JP4982093B2 - Joining structure and joining method near the abutment - Google Patents

Joining structure and joining method near the abutment Download PDF

Info

Publication number
JP4982093B2
JP4982093B2 JP2006058720A JP2006058720A JP4982093B2 JP 4982093 B2 JP4982093 B2 JP 4982093B2 JP 2006058720 A JP2006058720 A JP 2006058720A JP 2006058720 A JP2006058720 A JP 2006058720A JP 4982093 B2 JP4982093 B2 JP 4982093B2
Authority
JP
Japan
Prior art keywords
floor slab
slab
extended
bridge
extended floor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006058720A
Other languages
Japanese (ja)
Other versions
JP2007239178A (en
Inventor
高行 富永
誠道 大場
勝美 真浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2006058720A priority Critical patent/JP4982093B2/en
Publication of JP2007239178A publication Critical patent/JP2007239178A/en
Application granted granted Critical
Publication of JP4982093B2 publication Critical patent/JP4982093B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Bridges Or Land Bridges (AREA)

Description

本発明は、道路橋等の橋梁における橋台部付近の接合構造及び接合方法に関するものである。   The present invention relates to a joining structure and a joining method in the vicinity of an abutment portion in a bridge such as a road bridge.

例えば、特許文献1には、橋梁の温度変化による橋軸方向の伸縮を吸収するために、土工部の上部に伸縮装置を設置する構造が開示されている。この構造は、図16に示すように、橋台4の上端面及び土工部6の路盤上に設置されるプレキャストコンクリート(以下、Pcaという)製の底版50と、この底版50の上面に設置されるPca製の延長床版51と、延長床版51の土工部6側に載置される2台の着脱式床版52a、52bと、これら着脱式床版52a、52bの間に設置され、橋桁11の橋軸方向への伸縮を吸収するための伸縮装置19とからなり、橋桁11が温度変化により橋軸方向へ伸縮すると、延長床版51及び着脱式床版52aが底版50上を滑動するとともに、伸縮装置19が橋軸方向へ伸縮して橋桁11の伸縮を吸収するものである。また、橋桁11と延長床版51との間には連続床版53が設置され、この連続床版53と延長床版51とは継手54を介して接続されている。これは、車両が橋桁11上を通過する際に、橋梁1にたわみが生じて延長床版51がキックアップすることを継手54部分が回動することにより防止するものである。
特開2004−84280号公報
For example, Patent Document 1 discloses a structure in which an expansion / contraction device is installed on an upper part of an earthwork portion in order to absorb expansion / contraction in a bridge axis direction due to a temperature change of a bridge. As shown in FIG. 16, this structure is installed on a top plate of a precast concrete (hereinafter referred to as Pca) installed on the upper end surface of the abutment 4 and the roadbed of the earthwork unit 6, and on the upper surface of the bottom plate 50. An extension floor slab 51 made of Pca, two detachable floor slabs 52a and 52b mounted on the earthworking section 6 side of the extension floor slab 51, and these detachable floor slabs 52a and 52b. 11 and the expansion / contraction device 19 for absorbing expansion and contraction in the bridge axis direction. When the bridge girder 11 expands and contracts in the bridge axis direction due to temperature change, the extended floor slab 51 and the removable floor slab 52a slide on the bottom slab 50. At the same time, the expansion and contraction device 19 expands and contracts in the direction of the bridge axis to absorb the expansion and contraction of the bridge girder 11. A continuous floor slab 53 is installed between the bridge girder 11 and the extended floor slab 51, and the continuous floor slab 53 and the extended floor slab 51 are connected via a joint 54. This is to prevent the extension floor slab 51 from kicking up due to deflection of the bridge 1 when the vehicle passes over the bridge girder 11 by rotating the joint 54 portion.
JP 2004-84280 A

しかしながら、特許文献1に記載の延長床版を滑動させる方法では、延長床版の下面と底版の上面とが滑動できるように、それらを精度良く平滑に仕上げることが必要である。そのために、底版や延長床版として高価なPca製部材を使用しなければならず、材料及び製造コストが高くなるという問題点があった。   However, in the method of sliding the extended floor slab described in Patent Document 1, it is necessary to finish them accurately and smoothly so that the lower surface of the extended floor slab and the upper surface of the bottom plate can slide. Therefore, expensive Pca members have to be used as the bottom plate and the extended floor slab, and there is a problem that the material and the manufacturing cost increase.

また、現場でのPca製の延長床版及び底版の設置作業は、Pca部材が重量物であるために、運搬、据付け架台の設置、据付け作業等に手間を要し、施工コストが高くなるという問題があった。そこで、Pca部材を分割して設置する方法も用いられるが、分割された各部材を継手にて接続する作業は滑動面の平滑度の確保に留意しながら行うために、手間及び時間がかかるという問題点があった。   In addition, the installation work of Pca extended floor slab and bottom slab on site requires heavy labor for transportation, installation of the mounting base, installation work, etc., because the Pca member is heavy, and the construction cost increases. There was a problem. Then, although the method of dividing and installing the Pca member is also used, the work of connecting each divided member with a joint is performed while paying attention to ensuring the smoothness of the sliding surface, so it takes time and effort. There was a problem.

