JP4982601B2 - Airflow separation device - Google Patents

Airflow separation device Download PDF

Info

Publication number
JP4982601B2
JP4982601B2 JP2010214131A JP2010214131A JP4982601B2 JP 4982601 B2 JP4982601 B2 JP 4982601B2 JP 2010214131 A JP2010214131 A JP 2010214131A JP 2010214131 A JP2010214131 A JP 2010214131A JP 4982601 B2 JP4982601 B2 JP 4982601B2
Authority
JP
Japan
Prior art keywords
air
separator body
secondary air
space
annular space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010214131A
Other languages
Japanese (ja)
Other versions
JP2011056501A (en
Inventor
正治 服部
知親 山崎
Original Assignee
マテハンエンジ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マテハンエンジ株式会社 filed Critical マテハンエンジ株式会社
Priority to JP2010214131A priority Critical patent/JP4982601B2/en
Publication of JP2011056501A publication Critical patent/JP2011056501A/en
Application granted granted Critical
Publication of JP4982601B2 publication Critical patent/JP4982601B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Injection Moulding Of Plastics Or The Like (AREA)
  • Combined Means For Separation Of Solids (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Description

本発明は、合成樹脂ペレット等の粒状材料に混入している軽い夾雑物を気流によって分離除去するのに用いる気流分離装置に関する。   The present invention relates to an airflow separation device used for separating and removing light impurities mixed in granular materials such as synthetic resin pellets by airflow.

一般的に、射出成形等の樹脂成形原料に用いる合成樹脂ペレットは、配管を通して空気輸送されることが多いが、その輸送中にフロスと称される夾雑物の混入が避けられない。このフロスは、接触摩擦によって管内壁に付着した樹脂成分が成長してフィルム状の皮膜を形成し、該皮膜が紐状や糸状に剥離したものを主とするが、これに加えて該皮膜の細塵化、ペレット同士の衝突や管内壁との擦過等で生じる粉状のものも含まれ、様々な問題を惹起する要因になる。例えば、フロスは形態的又はサイズ的にペレットよりも格段に融け易いため、フロスを含むペレットを用いた樹脂成形では、先に融けたフロスがペレットの溶融までに熱劣化し、成形物の品質低下や歩留り低下を招くことになる。また、輸送する樹脂の種類を換えた場合に、管内壁から剥離した前の樹脂成分のフロスが不純物として混入し、やはり成形物の品質低下に繋がる。更に、フロスがロータリーバルブ等に絡まって作動不良や詰まりを生じることもある。   In general, synthetic resin pellets used as a raw material for resin molding such as injection molding are often pneumatically transported through pipes, but it is inevitable that impurities called floss are mixed during the transportation. This floss is mainly composed of a resinous component that has adhered to the inner wall of the tube due to contact friction to form a film-like film that has been peeled into a string or thread. It also includes powders that are generated due to fine dust, collisions between pellets, rubbing with the inner wall of the pipe, and the like, which cause various problems. For example, since floss is much easier to melt than pellets in terms of shape or size, in resin molding using pellets containing floss, the floss that melted first will be thermally deteriorated until the pellets melt, reducing the quality of the molded product And yield will be reduced. Further, when the type of resin to be transported is changed, the froth of the resin component before being peeled off from the inner wall of the pipe is mixed as an impurity, which also leads to a decrease in the quality of the molded product. Furthermore, the floss may be entangled with a rotary valve or the like, resulting in malfunction or clogging.

そこで、従来より、ペレットからフロスを分離するためのフロスセパレーターとして、下部が縮径した縦円筒内に、空気輸送管から送出されるフロス混入ペレットを空気流と共に送り込み、該縦円筒内で螺旋状の上昇流を生じさせ、軽いフロスを空気流と共に上部の排出口に導く一方、重いペレットを自重で落下させて下部の搬出口へ導くようにしたサイクロン式の分離装置が汎用されている。更に、空気輸送の空気を一次空気としてフロス混入ペレットと共に上記縦円筒内へ斜め上向きに送り込むと共に、該縦円筒の下方側から別途に二次空気、更には三次空気を導入することにより、フロスを2段階あるいは3段階で分離する方式も提案されている(特許文献1,2)。なお、本明細書における「重い」と「軽い」の表現は、対象物の物理量としての比重ではなく、下方からの風圧による浮き易さの度合を表し、同じ比重の材料でも粒子サイズ及び嵩密度が小さいほど、また空気抵抗を受け易い形態であるほど軽いことになる。   Therefore, conventionally, as a floss separator for separating the floss from the pellets, the floss-mixed pellets sent from the air transport pipe are sent together with the air flow into a vertical cylinder with a reduced diameter at the lower part, and spirally formed in the vertical cylinder A cyclone type separation device is widely used in which a light floss is guided to an upper discharge port together with an air flow while a heavy pellet is dropped by its own weight and guided to a lower outlet. Further, the air transported as primary air is sent obliquely upward into the vertical cylinder together with the floss-mixed pellets, and the secondary air and further the tertiary air are separately introduced from the lower side of the vertical cylinder to thereby reduce the floss. A method of separating in two or three stages has also been proposed (Patent Documents 1 and 2). In this specification, the expressions “heavy” and “light” do not represent the specific gravity as the physical quantity of the object, but the degree of ease of floating due to the wind pressure from below, and the particle size and bulk density of the material with the same specific gravity. Is smaller, and the lighter the easier it is to receive air resistance.

特開2004−267939号公報JP 2004-267939 A 特開2004−313994号公報JP 2004-313994 A

しかしながら、従来汎用の上記サイクロン式の分離装置では、遊離状態のフロスは容易にペレットと分離できるが、ペレットに付着しているフロス、とりわけ粉状フロスの分離が困難であった。また、上記従来提案の2段階あるいは3段階でフロスを分離する方式では、フロスの除去率を高め得るが、材料供給速度が上がると分離困難になるために処理能率を大きく設定できない上、二次空気及び三次空気の導入部の構造が複雑であるため、製作コストが高く付くと共に、フロス除去率を高める上で一次空気の導入風量に対応して二次空気及び三次空気の導入風量を微妙に調整せねばならず、そのために高度な制御機構が必要になるという難点があった。   However, in the conventional general-purpose cyclone separator, the free state floss can be easily separated from the pellet, but it is difficult to separate the floss adhering to the pellet, particularly the powdered floss. Further, in the conventional proposed method of separating the floss in two or three steps, the froth removal rate can be increased. However, the separation efficiency becomes difficult as the material supply speed increases, and the processing efficiency cannot be set large. Since the structure of the air and tertiary air introduction part is complicated, the manufacturing cost is high, and in order to increase the froth removal rate, the introduction air volume of the secondary air and the tertiary air is subtly corresponding to the introduction air volume of the primary air. There is a drawback that an advanced control mechanism is necessary for adjustment.

本発明は、上述の事情に鑑みて、上記合成樹脂ペレット等の粒状材料に混入している軽い夾雑物を気流によって分離除去するための気流分離装置として、高い処理能率に設定して、しかも制御容易で安定的に高い夾雑物除去率が得られる上、構造的に簡素で安価に製作できるものを提供することを目的としている。   In view of the above-described circumstances, the present invention sets a high processing efficiency as an airflow separation device for separating and removing light impurities mixed in granular materials such as the above-mentioned synthetic resin pellets by an airflow, and also controls it. An object of the present invention is to provide an easily and stably high contaminant removal rate and a structure that is simple and inexpensive to manufacture.

