JP4932858B2 - Particulate matter removal device - Google Patents

Particulate matter removal device Download PDF

Info

Publication number
JP4932858B2
JP4932858B2 JP2009010785A JP2009010785A JP4932858B2 JP 4932858 B2 JP4932858 B2 JP 4932858B2 JP 2009010785 A JP2009010785 A JP 2009010785A JP 2009010785 A JP2009010785 A JP 2009010785A JP 4932858 B2 JP4932858 B2 JP 4932858B2
Authority
JP
Japan
Prior art keywords
cylinder
bottleneck
vertical
fine powder
particulate matter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009010785A
Other languages
Japanese (ja)
Other versions
JP2010167345A (en
Inventor
恭弘 山下
Original Assignee
株式会社綾川エアーシステム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社綾川エアーシステム filed Critical 株式会社綾川エアーシステム
Priority to JP2009010785A priority Critical patent/JP4932858B2/en
Publication of JP2010167345A publication Critical patent/JP2010167345A/en
Application granted granted Critical
Publication of JP4932858B2 publication Critical patent/JP4932858B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Combined Means For Separation Of Solids (AREA)

Description

本発明は、樹脂ペレット等の粒状物に付着した樹脂粉、ゴミその他の微粉を除去する粒状物の微粉除去装置に関するものである。 The present invention, resin powder adhered to granules of resin pellets or the like, to a fine dividing SaSo location of granules to remove dust and other fines.

例えば、樹脂成型機に成型原料の樹脂ペレットを供給する場合には、先ず微粉除去装置で樹脂ペレットに付着する塵、その他の微粉を除去する必要がある。この微粉除去装置には、従来、篩選別方式を採用したもの(特許文献1)と、流下型の空気洗浄方式を採用したもの(特許文献2、3)と、旋回型の空気洗浄方式を採用したもの(特許文献4)がある。   For example, when supplying resin pellets of molding raw materials to a resin molding machine, it is necessary to first remove dust and other fine powders adhering to the resin pellets with a fine powder removing device. Conventionally, this fine powder removal device employs a screen selection method (Patent Document 1), a flow type air cleaning method (Patent Documents 2 and 3), and a swirl type air cleaning method. (Patent Document 4).

篩選別方式の微粉除去装置は、格子状に形成された傾斜分離板を上下方向にジグザグ状に配置すると共に、各傾斜分離板に対向して上側に送風式の静電気除去装置を、各傾斜分離板の下側に微粉回収装置を夫々配置している。そして、静電気除去装置から傾斜分離板上を下方へと流下する樹脂ペレットにイオン化空気を送風してその静電気を除去しながら、樹脂ペレットが傾斜分離板上を流動するときの篩選別により、樹脂ペレットに付着した微粉を除去し、その傾斜分離板を通過した微粉を微粉回収装置により回収する。   The fine particle removal device of the sieve selection method arranges the inclined separation plates formed in a lattice shape in a zigzag shape in the vertical direction, and the blow type static electricity removal device on the upper side facing each inclined separation plate. A fine powder collecting device is arranged below each plate. Then, the resin pellets are screened when the resin pellets flow on the inclined separator while blowing ionized air to the resin pellets that flow downward on the inclined separator from the static eliminator. The fine powder adhering to is removed, and the fine powder that has passed through the inclined separation plate is collected by a fine powder collecting device.

流下型の空気洗浄方式の微粉除去装置は、静電気除去装置の下側に誘導板と傾斜分離板とを上下方向に交互にジグザグ状に配置し、各傾斜分離板の下流側に開口を、上流側に微粉回収装置を夫々配置している。そして、静電気除去装置で樹脂ペレットの静電気を除去し、その後の樹脂ペレットを順次、誘導板から傾斜分離板上へと流下させながら、下流側の開口から導入されて樹脂ペレットと逆方向に流れる空気により樹脂ペレットを洗浄して微粉を除去する。   The flow-down type air-cleaning type fine powder removal device has a guide plate and an inclined separation plate arranged alternately in a vertical direction on the lower side of the static electricity removal device, and an opening on the downstream side of each inclined separation plate. A fine powder collecting device is arranged on each side. The static electricity removing device removes static electricity from the resin pellets, and then the subsequent resin pellets flow down from the induction plate onto the inclined separation plate and are introduced from the downstream opening and flow in the direction opposite to the resin pellets. By washing the resin pellets, fine powder is removed.

また旋回の空気洗浄方式の微粉除去装置は、上部に供給口が、下部に回収口が夫々接線方向に設けられた縦型円筒体の内部に逆円錐状の分離スクリーンを配置し、この分離スクリーン上に空気搬送により樹脂ペレットを供給して、樹脂ペレットをその慣性力に伴う遠心力により分離スクリーンの内周に沿って上側から下側へと螺旋状に旋回させながら、分離スクリーンを通過する空気流により樹脂ペレットを空気洗浄して樹脂ペレットの微粉を除去する。   Further, the swirling air cleaning type fine powder removing device has an inverted conical separation screen disposed in a vertical cylindrical body in which a supply port is provided in the upper portion and a recovery port is provided in the lower portion in a tangential direction. Air that passes through the separation screen while supplying resin pellets by air conveyance and spirally swirling the resin pellets from the upper side to the lower side along the inner periphery of the separation screen by the centrifugal force accompanying the inertial force. The resin pellets are air-washed by a flow to remove fine powder of the resin pellets.

特開平8−39550号公報JP-A-8-39550 特開平10−620号公報JP-A-10-620 特開平2002−282791号公報Japanese Patent Laid-Open No. 2002-282791 特開平2007−216118号公報Japanese Patent Laid-Open No. 2007-216118

従来の微粉除去装置では、篩選別方式、空気洗浄方式の別を問わず、微粉の除去効率が悪く、作業能率が低下すると共に、装置全体が非常に大型化する欠点がある。   The conventional fine powder removing device has the disadvantages that the fine powder removal efficiency is poor, the work efficiency is lowered, and the entire device is very large regardless of whether the sieve sorting method or the air cleaning method is used.

即ち、篩選別方式の場合には、傾斜分離板上を流下する樹脂ペレットに対して、静電気除去装置からイオン化空気を送風して樹脂ペレットの静電気を除去しながら、傾斜分離板の篩作用により樹脂ペレットに付着する微粉を除去する。しかし、基本的には篩選別であるため、微粉の除去効率が悪く作業能率が低下し、また微粉の十分な除去を図るためには、傾斜分離板を上下方向に多段に設ける必要があって、装置全体が大型化する欠点がある。   In other words, in the case of the sieve sorting method, the resin pellets flowing down on the inclined separation plate are blown with ionized air from an electrostatic removal device to remove static electricity from the resin pellets, and the resin by the sieving action of the inclined separation plate. The fine powder adhering to the pellet is removed. However, since screening is basically performed, the removal efficiency of the fine powder is poor and the work efficiency is lowered, and in order to sufficiently remove the fine powder, it is necessary to provide inclined separators in multiple stages in the vertical direction. There is a drawback that the whole apparatus becomes large.

一方、流下型の空気洗浄方式の場合には、樹脂ペレットが誘導板から傾斜分離板へと落下し、その樹脂ペレットが傾斜分離板に沿って流動する間に、その表面に付着した微粉を空気により分離して除去する。しかし、傾斜分離板上を流動する樹脂ペレットに対して空気が逆方向に流れているものの、誘導板の下端が傾斜分離板に最接近する位置で空気の流速が早くなる程度であって、傾斜分離板上の樹脂ペレットに対する空気の接触が悪いため、微粉の除去効率が悪く作業能率が低下する欠点がある。   On the other hand, in the case of the down-flow type air cleaning method, the resin pellets fall from the guide plate to the inclined separation plate, and while the resin pellets flow along the inclined separation plate, the fine powder adhering to the surface is removed by air. To separate and remove. However, although the air flows in the opposite direction with respect to the resin pellets flowing on the inclined separator, the flow velocity of the air is increased at the position where the lower end of the guide plate is closest to the inclined separator, Since the air contact with the resin pellets on the separation plate is poor, there is a disadvantage that the efficiency of removing fine powder is poor and the work efficiency is lowered.