そこで、本発明は、上記の問題点を鑑みてなされたものであり、その目的は、施工性に優れた橋台付近の接合構造及び接合方法を提供することである。   Then, this invention is made | formed in view of said problem, The objective is to provide the joining structure and joining method of the abutment vicinity excellent in workability.

前記目的を達成するため、本発明の橋台部付近の接合構造は、橋梁の橋台上及び土工部の路盤上に設置される底版と、該底版上に設置される延長床版と、該延長床版の土工部側に設置される伸縮装置とから構成され、前記橋梁の伸縮に応じて前記延長床版が前記底版上を橋軸方向に滑動するとともに、前記伸縮装置が伸縮して前記橋梁の伸縮を吸収する橋台部付近の接合構造であって、前記底版又は前記延長床版の少なくとも一方は、現場で水硬化性物質を打設して構築されてなり、該現場で水硬化性物質を打設して構築された前記底版又は前記延長床版の少なくとも一方は、他方の前記底版又は前記延長床版と接触する側の面に、その接触面の摩擦係数が所定の摩擦係数以下である板材が前記打設された水硬化性物質と一体に固着されており、前記板材は、ビニロン繊維で補強されたセメントボードであり、前記底版又は前記延長床版に固着される側の面に、凹凸部が形成されると共に吸水を規制するための吸水調整剤が塗布されていることを特徴とする(第1の発明)。 In order to achieve the above object, the joint structure in the vicinity of the abutment part of the present invention includes a bottom slab installed on the abutment of the bridge and a roadbed of the earthwork part, an extended floor slab installed on the bottom slab, and the extension floor An extension device installed on the earthwork part side of the plate, and the extension floor slid on the bottom plate in the direction of the bridge axis according to the extension of the bridge, and the extension device expands and contracts to expand the bridge. A joining structure near an abutment that absorbs expansion and contraction, wherein at least one of the bottom slab or the extended floor slab is constructed by placing a water curable material on site, At least one of the bottom slab or the extended floor slab constructed by placing is placed on a surface in contact with the other bottom slab or the extended floor slab, and the friction coefficient of the contact surface is equal to or less than a predetermined friction coefficient. Contact plate is secured integrally with the punching set water curable materials The plate material is a cement board reinforced with vinylon fiber, and a water absorption adjusting agent is formed on the surface fixed to the bottom plate or the extended floor slab, and a water absorption adjusting agent for regulating water absorption is applied. It is characterized in that is (the first invention).

本発明による橋台部付近の接合構造によれば、所定の摩擦係数よりも小さい面を有する板材を現場で打設される水硬化性物質と一体化するために、底版又は延長床版の少なくとも一方を現場にて水硬化性物質を打設して構築することが可能である。また、底版又は延長床版の少なくとも一方を現場打設にて構築するために、PCa部材を用いる場合と比べてコストが削減されるとともに、作業性に優れているために、経済的な施工が可能である。   According to the joining structure in the vicinity of the abutment portion according to the present invention, in order to integrate the plate material having a surface smaller than the predetermined friction coefficient with the water curable material placed on site, at least one of the bottom plate and the extended floor slab is used. Can be constructed by placing a water curable material on site. Moreover, since at least one of the bottom slab or the extended floor slab is constructed on site, the cost is reduced as compared with the case where the PCa member is used and the workability is excellent. Is possible.

そして、橋梁が温度変化により伸縮しても、板材の摩擦係数が小さいために、延長床版は容易に底版上を滑動することができる。また、延長床版が容易に滑動するために、橋梁の伸縮が確実に伸縮装置に伝達され、この伸縮装置にて橋桁の伸縮を吸収することが可能である。   Even when the bridge expands and contracts due to temperature changes, the extension floor slab can easily slide on the bottom slab because the friction coefficient of the plate material is small. In addition, since the extended floor slab slides easily, the expansion and contraction of the bridge is reliably transmitted to the expansion and contraction device, and the expansion and contraction of the bridge girder can be absorbed by this expansion and contraction device.

第2の発明は、第1の発明において、前記板材の前記接触面は、耐摩耗性を有することを特徴とする。
本発明による橋台部付近の接合構造によれば、底版又は延長床版と接触する側の板材の面は耐摩耗性を有するために、延長床版が底版上を長期間にわたって滑動することが可能である。
According to a second invention, in the first invention, the contact surface of the plate member has wear resistance.
According to the joining structure in the vicinity of the abutment according to the present invention, the surface of the plate on the side contacting the bottom slab or the extended floor slab has wear resistance, so that the extended floor slab can slide on the bottom slab for a long period of time. It is.

