種の物質と共に第1炉内で溶融及び酸化処理して溶融酸化物を生成し、該生成された酸化物を還元剤と金属銅又は酸化銅と共に第2炉内で溶融及び還元処理して溶融酸化物層と溶融金属層とに分別することによって前記金および/または白金族元素を該溶融金属層に抽出させることを特徴とする金および/または白金族元素の回収方法を、第2に、金および/または白金族元素を含有するSiC系物質から該金および/または白金族元素を回収する方法において、前記SiC系物質を、アルカリ金属酸化物、アルカリ金属炭酸塩、アルカリ金属水酸化物およびアルカリ金属酸化物を主成分とする酸化物からなる群から選ばれる少なくとも一種の物質と金属銅と共に第1炉内で溶融及び酸化処理して該金属銅の少なくとも一部と該SiC系物質を酸化させ酸化物の溶融層と金属の溶融層とに分別することによって前記金および/または白金族元素を該金属の溶融層に抽出させた後、該酸化物層を還元剤と共に第2炉内で溶融及び還元処理して溶融酸化物層と溶融金属層とに分別することを特徴とする金および/または白金族元素の回収方法を、第3に、金および/または白金族元素を含有するSiC系物質から該金および/または白金族元素を回収する方法において、前記SiC系物質を、アルカリ金属酸化物、アルカリ金属炭酸塩、アルカリ金属水酸化物およびアルカリ金属酸化物を主成分とする酸化物からなる群から選ばれる少なくとも一種の物質と金属銅と共に第1炉内で溶融及び酸化処理して該金属銅の少なくとも一部と該SiC系物質を酸化させ酸化物の溶融層と金属の溶融層とに分別することによって前記金および/または白金族元素を該金属の溶融層に抽出させた後、該酸化物層を還元剤と共に第2炉内で溶融及び還元処理して溶融酸化物層と溶融金属層とに分別し、該溶融金属層を前記金属銅として前記第1炉で用いることを特徴とする金および/または白金族元素の回収方法を、第4に、前記酸化処理は酸素ガスまたは酸素富化空気を前記第1炉内に導入して行う第1〜3のいずれかに記載の回収方法を、第5に、前記第1炉内で生成された前記溶融酸化物を該炉から排出した後に水と接触させることによって粉粒体として前記第2炉で用いる第1〜4のいずれかに記載の回収方法を、第6に、金および/または白金族元素を含有するSiC系物質から該金および/または白金族元素を回収する方法において、前記SiC系物質を、アルカリ金属酸化物、アルカリ金属炭酸塩、アルカリ金属水酸化物およびアルカリ金属酸化物を主成分とする酸化物からなる群から選ばれる少なくとも一種の物質と酸化銅と還元剤と共に炉内で溶融及び還元処理し溶融酸化物層と溶融金属層とに分別することによって前記金および/または白金族元素を該溶融金属層に抽出させることを特徴とする金および/または白金族元素の回収方法を提供する。   That is, the invention firstly, the gold and / or platinum group element is obtained from a SiC-based material containing gold and / or platinum group element (“gold and / or platinum group element” is sometimes referred to as “noble metal”). In the method of recovering, the SiC-based material is mixed with at least one material selected from the group consisting of alkali metal oxides, alkali metal carbonates, alkali metal hydroxides, and oxides mainly composed of alkali metal oxides. Molten and oxidized in 1 furnace to produce molten oxide, and the produced oxide is melted and reduced in 2nd furnace together with a reducing agent and metallic copper or copper oxide to melt into a molten oxide layer. The gold and / or platinum group element recovery method is characterized in that the gold and / or platinum group element is extracted into the molten metal layer by separating it into a metal layer. In the method for recovering the gold and / or platinum group element from the SiC group material containing a platinum group element, the SiC group material is converted into an alkali metal oxide, an alkali metal carbonate, an alkali metal hydroxide and an alkali metal. At least one substance selected from the group consisting of oxides consisting mainly of oxides and metallic copper are melted and oxidized in the first furnace to oxidize and oxidize at least a part of the metallic copper and the SiC-based substance. The gold and / or platinum group elements are extracted into the molten layer of metal by separating into a molten layer of the product and a molten layer of the metal, and then the oxide layer is melted in a second furnace together with a reducing agent. A method for recovering gold and / or platinum group elements characterized by performing reduction treatment to separate into a molten oxide layer and a molten metal layer. Third, Si containing gold and / or platinum group elements In the method for recovering the gold and / or platinum group element from a system material, the SiC system material is an oxide mainly composed of an alkali metal oxide, an alkali metal carbonate, an alkali metal hydroxide and an alkali metal oxide. A molten layer of oxide and a molten layer of metal by oxidizing and melting at least a part of the metallic copper and the SiC-based material by melting and oxidizing in a first furnace together with at least one material selected from the group consisting of: The gold and / or platinum group elements are extracted into the molten layer of the metal by fractionation into a molten oxide layer, and the oxide layer is melted and reduced in a second furnace together with a reducing agent. The method for recovering gold and / or platinum group elements is characterized in that the molten metal layer is separated into a molten metal layer, and the molten metal layer is used as the metal copper in the first furnace. Or The recovery method according to any one of the first to third embodiments, wherein oxygen-enriched air is introduced into the first furnace, and fifthly, the molten oxide generated in the first furnace is removed from the furnace. The SiC-based material containing gold and / or platinum group elements, sixthly, the recovery method according to any one of the first to fourth methods used in the second furnace as a granular material by contacting with water after discharging In the method for recovering the gold and / or platinum group element from the above, the SiC-based material is composed of an oxide mainly composed of an alkali metal oxide, an alkali metal carbonate, an alkali metal hydroxide and an alkali metal oxide. The gold and / or platinum group element is melted and reduced in a furnace together with at least one substance selected from the group, copper oxide and a reducing agent, and separated into a molten oxide layer and a molten metal layer. Let me extract It provides a method of recovering gold and / or platinum group elements, wherein a.

本発明によれば、大量のSiC系物質を効率的に酸化処理して含有される金および/または白金族元素を回収することができる。さらには、炉内において被処理原料の主成分であるSiCの酸化分解に伴う発熱及び添加した金属銅の酸化熱などによって供給すべき熱エネルギーコストが節減され、且つ、SiCのC分は燃焼して排ガスとなって系外へ排出され、同じくSi分も酸化されてフラックス成分のSi酸化物(SiO2)となるために供給すべきフラックスコストが節減されるという効果も奏する。 According to the present invention, it is possible to recover gold and / or platinum group elements contained by efficiently oxidizing a large amount of SiC-based material. Further, the heat energy cost to be supplied is reduced by the heat generated by the oxidative decomposition of SiC, which is the main component of the raw material to be treated, and the oxidation heat of the added copper metal in the furnace, and the C content of SiC is combusted. As a result, the exhaust gas is discharged to the outside of the system, and the Si component is similarly oxidized to become the Si oxide (SiO 2 ) of the flux component, so that the flux cost to be supplied is also reduced.