また各傾斜分離板の上側には、樹脂ペレットを傾斜分離板の上流側に誘導するための誘導板があるため、微粉の十分な除去を図るためには、傾斜分離板を上下方向に多段に設ける必要があることと相俟って、篩選別方式と同様に装置全体が大型化する欠点がある
In addition, there is a guide plate for guiding the resin pellets to the upstream side of the tilt separation plate on the upper side of each tilt separation plate. Therefore, in order to sufficiently remove fine powder, the tilt separation plate is arranged in multiple stages in the vertical direction. Combined with the necessity of providing, there is a drawback that the entire apparatus is enlarged in the same manner as the sieve selection method.

旋回型の空気洗浄方式の場合には、空気搬送により分離スクリーン上に供給されたときの遠心力により樹脂ペレットを分離スクリーンに沿って螺旋状に旋回させながら微粉を除去するため、樹脂ペレットの供給量が少なければ樹脂ペレットから微粉を除去できるものの、供給量が多くなれば、樹脂ペレットが旋回せずに分離スクリーンの傾斜面に沿って滑落する等、微粉の除去効率が極端に低下する欠点がある。このため旋回型の場合にも、分離スクリーンを大きくする一方、分離スクリーン上で樹脂ペレットが確実に旋回するように空気搬送力を十分に大にする等、装置全体が大型化する欠点がある
本発明は、このような従来の問題点に鑑み、装置全体を簡単かつ小型化でき、しかも粒状物に付着した樹脂粉、ゴミその他の微粉を効率的に高精度で能率よく除去できる粒状物の微粉除去装置を提供することを目的とする。
In the case of the swirl type air cleaning method, the resin pellets are supplied to remove fine powder while rotating the resin pellets spirally along the separation screen by centrifugal force when supplied on the separation screen by air conveyance. If the amount is small, fine powder can be removed from the resin pellet, but if the supply amount is large, the resin pellet does not rotate and slides along the inclined surface of the separation screen. is there. For this reason, even in the case of the swivel type, there is a disadvantage that the entire apparatus becomes large, such as enlarging the separation screen, but also increasing the air conveying force sufficiently so that the resin pellets are reliably swirled on the separation screen. In view of such conventional problems, the present invention makes it possible to easily and downsize the entire apparatus, and to efficiently remove resin powder, dust and other fine powder adhering to the granular material efficiently and with high accuracy. an object of the present invention is to provide a dividing SaSo location.

発明に係る粒状物の微粉除去装置は、下部に微粉を含む粒状物Pの入口部14を、上部に含塵空気の出口部13を夫々有する縦型筒体6と、該縦型筒体6内で該縦型筒体6との間に粒状物Pが上昇する上昇隘路7を形成し且つ微粉と分離されて上側から落下する粒状物Pを案内する隘路形成筒体8と、前記縦型筒体6内で前記隘路形成筒体8よりも上側に設けられ且つ前記上昇隘路7よりも通路断面積の大きい分離室9とを備え、前記上昇隘路7内を上昇する粒状物Pに対して除電空気を供給し、且つ前記隘路形成筒体8内を落下する粒状物Pに対して前記上昇隘路7から前記隘路形成筒体8の開口43を経て除電空気を供給して夫々除電するための除電空気供給口25を前記縦型筒体6に設けたものである。 The particulate matter removing apparatus according to the present invention includes a vertical cylindrical body 6 having an inlet portion 14 for particulate matter P containing fine powder at a lower portion and an outlet portion 13 for dust-containing air at an upper portion, and the vertical cylindrical body. 6 is formed between the vertical cylindrical body 6 and the vertical cylindrical body 6 in which the ascending narrow channel 7 rises, and is separated from the fine powder and guides the granular material P falling from the upper side. In the mold cylinder 6, a separation chamber 9 provided on the upper side of the bottleneck forming cylinder 8 and having a passage cross-sectional area larger than that of the rising bottlenose 7, and with respect to the granular material P rising in the rising bottleneck 7 In order to remove static electricity by supplying static elimination air to the granular material P falling in the narrow channel forming cylinder 8 from the ascending narrow channel 7 through the opening 43 of the narrow channel forming cylinder 8, respectively. The discharge air supply port 25 is provided in the vertical cylinder 6.

前記縦型筒体6及び前記隘路形成筒体8は略同心状に配置された円筒状であり、前記隘路形成筒体8内を貯留タンク3とし、該貯留タンク3にその取り出し口22を開閉する開閉弁23を備えたものでもよい。前記隘路形成筒体8は下部にテーパー部21を有し、該テーパー部21の外周に、前記入口部14から流入する粒状物Pを前記上昇隘路7の下端側の略全周に分散させる環状通路24を設けたものでもよい。前記分離室9と前記出口部13との間に、前記出口部13へ入ろうとする粒状物Pと接触して前記隘路形成筒体8内に落下させるための障害物26を配置したものでもよい。 The vertical cylindrical body 6 and the bottleneck forming cylinder 8 are cylindrically arranged substantially concentrically. The inside of the bottleneck forming cylinder 8 serves as a storage tank 3, and the outlet 22 is opened and closed in the storage tank 3. The thing provided with the opening-and-closing valve 23 to perform may be sufficient. The narrow path forming cylinder 8 has a tapered portion 21 at the bottom, on the outer periphery of the tapered portion 21, the dispersion particle-like material P you flows from the inlet 14 to substantially the entire circumference of the lower end of the rising bottleneck 7 An annular passage 24 to be provided may be provided. That between the outlet portion 13 and the separation chamber 9, was placed an obstacle 26 for contact with the particle-like matter P you try to enter into the outlet portion 13 to drop to the narrow path formed cylindrical body 8 But you can.

前記隘路形成筒体8内の粒状物Pの貯留レベルLよりも上側で前記縦型筒体6内に除電空気を供給する前記除電空気供給口25を該縦型筒体6に周方向に複数個設け、前記隘路形成筒体8に前記除電空気供給口25の内側に対応して複数個の前記開口43を設け、前記隘路形成筒体8の上端を前記開口43と前記縦型筒体6の前記出口部13との中間に位置させてもよい。 Wherein the particle-like material P The charge eliminating air supply port 25 for supplying neutralizing air to the vertical tubular body 6 in the upper side of the reservoir level L of the narrow path formed cylindrical body 8 circumferentially said longitudinal-shaped tubular body 6 plurality provided, the corresponding a bottleneck forming cylinder 8 to the inside of the static eliminator air supply opening 25 a plurality of the openings 43 provided in the bottleneck of the upper end of the forming cylinder 8 and the opening 43 the vertical tubular member 6 may be located in the middle of the outlet portion 13.

本発明では、装置全体を簡単且つ小型化でき、しかも粒状物に付着した樹脂粉、ゴミその他の微粉を効率的に高精度に能率よく除去できる利点がある。 In the present invention, it can be simple and miniaturized instrumentation置全body, moreover resin powder adhered to the granules, wherein dust and other advantages fines can remove be efficiently efficiently with high precision.

本発明の第1の実施例を示す微粉除去装置の概要図である。It is a schematic diagram of the fine powder removal apparatus which shows the 1st Example of this invention. 同分離手段の縦断面図である。It is a longitudinal cross-sectional view of the separation means. 同分離手段の横断面図である。It is a cross-sectional view of the separation means. 同樹脂ペレットの飛行状態の説明図である。It is explanatory drawing of the flight state of the resin pellet. 本発明の第2の実施例を示す分離手段の縦断面図である。It is a longitudinal cross-sectional view of the isolation | separation means which shows the 2nd Example of this invention. 同分離手段の横断面図である。It is a cross-sectional view of the separation means. 本発明の第3の実施例を示す分離手段の縦断面図である。It is a longitudinal cross-sectional view of the isolation | separation means which shows the 3rd Example of this invention. 本発明の第4の実施例を示す分離手段の縦断面図である。It is a longitudinal cross-sectional view of the isolation | separation means which shows the 4th Example of this invention. 本発明の第5の実施例を示す分離手段の縦断面図である。It is a longitudinal cross-sectional view of the isolation | separation means which shows the 5th Example of this invention.