第3の発明は、第1の発明において、前記橋桁と前記延長床版との間に現場で水硬化性物質を打設して構築された連続床版と、該連続床版と前記延長床版とを接続するための継手と、該連続床版と前記延長床版との接続部分を覆うように前記連続床版及び前記延長床版の上面に配置された遮水シートと、該連続床版と前記延長床版との間に充填された膨潤性止水材と、前記底版上部の所定の位置に設けられた排水溝とを更に備えることを特徴とする。   According to a third invention, in the first invention, a continuous floor slab constructed by placing a water-curable material on-site between the bridge girder and the extended floor slab, the continuous floor slab and the extension floor A joint for connecting the plate, a water shielding sheet disposed on an upper surface of the continuous floor slab and the extended floor slab so as to cover a connecting portion between the continuous floor slab and the extended floor slab, and the continuous floor It further comprises a swellable waterproofing material filled between the plate and the extended floor plate, and a drainage groove provided at a predetermined position on the bottom plate.

本発明による橋台部付近の接合構造によれば、連続床版と延長床版との接続部分を遮水シートで覆うことにより、接続部分への雨水等の浸透を防止することが可能である。
また、連続床版と延長床版との間に膨潤性止水材を充填することにより、連続床版と延長床版との間の雨水等の通過を防止することが可能である。
さらに、底版の上部に排水溝を設けることにより、連続床版と延長床版との間を通過した雨水等をすべて排水することが可能である。したがって、支承への雨水等の浸透を確実に防止するために、支承の性能を長期間維持することができ、橋梁の耐久性を向上させることが可能である。
According to the joining structure in the vicinity of the abutment portion according to the present invention, it is possible to prevent the penetration of rainwater or the like into the connection portion by covering the connection portion between the continuous floor slab and the extension floor slab with the water shielding sheet.
Moreover, it is possible to prevent the passage of rainwater or the like between the continuous floor slab and the extended floor slab by filling a swellable water blocking material between the continuous floor slab and the extended floor slab.
Furthermore, by providing a drainage groove in the upper part of the bottom slab, it is possible to drain all rainwater that has passed between the continuous slab and the extended slab. Therefore, in order to reliably prevent rainwater and the like from penetrating into the bearing, the performance of the bearing can be maintained for a long period of time, and the durability of the bridge can be improved.

第4の発明は、第3の発明において、前記継手はヒンジ構造を有することを特徴とする。
本発明による橋台部付近の接合構造によれば、継手をヒンジ構造とすることにより、延長床版のキックアップを防止することが可能である。
In a fourth aspect based on the third aspect, the joint has a hinge structure.
According to the joint structure in the vicinity of the abutment part according to the present invention, it is possible to prevent kick-up of the extended floor slab by making the joint a hinge structure.

第5の発明は、第3の発明において、前記連続床版は、前記橋桁と剛結されてなること特徴とする。
本発明による橋台部付近の接合構造によれば、連続床版と橋桁とが剛結されるために、連続床版と橋桁との間への雨水等の浸透を防止することが可能である。
According to a fifth aspect, in the third aspect, the continuous floor slab is rigidly connected to the bridge girder.
According to the joining structure in the vicinity of the abutment portion according to the present invention, the continuous floor slab and the bridge girder are rigidly connected. Therefore, it is possible to prevent permeation of rainwater or the like between the continuous floor slab and the bridge girder.

第6の発明の橋台部付近の接合方法は、橋梁の橋台上及び土工部の路盤上に設置される底版と、該底版上に設置される延長床版と、該延長床版の土工部側に設置される伸縮装置とから構成され、前記橋梁が伸縮すると、前記延長床版が前記底版上を橋軸方向に滑動するとともに、前記伸縮装置が伸縮して前記橋梁の伸縮を吸収する橋台部付近の接合方法において、前記底版又は前記延長床版の少なくとも一方を現場で水硬化性物質を打設して構築する打設工程と、該現場で水硬化性物質を打設して構築された前記底版又は前記延長床版の少なくとも一方に、他方の前記底版又は前記延長床版と接触する側の面の摩擦係数が所定の摩擦係数以下である板材を前記打設された水硬化性物質と一体に固着する板材設置工程とを備え、前記板材として、ビニロン繊維で補強されたセメントボードであって、前記底版又は前記延長床版に固着される側の面に、凹凸部が形成されると共に吸水を規制するための吸水調整剤が塗布されたものを用いることを特徴とする。 The joining method in the vicinity of the abutment part of the sixth invention is the bottom plate installed on the abutment of the bridge and the roadbed of the earthwork part, the extended floor slab installed on the bottom plate, and the earthwork part side of the extension floor slab An extension device installed in the bridge, and when the bridge expands and contracts, the extended floor slab slides on the bottom plate in the direction of the bridge axis, and the expansion device expands and contracts to absorb expansion and contraction of the bridge In a nearby joining method, the bottom plate or the extended floor slab was constructed by placing a water-curable material on site and constructing the water-curable material on site. A water-curing material on which at least one of the bottom slab or the extended floor slab is placed with a plate material having a friction coefficient of a surface on the side contacting the other bottom slab or the extended floor slab not greater than a predetermined friction coefficient, and a plate installed affixing together, as the plate A cement board reinforced with vinylon fibers, which is provided with an irregularity formed on the surface fixed to the bottom plate or the extended floor slab and with a water absorption adjusting agent applied to restrict water absorption. It is characterized by using .