上記目的を達成するための手段を図面の参照符号を付して示せば、請求項1の発明に係る気流分離装置は、上部に排気口11、下端に材料搬出口12を備える縦円筒形の分離器本体1内の中間部に、上下端を閉塞した縦短円筒状のバッフル筒2が同心状に配置し、このバッフル筒2の周囲に分離器本体1内の上下部空間31,32と連通する環状空間30が構成され、該環状空間30の横断面積が上部空間31の横断面積の40〜80%であり、
分離器本体1の周壁部に、該環状空間30に対して材料供給方向が接線方向になるように開口した材料供給口13が設けられ、
バッフル筒2の上端部21が円錐角40〜80°で円錐状に上方へ突出すると共に、該バッフル筒2の円筒部20に臨んで材料供給口13aが開口し、
軽い夾雑物(粗大フロスf,粉状フロスp)を含む粒状材料gを一次空気A1の空気流に伴って材料供給口13aへ供給する材料供給手段(材料供給管13,ブロアーB1)と、分離器本体1内の下部空間32に二次空気A2を導入する二次空気導入手段(ブロアーB2,二次空気導入管4)とを具備し、分離器本体内へ導入する一次空気/二次空気の風量比が1/1〜1/5の比率に設定され、
材料供給口13より分離器本体1内に送り込まれた軽い夾雑物を含む粒状材料gが一次空気A1と下方から吹き上がる二次空気A2に乗って環状空間30を周回しつつ螺旋状に上昇し、分離器本体1内の上部空間31へ至って粒状材料gが空気流速の低下に伴って落下する一方、遊離した軽い夾雑物が螺旋状に上昇する空気流に乗って排気口11より排出されると共に、落下する粒状材料gに付着していた軽い夾雑物も前記環状空間32における空気A1,A2の攪拌作用で分離して上方へ運ばれ、粒状材料gのみが分離器本体1内の下部空間32を落下して前記材料搬出口12に至るように構成されてなる。
If the means for achieving the above object is shown with reference numerals in the drawings, the air flow separation device according to the invention of claim 1 is of a vertical cylindrical shape having an exhaust port 11 at the upper part and a material outlet 12 at the lower end. A vertically short cylindrical baffle cylinder 2 with its upper and lower ends closed is concentrically disposed in an intermediate portion in the separator body 1, and upper and lower spaces 31 and 32 in the separator body 1 are disposed around the baffle cylinder 2. An annular space 30 that communicates is configured, and the cross-sectional area of the annular space 30 is 40 to 80% of the cross-sectional area of the upper space 31;
A material supply port 13 is provided in the peripheral wall portion of the separator body 1 so as to open the material supply direction tangential to the annular space 30;
The upper end portion 21 of the baffle cylinder 2 protrudes upward in a conical shape at a cone angle of 40 to 80 °, and the material supply port 13a opens toward the cylindrical portion 20 of the baffle cylinder 2,
Material supply means (material supply pipe 13, blower B1) for supplying granular material g containing light impurities (coarse floss f, powdered floss p) to material supply port 13a along with the air flow of primary air A1, and separation Primary air / secondary air to be introduced into the separator body, comprising secondary air introduction means (blower B2, secondary air introduction pipe 4) for introducing the secondary air A2 into the lower space 32 in the main body 1 Is set to a ratio of 1/1 to 1/5,
The granular material g containing light impurities fed into the separator main body 1 from the material supply port 13 rides on the primary air A1 and the secondary air A2 blowing up from below and spirally rises while circling the annular space 30. The granular material g reaches the upper space 31 in the separator body 1 and drops as the air flow rate decreases, while the released light impurities are discharged from the exhaust port 11 on the spirally rising air flow. At the same time, light impurities adhering to the falling granular material g are separated by the stirring action of the air A1 and A2 in the annular space 32 and carried upward, and only the granular material g is in the lower space in the separator body 1. 32 is configured to fall to the material carry-out port 12.

請求項2の発明は、上記請求項1の気流分離装置において、二次空気A2の放出口4aは、分離器本体1の中心部に配置する二次空気導入管4の上端部に開口した複数の小孔40にて構成されてなるものとしている。 A second aspect of the present invention is the air flow separation device according to the first aspect, wherein the discharge port 4a for the secondary air A2 has a plurality of openings opened at the upper end of the secondary air introduction pipe 4 disposed in the center of the separator body 1. The small holes 40 are used.

次に、本発明の効果について、図面の参照符号を付して説明する。まず、請求項1の発明に係る気流分離装置では、材料供給口13より分離器本体1内に送り込まれる軽い夾雑物(粗大フロスf,粉状フロスp)を含む粒状材料gは、その輸送媒体である一次空気A1と下方から吹き上がる二次空気A2に乗り、環状空間30を上昇して分離器本体1内の上部空間31へ至る。このとき、材料供給口13より送り込まれる一次空気A1がバッフル筒2の円筒部20に臨む位置で分離器本体1の接線方向に流入して、且つ環状空間30によって強制的に周方向に沿う流れになる上、該円筒部31周囲の狭い環状空間30によって流速が速くなるから、下方から吹き上がる二次空気A2と相俟って強い螺旋状の上昇流を生じ、上部空間31に至っても排気口11まで螺旋状の上昇流が維持される。そして、この上部空間31では、流路面積の拡大によって該上昇流の流速が大幅に低下するから、重い粒状材料gが上昇流から外れて落下する一方、遊離した軽い夾雑物はた螺旋状の上昇流に乗ったまま確実に排気口11へ運ばれて排出される。しかも、環状空間30から上部空間31への移行部分では、バッフル筒2の円錐状の上端部21によって流路面積が連続的に拡大する形になり、空気Aの上昇速度が次第に低下してゆくことから、上部空間31での空気Aの螺旋状の上昇流に乱れを生じにくく、もって粒状材料gが乱れた上昇流に捲き込まれて排気口11へ運ばれるのを防止でき、それだけ夾雑物除去率が向上すると共に、より処理能率を高めることができる。   Next, effects of the present invention will be described with reference numerals in the drawings. First, in the air flow separation device according to the first aspect of the present invention, the granular material g containing light impurities (coarse floss f, powdered floss p) fed into the separator body 1 from the material supply port 13 is transported by the transport medium. The primary air A1 and the secondary air A2 blowing up from below are lifted up the annular space 30 to reach the upper space 31 in the separator body 1. At this time, the primary air A <b> 1 fed from the material supply port 13 flows in the tangential direction of the separator body 1 at a position facing the cylindrical portion 20 of the baffle cylinder 2 and is forced to flow along the circumferential direction by the annular space 30. In addition, since the flow velocity is increased by the narrow annular space 30 around the cylindrical portion 31, a strong spiral upward flow is generated in combination with the secondary air A <b> 2 blown from below, and the exhaust gas is exhausted even when reaching the upper space 31. A spiral upward flow is maintained up to the mouth 11. In the upper space 31, the flow velocity of the upward flow is greatly reduced due to the expansion of the flow path area, so that the heavy granular material g falls off the upward flow and falls while the loose light impurities are in a spiral shape. It is reliably carried to the exhaust port 11 and discharged while riding on the upward flow. Moreover, in the transition portion from the annular space 30 to the upper space 31, the flow passage area continuously increases due to the conical upper end 21 of the baffle cylinder 2, and the rising speed of the air A gradually decreases. Therefore, it is difficult for the spiral upward flow of the air A in the upper space 31 to be disturbed, so that the particulate material g can be prevented from being carried into the turbulent upward flow and being transported to the exhaust port 11, and as much as possible. As the removal rate is improved, the processing efficiency can be further increased.