以下、本発明の実施例を図面に基づいて詳述する。図1〜図4は本発明を樹脂ペレット用の微粉除去装置に採用した場合の第1の実施例を例示する。図1は樹脂成型機の前段に配置される樹脂ペレット用の微粉除去装置の概要を示し、この微粉除去装置は、図1に示すように供給手段1と分離手段2と貯留タンク3と集塵手段4と吸引手段5とを備え、吸引手段5により分離手段2の下手側で吸引して、供給手段1から一定量ずつ供給される樹脂ペレットP(図4参照)を空気搬送により送りながら、分離手段2で樹脂ペレットPとその表面等に付着した微粉とを分離して、その樹脂ペレットPを貯留タンク3に貯留すると共に、微粉を集塵手段4により集塵して清浄化するようになっている。   Embodiments of the present invention will be described below in detail with reference to the drawings. 1 to 4 illustrate a first embodiment when the present invention is adopted in a fine powder removing apparatus for resin pellets. FIG. 1 shows an outline of a fine powder removing device for resin pellets arranged at the front stage of a resin molding machine, and this fine powder removing device has a supply means 1, a separation means 2, a storage tank 3, and a dust collecting device as shown in FIG. A means 4 and a suction means 5 are provided. The suction means 5 sucks the lower side of the separation means 2 and feeds the resin pellets P (see FIG. 4) supplied from the supply means 1 by a fixed amount by air conveyance. The separation means 2 separates the resin pellets P and the fine powder adhering to the surface thereof, and the resin pellets P are stored in the storage tank 3, and the fine powders are collected by the dust collection means 4 and cleaned. It has become.

なお、供給手段1、分離手段2、集塵手段4、吸引手段5は閉回路状に設けてもよいし、開回路状に設けてもよい。また吸引手段5は分離手段2の上手側、下手側の何れに設けてもよい。   The supply means 1, the separation means 2, the dust collection means 4, and the suction means 5 may be provided in a closed circuit shape or in an open circuit shape. The suction means 5 may be provided on either the upper side or the lower side of the separating means 2.

分離手段2は樹脂ペレットPを空気洗浄により洗浄して樹脂ペレットPとその表面その他に付着する微粉とに分離するためのもので、図2、図3に示すように、略円筒状の縦型筒体6と、この縦型筒体6内に略同心状に設けられ且つ縦型筒体6との間に樹脂ペレットPが上昇する上昇隘路7を形成する隘路形成筒体8と、縦型筒体6内で隘路形成筒体8の上側に設けられた分離室9とを備え、支持台10上に装着されている。   Separation means 2 is for cleaning the resin pellet P by air washing to separate the resin pellet P into fine powder adhering to the surface and the like. As shown in FIGS. A cylindrical body 6, a narrow channel forming cylinder 8 that is provided substantially concentrically in the vertical cylindrical body 6 and forms a rising narrow path 7 in which the resin pellet P rises between the vertical cylindrical body 6, and a vertical type A separation chamber 9 provided on the upper side of the bottleneck forming cylinder 8 in the cylinder 6 is provided, and is mounted on a support base 10.

縦型筒体6は上下両端に頂壁11と底壁12とを有し、その頂壁11の下側近傍に出口部13が、底壁12の上側近傍に入口部14が夫々縦型筒体6に対して略垂直に設けられている。出口部13は可撓ホースを介して吸引手段5、集塵手段4に接続され、入口部14は可撓ホースを介して供給手段1に接続されている。   The vertical cylinder 6 has a top wall 11 and a bottom wall 12 at both upper and lower ends, an outlet portion 13 near the lower side of the top wall 11, and an inlet portion 14 near the upper side of the bottom wall 12, respectively. It is provided substantially perpendicular to the body 6. The outlet portion 13 is connected to the suction means 5 and the dust collecting means 4 via a flexible hose, and the inlet portion 14 is connected to the supply means 1 via a flexible hose.

縦型筒体6は、略下半分程度の長さを有する下部筒体15と、この下部筒体15に較べて短い上部筒体16と、これらの中間に介在された透明な検視筒体17とを備え、周方向に複数本のボルト18により下部筒体15と上部筒体16とのフランジ15a,16a同士が着脱自在に結合されている。下部筒体15、上部筒体16はステンレス等の不透明な材料により構成されている。検視筒体17は分離室9内の樹脂ペレットPと微粉との分離状況を外部から検視するためのもので、ガラス等の耐摩耗材により構成され、上下両端にパッキング19を介してフランジ15a,16a間に介在されている。   The vertical cylinder 6 includes a lower cylinder 15 having a length of approximately the lower half, an upper cylinder 16 that is shorter than the lower cylinder 15, and a transparent inspection cylinder 17 interposed between the lower cylinder 15 and the lower cylinder 15. The flanges 15a and 16a of the lower cylinder body 15 and the upper cylinder body 16 are detachably coupled to each other by a plurality of bolts 18 in the circumferential direction. The lower cylinder 15 and the upper cylinder 16 are made of an opaque material such as stainless steel. The inspection cylinder 17 is for inspecting the separation state of the resin pellets P and fine powder in the separation chamber 9 from the outside, and is made of a wear-resistant material such as glass, and has flanges 15a and 16a via packings 19 at both upper and lower ends. Is intervening.

隘路形成筒体8は円筒状であって、縦型筒体6内の下部に略同心状に配置されており、この隘路形成筒体8と縦型筒体6との間に周方向の全周にわたって環状の上昇隘路7が形成されている。上昇隘路7は空気流により樹脂ペレットPが上昇し、しかもその樹脂ペレットPが分離室9内に入って流速が低下したときにも、その分離室9の上下方向の略中央から上側の高さまで飛行する程度の慣性力が生じるように、通路断面積を絞って樹脂ペレットPに十分な上昇速度を与えるべく構成されている。   The bottleneck forming cylinder 8 has a cylindrical shape and is disposed substantially concentrically at the lower portion in the vertical cylinder 6, and the entire circumferential direction between the bottleneck forming cylinder 8 and the vertical cylinder 6 is provided. An annular ascending channel 7 is formed over the circumference. Even when the resin pellet P rises due to the air flow and the resin pellet P enters the separation chamber 9 and the flow velocity decreases, the ascending channel 7 rises from the substantially vertical center of the separation chamber 9 to the upper height. In order to generate an inertial force enough to fly, the passage cross-sectional area is narrowed to give the resin pellet P a sufficient rising speed.

隘路形成筒体8は貯留タンク3を兼用している。貯留タンク3は分離室9の下側に開口しており、分離室9で微粉から分離された樹脂ペレットPを受けて貯留するようになっている。また隘路形成筒体8である貯留タンク3の下部にはテーパー部21が設けられている。テーパー部21は下部側が縦型筒体6の底壁12よりも下方に突出しており、その下端部に取り出し口22を開閉する開閉弁23が設けられている。開閉弁23は樹脂ペレットPの洗浄中に取り出し口22を閉じるためのものである。   The bottleneck forming cylinder 8 also serves as the storage tank 3. The storage tank 3 opens to the lower side of the separation chamber 9 and receives and stores the resin pellets P separated from the fine powder in the separation chamber 9. Further, a tapered portion 21 is provided at the lower portion of the storage tank 3 that is the bottleneck forming cylinder 8. The lower portion of the tapered portion 21 protrudes below the bottom wall 12 of the vertical cylindrical body 6, and an opening / closing valve 23 that opens and closes the extraction port 22 is provided at the lower end portion thereof. The on-off valve 23 is for closing the take-out port 22 during the cleaning of the resin pellet P.