第7の発明は、第6の発明において、前記底版上部の所定の位置に排水溝を設ける溝設置工程と、前記橋桁と前記延長床版との間に現場で水硬化性物質を打設して連続床版を構築する連続床版構築工程と、該連続床版と前記延長床版とを継手にて接続する接続工程と、該連続床版と前記延長床版との間に膨潤性止水材を充填する充填工程と、前記連続床版と前記延長床版との接続部分を覆うように前記連続床版及び前記延長床版の上面に遮水シートを設置する遮水シート設置工程とを更に備えることを特徴とする。   According to a seventh invention, in the sixth invention, a groove installation step of providing a drainage groove at a predetermined position on the upper part of the bottom slab, and a water-curable substance is placed on-site between the bridge girder and the extended floor slab. A continuous floor slab construction step for constructing a continuous floor slab, a connecting step for connecting the continuous floor slab and the extended floor slab with a joint, and a swelling stop between the continuous floor slab and the extended floor slab. A filling step of filling a water material, and a water shielding sheet installation step of installing a water shielding sheet on the upper surface of the continuous floor slab and the extended floor slab so as to cover a connection portion between the continuous floor slab and the extension floor slab; Is further provided.

本発明の橋台付近の接合構造及び接合方法を用いることにより、橋梁の経済的な施工が可能となる。   By using the joining structure and joining method in the vicinity of the abutment of the present invention, it is possible to economically construct the bridge.

以下、本発明の好ましい実施形態について図面を用いて詳細に説明する。図1は、本発明の第一実施形態に係る接合構造を適用した橋台部付近の平面図、図2は、図1のA−A’矢視図、図3は、図1のB−B’矢視図である。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a plan view of the vicinity of an abutment to which the joining structure according to the first embodiment of the present invention is applied, FIG. 2 is a view taken along the line AA ′ in FIG. 1, and FIG. 'It is an arrow view.

図1〜図3に示すように、橋梁1の橋台部3付近には、橋台4の上面及び土工部6の路盤上に載置された底版7と、底版7の上部に固着された底版側板材9と、底版7の上に設置された延長床版13と、橋桁11と延長床版13との間に設置された連続床版15と、延長床版13、連続床版15の下部にそれぞれ固着された床版側板材17a、17bと、延長床版13の土工部6側に設置された伸縮装置19とが設けられ、橋桁11が、例えば、温度変化により伸縮すると、連続床版15及び延長床版13が底版7上を橋軸方向に滑動するとともに、伸縮装置19が伸縮して橋桁11の伸縮を吸収する。   As shown in FIGS. 1 to 3, in the vicinity of the abutment 3 of the bridge 1, a bottom plate 7 placed on the upper surface of the abutment 4 and the roadbed of the earthwork unit 6, and the bottom plate side fixed to the top of the bottom plate 7 A plate member 9, an extended floor slab 13 installed on the bottom slab 7, a continuous floor slab 15 installed between the bridge girder 11 and the extended floor slab 13, an extended floor slab 13, and a lower part of the continuous floor slab 15 The floor slab side plates 17a and 17b, which are fixed to each other, and the expansion / contraction device 19 installed on the earthwork part 6 side of the extension floor slab 13 are provided. When the bridge girder 11 expands and contracts due to temperature change, for example, the continuous floor slab 15 The extension floor slab 13 slides on the bottom slab 7 in the bridge axis direction, and the expansion / contraction device 19 expands / contracts to absorb expansion / contraction of the bridge girder 11.

底版側板材9と床版側板材17a、17bとは、セメントを主成分とし、高強度ビニロン繊維で補強された高靱性セメントボード(例えば、パワロン(商品名):株式会社クラレ製)で構成されている。底版側板材9と床版側板材17a、17bとの互いに対向する側の面は、摩擦係数が小さく、かつ、耐摩耗性を有しており、他方の面はそれぞれ底版7、延長床版13、連続床版15に一体化して固着される。なお、この他方の面には、底版7、延長床版13、連続床版15との付着性を向上させるために、高さが1mm程度で、間隔が1〜2mm程度の凹凸部が形成されるとともに、高靭性セメントボードが水硬化性物質37の水分を吸水しないように、吸水を規制するための吸水調整剤が塗布される。各板材9、17a、17bの最大厚みは10mm程度、曲げ強度は30Mpa以上、高靭性(スパン18cmで最大撓み25mm以上)で、かつ、極めて軽量である。   The bottom plate side plate material 9 and the floor plate side plate materials 17a and 17b are composed of a high toughness cement board (for example, Poweron (trade name) manufactured by Kuraray Co., Ltd.) mainly composed of cement and reinforced with high-strength vinylon fibers. ing. The opposing surfaces of the bottom plate side plate material 9 and the floor plate side plate materials 17a and 17b have a small friction coefficient and wear resistance, and the other surfaces are the bottom plate 7 and the extended floor plate 13 respectively. , It is integrally fixed to the continuous floor slab 15. In addition, in order to improve adhesion with the bottom plate 7, the extended floor slab 13, and the continuous floor slab 15, an uneven portion having a height of about 1 mm and an interval of about 1 to 2 mm is formed on the other surface. In addition, a water absorption adjusting agent for regulating water absorption is applied so that the high toughness cement board does not absorb the water of the water curable material 37. Each plate member 9, 17a, 17b has a maximum thickness of about 10 mm, a bending strength of 30 Mpa or more, high toughness (maximum deflection of 25 mm or more at a span of 18 cm), and extremely light weight.