また、粒状材料gには粉状フロスpを主とした軽い夾雑物の一部が付着していることが多いが、落下する該粒状材料gが環状空間30を通過する際、材料供給口13より送り込まれる一次空気A1の周回流と下方からの二次空気A2の上昇流との衝突による激しい攪拌作用を受けるため、付着していた軽い夾雑物は粒状材料gから容易に分離して、上昇する空気Aによって上方へ運ばれて排気口11より排出される。従って、粒状材料gのみが環状空間30を降下して下部空間32へ達するが、流路面積の大きい下部空間32では二次空気A2の上昇流が弱く、更に二次空気A2の放出口4aよりも下位では該上昇流がないために再上昇に転じる懸念はなく、該粒状材料gは確実に下端の材料搬出口12まで落下して搬出されることになる。   Further, the granular material g often has a part of light impurities mainly composed of powdered floss p, but when the falling granular material g passes through the annular space 30, the material supply port 13. Because of the intense stirring action caused by the collision between the circulating flow of the primary air A1 and the rising flow of the secondary air A2 from below, the adhering light impurities easily separate from the granular material g and rise. The air A is carried upward and discharged from the exhaust port 11. Accordingly, only the granular material g descends the annular space 30 and reaches the lower space 32. However, the upward flow of the secondary air A2 is weak in the lower space 32 having a large flow path area, and further from the outlet 4a of the secondary air A2. However, since there is no such upward flow at the lower level, there is no concern that it will rise again, and the granular material g will surely fall to the material outlet 12 at the lower end and be carried out.

しかして、この気流分離装置によれば、分離器本体1内へ導入する一次空気A1と二次空気A2の風量比が特定範囲にあると共に、環状空間30と上部空間31の横断面積が特定の比率範囲にあるから、環状空間30から上部空間31への空気Aの螺旋状の上昇流が適度な上昇速度になって、且つ環状空間30において充分な攪拌作用が得られる上、バッフル筒2の円錐状の上端部21の円錐角αが特定範囲にあるから、分離器本体1内の環状空間30から上部空間31への流路面積を連続的に拡大する移行部分における空気Aの低下速度勾配が適度になり、上部空間31での空気Aの螺旋状の上昇流がより安定化し、それだけ夾雑物の分離がより効率よく進行し、もって安定した高い夾雑物除去率を確保できることに加え、粒状材料gの供給速度を大きく設定して高い処理能率を達成できる。また、この気流分離装置は、分離器本体1内に縦短円筒状のバッフル筒2を同心状に配置し、該分離器本体1内の下部空間32に二次空気A2を導入する空気導入手段を付設するだけでよいから、構造的に簡素で安価に製作できると共に、二次空気A2の風量設定も容易で高度な制御機構を必要とせず、それだけ設備コストを低減できるという利点がある。 Thus, according to this air flow separation device, the air volume ratio between the primary air A1 and the secondary air A2 introduced into the separator body 1 is in a specific range, and the cross-sectional area of the annular space 30 and the upper space 31 is specific. Since it is in the ratio range, the spiral upward flow of the air A from the annular space 30 to the upper space 31 has an appropriate rising speed, and sufficient stirring action can be obtained in the annular space 30, and the baffle cylinder 2 Since the cone angle α of the conical upper end portion 21 is in a specific range, the air A decreasing speed gradient at the transition portion that continuously expands the flow passage area from the annular space 30 to the upper space 31 in the separator body 1. In addition to the fact that the spiral upward flow of the air A in the upper space 31 becomes more stable, the separation of the contaminants progresses more efficiently , and a stable high contaminant removal rate can be secured. Provision of material g You can achieve high processing efficiency by setting a large speed. In addition, this air flow separation device has a vertically short cylindrical baffle tube 2 arranged concentrically in the separator body 1 and introduces secondary air A2 into the lower space 32 in the separator body 1. Therefore, there is an advantage that the structure can be manufactured simply and inexpensively, the air volume of the secondary air A2 can be easily set, an advanced control mechanism is not required, and the equipment cost can be reduced accordingly.

請求項の発明によれば、二次空気A2の放出口4aが分離器本体1の中心部に配置する二次空気導入管4の上端部にあるから、下部空間32への二次空気A2の放出風量、ひいては下部空間32から環状空間30へ吹き上がる二次空気A2の風量が周方向に均等になり、もって環状空間30で分離した細かい夾雑物の下部空間32への落ち込みや下部空間32に達した粒状材料gの再上昇を確実に防止できると共に、上部空間31における空気Aの螺旋状の上昇流もより安定化するため、粒状材料gと遊離した軽い夾雑物との分離効率がより高くなる。また、粒状材料gが環状空間32を通って下部空間32の周辺側へ落下してくるため、中心部の放出口4aを避ける形になる上、該放出口4aが複数の小孔40にて構成されるから、粒状材料gの入り込みを生じにくく、もって粒状材料gによる放出口4aの閉塞や部分的な詰まりによる二次空気A2の放出不均等化を回避できる。 According to the second aspect of the present invention, the secondary air A2 discharge port 4a is located at the upper end of the secondary air introduction pipe 4 disposed at the center of the separator body 1, so that the secondary air A2 to the lower space 32 is provided. Of the secondary air A2 blown from the lower space 32 to the annular space 30 becomes even in the circumferential direction, so that fine impurities separated in the annular space 30 drop into the lower space 32 and the lower space 32. The granular material g that has reached the upper limit 31 can be reliably prevented from rising again, and the spiral upward flow of the air A in the upper space 31 is further stabilized, so that the separation efficiency between the granular material g and the released light contaminants is further increased. Get higher. Further, since the granular material g falls through the annular space 32 to the peripheral side of the lower space 32, the shape of the discharge port 4 a is avoided by the plurality of small holes 40 . Since it is configured, it is difficult for the granular material g to enter, so that it is possible to avoid uneven discharge of the secondary air A2 due to the blockage or partial clogging of the discharge port 4a by the granular material g.

本発明の一実施形態に係る気流分離装置全体の要部破断正面図である。It is a principal part fracture front view of the whole airflow separator concerning one embodiment of the present invention. 図1のX−X線の断面矢視図である。It is a cross-sectional arrow view of the XX line of FIG. 図1のY−Y線の断面矢視図である。It is a cross-sectional arrow view of the YY line of FIG. 同気流分離装置による粒状材料と軽い夾雑物の分離状態を模式的に示す縦断正面図である。It is a vertical front view which shows typically the separation state of the granular material and light impurities by the same airflow separator.