貯留タンク3のテーパー部21の上部側は底壁12の上側で入口部14に対応しており、このテーパー部21の外周には、入口部14から流入する樹脂ペレットPを上昇隘路7の下端側の略全周に分散させる環状通路24が設けられている。   The upper side of the tapered portion 21 of the storage tank 3 corresponds to the inlet portion 14 on the upper side of the bottom wall 12, and the resin pellet P flowing from the inlet portion 14 is placed on the outer periphery of the tapered portion 21 at the lower end of the rising bottle 7. An annular passage 24 is provided to be distributed over substantially the entire circumference on the side.

なお、貯留タンク3はテーパー部21の外周が縦型筒体6の底壁12に固定されているが、他の固定構造でもよい。また貯留タンク3は縦型筒体6とは分離して支持台10に着脱自在に設けてもよい。縦型筒体6の下端部は、貯留タンク3のテーパー部21が縦型筒体6の底壁12に密閉状に嵌合する等、略密閉状であることが望ましい。   In addition, although the outer periphery of the taper part 21 is being fixed to the bottom wall 12 of the vertical cylinder 6, the storage tank 3 may have another fixed structure. The storage tank 3 may be provided on the support base 10 so as to be detachable from the vertical cylinder 6. It is desirable that the lower end portion of the vertical cylinder 6 is substantially hermetically sealed such that the tapered portion 21 of the storage tank 3 is fitted into the bottom wall 12 of the vertical cylinder 6 in a hermetically sealed manner.

分離室9は上昇隘路7に比較して十分に大きな通路断面積を有し、上昇隘路7から流入した空気流の流速を低下させることにより、重量の重い樹脂ペレットPと重量の軽い微粉とに分離し、その樹脂ペレットPを下方の貯留タンク3へと落下させ、微粉を空気流により含塵空気として出口部13から集塵手段4へと送るようになっている。分離室9の下端部に対応して縦型筒体6に除電空気供給口25が設けられており、この除電空気供給口25から分離室9に除電空気を供給して樹脂ペレットPの静電気を除電し、分離室9での樹脂ペレットPと微粉とが分離し易くなるようにしている。   The separation chamber 9 has a sufficiently large passage cross-sectional area as compared with the ascending bottleneck 7 and reduces the flow velocity of the air flow flowing from the ascending bottleneck 7 into a heavy resin pellet P and a light weight fine powder. It separates, the resin pellet P is dropped to the lower storage tank 3, and fine powder is sent to the dust collecting means 4 from the exit part 13 as dust-containing air by an air flow. Corresponding to the lower end of the separation chamber 9, the vertical cylinder 6 is provided with a static elimination air supply port 25. The static elimination air is supplied from the static elimination air supply port 25 to the separation chamber 9, and the static electricity of the resin pellet P is discharged. The charge is removed so that the resin pellets P and fine powder in the separation chamber 9 can be easily separated.

縦型筒体6の上部には、出口部13側へと流動する樹脂ペレットPが接触する障害物26が分離室9と出口部13との間に設けられている。この障害物26は下広がりの円錐網27により構成され、下端側の周縁部が上部筒体16の下部内周に固定され、上端側の周縁部が頂壁11に固定されている。   At the upper part of the vertical cylinder 6, an obstacle 26 is provided between the separation chamber 9 and the outlet part 13 where the resin pellets P flowing toward the outlet part 13 come into contact. The obstacle 26 is constituted by a conical net 27 that spreads downward. A peripheral edge on the lower end side is fixed to the lower inner periphery of the upper cylindrical body 16, and a peripheral edge on the upper end side is fixed to the top wall 11.

縦型筒体6内には貯留タンク3内の樹脂ペレットPの貯留レベルLを検出する検出手段28が設けられている。この検出手段28は縦型筒体6の頂壁11上の略中央に配置されたモータ29と、このモータ29により駆動され且つ縦型筒体6内の略中心部に上下方向に配置された回転軸30と、この回転軸30の下端に固定され且つ貯留タンク3内の上部に配置された回転翼31とを備え、モータ29により回転軸30を介して回転翼31を回転させておき、貯留タンク3内の樹脂ペレットPが所定の貯留レベルLまで溜まって回転翼31にかかる所定以上の負荷が加わったときにモータ29が停止して、貯留タンク3内の樹脂ペレットPが回転翼31に対応する貯留レベルLまで溜まったことを検出するようになっている。   A detecting means 28 for detecting the storage level L of the resin pellet P in the storage tank 3 is provided in the vertical cylinder 6. The detection means 28 is a motor 29 disposed substantially at the center on the top wall 11 of the vertical cylinder 6 and is driven by the motor 29 and disposed vertically at a substantially central portion in the vertical cylinder 6. A rotary shaft 30 and a rotary blade 31 fixed to the lower end of the rotary shaft 30 and arranged at the upper part in the storage tank 3 are provided, and the rotary blade 31 is rotated by the motor 29 via the rotary shaft 30. When the resin pellet P in the storage tank 3 accumulates to a predetermined storage level L and a load exceeding a predetermined value is applied to the rotor blade 31, the motor 29 is stopped and the resin pellet P in the storage tank 3 is transferred to the rotor blade 31. It is detected that the reservoir level L corresponding to is accumulated.

樹脂成型機に成型原料の樹脂ペレットPを供給する場合には、先ず樹脂ペレットPを空気洗浄して、その表面に付着する塵、その他の微粉を除去する。この樹脂ペレットPの空気洗浄に際しては、開閉弁23を閉じ吸引手段5を作動させて、吸引手段5の吸引作用によりペレット供給手段1、分離手段2、集塵手段4を含む経路で空気を流動させながら、供給手段1から分離手段2へと空気搬送により樹脂ペレットPを供給して、分離手段2で樹脂ペレットPを空気洗浄して微粉と分離し、その洗浄された樹脂ペレットPを貯留タンク3に溜めて、微粉を含む含塵空気を集塵手段4へと送って集塵する。   When supplying the resin pellets P of the molding raw material to the resin molding machine, the resin pellets P are first washed with air to remove dust and other fine powder adhering to the surface. When the resin pellet P is washed with air, the opening / closing valve 23 is closed and the suction means 5 is operated, and air flows through a path including the pellet supply means 1, the separation means 2, and the dust collection means 4 by the suction action of the suction means 5. Then, the resin pellets P are supplied from the supply unit 1 to the separation unit 2 by air conveyance, and the separation unit 2 cleans the resin pellets P with air to separate them from fine powders. The washed resin pellets P are stored in the storage tank. 3, dust-containing air containing fine powder is sent to the dust collecting means 4 for dust collection.

吸引手段5が作動すると、出口部13から縦型筒体6内の空気を吸引するため、供給手段1から供給された樹脂ペレットPが空気流により分離手段2へと搬送されて行く。そして、この分離手段2では、樹脂ペレットPは空気流と共に入口部14から縦型筒体6の下端側の環状通路24へと流入し、この環状通路24で上昇隘路7の略全周に略均一に分散された後、上昇隘路7の全周で下端から上端へと十分な流速で急速に上昇する。   When the suction means 5 is activated, the resin pellet P supplied from the supply means 1 is conveyed to the separation means 2 by the air flow in order to suck the air in the vertical cylinder 6 from the outlet portion 13. In the separation means 2, the resin pellets P flow from the inlet portion 14 into the annular passage 24 on the lower end side of the vertical cylindrical body 6 together with the air flow. After being evenly dispersed, it rises rapidly at a sufficient flow rate from the lower end to the upper end along the entire circumference of the ascending bottleneck 7.