図4は、図3のa部拡大図である。図4に示すように、連続床版15と延長床版13との接続部分には、連続床版15と延長床版13とを接続するためのヒンジ継手29と、連続床版15と延長床版13との接続部分を覆うように配置された遮水シート31と、接続部分に充填された膨潤性止水材33と、接続部分の下方の底版7上部に設けられた排水溝35とが設けられている。   FIG. 4 is an enlarged view of part a in FIG. As shown in FIG. 4, the connecting portion between the continuous floor slab 15 and the extended floor slab 13 includes a hinge joint 29 for connecting the continuous floor slab 15 and the extended floor slab 13, and the continuous floor slab 15 and the extended floor slab. A water shielding sheet 31 disposed so as to cover the connection portion with the plate 13, a swellable water blocking material 33 filled in the connection portion, and a drainage groove 35 provided on the bottom plate 7 below the connection portion. Is provided.

底版7は、型枠を底版7の外形に沿うように設置し、この型枠内に現場で水硬化性物質であるコンクリート37を打設するとともに、底版側板材9の凹凸部を有する下面がコンクリート37と接するように底版側板材9を載置し、コンクリート37と底版側板材9の凹凸部を有する下面とを一体化させることにより構築される。底版7は、土工部6の上面から橋台4の上面まで延設され、アンカーボルト39により橋台4の上面に固定される。   The bottom plate 7 is provided with a mold frame that follows the outer shape of the bottom plate 7, and concrete 37 that is a water curable material is placed in the mold frame on the site, and the bottom surface of the bottom plate side plate material 9 that has uneven portions is provided. The bottom plate side plate material 9 is placed so as to be in contact with the concrete 37, and the concrete 37 and the bottom surface of the bottom plate side plate material 9 having an uneven portion are integrated. The bottom plate 7 extends from the top surface of the earthwork section 6 to the top surface of the abutment 4 and is fixed to the top surface of the abutment 4 by anchor bolts 39.

延長床版13は、床版側板材17aの摩擦係数の小さい面が底版7側(つまり、下側)となるように底版側板材9の上に設置し、型枠を延長床版13の外形に沿うように設置し、この型枠内の連続床版15側端部にヒンジ継手であるメナーゼヒンジ29を設置するとともに、コンクリート37を打設し、コンクリート37と床版側板材17aの凹凸部を有する上面とメナーゼヒンジ29とを一体化させることにより構築される。   The extended floor slab 13 is installed on the bottom slab side plate 9 so that the surface of the floor slab side plate 17a having a small coefficient of friction is on the bottom slab 7 side (that is, the lower side). Is installed along the continuous floor slab 15 side end portion in this formwork, and the concrete joint 37 is placed, and the uneven portion of the concrete 37 and the floor slab side plate material 17a is formed. It is constructed by integrating the upper surface with the menase hinge 29.

連続床版15は、延長床版13と同様に、床版側板材17bの摩擦係数の小さい面が底版7側となるように底版側板材9の上に設置し、型枠を連続床版15の外形に沿って、かつ、延長床版13から突出している上記メナーゼヒンジ29がこの型枠内となるように設置し、この型枠内にコンクリート37を打設し、予め橋桁11に配筋されていた鉄筋41とメナーゼヒンジ29とコンクリート37と床版側板材17bの凹凸部を有する上面とを一体化させることにより橋桁11の端部と延長床版13との間に構築される。   As with the extended floor slab 13, the continuous floor slab 15 is installed on the bottom slab side plate 9 so that the surface of the floor slab side plate 17b having a small coefficient of friction is on the bottom slab 7 side, and the formwork is placed on the continuous floor slab 15 Is installed so that the menase hinge 29 protruding from the extended floor slab 13 is in this formwork, and concrete 37 is placed in this formwork, which is pre-arranged in the bridge girder 11. The rebar 41, the menase hinge 29, the concrete 37, and the upper surface of the floor slab side plate member 17b are integrated with each other, thereby being constructed between the end of the bridge girder 11 and the extended floor slab 13.

つまり、連続床版15と橋桁11とは鉄筋41を介して剛結構造にて接続され、連続床版15と延長床版13とはメナーゼヒンジ29を介してヒンジ構造にて接続される。   That is, the continuous floor slab 15 and the bridge girder 11 are connected by a rigid structure via the reinforcing bar 41, and the continuous floor slab 15 and the extended floor slab 13 are connected by a hinge structure via the menase hinge 29.