本発明における白金族元素は元素の周期表第VIII族に属するルテニウムRu、ロジウムRh、パラジウムPd、オスミウムOs、イリジウムIr、白金Ptの6元素を示す。   The platinum group element in the present invention represents six elements of ruthenium Ru, rhodium Rh, palladium Pd, osmium Os, iridium Ir, and platinum Pt belonging to Group VIII of the periodic table of elements.

本発明において「(金および/または白金族元素を含有する)SiC系物質」とは、(金および/または白金族元素を担持等の種々の形態で含有する)SiCを主体とする物質の総称であって、好ましくはSiCを50質量%を超えて含有するSiC主体の材料であり、他の添加物質やPM(ディーゼルエンジンからの排ガス中の粒子状物質)などが含有される場合がある。このSiC系物質としては、例えば、上記のディーゼルエンジンの排ガス浄化用触媒の廃棄物、さらに電子部品廃棄物等が挙げられる。   In the present invention, the “SiC-based material (containing gold and / or platinum group element)” is a generic name of substances mainly containing SiC (containing various forms such as supporting gold and / or platinum group element). However, it is preferably a SiC-based material containing SiC in excess of 50 mass%, and may contain other additive substances, PM (particulate matter in exhaust gas from diesel engines), and the like. Examples of the SiC-based material include waste of the exhaust gas purification catalyst of the diesel engine, and electronic component waste.

本発明における第1炉(酸化炉ということがある。)として転炉または回転炉を用いると、必要に応じて傾動または回転させることによってSiC系物質とアルカリ金属酸化物等や金属銅との接触・混合を促進させることができ、かつ、酸素ガスまたは酸素富化空気をランスによって表面上から吹き付けて酸化処理することができ、さらには、酸化処理後に傾動させることによって最初に溶融酸化物層を抜き出し、その後溶融金属銅層を抜き出すことができるので、両層を容易に分離することができる。   When a converter or a rotary furnace is used as the first furnace (sometimes referred to as an oxidation furnace) in the present invention, contact between the SiC-based material and alkali metal oxide or the like or metal copper is performed by tilting or rotating as necessary. Mixing can be promoted, and oxygen gas or oxygen-enriched air can be blown from the surface with a lance to oxidize, and further, the molten oxide layer can be initially formed by tilting after oxidization. Since the molten metal copper layer can be extracted after the extraction, both layers can be easily separated.

また、炉内の溶体中にランス又は羽口(Tuyere)を通じて酸素ガスまたは酸素富化空気を直接に吹き込むことによって、溶体の撹拌を促し、SiCの酸化速度を速めることもできる。
なお、酸化処理後の溶融酸化物は溶融金属銅より比重が小さいので、酸化処理後の溶融酸化物と溶融金属銅との混合溶融体(液相)を炉内で静置することにより、溶融酸化物は上層、溶融金属銅は下層となって容易に相互に分離される。
Further, by directly blowing oxygen gas or oxygen-enriched air into the solution in the furnace through a lance or tuyere, stirring of the solution can be promoted, and the oxidation rate of SiC can be increased.
In addition, since the molten oxide after the oxidation treatment has a specific gravity smaller than that of the molten metal copper, it is melted by leaving the mixed melt (liquid phase) of the molten oxide and the molten metal copper after the oxidation treatment in the furnace. The oxide becomes the upper layer and the molten metal copper becomes the lower layer and is easily separated from each other.

また、本発明における第2炉または単独の炉(これらを還元炉ということがある。)としては電気炉を用いることができる。
第1炉から排出された溶融酸化物をいったん冷却して固形物としてストックしたものを集積して、第2炉である電気炉に装入し、還元剤と必要に応じてフラックスを加えて溶融還元する。第1炉からの溶融酸化物に混在して持ち込まれた未反応のSiC系物質は第2炉で還元剤として作用し酸化分解されるので、第2炉においては必要に応じて不足量の還元剤を添加すればよい。
なお、電気炉で生成した溶融酸化物と溶融金属銅は、溶融酸化物は上層、溶融金属銅は下層となって容易に相互に分離され、それぞれ炉壁に設けられた抜口(Tapping Hole)から分別回収することができる。
In addition, an electric furnace can be used as the second furnace or a single furnace (sometimes referred to as a reduction furnace) in the present invention.
The molten oxide discharged from the first furnace is once cooled and stocked as a solid material is collected, charged into the second furnace, the electric furnace, and melted by adding a reducing agent and flux as required. Reduce. Since the unreacted SiC-based material brought in mixed with the molten oxide from the first furnace acts as a reducing agent in the second furnace and is oxidatively decomposed, the second furnace reduces an insufficient amount as necessary. What is necessary is just to add an agent.
Note that the molten oxide and molten metal copper produced in the electric furnace are easily separated from each other, with the molten oxide as the upper layer and the molten metal copper as the lower layer. Can be collected separately.

なお、第1炉から排出された溶融酸化物を多量の水と接触させることによって粉粒体とする(つまり水砕を行う)と、溶融酸化物中に混在して持ち込まれた未反応のSiC系物質が粉粒体の微細粒子表面に露出するので、第2炉において還元剤としての反応性が著しく促進する。   When the molten oxide discharged from the first furnace is brought into contact with a large amount of water to form a granular material (that is, granulated), unreacted SiC brought into the molten oxide. Since the system substance is exposed on the surface of the fine particles of the granular material, the reactivity as the reducing agent is significantly accelerated in the second furnace.

金および/または白金族元素を含有するSiC系物質を、アルカリ金属酸化物、アルカリ金属炭酸塩、アルカリ金属水酸化物およびアルカリ金属酸化物を主成分とする酸化物からなる群から選ばれる少なくとも一種の物質と共に第1炉内で溶融及び酸化処理して溶融酸化物を生成し、該生成された酸化物を還元剤と金属銅又は酸化銅と共に第2炉内で溶融及び還元処理して溶融酸化物層と溶融金属層とに分別することによって前記金および/または白金族元素を該溶融金属層に抽出させる発明をさらに具体的にいえば、以下のとおりである。   The SiC-based material containing gold and / or platinum group elements is at least one selected from the group consisting of alkali metal oxides, alkali metal carbonates, alkali metal hydroxides, and oxides mainly composed of alkali metal oxides A molten oxide is produced by melting and oxidizing in the first furnace together with the above material, and the produced oxide is melted and reduced in the second furnace together with a reducing agent and metallic copper or copper oxide in the second furnace. More specifically, the invention for extracting the gold and / or platinum group elements into the molten metal layer by separating into a physical layer and a molten metal layer is as follows.