上昇隘路7の上端から分離室9に入ると、分離室9の通路断面積が上昇隘路7に較べて大になるため、分離室9内の空気流の流速が低下する。そして、上昇隘路7の全周で分離室9へと流入した樹脂ペレットPは、図4に示すように分離室9の外周部分から中央側へと向かって上下方向の略中央又はそれ以上まで飛行した後、貯留タンク3側へと下方に落下する。また微粉は空気流によって出口部13へと送られる。   When the separation chamber 9 is entered from the upper end of the ascending bottleneck 7, the cross-sectional area of the separation chamber 9 becomes larger than that of the ascending bottleneck 7, so that the flow velocity of the air flow in the separation chamber 9 is reduced. Then, the resin pellet P that has flowed into the separation chamber 9 along the entire circumference of the ascending bottleneck 7 flies to approximately the center or higher in the vertical direction from the outer peripheral portion of the separation chamber 9 toward the center as shown in FIG. After that, it falls downward to the storage tank 3 side. The fine powder is sent to the outlet 13 by an air flow.

これによって樹脂ペレットPと微粉とを効率的に分離でき、その樹脂ペレットPを確実に空気洗浄することができる。そして、洗浄された樹脂ペレットPは分離室9の下側の貯留タンク3内に貯留され、また微粉は含塵空気となって集塵手段4へと送られて集塵される。   As a result, the resin pellet P and the fine powder can be efficiently separated, and the resin pellet P can be reliably washed with air. The washed resin pellets P are stored in the storage tank 3 below the separation chamber 9, and the fine powder is sent as dust-containing air to the dust collecting means 4 to be collected.

分離室9内に流入する樹脂ペレットPの供給量が少なくなる等のバラツキがあれば、樹脂ペレットPが分離室9を飛び越えて出口部13へと通過しようとするが、このような場合にその樹脂ペレットPが円錐網27に衝突した後、分離室9内を下方の貯留タンク3へと落下する。従って、樹脂ペレットPが分離室9を通過して集塵手段4へと送られるようなことはない。   If there is a variation such as a decrease in the amount of resin pellets P flowing into the separation chamber 9, the resin pellets P will attempt to pass over the separation chamber 9 and pass to the outlet portion 13. After the resin pellet P collides with the conical mesh 27, it falls into the lower storage tank 3 in the separation chamber 9. Therefore, the resin pellets P are not sent to the dust collecting means 4 through the separation chamber 9.

樹脂ペレットPの洗浄中は、モータ29により回転翼31を回転させておく。そして、貯留タンク3内の樹脂ペレットPのレベルが上昇して回転翼31にかかる負荷が大になると、モータ29が停止して、貯留タンク3内の樹脂ペレットPが所定の貯留レベルLにあることを検出手段28が検出する。   During the cleaning of the resin pellet P, the rotating blade 31 is rotated by the motor 29. And if the level of the resin pellet P in the storage tank 3 rises and the load concerning the rotary blade 31 becomes large, the motor 29 will stop and the resin pellet P in the storage tank 3 will be in the predetermined storage level L. This is detected by the detecting means 28.

このように微粉を含む樹脂ペレットPを上昇隘路7から分離室9へと空気流によって流入させて、その分離室9内で重量の大小によって樹脂ペレットPと微粉とを分離することにより、装置全体を簡単且つ小型化しながらも、樹脂ペレットPの表面に付着した樹脂粉、ゴミその他の微粉を効率的に高精度で除去することができる。   Thus, the resin pellet P containing fine powder is caused to flow into the separation chamber 9 from the ascending channel 7 by the air flow, and the resin pellet P and the fine powder are separated in the separation chamber 9 according to the size of the weight. The resin powder, dust and other fine powder adhering to the surface of the resin pellet P can be efficiently and highly accurately removed while the size of the resin pellet P is simple and small.

特に縦型筒体6とその内側の隘路形成筒体8とによって上昇隘路7を形成し、この上昇隘路7の上端から分離室9内に樹脂ペレットPを流入させるため、樹脂ペレットPを分離室8に対してその外周側から円筒状に流入させることができる。従って、樹脂ペレットPが空気流に対して接触し易くなり、樹脂ペレットPを効率的に空気洗浄することができる。   In particular, the vertical cylindrical body 6 and the inner narrow passage forming cylindrical body 8 form a rising narrow passage 7, and the resin pellet P is allowed to flow into the separation chamber 9 from the upper end of the rising narrow passage 7. 8 can flow in a cylindrical shape from its outer peripheral side. Therefore, the resin pellets P can easily come into contact with the air flow, and the resin pellets P can be efficiently cleaned with air.

しかも隘路形成筒体8の内部を貯留タンク3としており、分離室9で微粉と分離された樹脂ペレットPを分離室9の下側の隘路形成筒体8内の貯留タンク3で直接受けて貯留するため、隘路形成筒体8内の空間を有効に利用できると共に、隘路形成筒体8と貯留タンク3とを別々に設ける場合に比較して構造的に簡単になり部材の無駄も防止できる。   Moreover, the inside of the bottleneck forming cylinder 8 is used as the storage tank 3, and the resin pellet P separated from the fine powder in the separation chamber 9 is directly received and stored in the storage tank 3 in the bottleneck forming cylinder 8 below the separation chamber 9. Therefore, the space in the bottleneck forming cylinder 8 can be used effectively, and the structure can be simplified compared to the case where the bottleneck forming cylinder 8 and the storage tank 3 are provided separately, and waste of members can be prevented.

また縦型筒体6の下端部に環状通路24を設け、入口部14から入った微粉を含む樹脂ペレットPを環状通路24で上昇隘路7の略全周に分散させるようにしているので、上昇隘路7の通路断面積を小さくしても、樹脂ペレットPを上昇隘路7の略全周に均一に分散させることができる。しかも貯留タンク3のテーパー部21の外周を利用して環状通路24を形成しているので、縦型筒体6を略直円筒状にすることも可能である。   In addition, an annular passage 24 is provided at the lower end of the vertical cylinder 6 so that the resin pellets P containing fine powder entering from the inlet portion 14 are dispersed in the annular passage 24 over substantially the entire circumference of the ascending channel 7. Even if the passage cross-sectional area of the narrow path 7 is reduced, the resin pellets P can be uniformly dispersed on substantially the entire circumference of the rising narrow path 7. Moreover, since the annular passage 24 is formed using the outer periphery of the tapered portion 21 of the storage tank 3, the vertical cylinder 6 can be formed into a substantially cylindrical shape.

図5、図6は本発明の第2の実施例を例示し、縦型筒体6の上部、特にその上部筒体16内に配置される障害物26を棒状の障害部材33により構成したものを例示する。障害部材33は出口部13と略直角方向に略等間隔をおいて平行に配置された複数本を一組として、上部筒体16の出口部13よりも下の開口側に上下方向に複数組設けられている。上下の各組の障害部材33は、下側の隣り合う障害部材33間に上側の障害部材33が位置すべく千鳥状に配置されている。   5 and 6 exemplify a second embodiment of the present invention, in which an obstacle 26 arranged in the upper part of the vertical cylinder 6, particularly in the upper cylinder 16, is constituted by a rod-like obstacle member 33. Is illustrated. The obstruction member 33 includes a plurality of obstruction members 33 arranged in parallel at substantially equal intervals in the direction substantially perpendicular to the outlet portion 13, and a plurality of obstruction members 33 are formed vertically on the opening side below the outlet portion 13 of the upper cylindrical body 16. Is provided. The upper and lower obstacle members 33 are arranged in a staggered manner so that the upper obstacle member 33 is positioned between the lower adjacent obstacle members 33.