図5は、図4のb部拡大図、図6は、図5のc部拡大図である。図5及び図6に示すように、延長床版13と連続床版15との間の上部及び下部には、延長床版13と連続床版15とが回動する際の衝突による衝撃を緩和するための緩衝ゴム43が設置される。また、中間部には膨潤性止水材33が充填されており、たとえ連続床版15と延長床版13との間へ雨水等が浸透しても、膨潤性止水材33にて止水される。   FIG. 5 is an enlarged view of part b in FIG. 4, and FIG. 6 is an enlarged view of part c in FIG. As shown in FIGS. 5 and 6, the upper and lower portions between the extended floor slab 13 and the continuous floor slab 15 reduce the impact caused by the collision when the extended floor slab 13 and the continuous floor slab 15 rotate. A shock absorbing rubber 43 is installed. In addition, the intermediate portion is filled with a swellable water stop material 33, and even if rainwater or the like penetrates between the continuous floor slab 15 and the extended floor slab 13, Is done.

また、底版7の上部の、延長床版13と連続床版15との接続部分の下方、及び延長床版13と伸縮装置19との接続部分(図示しない)の下方に位置する部分には、これらの接続部分を通過した雨水等を排出するための排水溝35が設けられている。排水溝35は所定の排水箇所へ接続されており、たとえ底版7へ雨水等が浸透しても支承2に流れ込むことはない。   Further, in the upper part of the bottom slab 7, below the connection part between the extended floor slab 13 and the continuous floor slab 15 and below the connection part (not shown) between the extension floor slab 13 and the expansion device 19, A drainage groove 35 is provided for discharging rainwater or the like that has passed through these connecting portions. The drainage groove 35 is connected to a predetermined drainage point, and even if rainwater or the like penetrates into the bottom plate 7, it does not flow into the support 2.

さらに、遮水シート31が、連続床版15と延長床版13との接続部分を覆うように連続床版15及び延長床版13の上面に配置され、接続部分への雨水等の浸透を防止する。そして、この遮水シート31の上にアスファルト5等の舗装がされ、橋梁1及び道路が構築される。   Furthermore, the water shielding sheet 31 is disposed on the upper surface of the continuous floor slab 15 and the extended floor slab 13 so as to cover the connection portion between the continuous floor slab 15 and the extended floor slab 13 to prevent permeation of rainwater or the like into the connection portion. To do. And asphalt 5 etc. are paved on this water-impervious sheet 31, and the bridge 1 and the road are constructed.

以上の構成によれば、橋桁11が温度変化により伸縮すると、延長床版13の床版側板材17a及び連続床版15の床版側板材17bが、底版7の底版側板材9上を橋軸方向へ滑動することにより、橋桁11の伸縮を吸収する。   According to the above configuration, when the bridge girder 11 expands and contracts due to a temperature change, the floor slab side plate material 17a of the extended floor slab 13 and the floor slab side plate material 17b of the continuous floor slab 15 cross over the bottom slab side plate material 9 of the bottom plate 7. The sliding of the bridge girder 11 is absorbed by sliding in the direction.

ここで、連続床版15及び延長床版13が底版7上を滑動するためには、橋桁11が伸縮する際に連続床版15及び延長床版13に作用する水平荷重が底版側板材9と床版側板材17a、17bとの間に生じる摩擦力を上回ることが必要である。そこで、この摩擦係数、水平荷重についてそれぞれ検討した。最初に、摩擦係数について検討した結果を、次に、水平荷重について検討した結果を以下に示す。   Here, in order for the continuous floor slab 15 and the extended floor slab 13 to slide on the bottom slab 7, the horizontal load acting on the continuous floor slab 15 and the extended floor slab 13 when the bridge girder 11 expands and contracts is It is necessary to exceed the frictional force generated between the floor slab side plates 17a and 17b. Therefore, the friction coefficient and the horizontal load were examined. First, the results of examining the friction coefficient, and then the results of examining the horizontal load are shown below.

以下に、底版側板材9及び床版側板材17a、17bを構成する高靭性セメントボードの摩擦係数を測定した結果について説明する。
まず、高靭性セメントボードからなる一辺の長さが200mm×200mm、900mm×900mmで厚さ8mmの板材をそれぞれ可動材21、固定材23の1セットとし、これを4セット用意した。
Below, the result of having measured the friction coefficient of the high toughness cement board which comprises the baseplate side board | plate material 9 and the floor slab side board | plate materials 17a and 17b is demonstrated.
First, a plate material having a side length of 200 mm × 200 mm, 900 mm × 900 mm, and a thickness of 8 mm made of a high toughness cement board was used as one set of a movable material 21 and a fixed material 23, and four sets were prepared.