1.SiC系物質と、アルカリ金属酸化物、アルカリ金属炭酸塩、アルカリ金属水酸化物およびアルカリ金属酸化物を主成分とする酸化物からなる群から選ばれる少なくとも一種の物質を酸化炉(第1炉)に装入し、酸素ガス又は酸素富化空気で酸化しながら、一様な酸化物溶体を形成する。
なお、本願において酸素富化空気は酸素濃度において特に制限はないが、酸化処理速度向上の点から酸素濃度40%(容積比で表す。以下同じ。)以上の酸素濃度が好ましい。
2.本願において酸化物溶体は水砕して粉粒状として乾燥し、還元炉(第2炉、好ましくは電気炉)にフラックス、酸化銅、コークスとともに装入する。
3.電気炉に投入した酸化物溶体を還元し、金、白金族元素の融解した溶融金属層(溶銅ともいう。)と溶融酸化物(溶融スラグともいう。)の2層に分離させる。
4.電気炉での還元により、溶銅中にほとんどの金、白金族元素が移行する。
5.還元後の溶融スラグは実質的に金、白金族元素を含まないので、廃棄する(もしくは路盤材等に再利用する)。
6.還元後の溶銅は、酸化処理し銅分を酸化させながら、金、白金族元素を一層濃縮する。
1. Oxidation furnace (first furnace) at least one substance selected from the group consisting of SiC-based materials and alkali metal oxides, alkali metal carbonates, alkali metal hydroxides and oxides mainly composed of alkali metal oxides And uniform oxide solution is formed while oxidizing with oxygen gas or oxygen-enriched air.
In the present application, the oxygen-enriched air is not particularly limited in terms of oxygen concentration, but an oxygen concentration of 40% (represented by volume ratio; the same applies hereinafter) or higher is preferable from the viewpoint of improving the oxidation treatment rate.
2. In the present application, the oxide solution is granulated and dried as a powder and charged into a reduction furnace (second furnace, preferably an electric furnace) together with flux, copper oxide, and coke.
3. The oxide solution put into the electric furnace is reduced and separated into two layers, a molten metal layer (also referred to as molten copper) in which gold and platinum group elements are melted and a molten oxide (also referred to as molten slag).
4). Most gold and platinum group elements are transferred into the molten copper by reduction in the electric furnace.
5). Since the molten slag after reduction does not substantially contain gold or platinum group elements, it is discarded (or reused as roadbed material).
6). The molten copper after the reduction is further oxidized to further concentrate the gold and platinum group elements while oxidizing the copper content.

金および/または白金族元素を含有するSiC系物質を、アルカリ金属酸化物、アルカリ金属炭酸塩、アルカリ金属水酸化物およびアルカリ金属酸化物を主成分とする酸化物からなる群から選ばれる少なくとも一種の物質と金属銅と共に第1炉内で溶融及び酸化処理して該金属銅の少なくとも一部と該SiC系物質とを酸化させ酸化物の溶融層と金属の溶融層とに分別することによって前記金および/または白金族元素を該金属の溶融層に抽出させた後、該酸化物層を還元剤と共に第2炉内で溶融及び還元処理して溶融酸化物層と溶融金属層とに分別し、必要に応じて該溶融金属層を前記金属銅として前記第1炉で用いる発明をさらに具体的にいえば、以下のとおりである。   The SiC-based material containing gold and / or platinum group elements is at least one selected from the group consisting of alkali metal oxides, alkali metal carbonates, alkali metal hydroxides, and oxides mainly composed of alkali metal oxides And at least a part of the metallic copper and the SiC-based material are oxidized and separated into a molten layer of oxide and a molten layer of metal, by melting and oxidizing in a first furnace together with the material and metallic copper. After the gold and / or platinum group elements are extracted into the molten layer of the metal, the oxide layer is melted and reduced in a second furnace together with a reducing agent to be separated into a molten oxide layer and a molten metal layer. The invention using the molten metal layer as the metallic copper in the first furnace as needed is more specifically as follows.

1.金属銅(第2炉で生成した金属銅や、銅線を2〜3mmに破砕したナゲット銅のような、不純分を含むもので構わない)にSiC系物質と、アルカリ金属酸化物、アルカリ金属炭酸塩、アルカリ金属水酸化物およびアルカリ金属酸化物を主成分とする酸化物からなる群から選ばれる少なくとも一種の物質を追加して第1炉に装入し酸素ガス又は酸素富化空気で酸化しながら、金属銅の少なくとも一部と該SiC系物質を酸化させて酸化物溶体層と溶銅を中心とする溶融メタル層の2層に分離させる。
この場合に、装入された金属銅の30〜70%を酸化するのが好ましく、40〜60%を酸化するのが一層好ましい。
2.溶銅中にほとんどの金、白金族元素が移行する。
3.溶銅は、さらに酸化処理を行って銅分を酸化させながら、金、白金族元素を一層濃縮する。
4.酸化物溶体は水砕して粉粒状として乾燥し、還元炉(第2炉、好ましくは電気炉)にフラックス、コークスとともに装入する。
5.電気炉で得られる還元後の溶融スラグは実質的に金、白金族元素を含まないので、廃棄する(もしくは路盤材等に再利用する)。
6.電気炉で得られる還元後の溶銅を金属銅として第1炉へ装入すれば、新たな金属銅が不要となり、コスト低減を図ることができる。
1. SiC-based materials, alkali metal oxides, and alkali metals such as metal copper (which may contain impurities such as metal copper produced in the second furnace or nugget copper obtained by crushing copper wire to 2 to 3 mm) At least one substance selected from the group consisting of carbonates, alkali metal hydroxides and oxides composed mainly of alkali metal oxides is added to the first furnace and oxidized with oxygen gas or oxygen-enriched air. Meanwhile, at least a part of the metallic copper and the SiC-based material are oxidized and separated into two layers of an oxide solution layer and a molten metal layer centered on the molten copper.
In this case, it is preferable to oxidize 30 to 70% of the charged metal copper, and it is more preferable to oxidize 40 to 60%.
2. Most gold and platinum group elements migrate into the molten copper.
3. The molten copper is further oxidized to further concentrate the gold and platinum group elements while oxidizing the copper content.
4). The oxide solution is granulated and dried as a powder and charged into a reduction furnace (second furnace, preferably an electric furnace) together with flux and coke.
5). The molten slag after reduction obtained in the electric furnace does not contain gold or platinum group elements, and is discarded (or reused as roadbed material).
6). If the reduced molten copper obtained in the electric furnace is charged into the first furnace as metallic copper, no new metallic copper is required, and costs can be reduced.

金および/または白金族元素を含有するSiC系物質を、アルカリ金属酸化物、アルカリ金属炭酸塩、アルカリ金属水酸化物およびアルカリ金属酸化物を主成分とする酸化物からなる群から選ばれる少なくとも一種の物質と酸化銅と還元剤と共に炉内で溶融及び還元処理し溶融酸化物層と溶融金属層とに分別することによって前記金および/または白金族元素を該溶融金属層に抽出させる発明をさらに具体的にいえば、以下のとおりである。   The SiC-based material containing gold and / or platinum group elements is at least one selected from the group consisting of alkali metal oxides, alkali metal carbonates, alkali metal hydroxides, and oxides mainly composed of alkali metal oxides The invention further includes extracting the gold and / or platinum group elements into the molten metal layer by melting and reducing in a furnace together with the above material, copper oxide and a reducing agent, and separating the molten oxide layer and the molten metal layer. Specifically, it is as follows.