上部筒体16は障害部材33により通路断面積が小さくならないように、その下側の検視筒体17よりも大径になっており、下端のフランジ16aが検視筒体17の上端のフランジ17aにボルト34等で着脱自在に固定されている。検視筒体17の上端内周は、障害部材33に衝突して落下した樹脂ペレットPが貯留タンク3内へと滑落し易くなるようにテーパー状の案内面17bが設けられている。   The upper cylinder 16 has a diameter larger than that of the lower inspection cylinder 17 so that the cross-sectional area of the upper cylinder 16 is not reduced by the obstruction member 33, and the lower flange 16 a is connected to the upper flange 17 a of the inspection cylinder 17. It is detachably fixed with a bolt 34 or the like. A tapered guide surface 17 b is provided on the inner periphery of the upper end of the inspection cylinder 17 so that the resin pellets P that have collided with the obstacle member 33 and dropped can be easily slid into the storage tank 3.

なお、この実施例では、上部筒体16をその下側の検視筒体17に対して着脱自在にしているが、上部筒体16はその下側の筒体に対して着脱自在であればよい。障害部材33は丸棒状でもよい。   In this embodiment, the upper cylinder 16 is detachable from the lower inspection cylinder 17, but the upper cylinder 16 only needs to be detachable from the lower cylinder. . The obstruction member 33 may have a round bar shape.

このように複数本の障害部材33を簀の子状に配置し、上下の障害部材33が千鳥状となるように上下方向に複数組設けて障害物26を構成してもよい。このようにすれば、障害部材33で迷路が形成されるので、樹脂ペレットPの通過を殆ど防止することができる。また上部筒体16を大径にしているので、多数の障害部材33を近接して配置する場合でも、通路断面積の低下を防止でき、障害部材33間での空気流が早くなるようなこともない。更に障害物26に微粉が付着した場合には、上部筒体16を取り外すことにより容易に清掃が可能である。   As described above, the obstacle 26 may be configured by arranging a plurality of obstacle members 33 in a cage shape and providing a plurality of pairs in the vertical direction so that the upper and lower obstacle members 33 are staggered. In this way, since the maze is formed by the obstacle member 33, the passage of the resin pellet P can be almost prevented. Further, since the upper cylindrical body 16 has a large diameter, it is possible to prevent a reduction in the cross-sectional area of the passage even when many obstacle members 33 are arranged close to each other, and the air flow between the obstacle members 33 is accelerated. Nor. Further, when fine powder adheres to the obstacle 26, it can be easily cleaned by removing the upper cylindrical body 16.

図7は本発明の第3の実施例を例示する。この実施例では、縦型筒体6と貯留タンク3とが支持台10上に着脱自在に装着され、必要に応じて縦型筒体6と貯留タンク3とが分離可能になっている。貯留タンク3は隘路形成筒体8側とその下端のテーパー部21とから構成されている。   FIG. 7 illustrates a third embodiment of the present invention. In this embodiment, the vertical cylinder 6 and the storage tank 3 are detachably mounted on the support base 10, and the vertical cylinder 6 and the storage tank 3 can be separated as required. The storage tank 3 is composed of a bottleneck forming cylinder 8 side and a tapered portion 21 at the lower end thereof.

隘路形成筒体8は下端のフランジ8aが支持台10上に載置され、その下側にテーパー部21が固定されている。縦型筒体6は外側に拡径して形成された拡径部36を有し、この拡径部36の下端のフランジ37がボルト38によりフランジ8a上に分離可能に固定されている。そして、フランジ8aの上側で拡径部36の内周に環状通路24が形成されている。   In the bottle forming cylinder 8, a lower end flange 8a is placed on the support base 10, and a tapered portion 21 is fixed to the lower side thereof. The vertical cylindrical body 6 has an enlarged diameter portion 36 formed with an enlarged diameter on the outside, and a flange 37 at the lower end of the enlarged diameter portion 36 is fixed to the flange 8a by a bolt 38 so as to be separable. And the annular channel | path 24 is formed in the inner periphery of the enlarged diameter part 36 above the flange 8a.

このように縦型筒体6と貯留タンク3とを分離可能にしておけば、縦型筒体6と貯留タンク3との間の上昇隘路7に微粉その他が付着した場合にも、両者を分離することにより容易に清掃が可能である。また環状通路24は縦型筒体6の一部に外側に膨らむ拡径部36を設けて形成することもできる。   If the vertical cylinder 6 and the storage tank 3 can be separated in this way, even when fine powder or the like adheres to the ascending channel 7 between the vertical cylinder 6 and the storage tank 3, they are separated. This makes it easy to clean. The annular passage 24 can also be formed by providing an enlarged diameter portion 36 that swells outward in a part of the vertical cylinder 6.

図8は本発明の第4の実施例を例示する。この実施例では、縦型筒体6内の下部には隘路形成筒体8が配置され、この隘路形成筒体8により縦型筒体6との間に上昇隘路7が形成されている。貯留タンク3は縦型筒体6から離れてその下方に配置され、分離室9で分離された樹脂ペレットPは隘路形成筒体8を経て下側の貯留タンク3へと案内されるようになっている。   FIG. 8 illustrates a fourth embodiment of the present invention. In this embodiment, a bottleneck forming cylinder 8 is disposed in the lower part of the vertical cylinder 6, and a rising bottleneck 7 is formed between the bottleneck forming cylinder 8 and the vertical cylinder 6. The storage tank 3 is disposed below and away from the vertical cylinder 6, and the resin pellets P separated in the separation chamber 9 are guided to the lower storage tank 3 via the bottleneck forming cylinder 8. ing.

隘路形成筒体8は下部にテーパー部21を介して案内筒体39を有し、この案内筒体39が支持台10上にナット40等により着脱自在に固定されている。縦型筒体6は下端のフランジ37がボルト38により支持台10に着脱自在に固定されている。貯留タンク3は案内筒体39の下端に固定された蓋体41と、この蓋体41の下側に着脱自在に装着されたタンク本体42とを有し、タンク本体42の下側に取り出し口22と開閉弁23とが設けられている。   The bottle forming cylinder 8 has a guide cylinder 39 at a lower portion through a tapered portion 21, and the guide cylinder 39 is detachably fixed on the support base 10 by a nut 40 or the like. In the vertical cylinder 6, a flange 37 at the lower end is detachably fixed to the support base 10 by a bolt 38. The storage tank 3 has a lid 41 fixed to the lower end of the guide cylinder 39 and a tank main body 42 detachably attached to the lower side of the lid 41, and a take-out port is provided below the tank main body 42. 22 and an on-off valve 23 are provided.

このように縦型筒体6内に隘路形成筒体8を配置し、貯留タンク3を縦型筒体6の外部に設ければ、縦型筒体6の直径を比較的小さく抑えつつ貯留タンク3の容積を十分に確保することができる。   If the bottleneck forming cylinder 8 is arranged in the vertical cylinder 6 and the storage tank 3 is provided outside the vertical cylinder 6 as described above, the storage tank is kept while keeping the diameter of the vertical cylinder 6 relatively small. A sufficient volume of 3 can be secured.

図9は本発明の第5の実施例を例示する。この実施例では、縦型筒体6内の隘路形成筒体8は、その内部の樹脂ペレットPの貯留レベルLよりも上方に延びており、その上端は貯留レベルLと含塵空気の出口部13との略中間又はその近傍に位置している。そして、この隘路形成筒体8の上側が分離室9となっている。また縦型筒体6には、隘路形成筒体8内の樹脂ペレットPの貯留レベルLの上側近傍に対応して複数個(例えば周方向に2個、3個又は4個程度)の除電空気供給口25が周方向に略等間隔をおいて設けられ、またこの除電空気供給口25に対向して隘路形成筒体8に開口43が設けられている。他の構成は第1の実施例と略同様である。   FIG. 9 illustrates a fifth embodiment of the present invention. In this embodiment, the bottleneck forming cylinder 8 in the vertical cylinder 6 extends above the storage level L of the resin pellet P therein, and the upper end thereof is the outlet level of the storage level L and the dust-containing air. 13 or approximately in the vicinity thereof. The upper side of this bottleneck forming cylinder 8 is a separation chamber 9. The vertical cylinder 6 has a plurality of (for example, two, three, or four in the circumferential direction) static elimination air corresponding to the vicinity of the upper side of the storage level L of the resin pellet P in the bottle forming cylinder 8. The supply port 25 is provided at substantially equal intervals in the circumferential direction, and the opening 43 is provided in the narrow channel forming cylinder 8 so as to face the charge removal air supply port 25. Other configurations are substantially the same as those of the first embodiment.