以下に、本発明に係る気流分離装置の一実施形態について、図面を参照して具体的に説明する。図1で示すように、この気流分離装置は、上端が端板1aによって閉塞された縦短円筒状の分離器本体1と、該分離器本体1内の高さ方向中間部に同心状に配置した縦短円筒状のバッフル筒2と、該分離器本体1の縮径した下部1bに側方外部から突入した二次空気導入管4と、該分離器本体1の下端に連結一体化されたロータリーバルブ5とを備えている。   Hereinafter, an embodiment of an airflow separation device according to the present invention will be specifically described with reference to the drawings. As shown in FIG. 1, this airflow separation device is arranged concentrically at a vertically short cylindrical separator body 1 whose upper end is closed by an end plate 1 a and in the middle in the height direction of the separator body 1. The vertical and short cylindrical baffle cylinder 2, the secondary air introduction pipe 4 that has entered the lower part 1 b of the separator body 1 with a reduced diameter from the outside, and the lower end of the separator body 1 are connected and integrated. And a rotary valve 5.

分離器本体1は、上部に側方へ開口した排気口11を備えると共に、ロータリーバルブ5に臨む下端が材料搬出口12を構成し、高さ方向中間部の外周には接線方向に沿う材料供給管13が一体的に突設されている。そして、分離器本体1の内部は、高さ方向中間部においてその内周とバッフル筒2の外周との間で環状空間30が構成され、この環状空間30を介して上部空間31と下部空間32とが連通している。そして、材料供給管13の材料供給口13aは、環状空間30の上部寄りの位置において、当該環状空間30に対して材料供給方向が接線方向になるように開口している。   The separator body 1 is provided with an exhaust port 11 opened laterally at the top, the lower end facing the rotary valve 5 constitutes a material carry-out port 12, and the material supply along the tangential direction at the outer periphery of the intermediate portion in the height direction The tube 13 is integrally projected. In the separator main body 1, an annular space 30 is formed between the inner periphery of the separator body 1 and the outer periphery of the baffle cylinder 2 in the intermediate portion in the height direction, and the upper space 31 and the lower space 32 are interposed via the annular space 30. And communicate with each other. The material supply port 13 a of the material supply pipe 13 is opened at a position near the upper portion of the annular space 30 so that the material supply direction is tangential to the annular space 30.

バッフル筒2は、円筒部20の両端が円錐状の上下端部21,22にて閉塞しており、図2でも示すように、円筒部20の下部寄り位置の外周に等配形成された複数個(図では3個)の各取付突片23において、分離器本体1の内周に突設された各支持突片14にボルト・ナット24を介して取り付けられている。しかして、分離器本体1の各支持突片14のボルト挿通部は上下方向の長孔15(図1参照)になっているため、バッフル筒2は該長孔15の範囲で上下に位置調整可能である。   The baffle cylinder 2 is configured such that both ends of the cylindrical portion 20 are closed by conical upper and lower end portions 21 and 22, and as shown in FIG. In each (three in the figure) attachment protrusions 23, the attachment protrusions 23 are attached to the support protrusions 14 protruding from the inner periphery of the separator body 1 via bolts and nuts 24. Since the bolt insertion portions of the support protrusions 14 of the separator main body 1 are vertically elongated holes 15 (see FIG. 1), the baffle cylinder 2 is vertically adjusted within the range of the elongated holes 15. Is possible.

二次空気導入管4は、外部から分離器本体1の下部1bの周壁部を貫通して、当該分離器本体1内の中心位置で上向きに曲がった管本体40と、この管本体40の上端に嵌着したパンチングメタルからなる多孔キャップ41とからなり、該キャップ41の多数のパンチ孔によって二次空気A2の放出口4aを構成している。そして、この二次空気導入管4の管本体40は、分離器本体1の周壁部を貫通する部分で溶接固着されると共に、図3でも示すように、その上端部外周と分離器本体1の内周との間に周方向に等配して橋架した複数本(図では4本)の水平支持片42により、放出口4aが分離器本体1の中心に配置するように固定されされている。   The secondary air introduction pipe 4 penetrates the peripheral wall portion of the lower portion 1b of the separator body 1 from the outside, and is bent upward at the center position in the separator body 1 and the upper end of the pipe body 40 The secondary air A2 discharge port 4a is constituted by a large number of punch holes in the cap 41. The pipe body 40 of the secondary air introduction pipe 4 is welded and fixed at a portion penetrating the peripheral wall portion of the separator body 1, and as shown in FIG. The discharge port 4a is fixed so as to be arranged at the center of the separator body 1 by a plurality of (four in the figure) horizontal support pieces 42 which are bridged with equal distribution in the circumferential direction between the inner periphery and the inner periphery. .

ロータリーバルブ5は、水平回転軸周りに放射状に配置した複数枚(図では4枚)の羽根板5aを備えており、モーター等で回転駆動することにより、上向きになった羽根板5a間に分離器本体1の材料搬出口12から落下した粒状材料g(図3参照)を収容し、回転して下向きになった際に下方に開く取出口5bより該粒状材料gを放出するが、その回転駆動中及び停止中に材料搬出口12と取出口5bとの間を羽根板5aで常時エアーロックするようになっている。   The rotary valve 5 includes a plurality of blade plates 5a (four in the figure) arranged radially around the horizontal rotation axis, and is separated between the blade plates 5a facing upward by being rotated by a motor or the like. The granular material g (see FIG. 3) that has fallen from the material outlet 12 of the container body 1 is accommodated, and the granular material g is discharged from the outlet 5b that opens downward when rotated and turned downward. During driving and stopping, the blade 5a is always air-locked between the material outlet 12 and the outlet 5b.

上記構成の気流分離装置によって合成樹脂ペレット等の粒状材料から軽い夾雑物を分離除去するには、図4に示すように、材料供給管13に空気輸送管Lを接続し、ホッパー型タンクTに装填された材料Mを、材料供給手段のブロアーB1から送給される一次空気A1に乗せて該空気輸送管L及び材料供給管13を通して、材料供給口13aより分離器本体1内の環状空間30へ連続的に送り込む。そして、同時に、二次空気導入手段のブロアーB2から送給される一次空気A2を、二次空気導入管4を通して放出口4aより分離器本体1内の下部空間32の中心部から上方へ連続的に放出する。   In order to separate and remove light impurities from the granular material such as synthetic resin pellets by the air flow separation device having the above configuration, an air transport pipe L is connected to the material supply pipe 13 as shown in FIG. The loaded material M is placed on the primary air A1 fed from the blower B1 of the material supply means, passes through the air transport pipe L and the material supply pipe 13, and is passed through the material supply port 13a to the annular space 30 in the separator body 1. Continuously. At the same time, the primary air A2 fed from the blower B2 of the secondary air introduction means is continuously upward from the center of the lower space 32 in the separator body 1 through the secondary air introduction pipe 4 through the discharge port 4a. To release.