1.SiC系物質と、アルカリ金属酸化物、アルカリ金属炭酸塩、アルカリ金属水酸化物およびアルカリ金属酸化物を主成分とする酸化物からなる群から選ばれる少なくとも一種の物質を電気炉等に装入し、更に酸化銅と還元剤を装入することにより、酸化銅の酸素でSiC系物質を酸化させ、金、白金族元素の融解した溶融金属(溶銅ともいう。)と溶融酸化物(溶融スラグともいう。)の2層に分離させる。
2.電気炉での還元により、溶銅中にほとんどの金、白金族元素が移行する。
3.上記溶融スラグは殆ど金、白金族元素を含まないので、廃棄する(もしくは路盤材等に再利用する)。
4.溶銅は、酸化処理し銅分を酸化させながら、金、白金族元素を濃縮させる。
1. An electric furnace is charged with at least one substance selected from the group consisting of SiC-based substances and alkali metal oxides, alkali metal carbonates, alkali metal hydroxides, and oxides mainly composed of alkali metal oxides. Further, by adding a copper oxide and a reducing agent, the SiC-based material is oxidized with the oxygen of the copper oxide, and a molten metal (also referred to as molten copper) in which gold and platinum group elements are melted and a molten oxide (molten slag). It is also separated into two layers.
2. Most gold and platinum group elements are transferred into the molten copper by reduction in the electric furnace.
3. Since the molten slag contains almost no gold or platinum group elements, it is discarded (or reused as roadbed material).
4). Molten copper concentrates gold and platinum group elements while oxidizing and oxidizing copper.

本願各発明におけるNa酸化物等のアルカリ金属酸化物、アルカリ金属炭酸塩、アルカリ金属水酸化物およびアルカリ金属酸化物を主成分とする酸化物からなる群から選ばれる少なくとも一種の物質を用いた炉内温度は1000〜1600℃が好ましい。   A furnace using at least one substance selected from the group consisting of alkali metal oxides such as Na oxide, alkali metal carbonates, alkali metal hydroxides and oxides mainly composed of alkali metal oxides in each invention of the present application The internal temperature is preferably 1000 to 1600 ° C.

なお、Li酸化物、K酸化物、Rb酸化物、Cs酸化物などの他のアルカリ金属酸化物の場合も、上記温度範囲で融解し、Na酸化物と同等の作用効果を発揮する。
また、本発明においてNa酸化物を用いて処理されるSiC系物質量、即ち、SiC/Na2Oの質量比は最大1.71であり、上記の他のアルカリ金属酸化物にあっては、SiC/Li2Oの質量比は最大3.55、SiC/K2Oの質量比は最大1.13、SiC/Rb2Oの質量比は最大0.57、SiC/Cs2Oの質量比は最大0.38である。
さらに、アルカリ金属酸化物を主成分とする酸化物はアルカリ金属酸化物以外のフラックスを含んでもよい。
なお、アルカリ金属炭酸塩およびアルカリ金属水酸化物は、いずれも、炉内で加熱され熱分解してアルカリ金属酸化物になるものであって、言わば、アルカリ金属酸化物の前駆体に相当する。
また、本発明におけるSiC系物質は5mm目の篩を通過する粒度であることが好ましい。
Note that other alkali metal oxides such as Li oxide, K oxide, Rb oxide, and Cs oxide also melt in the above temperature range and exhibit the same effects as Na oxide.
In the present invention, the amount of SiC-based material treated with Na oxide, that is, the mass ratio of SiC / Na 2 O is 1.71 at the maximum. In the other alkali metal oxides, The mass ratio of SiC / Li 2 O is a maximum of 3.55, the mass ratio of SiC / K 2 O is a maximum of 1.13, the mass ratio of SiC / Rb 2 O is a maximum of 0.57, and the mass ratio of SiC / Cs 2 O Is a maximum of 0.38.
Furthermore, the oxide containing an alkali metal oxide as a main component may contain a flux other than the alkali metal oxide.
The alkali metal carbonate and the alkali metal hydroxide are both heated in a furnace and thermally decomposed to become an alkali metal oxide, and so to speak, correspond to a precursor of an alkali metal oxide.
Moreover, it is preferable that the SiC type | system | group substance in this invention is a particle size which passes a 5 mm sieve.

[実施例1−1]
SiC系物質(SiC原料ともいう。)の組成(固体の組成は%及びppmとも質量比で表す。)はSiC95%であり、金、白金族元素(Pt、Pd、Rh)の含有量を表1に示す。
[Example 1-1]
The composition of the SiC-based material (also referred to as SiC raw material) (the solid composition is expressed by mass ratio in both% and ppm) is SiC 95%, and represents the content of gold and platinum group elements (Pt, Pd, Rh). It is shown in 1.

Figure 2011032510
Figure 2011032510

以下に操作手順を示す。
1.Na2CO3250kgを酸化炉に装入した。
2.SiC原料263kgを酸化炉に装入した。
3.装入後24時間、重油バーナーで加熱しながら、酸素40%(気体の組成は容積比。)のガスを55m3/時間で吹き込んだ。
4.上記吹き込み終了後、酸化炉を傾転させ、溶融酸化物を取り出した。取り出した酸化物は水砕して乾燥した。その結果、535kgの乾燥した酸化物が得られた。
5.得られた酸化物の全量に加え、酸化銅210kg、生石灰170kg、コークス18kgを電気炉に装入し、1300℃で溶融還元した。
6.溶融還元の結果、上層の酸化物と下層の溶融メタルに分離した。
7.下層の溶融メタルの質量は168kgであった。
8.上層の酸化物(スラグ)中の銅品位は0.2%、Pt、Pd、Rh、Au品位は表2のとおり10ppm未満であり、回収率は99%以上であることを確認した。
The operation procedure is shown below.
1. 250 kg of Na 2 CO 3 was charged into the oxidation furnace.
2. 263 kg of SiC raw material was charged into an oxidation furnace.
3. 24 hours after charging, a gas of oxygen 40% (gas composition is volume ratio) was blown at 55 m 3 / hour while heating with a heavy oil burner.
4). After completion of the blowing, the oxidation furnace was tilted to take out the molten oxide. The extracted oxide was water-crushed and dried. As a result, 535 kg of dried oxide was obtained.
5). In addition to the total amount of the obtained oxide, 210 kg of copper oxide, 170 kg of quicklime and 18 kg of coke were charged into an electric furnace and melted and reduced at 1300 ° C.
6). As a result of the smelting reduction, it was separated into an upper layer oxide and a lower layer molten metal.
7). The mass of the molten metal in the lower layer was 168 kg.
8). It was confirmed that the copper quality in the upper layer oxide (slag) was 0.2%, the Pt, Pd, Rh, and Au quality was less than 10 ppm as shown in Table 2, and the recovery rate was 99% or more.

Figure 2011032510
Figure 2011032510

[実施例1−2]
SiC原料の組成はSiC95%であり、白金族元素(Pt、Ru)の含有量を表3に示す。
[Example 1-2]
The composition of the SiC raw material is SiC 95%, and the content of platinum group elements (Pt, Ru) is shown in Table 3.