この場合には、第1の実施例と同様の作用により樹脂ペレットPの微粉を分離し除去するが、微粉の除去効率が更に向上する利点がある。何故なら、縦型筒体6内の隘路形成筒体8が樹脂ペレットPの貯留レベルLを越えて大きく上方に延びており、その上端位置が貯留レベルLと出口部13との略中間に位置するため、樹脂ペレットPが上昇隘路7を経て分離室9まで上昇するときの上昇距離が長くなり、また上昇後の樹脂ペレットPが貯留レベルLまで落下するときの落下距離を大にできる。   In this case, although the fine powder of the resin pellet P is separated and removed by the same action as in the first embodiment, there is an advantage that the fine powder removal efficiency is further improved. This is because the bottle forming cylinder 8 in the vertical cylinder 6 extends greatly upward beyond the storage level L of the resin pellet P, and its upper end position is located approximately in the middle between the storage level L and the outlet portion 13. Therefore, the rising distance when the resin pellet P rises to the separation chamber 9 via the rising bottleneck 7 becomes long, and the falling distance when the raised resin pellet P falls to the storage level L can be increased.

一方、縦型筒体6には貯留レベルLの上側に対応して周方向に複数個の除電空気供給口25があり、この各除電空気供給口25に対応して隘路形成筒体8に開口43があるため、除電空気供給口25から供給された除電空気の一部が上昇隘路7を経て樹脂ペレットPと一緒に上昇し、残りの一部が開口43を経て隘路形成筒体8内に入り、上方から落下する樹脂ペレットPに逆らいながら隘路形成筒体8内を上昇する。   On the other hand, the vertical cylinder 6 has a plurality of static elimination air supply ports 25 in the circumferential direction corresponding to the upper side of the storage level L, and is open to the bottleneck formation cylinder 8 corresponding to each of the static elimination air supply ports 25. 43, a part of the static elimination air supplied from the static elimination air supply port 25 rises together with the resin pellet P via the ascending bottleneck 7, and the remaining part passes through the opening 43 into the bottleneck forming cylinder 8. The inside of the bottle forming cylinder 8 is raised while countering the resin pellet P that enters and falls from above.

このため樹脂ペレットPの上昇距離、落下距離が増加する上に、その距離の増加に伴って除電空気と樹脂ペレットPとが接触する時間が長くなって除電空気による樹脂ペレットPの除電効果が向上するので、樹脂ペレットPからの微粉の除去効率が著しく向上する利点がある。また上昇隘路7が長くなるため、上昇隘路7から分離室9へと飛び出したときの樹脂ペレットPの分離室9での飛行が安定し易くなり、樹脂ペレットPから微粉を安定的に除去することができる。   For this reason, the rising distance and falling distance of the resin pellet P increase, and as the distance increases, the time during which the static elimination air and the resin pellet P are in contact with each other increases, and the static elimination effect of the resin pellet P by the static elimination air is improved. Therefore, there is an advantage that the removal efficiency of the fine powder from the resin pellet P is remarkably improved. Further, since the rising bottleneck 7 becomes longer, the flight of the resin pellet P in the separation chamber 9 when it jumps out from the rising bottleneck 7 to the separation chamber 9 is easily stabilized, and fine powder can be stably removed from the resin pellet P. Can do.

なお、この実施例では、縦型筒体6の上下方向の略中央に除電空気供給口25があるが、樹脂ペレットPの入口部14を除電空気供給口25の下側近傍にすれば、その入口部14から下側の縦型筒体6は省略してもよい。   In this embodiment, there is a static elimination air supply port 25 at the approximate center of the vertical cylinder 6 in the vertical direction. However, if the inlet 14 of the resin pellet P is located near the lower side of the static elimination air supply port 25, The vertical cylindrical body 6 below the inlet 14 may be omitted.

以上、本発明の各実施例について詳述したが、本発明はこれらの実施例に限定されるものではなく、その他種々の態様で実施することができる。例えば、実施例では、分離手段2の下流側に吸引手段5を配置して、この吸引手段5の吸引作用により、樹脂ペレットPを分離手段2へと空気搬送するようにしているが、分離手段2の上流側に送風手段を設けて、樹脂ペレットPを分離手段2へと空気搬送により圧送するようにしてもよい。   As mentioned above, although each Example of this invention was explained in full detail, this invention is not limited to these Examples, It can implement in another various aspect. For example, in the embodiment, the suction means 5 is arranged on the downstream side of the separation means 2, and the resin pellet P is pneumatically conveyed to the separation means 2 by the suction action of the suction means 5. A blowing means may be provided on the upstream side of 2, and the resin pellets P may be sent to the separation means 2 by air conveyance.

実施例では縦型筒体6に透明な検視筒体17を設けて、この検視筒体17の外周から分離室9内の樹脂ペレットPと微粉との分離状況を確認できるようにしているが、検視筒体17を設けずに直円筒状の縦型筒体6を使用してもよい。また直円筒状の縦型筒体6の一部に、透明板により塞がれた検視窓を分離室9に対応して設け、その検視窓から検視できるようにしてもよい。   In the embodiment, a transparent inspection cylinder 17 is provided in the vertical cylinder 6 so that the separation state of the resin pellets P and fine powder in the separation chamber 9 can be confirmed from the outer periphery of the inspection cylinder 17. The straight cylindrical body 6 may be used without providing the inspection cylinder 17. Further, a viewing window closed by a transparent plate may be provided in a part of the vertical cylindrical body 6 corresponding to the separation chamber 9 so that the viewing can be performed from the viewing window.

縦型筒体6、隘路形成筒体8、貯留タンク3は円筒状の他、角筒状でもよい。入口部14は環状通路24に対して接線方向に設けてもよい。出口部13は縦型筒体6の頂壁11に設けてもよい。樹脂ペレットPは球状、柱状、その他の形状でもよい。また各実施例では、樹脂ペレットPの微粉を除去する微粉除去装置を例示しているが、樹脂ペレットP以外の粒状物に付着する微粉の除去にも採用可能である。   The vertical cylindrical body 6, the bottleneck forming cylindrical body 8, and the storage tank 3 may have a rectangular cylindrical shape in addition to a cylindrical shape. The inlet 14 may be provided tangential to the annular passage 24. The outlet 13 may be provided on the top wall 11 of the vertical cylinder 6. The resin pellet P may be spherical, columnar, or other shapes. Moreover, although each Example has illustrated the fine powder removal apparatus which removes the fine powder of the resin pellet P, it is employable also for the removal of the fine powder adhering to granular materials other than the resin pellet P. FIG.