上記の材料供給口13aより環状空間30へ送り込まれた材料Mは、回収すべき粒状材料gに分離除去すべき軽い夾雑物として粗大フロスfや粉状フロスpが混入したものであるが、その輸送媒体である一次空気A1と下方から吹き上がる二次空気A2に乗り、環状空間30を上昇して分離器本体1内の上部空間31へ至る。このとき、材料供給口13より送り込まれる一次空気A1が環状空間30へ接線方向に流入して、且つ該環状空間30の環形によって強制的に周方向に沿う流れになる上、狭い環状空間30では流速が速くなるから、下方から吹き上がる二次空気A2と相俟って強い螺旋状の上昇流を生じ、上部空間31に至っても排気口11まで安定した螺旋状の上昇流が維持される。しかるに、この上部空間31では、環状空間30からの流路面積の拡大によって該上昇流の流速が大幅に低下するから、一次分離ゾーンZ1として、重い粒状材料gが直ちに効率よく上昇流から外れて落下する一方、遊離した軽い夾雑物は安定した螺旋状の上昇流に乗ったまま確実に排気口11へ運ばれて排出される。   The material M fed into the annular space 30 from the material supply port 13a is a mixture of coarse floss f and powdered floss p as light impurities to be separated and removed into the granular material g to be recovered. It rides on the primary air A1 that is a transport medium and the secondary air A2 that blows up from below, and ascends the annular space 30 to reach the upper space 31 in the separator body 1. At this time, the primary air A1 fed from the material supply port 13 flows in the tangential direction into the annular space 30 and is forced to flow along the circumferential direction due to the annular shape of the annular space 30, and in the narrow annular space 30 Since the flow velocity is increased, a strong spiral upward flow is generated in combination with the secondary air A2 blowing from below, and a stable spiral upward flow is maintained up to the exhaust port 11 even when reaching the upper space 31. However, in this upper space 31, the flow velocity of the upward flow is greatly reduced due to the enlargement of the flow path area from the annular space 30, so that the heavy granular material g immediately escapes from the upward flow as the primary separation zone Z <b> 1. While falling, the released light impurities are reliably transported to the exhaust port 11 and discharged while riding on a stable spiral upward flow.

また、粒状材料gには粉状フロスpを主とした軽い夾雑物の一部が付着していることが多いが、一次分離ゾーンZ1から落下する該粒状材料gが環状空間30を通過する際、材料供給口13より送り込まれる一次空気A1の周回流と下方からの二次空気A2の上昇流との衝突による激しい攪拌作用を受ける。従って、この環状空間30では、二次分離ゾーンZ2として、落下する粒状材料gに付着していた軽い夾雑物が容易に分離して、上昇する空気A(一次空気A1+二次空気A2)によって上方へ運ばれて排気口11より排出され、粒状材料gのみが降下して下部空間32へ達することになる。そして、下部空間32では大きな流路面積で二次空気A2の上昇流が弱いため、該下部空間32に達した粒状材料gは、再上昇に転じる懸念はなく、確実に下端の材料搬出口12まで落下してロータリーバルブ5の回転駆動によって取出口5bから取り出される。   In addition, the granular material g often has a part of light impurities mainly composed of the powdered floss p, but when the granular material g falling from the primary separation zone Z1 passes through the annular space 30. In addition, a vigorous stirring action is caused by the collision between the circulating flow of the primary air A1 fed from the material supply port 13 and the upward flow of the secondary air A2 from below. Therefore, in this annular space 30, as the secondary separation zone Z2, the light impurities adhering to the falling granular material g are easily separated and moved upward by the rising air A (primary air A1 + secondary air A2). And is discharged from the exhaust port 11, and only the granular material g descends and reaches the lower space 32. Since the upward flow of the secondary air A2 is weak in the lower space 32 with a large flow path area, the particulate material g that has reached the lower space 32 is not likely to turn up again, and the material outlet 12 at the lower end is surely provided. And is taken out from the outlet 5b by the rotary drive of the rotary valve 5.

従って、この気流分離装置によれば、分離器本体1内の上部空間31の下部側における空気Aの上昇速度が粒状材料gの浮遊速度よりも低くなるように、二次空気A2の導入風量を設定しておけば、粗大フロスfや粉状フロスpの如き軽い夾雑物を極めて高効率で安定的に分離除去できると共に、粒状材料gの供給速度を大きく設定して高い処理能率を達成できる。また、この気流分離装置は、分離器本体1内に縦短円筒状のバッフル筒2を同心状に配置し、該分離器本体1内の下部空間32に二次空気A2を導入する空気導入手段を付設するだけでよいから、構造的に簡素で安価に製作できると共に、二次空気A2の風量設定も容易で高度な制御機構を必要とせず、それだけ設備コスト及びランニングコストを低減できるという利点がある。   Therefore, according to this air flow separation device, the amount of introduced air of the secondary air A2 is set so that the rising speed of the air A on the lower side of the upper space 31 in the separator body 1 is lower than the floating speed of the granular material g. If set, light contaminants such as coarse floss f and powdered floss p can be separated and removed with extremely high efficiency and stability, and a high processing efficiency can be achieved by setting a large supply speed of the granular material g. In addition, this air flow separation device has a vertically short cylindrical baffle tube 2 arranged concentrically in the separator body 1 and introduces secondary air A2 into the lower space 32 in the separator body 1. Therefore, there is an advantage that the structure can be manufactured simply and inexpensively, the air volume of the secondary air A2 can be easily set, an advanced control mechanism is not required, and the equipment cost and running cost can be reduced accordingly. is there.

なお、分離器本体1内の環状空間30の広さは、特に制約されないが、その横断面積が上部空間31の横断面積に対して40〜80%の範囲とすることが推奨される。また、一次空気A1/二次空気A2の風量比は、1/1〜1/5の範囲とすることが推奨される。すなわち、前者の横断面積比率によって環状空間30と上部空間31の空気の上昇速度の差が適度になると共に、後者の風量比によって該環状空間30から上部空間31への空気Aの螺旋状の上昇流が適度な上層速度になり、これらによって安定した高い夾雑物除去率でより大きな処理能力が付与される。   The width of the annular space 30 in the separator body 1 is not particularly limited, but it is recommended that the cross-sectional area be in the range of 40 to 80% with respect to the cross-sectional area of the upper space 31. Further, it is recommended that the air volume ratio of the primary air A1 / secondary air A2 is in a range of 1/1 to 1/5. That is, the difference in the rising speed of the air in the annular space 30 and the upper space 31 is moderate depending on the former cross-sectional area ratio, and the spiral rise of the air A from the annular space 30 to the upper space 31 is determined by the latter air volume ratio. The flow is at a moderate upper layer velocity, which provides greater throughput with a stable high contaminant removal rate.

本発明の気流分離装置において、バッフル筒2の上下端部21,22の形状は、凸型が好ましく、とりわけ上端部21については実施形態のような円錐状が推奨される。これは、円錐状の上端部21を有することにより、該上端部21に粒状材料g及び夾雑物が溜まるのを防止できることに加え、分離器本体1内の環状空間30から上部空間31への移行部分で流路面積が連続的に拡大する形になり、該移行部分で空気Aの上昇速度が次第に低下してゆくことから、上部空間31での空気Aの螺旋状の上昇流に乱れを生じにくく、もって粒状材料gが乱れた上昇流に捲き込まれて排気口11へ運ばれるのを防止でき、それだけ夾雑物除去率が向上すると共に、より処理能率が高まることによる。   In the air flow separation device of the present invention, the upper and lower end portions 21 and 22 of the baffle cylinder 2 are preferably convex, and the upper end portion 21 is particularly preferably conical as in the embodiment. This is because the conical upper end portion 21 prevents the granular material g and impurities from accumulating at the upper end portion 21, and the transition from the annular space 30 in the separator body 1 to the upper space 31. Since the flow passage area continuously increases at the portion, and the rising speed of the air A gradually decreases at the transition portion, the spiral upward flow of the air A in the upper space 31 is disturbed. This is because the particulate material g can be prevented from being entrained in the turbulent upward flow and carried to the exhaust port 11, thereby improving the contaminant removal rate and increasing the processing efficiency.