Figure 2011032510
Figure 2011032510

以下に操作手順を示す。
1.Na2CO3200kgを酸化炉に装入した。
2.SiC原料210kgを酸化炉に装入した。
3.装入後24時間、重油バーナーで加熱しながら、酸素40%のガスを44m3/時間で吹き込んだ。
4.上記吹き込み終了後、酸化炉を傾転させ、溶融酸化物を取り出した。取り出した酸化物は水砕して乾燥した。その結果、430kgの乾燥した酸化物が得られた。
5.得られた酸化物の全量に加え、酸化銅168kg、生石灰137kg、コークス14kgを電気炉に装入し、1300℃で溶融還元した。
6.溶融還元の結果、上層の酸化物と下層の溶融メタルに分離した。
7.下層の溶融メタルの質量は135kgであった。
8.上層の酸化物(スラグ)中の銅品位は0.2%、Pt、Ru品位は表4のとおり10ppm未満であり、回収率は99%以上であることを確認した。
The operation procedure is shown below.
1. 200 kg of Na 2 CO 3 was charged into the oxidation furnace.
2. 210 kg of SiC raw material was charged into an oxidation furnace.
3. Forty-four hours after charging, 40% oxygen gas was blown at 44 m 3 / hour while heating with a heavy oil burner.
4). After completion of the blowing, the oxidation furnace was tilted to take out the molten oxide. The extracted oxide was water-crushed and dried. As a result, 430 kg of dried oxide was obtained.
5). In addition to the total amount of oxide obtained, 168 kg of copper oxide, 137 kg of quicklime, and 14 kg of coke were charged into an electric furnace and melted and reduced at 1300 ° C.
6). As a result of the smelting reduction, it was separated into an upper layer oxide and a lower layer molten metal.
7). The mass of the molten metal in the lower layer was 135 kg.
8). It was confirmed that the copper grade in the upper layer oxide (slag) was 0.2%, the Pt and Ru grades were less than 10 ppm as shown in Table 4, and the recovery rate was 99% or more.

Figure 2011032510
Figure 2011032510

[実施例1−3]
SiC原料の組成はSiC95%であり、白金族元素(Pt、Ir)の含有量を表5に示す。
[Example 1-3]
The composition of the SiC raw material is SiC 95%, and the content of platinum group elements (Pt, Ir) is shown in Table 5.

Figure 2011032510
Figure 2011032510

以下に操作手順を示す。
1.Na2CO3150kgを酸化炉に装入した。
2.SiC原料157kgを酸化炉に装入した。
3.装入後24時間、重油バーナーで加熱しながら、酸素40%のガスを33m3/時間で吹き込んだ。
4.上記吹き込み終了後、酸化炉を傾転させ、溶融酸化物を取り出した。取り出した酸化物は水砕して乾燥した。その結果、320kgの乾燥した酸化物が得られた。
5.得られた酸化物の全量に加え、酸化銅125kg、生石灰101kg、コークス11kgを電気炉に装入し、1300℃で溶融還元した。
6.溶融還元の結果、上層の酸化物と下層の溶融メタルに分離した。
7.下層の溶融メタルの質量は102kgであった。
8.上層の酸化物(スラグ)中の銅品位は0.2%、Pt、Ir品位は表6のとおり10ppm未満であり、回収率は99%以上であることを確認した。
The operation procedure is shown below.
1. 150 kg of Na 2 CO 3 was charged into the oxidation furnace.
2. 157 kg of SiC raw material was charged into an oxidation furnace.
3. Forty-four hours after charging, 40% oxygen gas was blown at 33 m 3 / hour while heating with a heavy oil burner.
4). After completion of the blowing, the oxidation furnace was tilted to take out the molten oxide. The extracted oxide was water-crushed and dried. As a result, 320 kg of dried oxide was obtained.
5). In addition to the total amount of oxide obtained, 125 kg of copper oxide, 101 kg of quicklime, and 11 kg of coke were charged into an electric furnace and melted and reduced at 1300 ° C.
6). As a result of the smelting reduction, it was separated into an upper layer oxide and a lower layer molten metal.
7). The mass of the molten metal in the lower layer was 102 kg.
8). It was confirmed that the copper quality in the upper oxide (slag) was 0.2%, the Pt and Ir quality was less than 10 ppm as shown in Table 6, and the recovery rate was 99% or more.

Figure 2011032510
Figure 2011032510

[実施例2−1]
SiC原料は実施例1−1と同一組成のものを用いた。また、銅線を2〜3mmに破砕して得られたナゲット銅はCu99.9%であり、Pt、Pd、Rh、Au、Ru、Irを含有しない。
[Example 2-1]
The SiC raw material having the same composition as Example 1-1 was used. Moreover, the nugget copper obtained by crushing a copper wire to 2-3 mm is Cu 99.9%, and does not contain Pt, Pd, Rh, Au, Ru, and Ir.

以下に操作手順を示す。
1.ナゲット銅600kgを酸化炉に装入した。
2.Na2CO3250kgを酸化炉に装入した。
3.SiC原料263kgを酸化炉に装入した。
4.装入後、重油バーナーで加熱しながら、酸素40%のガスを55m3/時間で吹き込むのを、装入された金属銅量が半分程度になるまで継続した。
5.上記吹き込み終了後、酸化炉を静置させて溶融酸化物層と溶融金属銅層に分離させた後、酸化炉を傾転させ、溶融酸化物を取り出した。取り出した酸化物は水砕して乾燥した。その結果、835kgの乾燥した酸化物が得られた。
6.得られた酸化物の全量と、生石灰170kg、コークス31kgを電気炉に装入し、1300℃で溶融還元した。
7.溶融還元の結果、上層の酸化物と下層の溶融メタルに分離した。
8.還元後の溶融メタルの質量は320kgであった。
9.還元後の酸化物(スラグ)中の銅品位は0.5%、Pt、Pd、Rh、Au品位は表7のとおり10ppm未満であり、回収率は99%以上であることを確認した。
10.還元処理で得られた溶融メタルはナゲット銅に代えて金属銅として酸化炉に装入した。
The operation procedure is shown below.
1. 600 kg of nugget copper was charged into the oxidation furnace.
2. 250 kg of Na 2 CO 3 was charged into the oxidation furnace.
3. 263 kg of SiC raw material was charged into an oxidation furnace.
4). After charging, while heating with a heavy oil burner, blowing 40% oxygen gas at 55 m 3 / hour was continued until the amount of charged metal copper was reduced to about half.
5). After completion of the blowing, the oxidation furnace was allowed to stand and separated into a molten oxide layer and a molten metal copper layer, and then the oxidation furnace was tilted to take out the molten oxide. The extracted oxide was water-crushed and dried. As a result, 835 kg of dried oxide was obtained.
6). The total amount of the oxide obtained, 170 kg of quicklime and 31 kg of coke were charged into an electric furnace and melted and reduced at 1300 ° C.
7). As a result of the smelting reduction, it was separated into an upper layer oxide and a lower layer molten metal.
8). The mass of the molten metal after the reduction was 320 kg.
9. It was confirmed that the copper quality in the oxide (slag) after reduction was 0.5%, the Pt, Pd, Rh, and Au quality was less than 10 ppm as shown in Table 7, and the recovery rate was 99% or more.
10. The molten metal obtained by the reduction treatment was charged into the oxidation furnace as metallic copper instead of nugget copper.

Figure 2011032510
Figure 2011032510

[実施例2−2]
SiC原料は実施例1−2と同一組成のものを用いた。また、ナゲット銅はCu99.9%であり、Pt、Pd、Rh、Au、Ru、Irを含有しない。
[Example 2-2]
The SiC raw material having the same composition as in Example 1-2 was used. Moreover, nugget copper is Cu 99.9% and does not contain Pt, Pd, Rh, Au, Ru, and Ir.