図7は、本実施形態に係る摩擦係数の測定方法を示す図で、図8は、本実施形態に係る摩擦係数の測定条件を示す図である。
次に、図7及び図8に示すように、固定材23の上に可動材21を載せ、さらに可動材21の上に測定荷重(9.2kN/m)の錘25を載せて試料を一定速度(100mm/分)で、一定距離(120mm)だけ引張り、その時に発生する摩擦力をロードセル27で測定した。この一連の測定を各セット毎に行い、合計4回測定を行った。動き初めのピーク摩擦力より静摩擦係数を、ピーク後の摩擦距離間の摩擦力の平均より動摩擦係数を求めた。
FIG. 7 is a diagram illustrating a friction coefficient measurement method according to the present embodiment, and FIG. 8 is a diagram illustrating friction coefficient measurement conditions according to the present embodiment.
Next, as shown in FIGS. 7 and 8, the movable material 21 is placed on the fixed material 23, and the weight 25 of the measurement load (9.2 kN / m 2 ) is placed on the movable material 21, and the sample is placed. At a constant speed (100 mm / min), a predetermined distance (120 mm) was pulled, and the frictional force generated at that time was measured with the load cell 27. This series of measurements was performed for each set, for a total of four measurements. The static friction coefficient was obtained from the peak friction force at the beginning of movement, and the dynamic friction coefficient was obtained from the average of the friction force during the friction distance after the peak.

図9は、本実施形態に係る摩擦係数の測定結果を示す図である。図9に示すように、高靭性セメントボードからなる板材同士の静摩擦係数の平均値は0.53、動摩擦係数の平均値は0.41であることが確認された。   FIG. 9 is a diagram illustrating a measurement result of the friction coefficient according to the present embodiment. As shown in FIG. 9, it was confirmed that the average value of the static friction coefficient between plate materials made of high toughness cement board was 0.53, and the average value of the dynamic friction coefficient was 0.41.

以下に、橋桁11が伸縮する際に延長床版13に作用する水平荷重を算出するとともに、水平荷重と摩擦係数との関係について説明する。   Below, while calculating the horizontal load which acts on the extended floor slab 13 when the bridge girder 11 expands-contracts, the relationship between a horizontal load and a friction coefficient is demonstrated.

まず、気温上昇時における橋桁11の伸張時について検討する。気温上昇による橋桁11の伸張によって、延長床版13に作用する水平荷重Pは(1)式となる。
P=σc・A=E・ε・A より
=E・A・ΔL/L=E・A・α・ΔT・L/L
=E・B・t・α・ΔT ………(1)
ここで、水平荷重:P、延長床版寸法:B=幅、Le=長さ、t=厚さ、断面積:A(=B×t)、コンクリートのヤング係数:E(=2.8×10N/mm2)、橋桁の伸縮桁長:L、橋桁の温度伸縮量:ΔL、温度変化:ΔT、コンクリートの熱膨張係数:α(=1.0×10−5)、コンクリート強度:σck(=30N/mm2)である。
First, consider the extension of the bridge girder 11 when the temperature rises. The horizontal load P acting on the extended floor slab 13 due to the extension of the bridge girder 11 due to the temperature rise is expressed by equation (1).
From P = σc ・ A = E ・ ε ・ A
= E · A · ΔL / L = E · A · α · ΔT · L / L
= E · B · t · α · ΔT (1)
Here, horizontal load: P, extended floor slab dimensions: B = width, Le = length, t = thickness, cross-sectional area: A (= B × t), concrete Young's modulus: E (= 2.8 ×) 10 4 N / mm 2 ), bridge girder length: L, bridge girder temperature expansion / contraction amount: ΔL, temperature change: ΔT, concrete thermal expansion coefficient: α (= 1.0 × 10 −5 ), concrete strength: σck (= 30 N / mm 2 ).

コンクリートからなる延長床版13の許容圧縮力Pcaは(2)式となる。
Pca=σca・A=σca・B・t ………(2)
ここで、コンクリートの許容圧縮応力度:σca(=1.15×8.5N/mm2)である。
The allowable compressive force Pca of the extended floor slab 13 made of concrete is expressed by equation (2).
Pca = σca · A = σca · B · t (2)
Here, the allowable compressive stress level of concrete: σca (= 1.15 × 8.5 N / mm 2 ).

そして、Pca=Pとすると(1)、(2)式より(3)式となる。   If Pca = P, then equation (3) is obtained from equations (1) and (2).

σca・B・t=E・B・t・α・ΔT ………(3)
この(3)式を変形し、所定の数値を代入すると温度変化量ΔTは(4)式となる。
ΔT=σca/(E・α)
=1.15×8.5/(2.8×10×1.0×10−5
=+34.9 ℃ ………(4)
ここで、設計で想定している温度変化量ΔTは最大でも±25℃であるため、温度上昇により水平荷重Pが延長床版13の許容圧縮応力Pcaを超えることはないことが確認された。
σca · B · t = E · B · t · α · ΔT (3)
When this equation (3) is modified and a predetermined numerical value is substituted, the temperature change amount ΔT becomes the equation (4).
ΔT = σca / (E · α)
= 1.15 × 8.5 / (2.8 × 10 × 1.0 × 10 −5 )
= +34.9 ° C ……… (4)
Here, since the temperature variation ΔT assumed in the design is ± 25 ° C. at the maximum, it was confirmed that the horizontal load P does not exceed the allowable compressive stress Pca of the extended floor slab 13 due to the temperature rise.