このようにバッフル筒2の上端部21を円錐状にすることにより、図4に示すように、分離器本体1の上部空間30の第一分離ゾーンZ1は、バッフル筒2の円筒部20の上端から上端部21の円錐状の頂端までの気流減速ゾーンZ11と、該頂端よりも上側の気流定速ゾーンZ12とに分けられる。   By making the upper end portion 21 of the baffle tube 2 conical in this way, the first separation zone Z1 of the upper space 30 of the separator body 1 becomes the upper end of the cylindrical portion 20 of the baffle tube 2 as shown in FIG. To the conical apex of the upper end 21 and an airflow decelerating zone Z12 above the apex.

ここで、バッフル筒2における上記円錐状の上端部21は、その円錐角αが40〜80°の範囲の鋭角とするのがよい。このように上端部21の円錐角αを鋭角に設定すれば、気流減速ゾーンZ11が長くなり、それだけ該気流減速ゾーンZ11における空気Aの上昇速度の低下が緩やかになるから、上部空間31(一次分離ゾーンZ1)での空気Aの螺旋状の上昇流がより安定化し、遊離した粗大フロスgや粉状フロスpの如き軽い夾雑物の分離が効率よく進行する。   Here, the conical upper end 21 of the baffle cylinder 2 is preferably an acute angle having a cone angle α in the range of 40 to 80 °. If the cone angle α of the upper end portion 21 is set to an acute angle in this way, the airflow deceleration zone Z11 becomes longer, and the decrease in the rising speed of the air A in the airflow deceleration zone Z11 is moderated accordingly. The spiral upward flow of the air A in the separation zone Z1) is further stabilized, and separation of light impurities such as the loose coarse floss g and the powdered floss p proceeds efficiently.

一方、バッフル筒2の下端部22は、下向き凸型であることにより、分離器本体1内下部空間32の中心に配置した放出口4aから放出される二次空気2Aが環状空間30へ吹き上がる際の抵抗が少なくなり、それだけ二次空気2Aの上昇流が安定する。しかして、該下端部22の下向き凸型としては、円錐状や凸球面状があるが、加工製作面より円錐状が好ましく、特に円錐角β90°以上、より好適には100〜150°の鈍角の円錐状が推奨される。これは、該下端部22が鈍角の円錐状であることにより、環状空間30から下部空間32への移行部分が短く、該移行部分での圧力勾配が急になるため、環状空間30から下部空間32へ落下した粒状材料gに対する上向きの風圧が急減し、もって該粒状材料gの再上昇を確実に防止できることによる。   On the other hand, the lower end portion 22 of the baffle cylinder 2 has a downward convex shape, so that the secondary air 2 </ b> A discharged from the discharge port 4 a disposed at the center of the lower space 32 in the separator body 1 blows up to the annular space 30. The resistance at the time is reduced, and the upward flow of the secondary air 2A is stabilized accordingly. Thus, the downward convex shape of the lower end portion 22 includes a conical shape and a convex spherical shape, but a conical shape is preferable from the machining surface, and an obtuse angle of conical angle β90 ° or more, more preferably 100 to 150 °. A conical shape is recommended. This is because the transition portion from the annular space 30 to the lower space 32 is short and the pressure gradient in the transition portion becomes steep because the lower end portion 22 has an obtuse conical shape. This is because the upward wind pressure with respect to the granular material g falling to 32 is suddenly reduced, so that the re-raising of the granular material g can be surely prevented.

なお、上記実施形態では、分離器本体1内におけるバッフル筒2の取付位置を上下調整でき、その上下位置によって材料供給口13から送り込まれる粒状材料g及び一次空気A1が周回する環状空間30の上下幅が変わるから、該粒状材料gの粒度や比重、供給速度等に応じて、一次分離ゾーンZ1における螺旋状の上昇流が適度な状態になるように容易に設定できるという利点がある。   In the above embodiment, the mounting position of the baffle cylinder 2 in the separator main body 1 can be adjusted up and down, and the vertical space 30 above and below the annular space 30 around which the granular material g and the primary air A1 fed from the material supply port 13 circulate. Since the width changes, there is an advantage that the spiral upward flow in the primary separation zone Z1 can be easily set according to the particle size, specific gravity, supply speed, and the like of the granular material g.

二次空気A2の放出口4aについては、実施形態のように、分離器本体1の中心部に配置する二次空気導入管4の上端部に開口する複数の小孔にて構成することが推奨される。その利点の一つは、中心部からの二次空気A2の放出により、下部空間32での二次空気A2の放出風量、ひいては下部空間32から環状空間30へ吹き上がる二次空気A2の風量が周方向に均等になり、もって環状空間30で分離した細かい夾雑物の下部空間32への落ち込みや下部空間32に達した粒状材料gの再上昇を確実に防止できると共に、一次分離ゾーンZ1における空気Aの螺旋状の上昇流もより安定化するため、粒状材料gと遊離した軽い夾雑物との分離効率がより高くなることである。更に他の利点としては、粒状材料gが二次分離ゾーンZ2の環状空間30を通って下部空間32の周辺側へ落下してくるため、中心部の放出口4aを避ける形になる上、該放出口4aが小孔であることで粒状材料gの入り込みを生じにくく、もって粒状材料gによる放出口4aの閉塞や部分的な詰まりによる二次空気A2の放出不均等化を回避できることである。   It is recommended that the secondary air A2 discharge port 4a be composed of a plurality of small holes opened at the upper end of the secondary air introduction pipe 4 arranged at the center of the separator body 1 as in the embodiment. Is done. One of the advantages is that the discharge amount of the secondary air A2 in the lower space 32 due to the discharge of the secondary air A2 from the central portion, and hence the flow rate of the secondary air A2 that blows up from the lower space 32 to the annular space 30 is obtained. Even in the circumferential direction, the fine impurities separated in the annular space 30 can be reliably prevented from dropping into the lower space 32 and the particulate material g reaching the lower space 32 can be prevented from rising again, and the air in the primary separation zone Z1 can be prevented. Since the spiral upward flow of A is further stabilized, the separation efficiency between the granular material g and the released light impurities is higher. Still another advantage is that the granular material g falls through the annular space 30 of the secondary separation zone Z2 to the peripheral side of the lower space 32, so that the discharge port 4a in the center is avoided, Since the discharge port 4a is a small hole, it is difficult for the granular material g to enter, and therefore, uneven discharge of the secondary air A2 due to blockage or partial clogging of the discharge port 4a by the granular material g can be avoided.