以下に操作手順を示す。
1.ナゲット銅480kgを酸化炉に装入した。
2.Na2CO3200kgを酸化炉に装入した。
3.SiC原料210kgを酸化炉に装入した。
4.上記の装入後、重油バーナーで加熱しながら、酸素40%のガスを44m3/時間で吹き込むのを、装入された金属銅量が半分程度になるまで継続した。
5.上記吹き込み終了後、酸化炉を静置させて溶融酸化物層と溶融金属銅層に分離させた後、酸化炉を傾転させ、溶融酸化物を取り出した。取り出した酸化物は水砕して乾燥した。その結果、670kgの乾燥した酸化物が得られた。
6.得られた酸化物の全量と、生石灰135kg、コークス21kgを電気炉に装入し、1300℃で溶融還元した。
7.溶融還元の結果、上層の酸化物と下層の溶融メタルに分離した。
8.還元後の溶融メタルの質量は255kgであった。
9.還元後の酸化物(スラグ)中の銅品位は0.5%、Pt、Ru品位は表8のとおり10ppm未満であり、回収率は99%以上であることを確認した。
10.還元処理で得られた溶融メタルはナゲット銅に代えて金属銅として酸化炉に装入した。
The operation procedure is shown below.
1. 480 kg of nugget copper was charged into the oxidation furnace.
2. 200 kg of Na 2 CO 3 was charged into the oxidation furnace.
3. 210 kg of SiC raw material was charged into an oxidation furnace.
4). After the above charging, while heating with a heavy oil burner, blowing of 40% oxygen gas at 44 m 3 / hour was continued until the amount of charged metal copper was reduced to about half.
5). After completion of the blowing, the oxidation furnace was allowed to stand and separated into a molten oxide layer and a molten metal copper layer, and then the oxidation furnace was tilted to take out the molten oxide. The extracted oxide was water-crushed and dried. As a result, 670 kg of dried oxide was obtained.
6). The total amount of the oxide obtained, 135 kg of quicklime, and 21 kg of coke were charged into an electric furnace and melted and reduced at 1300 ° C.
7). As a result of the smelting reduction, it was separated into an upper layer oxide and a lower layer molten metal.
8). The mass of the molten metal after reduction was 255 kg.
9. It was confirmed that the copper grade in the reduced oxide (slag) was 0.5%, the Pt and Ru grades were less than 10 ppm as shown in Table 8, and the recovery rate was 99% or more.
10. The molten metal obtained by the reduction treatment was charged into the oxidation furnace as metallic copper instead of nugget copper.

Figure 2011032510
Figure 2011032510

[実施例2−3]
SiC原料は実施例1−3と同一組成のものを用いた。また、ナゲット銅はCu99.9%であり、Pt、Pd、Rh、Au、Ru、Irを含有しない。
[Example 2-3]
The SiC raw material having the same composition as in Example 1-3 was used. Moreover, nugget copper is Cu 99.9% and does not contain Pt, Pd, Rh, Au, Ru, and Ir.

以下に操作手順を示す。
1.ナゲット銅360kgを酸化炉に装入した。
2.Na2CO3150kgを酸化炉に装入した。
3.SiC原料157kgを酸化炉に装入した。
4.上記の装入後、重油バーナーで加熱しながら、酸素40%のガスを33m3/時間で吹き込むのを、装入された金属銅量が半分程度になるまで継続した。
5.上記吹き込み終了後、酸化炉を静置させて溶融酸化物層と溶融金属銅層に分離させた後、酸化炉を傾転させ、溶融酸化物を取り出した。取り出した酸化物は水砕して乾燥した。その結果、503kgの乾燥した酸化物が得られた。
6.得られた酸化物の全量と、生石灰103kg、コークス17kgを電気炉に装入し、1300℃で溶融還元した。
7.溶融還元の結果、上層の酸化物と下層の溶融メタルに分離した。
8.還元後の溶融メタルの質量は194kgであった。
9.還元後の酸化物(スラグ)中の銅品位は0.5%、Pt、Ir品位は表9のとおり10ppm未満であり、回収率は99%以上であることを確認した。
10.還元処理で得られた溶融メタルはナゲット銅に代えて金属銅として酸化炉に装入した。
The operation procedure is shown below.
1. 360 kg of nugget copper was charged into the oxidation furnace.
2. 150 kg of Na 2 CO 3 was charged into the oxidation furnace.
3. 157 kg of SiC raw material was charged into an oxidation furnace.
4). After the above charging, while heating with a heavy oil burner, blowing of 40% oxygen gas at 33 m 3 / hour was continued until the amount of charged metal copper was reduced to about half.
5). After completion of the blowing, the oxidation furnace was allowed to stand and separated into a molten oxide layer and a molten metal copper layer, and then the oxidation furnace was tilted to take out the molten oxide. The extracted oxide was water-crushed and dried. As a result, 503 kg of dried oxide was obtained.
6). The total amount of the obtained oxide, 103 kg of quicklime and 17 kg of coke were charged into an electric furnace and melted and reduced at 1300 ° C.
7). As a result of the smelting reduction, it was separated into an upper layer oxide and a lower layer molten metal.
8). The mass of the molten metal after the reduction was 194 kg.
9. It was confirmed that the copper grade in the reduced oxide (slag) was 0.5%, the Pt and Ir grades were less than 10 ppm as shown in Table 9, and the recovery rate was 99% or more.
10. The molten metal obtained by the reduction treatment was charged into the oxidation furnace as metallic copper instead of nugget copper.

Figure 2011032510
Figure 2011032510

[実施例3−1]
SiC原料は実施例1−1と同一組成のものを用いた。また、酸化銅スラグはCu2Oが60.6%であって残余はフラックス成分である。
[Example 3-1]
The SiC raw material having the same composition as Example 1-1 was used. Further, the copper oxide slag is 60.6% Cu 2 O, and the remainder is a flux component.

以下に操作手順を示す。
1.酸化銅スラグ860kg、Na2CO3250kg、SiC原料263kg(SiC/Na2O=1.71)、生石灰170kg、コークス4kgを電気炉に装入した。
2.電気炉に電流を流し、装入した原料を1300℃で7時間溶融還元し、上層の酸化物と下層の溶融メタルに分離した。
3.分離した溶融メタルの質量は、520kgであった。
9.分離した酸化物(スラグ)中の銅品位は0.5%、Pt、Pd、Rh、Au品位は表10のとおり10ppm未満であり、回収率は99.5%以上であることを確認した。
The operation procedure is shown below.
1. An electric furnace was charged with 860 kg of copper oxide slag, 250 kg of Na 2 CO 3 , 263 kg of SiC raw material (SiC / Na 2 O = 1.71), 170 kg of quicklime, and 4 kg of coke.
2. An electric current was passed through the electric furnace, and the charged raw material was melted and reduced at 1300 ° C. for 7 hours to separate the upper layer oxide and the lower layer molten metal.
3. The mass of the separated molten metal was 520 kg.
9. It was confirmed that the copper quality in the separated oxide (slag) was 0.5%, the Pt, Pd, Rh, and Au quality was less than 10 ppm as shown in Table 10, and the recovery rate was 99.5% or more.