3 貯留タンク
6 縦型筒体
7 上昇隘路
8 隘路形成筒体
9 分離室
13 出口部
14 入口部
21 テーパー部
22 取り出し口
23 開閉弁
24 環状通路
25 除電空気供給口
26 障害物
P 樹脂ペレット(粒状物)
L 貯留レベル
DESCRIPTION OF SYMBOLS 3 Storage tank 6 Vertical cylinder 7 Ascending bottleneck 8 Narrow channel formation cylinder 9 Separation chamber 13 Outlet part 14 Inlet part 21 Taper part 22 Outlet 23 Open / close valve 24 Annular passage 25 Static elimination air supply port 26 Obstacle P Resin pellet (granular) object)
L Storage level

Claims (5)

下部に微粉を含む粒状物(P)の入口部(14)を、上部に含塵空気の出口部(13)を夫々有する縦型筒体(6)と、該縦型筒体(6)内で該縦型筒体(6)との間に粒状物(P)が上昇する上昇隘路(7)を形成し且つ微粉と分離されて上側から落下する粒状物(P)を案内する隘路形成筒体(8)と、前記縦型筒体(6)内で前記隘路形成筒体(8)よりも上側に設けられ且つ前記上昇隘路(7)よりも通路断面積の大きい分離室(9)とを備え、前記上昇隘路(7)内を上昇する粒状物(P)に対して除電空気を供給し、且つ前記隘路形成筒体(8)内を落下する粒状物(P)に対して前記上昇隘路(7)から前記隘路形成筒体(8)の開口(43)を経て除電空気を供給して夫々除電するための除電空気供給口(25)を前記縦型筒体(6)に設けたことを特徴とする粒状物の微粉除去装置。   A vertical cylinder (6) having an inlet part (14) of particulate matter (P) containing fine powder in the lower part and an outlet part (13) of dust-containing air in the upper part, and the inside of the vertical cylinder (6) In this way, the ascending channel (7) in which the granular material (P) ascends is formed between the vertical cylindrical body (6) and the granular material (P) separated from the fine powder and falling from the upper side is guided. A body (8), a separation chamber (9) provided in the vertical cylinder (6) above the bottleneck forming cylinder (8) and having a larger passage cross-sectional area than the rising bottleneck (7) The discharge air is supplied to the particulate matter (P) that rises in the ascending bottleneck (7), and the ascent to the particulate matter (P) that falls in the bottleneck forming cylinder (8) The vertical discharge air supply port (25) for supplying static electricity from the narrow path (7) through the opening (43) of the narrow path forming cylinder (8) to remove static electricity is provided in the vertical type. Fines removal apparatus of particulates, characterized in that provided in the body (6). 前記縦型筒体(6)及び前記隘路形成筒体(8)は略同心状に配置された円筒状であり、前記隘路形成筒体(8)内を貯留タンク(3)とし、該貯留タンク(3)にその取り出し口(22)を開閉する開閉弁(23)を備えたことを特徴とする請求項に記載の粒状物の微粉除去装置。 The vertical cylindrical body (6) and the bottleneck forming cylinder (8) are cylindrically arranged substantially concentrically, and the inside of the bottleneck forming cylinder (8) serves as a storage tank (3), and the storage tank The particulate matter removing apparatus according to claim 1 , further comprising an on-off valve (23) for opening and closing the take-out port (22) in (3). 前記隘路形成筒体(8)は下部にテーパー部(21)を有し、該テーパー部(21)の外周に、前記入口部(14)から流入する粒状物(P)を前記上昇隘路(7)の下端側の略全周に分散させる環状通路(24)を設けたことを特徴とする請求項又はに記載の粒状物の微粉除去装置。 The said bottleneck formation cylinder (8) has a taper part (21) in the lower part, and the granular material (P) which flows in from the said inlet part (14) to the outer periphery of this taper part (21) is said ascending bottleneck (7 The fine particle removing apparatus for particulate matter according to claim 1 or 2 , further comprising an annular passage (24) that is dispersed on substantially the entire circumference on the lower end side. 前記分離室(9)と前記出口部(13)との間に、前記出口部(13)へ入ろうとする粒状物(P)と接触して前記隘路形成筒体(8)内に落下させるための障害物(26)を配置したことを特徴とする請求項1〜3の何れかに記載の粒状物の微粉除去装置。 Between the separation chamber (9) and the outlet portion (13) to come into contact with the particulate matter (P) entering the outlet portion (13) and fall into the bottleneck forming cylinder (8) The obstacle (26) of this is arrange | positioned, The fine powder removal apparatus of the granular material in any one of Claims 1-3 characterized by the above-mentioned. 前記隘路形成筒体(8)内の粒状物(P)の貯留レベル(L)よりも上側で前記縦型筒体(6)内に除電空気を供給する前記除電空気供給口(25)を該縦型筒体(6)に周方向に複数個設け、前記隘路形成筒体(8)に前記除電空気供給口(25)の内側に対応して複数個の前記開口(43)を設け、前記隘路形成筒体(8)の上端を前記開口(43)と前記縦型筒体(6)の前記出口部(13)との中間に位置させたことを特徴とする請求項1〜4の何れかに記載の粒状物の微粉除去装置。 The static elimination air supply port (25) for supplying static elimination air into the vertical cylinder (6) above the storage level (L) of the particulate matter (P) in the bottleneck formation cylinder (8) A plurality of the vertical cylinders (6) are provided in the circumferential direction, and a plurality of the openings (43) corresponding to the inside of the static elimination air supply port (25) are provided in the bottleneck formation cylinder (8), any bottleneck forming cylinder upper end (8) of claims 1 to 4, characterized in that intermediate is positioned between the outlet portion of the opening (43) and the vertical tubular member (6) (13) An apparatus for removing fines of particulate matter according to any one of the above.
JP2009010785A 2009-01-21 2009-01-21 Particulate matter removal device Active JP4932858B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009010785A JP4932858B2 (en) 2009-01-21 2009-01-21 Particulate matter removal device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009010785A JP4932858B2 (en) 2009-01-21 2009-01-21 Particulate matter removal device

Publications (2)

Publication Number Publication Date
JP2010167345A JP2010167345A (en) 2010-08-05
JP4932858B2 true JP4932858B2 (en) 2012-05-16

Family

ID=42699982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009010785A Active JP4932858B2 (en) 2009-01-21 2009-01-21 Particulate matter removal device

Country Status (1)

Country Link
JP (1) JP4932858B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014091118A (en) * 2012-11-07 2014-05-19 Fts:Kk Powder-removing device for granular material, and powder-removing system for crushed material equipped with the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53121272A (en) * 1977-03-31 1978-10-23 Hitachi Ltd Dust collector
JPS60140657A (en) * 1983-12-27 1985-07-25 Matsushita Electric Ind Co Ltd Production of hydrogen-occluding electrode
JP3769034B2 (en) * 1994-01-24 2006-04-19 松下エコシステムズ株式会社 Water drop separator
JPH0839550A (en) * 1994-07-28 1996-02-13 Olympus Optical Co Ltd Removing device of dust from pellet
JP4968143B2 (en) * 2007-04-10 2012-07-04 株式会社カネカ Wind separation method

Also Published As

Publication number Publication date
JP2010167345A (en) 2010-08-05

Similar Documents

Publication Publication Date Title
JP4344730B2 (en) Particulate matter removal device
US4198290A (en) Dust separating equipment
US7621975B2 (en) Compact deduster with cyclonic air recycling
SE425945B (en) DEVICE FOR A DUST FILTER
US4654059A (en) Multistage rotary dust collector
KR101541921B1 (en) Powder removing device and granule object separation system
JP2007050354A (en) Powder extraction apparatus
US4631124A (en) Kinetic gravity deduster
IL271620B2 (en) Centrifugal gas separator
US4300921A (en) Apparatus and method for removing finely divided solids from gases
CN112337195A (en) Separator with partial filter
US8349059B2 (en) Pocketed cyclonic separator
US3042202A (en) Cyclone classifier
JP4932858B2 (en) Particulate matter removal device
CN212143467U (en) Light and heavy garbage material conveying, separating and dedusting system
JP4383073B2 (en) Cyclone type air flow separation device
JP4733531B2 (en) Separation method and separation apparatus
KR102001630B1 (en) Rotary Filtering Apparatus
KR101536694B1 (en) Separator for sorting particulate material
JP5603128B2 (en) Separation device
US418836A (en) Dust-collector
CA1127561A (en) Method and apparatus for the intermittent, regenerating cleaning of a filter bed
KR101202842B1 (en) A particulate matter segregating device
RU168683U1 (en) DUST CATCHER CLASSIFIER
KR100576292B1 (en) Minuteness dust collection device using cyclone

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100921

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120215

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4932858

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250