また、実施形態では材料搬出口12に設けたロータリーバルブ5によってエアーロック状態で連続的に材料搬出を行えるが、本発明の気流分離装置は材料搬出を非連続的に行う構成でもよい。例えば、材料搬出口12にシャッターやダンパー等の開閉手段を設け、気流分離中には該開閉手段の閉止によるエアーロック状態で落下してくる粒状材料gを貯留し、所定量の気流分離終了後に該開閉手段を開放して材料搬出を行うようにしてもよく、この場合には貯留部分の容積を大きく設定することで一回の処理量を多くできる。なお、分離器本体1の材質としては、通常はステンレス鋼等の金属材料が使用されるが、ガラス、セラミック、合成樹脂等も採用可能である。しかして、不透明材料からなる分離器本体1では、分離状態を外部から視認できるように、要所に透明板を嵌装した覗き窓を設けてもよい。その他、本発明の気流分離装置の細部構成については、実施形態以外に種々設計変更可能である。   In the embodiment, the material can be continuously carried out in an air-locked state by the rotary valve 5 provided at the material carry-out port 12. However, the airflow separation device of the present invention may be configured to carry out the material uncontinuously. For example, an opening / closing means such as a shutter or a damper is provided at the material outlet 12, and during the airflow separation, the granular material g falling in an air-locked state by closing the opening / closing means is stored, and after a predetermined amount of airflow separation is completed. The opening / closing means may be opened to carry out the material, and in this case, the amount of processing at one time can be increased by setting the volume of the storage portion large. In addition, as a material of the separator body 1, a metal material such as stainless steel is usually used, but glass, ceramic, synthetic resin, and the like can also be used. Therefore, in the separator main body 1 made of an opaque material, a viewing window fitted with a transparent plate may be provided at an important point so that the separated state can be visually recognized from the outside. In addition, the detailed configuration of the airflow separation device of the present invention can be variously modified in addition to the embodiment.

〔実機テスト〕
下記装置仕様の気流分離装置を用い、下記の処理条件で次の2種の合成樹脂ペレットP1,P2の各々からのフロス分離除去を行ったところ、その分離除去率はペレットP1,P2のいずれにおいてもほぼ100%であった。
[Real machine test]
When the following two kinds of synthetic resin pellets P1 and P2 were removed from each of the following two kinds of synthetic resin pellets P1 and P2 under the following processing conditions using an airflow separation device of the following equipment specifications, the separation and removal rate was any of the pellets P1 and P2. Was almost 100%.

<合成樹脂ペレット>
ペレットP1・・・ポリエチレンペレット(平均径約3mm,平均長さ約3mm)、 フロス混入率:平均約0.1重量%
ペレットP2・・・ポリプロピレンペレット(平均径約3mm,平均長さ約3mm) 、フロス混入率:平均約0.1重量%
<Synthetic resin pellet>
Pellets P1 ... polyethylene pellets (average diameter about 3 mm, average length about 3 mm), floss contamination rate: average about 0.1 wt%
Pellets P2: Polypropylene pellets (average diameter of about 3 mm, average length of about 3 mm), froth mixture ratio: average of about 0.1% by weight

<装置仕様>
分離器本体1
全長:約2000mm、上部空間31における内径:400mm
本体上端から材料供給口13aの中心までの距離:約1250mm
本体上端から縮径した下部1a上端までの距離:約1580mm
バッフル筒2
円筒部20の外径:250mm、長さ:250mm
上端部21の円錐角α:60°、下端部22の円錐角β:120°
材料供給口13aの中心に対する円筒部20の上端高さ:60mm
二次空気導入管
放出口4aの小孔径:2mm
多孔キャップ41の頂端とバッフル筒2の下端部22の頂端との距離:45mm
上部空間31に対する環状空間30の横断面積比:約60%
<Device specifications>
Separator body 1
Total length: about 2000 mm, inner diameter in the upper space 31: 400 mm
Distance from upper end of main body to center of material supply port 13a: about 1250 mm
Distance from the upper end of the main unit to the upper end of the reduced lower part 1a: about 1580 mm
Baffle tube 2
The outer diameter of the cylindrical portion 20: 250 mm, length: 250 mm
The cone angle α of the upper end portion 21 is 60 °, and the cone angle β of the lower end portion 22 is 120 °.
Upper end height of the cylindrical portion 20 with respect to the center of the material supply port 13a: 60 mm
Secondary air inlet tube Small diameter of discharge port 4a: 2mm
Distance between the top end of the porous cap 41 and the top end of the lower end portion 22 of the baffle cylinder 2: 45 mm
Ratio of the cross-sectional area of the annular space 30 to the upper space 31: about 60%

<処理条件>
粒状材料gの供給量:22.5kg/分
一次空気A1の供給量:5m3 /分、二次空気A2の供給量:14m3 /分
粒状材料gの浮遊速度:約7m/秒
気流定速ゾーンZ12における空気上昇速度:約2.5m/秒
<Processing conditions>
Supply rate of granular material g: 22.5 kg / min Supply rate of primary air A1: 5 m 3 / min, supply rate of secondary air A2: 14 m 3 / min Floating speed of granular material g: about 7 m / sec Air rising speed in zone Z12: about 2.5 m / sec

本発明の気流分離装置は、合成樹脂ペレット等の粒状材料に混入している軽い夾雑物を気流によって分離除去するのに好適であるが、粒状物と粉体の混合物を始めとして、サイズや形態によって空気抵抗が大きく異なる異種材料の混合物を処理対象として、軽い材料と重い材料とに分離するのにも利用できる。   The air flow separation device of the present invention is suitable for separating and removing light contaminants mixed in granular materials such as synthetic resin pellets by air flow, but it is possible to use a mixture of granular materials and powders as well as sizes and forms. It can also be used to separate a light material and a heavy material as a treatment object by mixing a mixture of different materials having greatly different air resistances.

1 分離器本体
11 排気口
12 材料搬出口
13 材料供給管(材料供給手段)
13a 材料供給口
2 バッフル筒
20 円筒部
21 上端部
22 下端部
30 環状空間
31 上部空間
32 下部空間
4 二次空気導入管(二次空気導入手段)
4a 放出口
α,β 円錐角
A 空気
A1 一次空気
A2 二次空気
B1 ブロアー(材料供給手段)
B2 ブロアー(二次空気導入手段)
f 粗大フロス(軽い夾雑物)
g 粒状材料
M 材料
p 粉状フロスp(軽い夾雑物)
DESCRIPTION OF SYMBOLS 1 Separator main body 11 Exhaust port 12 Material carry-out port 13 Material supply pipe (material supply means)
13a Material supply port 2 Baffle tube 20 Cylindrical portion 21 Upper end portion 22 Lower end portion 30 Annular space 31 Upper space 32 Lower space 4 Secondary air introduction pipe (secondary air introduction means)
4a discharge port α, β cone angle A air A1 primary air A2 secondary air B1 blower (material supply means)
B2 blower (secondary air introduction means)
f Coarse floss (light impurities)
g granular material M material p powdered floss p (light impurities)

Claims (2)