Figure 2011032510
Figure 2011032510

[実施例3−2]
SiC原料は実施例1−2と同一組成のものを用いた。また、酸化銅スラグはCu2Oが60.6%であって残余はフラックス成分である。
[Example 3-2]
The SiC raw material having the same composition as in Example 1-2 was used. Further, the copper oxide slag is 60.6% Cu 2 O, and the remainder is a flux component.

以下に操作手順を示す。
1.酸化銅スラグ688kg、Na2CO3200kg、SiC原料210kg(SiC/Na2O=1.71)、生石灰136kg、コークス4kgを電気炉に装入した。
2.電気炉に電流を流し、装入した原料を1300℃で7時間溶融還元し、上層の酸化物と下層の溶融メタルに分離した。
3.分離した溶融メタルの質量は417kgであった。
4.分離した酸化物(スラグ)中の銅品位は0.5%、Pt、Ru品位は表11のとおり10ppm未満であり、回収率は99.5%以上であることを確認した。
The operation procedure is shown below.
1. Copper oxide slag (688 kg), Na 2 CO 3 (200 kg), SiC raw material (210 kg) (SiC / Na 2 O = 1.71), quicklime (136 kg), and coke (4 kg) were charged into an electric furnace.
2. An electric current was passed through the electric furnace, and the charged raw material was melted and reduced at 1300 ° C. for 7 hours, and separated into an upper layer oxide and a lower layer molten metal.
3. The mass of the separated molten metal was 417 kg.
4). It was confirmed that the copper quality in the separated oxide (slag) was 0.5%, the Pt and Ru quality was less than 10 ppm as shown in Table 11, and the recovery rate was 99.5% or more.

Figure 2011032510
Figure 2011032510

[実施例3−3]
SiC原料は実施例1−3と同一組成のものを用いた。また、酸化銅スラグはCu2Oが60.6%であって残余はフラックス成分である。
[Example 3-3]
The SiC raw material having the same composition as in Example 1-3 was used. Further, the copper oxide slag is 60.6% Cu 2 O, and the remainder is a flux component.

以下に操作手順を示す。
1.酸化銅スラグ516kg、Na2CO3150kg、SiC原料157kg(SiC/Na2O=1.71)、生石灰102kg、コークス2kgを電気炉に装入した。
2.電気炉に電流を流し、装入した原料を1300℃で7時間溶融還元し、上層の酸化物と下層の溶融メタルに分離した。
3.分離した溶融メタルの質量は311kgであった。
4.分離した酸化物(スラグ)中の銅品位は0.5%、Pt、Ir品位は表12のとおり10ppm未満であり、回収率は99.5%以上であることを確認した。
The operation procedure is shown below.
1. An electric furnace was charged with 516 kg of copper oxide slag, 150 kg of Na 2 CO 3 , 157 kg of SiC raw material (SiC / Na 2 O = 1.71), 102 kg of quick lime, and 2 kg of coke.
2. An electric current was passed through the electric furnace, and the charged raw material was melted and reduced at 1300 ° C. for 7 hours to separate the upper layer oxide and the lower layer molten metal.
3. The mass of the separated molten metal was 311 kg.
4). It was confirmed that the copper quality in the separated oxide (slag) was 0.5%, the Pt and Ir quality was less than 10 ppm as shown in Table 12, and the recovery rate was 99.5% or more.

Figure 2011032510
Figure 2011032510

Claims (6)

金および/または白金族元素を含有するSiC系物質から該金および/または白金族元素を回収する方法において、前記SiC系物質を、アルカリ金属酸化物、アルカリ金属炭酸塩、アルカリ金属水酸化物およびアルカリ金属酸化物を主成分とする酸化物からなる群から選ばれる少なくとも一種の物質と共に第1炉内で溶融及び酸化処理して溶融酸化物を生成し、該生成された酸化物を還元剤と金属銅又は酸化銅と共に第2炉内で溶融及び還元処理して溶融酸化物層と溶融金属層とに分別することによって前記金および/または白金族元素を該溶融金属層に抽出させることを特徴とする金および/または白金族元素の回収方法。   In the method of recovering the gold and / or platinum group element from the SiC-based material containing gold and / or platinum group element, the SiC-based material may be alkali metal oxide, alkali metal carbonate, alkali metal hydroxide and A molten oxide is produced by melting and oxidizing in the first furnace together with at least one substance selected from the group consisting of oxides composed mainly of alkali metal oxides, and the produced oxide is used as a reducing agent. It is characterized by extracting the gold and / or platinum group element into the molten metal layer by melting and reducing treatment in a second furnace together with metallic copper or copper oxide and separating into a molten oxide layer and a molten metal layer. A method for recovering gold and / or platinum group elements. 金および/または白金族元素を含有するSiC系物質から該金および/または白金族元素を回収する方法において、前記SiC系物質を、アルカリ金属酸化物、アルカリ金属炭酸塩、アルカリ金属水酸化物およびアルカリ金属酸化物を主成分とする酸化物からなる群から選ばれる少なくとも一種の物質と金属銅と共に第1炉内で溶融及び酸化処理して該金属銅の少なくとも一部と該SiC系物質を酸化させ酸化物の溶融層と金属の溶融層とに分別することによって前記金および/または白金族元素を該金属の溶融層に抽出させた後、該酸化物層を還元剤と共に第2炉内で溶融及び還元処理して溶融酸化物層と溶融金属層とに分別することを特徴とする金および/または白金族元素の回収方法。   In the method of recovering the gold and / or platinum group element from the SiC-based material containing gold and / or platinum group element, the SiC-based material may be alkali metal oxide, alkali metal carbonate, alkali metal hydroxide and At least a part of the metal copper and the SiC-based material are oxidized by melting and oxidizing in the first furnace together with at least one material selected from the group consisting of oxides composed mainly of alkali metal oxides and metal copper. The gold and / or platinum group elements are extracted into the molten layer of the metal by separating the molten layer of the oxide into the molten layer of the metal and the molten layer of the metal. A method for recovering gold and / or platinum group elements, characterized in that the molten oxide layer and the molten metal layer are separated by melting and reduction treatment. 金および/または白金族元素を含有するSiC系物質から該金および/または白金族元素を回収する方法において、前記SiC系物質を、アルカリ金属酸化物、アルカリ金属炭酸塩、アルカリ金属水酸化物およびアルカリ金属酸化物を主成分とする酸化物からなる群から選ばれる少なくとも一種の物質と金属銅と共に第1炉内で溶融及び酸化処理して該金属銅の少なくとも一部と該SiC系物質を酸化させ酸化物の溶融層と金属の溶融層とに分別することによって前記金および/または白金族元素を該金属の溶融層に抽出させた後、該酸化物層を還元剤と共に第2炉内で溶融及び還元処理して溶融酸化物層と溶融金属層とに分別し、該溶融金属層を前記金属銅として前記第1炉で用いることを特徴とする金および/または白金族元素の回収方法。   In the method of recovering the gold and / or platinum group element from the SiC-based material containing gold and / or platinum group element, the SiC-based material may be alkali metal oxide, alkali metal carbonate, alkali metal hydroxide and At least a part of the metal copper and the SiC-based material are oxidized by melting and oxidizing in the first furnace together with at least one material selected from the group consisting of oxides composed mainly of alkali metal oxides and metal copper. The gold and / or platinum group elements are extracted into the molten layer of the metal by separating the molten layer of the oxide into the molten layer of the metal and the molten layer of the metal. A method for recovering gold and / or platinum group elements, characterized by separating into a molten oxide layer and a molten metal layer by melting and reducing treatment, and using the molten metal layer as the metallic copper in the first furnace . 前記酸化処理は酸素ガスまたは酸素富化空気を前記第1炉内に導入して行う、請求項1〜3のいずれかに記載の回収方法。   The recovery method according to claim 1, wherein the oxidation treatment is performed by introducing oxygen gas or oxygen-enriched air into the first furnace. 前記第1炉内で生成された前記溶融酸化物を該炉から排出した後に水と接触させることによって粉粒体として前記第2炉で用いる、請求項1〜4のいずれかに記載の回収方法。   The recovery method according to any one of claims 1 to 4, wherein the molten oxide generated in the first furnace is used in the second furnace as a granular material by contacting with water after being discharged from the furnace. . 金および/または白金族元素を含有するSiC系物質から該金および/または白金族元素を回収する方法において、前記SiC系物質を、アルカリ金属酸化物、アルカリ金属炭酸塩、アルカリ金属水酸化物およびアルカリ金属酸化物を主成分とする酸化物からなる群から選ばれる少なくとも一種の物質と酸化銅と還元剤と共に炉内で溶融及び還元処理し溶融酸化物層と溶融金属層とに分別することによって前記金および/または白金族元素を該溶融金属層に抽出させることを特徴とする金および/または白金族元素の回収方法。   In the method of recovering the gold and / or platinum group element from the SiC-based material containing gold and / or platinum group element, the SiC-based material may be alkali metal oxide, alkali metal carbonate, alkali metal hydroxide and By melting and reducing in a furnace together with at least one substance selected from the group consisting of oxides composed mainly of alkali metal oxides, copper oxide and a reducing agent, and separating into a molten oxide layer and a molten metal layer A method for recovering gold and / or platinum group elements, wherein the molten metal layer extracts the gold and / or platinum group elements.
JP2009178404A 2009-07-30 2009-07-30 METHOD OF RECOVERING GOLD AND/OR PLATINUM GROUP ELEMENT FROM SiC-BASED SUBSTANCE Pending JP2011032510A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009178404A JP2011032510A (en) 2009-07-30 2009-07-30 METHOD OF RECOVERING GOLD AND/OR PLATINUM GROUP ELEMENT FROM SiC-BASED SUBSTANCE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009178404A JP2011032510A (en) 2009-07-30 2009-07-30 METHOD OF RECOVERING GOLD AND/OR PLATINUM GROUP ELEMENT FROM SiC-BASED SUBSTANCE

Publications (1)

Publication Number Publication Date
JP2011032510A true JP2011032510A (en) 2011-02-17

Family

ID=43761877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009178404A Pending JP2011032510A (en) 2009-07-30 2009-07-30 METHOD OF RECOVERING GOLD AND/OR PLATINUM GROUP ELEMENT FROM SiC-BASED SUBSTANCE

Country Status (1)

Country Link
JP (1) JP2011032510A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021140012A1 (en) 2020-01-10 2021-07-15 Umicore Method for the recovery of platinum group metals from catalysts comprising silicon carbide

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008088452A (en) * 2006-09-29 2008-04-17 Dowa Holdings Co Ltd METHOD FOR RECOVERING GOLD OR PLATINUM GROUP ELEMENT FROM SiC-BASED SUBSTANCE

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008088452A (en) * 2006-09-29 2008-04-17 Dowa Holdings Co Ltd METHOD FOR RECOVERING GOLD OR PLATINUM GROUP ELEMENT FROM SiC-BASED SUBSTANCE

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021140012A1 (en) 2020-01-10 2021-07-15 Umicore Method for the recovery of platinum group metals from catalysts comprising silicon carbide
CN114901843A (en) * 2020-01-10 2022-08-12 尤米科尔公司 Method for recovering platinum group metals from catalysts comprising silicon carbide
JP2023509781A (en) * 2020-01-10 2023-03-09 ユミコア Method for recovering platinum group metals from catalysts containing silicon carbide
AU2020421451B2 (en) * 2020-01-10 2023-03-30 Umicore Method for the recovery of platinum group metals from catalysts comprising silicon carbide
CN114901843B (en) * 2020-01-10 2023-06-06 尤米科尔公司 Method for recovering platinum group metals from catalysts comprising silicon carbide
JP7339449B2 (en) 2020-01-10 2023-09-05 ユミコア Method for recovering platinum group metals from catalysts containing silicon carbide
US11879164B2 (en) 2020-01-10 2024-01-23 Umicore Method for the recovery of platinum group metals from catalysts comprising silicon carbide

Similar Documents

Publication Publication Date Title
Peng et al. Pyrometallurgical recovery of platinum group metals from spent catalysts
RU2770396C1 (en) Method for concentration of platinum group metals in a spent aluminum-based catalyst by pyrometallurgical method
JP3734779B2 (en) Dry recovery of platinum group elements
CN106795582B (en) The method that manufacture is rich in platinum group metal (PGM) alloy
CN113881856B (en) Method for recovering platinum group metal from waste catalyst of alumina carrier
JP2018145479A (en) Recovery method of platinum group metals
RU2531333C2 (en) Method of extraction of platinoids from spent automotive catalysts
JP2015535883A (en) Plasma induced transpiration
JP4852749B2 (en) Processing method of SiC-based material
RU2525022C1 (en) Method of extracting rhenium and platinum metals from spent catalysts on aluminium oxide supports
JP4984123B2 (en) Method for recovering gold or platinum group elements from SiC-based materials
JP5196095B2 (en) Precious metal recovery method and recovered precious metal
JP2000248322A (en) Method for recovering platinum group element from metal-substrate catalyst
JP5077517B2 (en) Precious metal recovery method and recovered precious metal
JP2005113253A (en) Method for recovering platinum group metal
JP2011032553A (en) METHOD OF RECOVERING GOLD AND/OR PLATINUM GROUP ELEMENT FROM SiC-BASED SUBSTANCE
JP3906333B2 (en) Precious metal recovery method
JP5263483B2 (en) Precious metal recovery method
CN116814974A (en) Method for recycling platinum group metals in automobile waste catalysts by taking ferronickel tailings as flux through pyrogenic process
JP4984122B2 (en) Method for recovering gold or platinum group elements from SiC-based materials
JP2011032510A (en) METHOD OF RECOVERING GOLD AND/OR PLATINUM GROUP ELEMENT FROM SiC-BASED SUBSTANCE
JP3839431B2 (en) Method for recovering platinum group metals
JP7269754B2 (en) How to recover precious metals
JP2009155677A (en) Method for recovering noble metal, and recovered noble metal
Zheng et al. Co-treatment of spent automotive catalyst and copper-bearing electroplating sludge to alloy platinum group metals with base metal matrices

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130730

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140204