上部に排気口、下端に材料搬出口を備える縦円筒形の分離器本体内の中間部に、上下端を閉塞した縦短円筒状のバッフル筒が同心状に配置し、このバッフル筒の周囲に分離器本体内の上下部空間と連通する環状空間が構成され、該環状空間の横断面積が上部空間の横断面積の40〜80%であり、
分離器本体の周壁部に、該環状空間に対して材料供給方向が接戦方向になるように開口した材料供給口が設けられ、
前記バッフル筒の上端部が円錐角40〜80°で円錐状に上方へ突出すると共に、該バッフル筒の円筒部に臨んで前記材料供給口が開口し、
軽い夾雑物を含む粒状材料を一次空気の空気流に伴って前記材料供給口へ供給する材料供給手段と、分離器本体内の下部空間に二次空気を導入する二次空気導入手段とを具備し、分離器本体内へ導入する一次空気/二次空気の風量比が1/1〜1/5の比率に設定され、
前記材料供給口より分離器本体内に送り込まれた軽い夾雑物を含む粒状材料が前記一次空気と下方から吹き上がる前記二次空気に乗って前記環状空間を周回しつつ螺旋状に上昇し、分離器本体内の上部空間へ至って粒状材料が空気流速の低下に伴って落下する一方、遊離した軽い夾雑物が螺旋状に上昇する空気流に乗って前記排気口より排出されると共に、落下する粒状材料に付着していた軽い夾雑物が前記環状空間における空気の攪拌作用で分離して上方へ運ばれ、粒状材料のみが分離器本体内の下部空間を落下して前記材料搬出口に至るように構成されてなる気流分離装置。
A vertically short cylindrical baffle tube with the upper and lower ends closed is concentrically arranged in the middle of the vertical cylindrical separator body with an exhaust port at the top and a material outlet at the bottom, and around this baffle tube An annular space communicating with the upper and lower spaces in the separator body is configured, and the transverse area of the annular space is 40 to 80% of the transverse area of the upper space,
A material supply port that is opened so that a material supply direction is a battle direction with respect to the annular space is provided on the peripheral wall portion of the separator body,
The upper end portion of the baffle cylinder projects upward in a conical shape with a cone angle of 40 to 80 ° , and the material supply port opens facing the cylindrical portion of the baffle cylinder,
Material supply means for supplying particulate material containing light impurities to the material supply port with the air flow of primary air, and secondary air introduction means for introducing secondary air into the lower space in the separator body The primary air / secondary air volume ratio to be introduced into the separator body is set to a ratio of 1/1 to 1/5,
Particulate material containing light impurities fed into the separator body from the material supply port rises in a spiral manner while circulating around the annular space on the primary air and the secondary air blowing from below. The granular material reaches the upper space in the vessel body and drops as the air flow rate decreases, while the loose light impurities are discharged from the exhaust port on the spirally rising air flow and fall down Light impurities adhering to the material are separated by air stirring action in the annular space and carried upward, and only the granular material falls in the lower space in the separator body and reaches the material carry-out port. An airflow separation device configured.
前記二次空気の放出口は、分離器本体の中心部に配置する二次空気導入管の上端部に開口した複数の小孔にて構成されてなる請求項1に記載の気流分離装置。   2. The air flow separation device according to claim 1, wherein the secondary air discharge port includes a plurality of small holes opened at an upper end portion of a secondary air introduction pipe disposed in a central portion of the separator body.
JP2010214131A 2010-09-24 2010-09-24 Airflow separation device Active JP4982601B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010214131A JP4982601B2 (en) 2010-09-24 2010-09-24 Airflow separation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010214131A JP4982601B2 (en) 2010-09-24 2010-09-24 Airflow separation device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009034775A Division JP4625130B2 (en) 2009-02-18 2009-02-18 Airflow separation device

Publications (2)

Publication Number Publication Date
JP2011056501A JP2011056501A (en) 2011-03-24
JP4982601B2 true JP4982601B2 (en) 2012-07-25

Family

ID=43944772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010214131A Active JP4982601B2 (en) 2010-09-24 2010-09-24 Airflow separation device

Country Status (1)

Country Link
JP (1) JP4982601B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106269509B (en) * 2016-09-22 2019-03-26 西南大学 Circular ring type high efficiency wind screening machine
CN116673219B (en) * 2023-07-28 2023-10-24 云南省生态环境科学研究院 Multi-element bulk solid waste recycling aggregate screening equipment and application method thereof

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60183054A (en) * 1984-02-29 1985-09-18 Nippon Alum Mfg Co Ltd:The Cyclone type classifier
JPS61153167A (en) * 1984-12-26 1986-07-11 Netsukoo:Kk Dust collector
JPS63168078U (en) * 1987-04-20 1988-11-01
JP2784326B2 (en) * 1994-06-29 1998-08-06 川崎重工業株式会社 Sorting machine
JP2801548B2 (en) * 1994-12-26 1998-09-21 株式会社日本アルミ Floss separation method and floss separator
JP3531784B2 (en) * 1997-05-28 2004-05-31 株式会社リコー Airflow classifier
JP2000070860A (en) * 1998-09-02 2000-03-07 Nippon Alum Co Ltd Froth separator
JP2002192079A (en) * 2000-12-27 2002-07-10 Sumitomo Dow Ltd Floss separator
JP2005211901A (en) * 2005-04-22 2005-08-11 Sanko Air Plant Ltd Powder classifier
JP2007050354A (en) * 2005-08-18 2007-03-01 Sangyo Kiden Kk Powder extraction apparatus
JP2007111639A (en) * 2005-10-20 2007-05-10 Matsumoto Tekkosho:Kk Pneumatic separator

Also Published As

Publication number Publication date
JP2011056501A (en) 2011-03-24

Similar Documents

Publication Publication Date Title
JP4625130B2 (en) Airflow separation device
CN100406142C (en) Separating method and separator
JP5358457B2 (en) Continuous dry pulverization operation method of vertical pulverizer and vertical pulverizer
JP5039074B2 (en) Cyclone equipment
JP2007050354A (en) Powder extraction apparatus
KR20090117976A (en) Powder removing device and granule object separation system
US20170021392A1 (en) Device for cleaning and fine-sorting grain metallurgical waste fines and method for cleaning and fine-sorting grain metallurgical waste fines
JP4982601B2 (en) Airflow separation device
JP2010188283A (en) Cyclone device and fine powder removal method
JP3748555B2 (en) Method and apparatus for separating light grains from raw grains
TWI539503B (en) Fine powder removal apparatus
WO2007072715A1 (en) Resin pellet storage apparatus and method of cleaning the same
JP3748557B2 (en) Method and apparatus for separating powder and the like from granules
JP4509086B2 (en) Solid-gas separation device for powder
JP4383073B2 (en) Cyclone type air flow separation device
JP3672864B2 (en) Eddy current separator
US11247239B2 (en) Apparatus for separating particles of different sizes by means of cyclonic separation
JP2019084478A (en) Air separator
JP4111781B2 (en) Powder separation device and filter mechanism used therefor
JPH07289998A (en) Method for separating foreign matter mixed with finely-pulverized abrasive material, method for separating foreign matter and dust mixed with finely-pulverized abrasive material, and separating apparatus for them
RU2376081C1 (en) Two-commodity air-gravity classifier
JP2004122072A (en) Classifier for powder and particles
JP2007160150A (en) Foreign matter separating apparatus
JP2024068252A (en) Sorting device and biomass material processing system equipped with same
JP4932858B2 (en) Particulate matter removal device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120330

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120423

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150427

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4982601

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250