次に、水平荷重Pと延長床版13の摩擦抵抗Fの比較を行う。
延長床版13の摩擦抵抗Fは(5)式となる。
F=μa・W=μ・γ・B・Le・t ………(5)
ここで、摩擦抵抗:F(=μ×W)、延長床版自重:W(=γ×B×Le×t)、コンクリート単位体積重量:γ(=24.5kN/m3)、伸張時摩擦係数:μaである。
そして、滑り面が機能する条件は(6)式となる。
P>F ………(6)
この(6)式に、(1)、(5)式を代入すると(7)式となる。
E・B・t・α・ΔT>μa・γ・B・Le・t ………(7)
ここで、伸張時摩擦係数μaの満たすべき条件は(7)式を変形して(8)式となる。
μa<E・α・ΔT/(γ・Le) ………(8)
この(8)式に所定の値を代入すると(9)式となる。
μa<2.8×10×1.0×10−5×ΔT/(24.5×10−6×6500)=1.758・ΔT ………(9)
ここで、延長床版の長さLeは、キックアップを生じさせないための橋桁11からメナーゼヒンジ29までの距離1.5mと騒音・振動低減のための距離5.0mとの合計6.5mである。
したがって、橋桁11の伸張時における床版側板材17aと底版側板材9と、床版側板材17bと底版側板材9との伸張時摩擦係数μaは温度変化量ΔTを考慮して算出される。
Next, the horizontal load P and the frictional resistance F of the extended floor slab 13 are compared.
The frictional resistance F of the extended floor slab 13 is expressed by equation (5).
F = μa · W = μ · γ · B · Le · t (5)
Here, friction resistance: F (= μ × W), extension floor slab weight: W (= γ × B × Le × t), concrete unit volume weight: γ (= 24.5 kN / m 3 ), friction during extension Coefficient: μa.
The condition for the function of the sliding surface is expressed by equation (6).
P> F (6)
Substituting Equations (1) and (5) into Equation (6) yields Equation (7).
E · B · t · α · ΔT> μa · γ · B · Le · t (7)
Here, the condition to be satisfied by the expansion coefficient of friction μa is obtained by modifying equation (7) into equation (8).
μa <E · α · ΔT / (γ · Le) (8)
Substituting a predetermined value into this equation (8) yields equation (9).
μa <2.8 × 10 4 × 1.0 × 10 −5 × ΔT / (24.5 × 10 −6 × 6500) = 1.758 · ΔT (9)
Here, the length Le of the extended floor slab is 6.5 m in total including a distance 1.5 m from the bridge girder 11 to prevent the kick-up and the menase hinge 29 and a distance 5.0 m for noise and vibration reduction. .
Therefore, the friction coefficient μa at the time of expansion of the floor slab side plate material 17a and the bottom slab side plate material 9, and the floor slab side plate material 17b and the bottom slab side plate material 9 when the bridge girder 11 is extended is calculated in consideration of the temperature change amount ΔT.

上述したように、本実施形態において用いられる高靱性セメントボードの摩擦係数は0.53であるため、延長床版13は、(9)式よりΔT=0.53/1.758=+0.3℃以上で滑ることを意味する。したがって、現実的に気温上昇による橋桁11の伸張によって、延長床版13が伸張側に十分な滑り面を確保していることが確認された。   As described above, since the coefficient of friction of the high toughness cement board used in the present embodiment is 0.53, the extended floor slab 13 has ΔT = 0.53 / 1.758 = + 0.3 from the equation (9). It means to slide above ℃. Therefore, it was confirmed that the extension floor slab 13 secured a sufficient sliding surface on the extension side due to the extension of the bridge girder 11 due to a rise in temperature.

次に、気温下降時における橋桁11の収縮時について検討する。気温下降による橋桁11の収縮によって、延長床版13に作用する水平荷重Pは上述したように(1)式となる。
P=E・B・t・α・ΔT ………(1)
鉄筋からなるメナーゼヒンジ29の許容引張力Ptaは(10)式となる。
Pta=2×n×σsa×As ………(10)
ここで、鉄筋の許容応力度:σsa(=1.15×140N/mm2)、鉄筋断面積:As(D16→198.6mm2)、鉄筋配置本数:n(250ピッチとし、n=B/0.25、メナーゼヒンジの鉄筋本数)である。
そして、Pta=Pとすると(1)、(10)式より(11)式となる。
2×n×σsa×As=E・B・t・α・ΔT………(11)
この式(11)を変形し、所定の数値を代入すると温度変化量ΔTは(12)式となる。
ΔT=2×n×σsa×As/(E・B・t・α)
=2・σsa・As/(250・E・t・α)
=−3.05℃ ………(12)
したがって、温度下降時にはメナーゼヒンジ29の引張がクリティカルとなる。そこで、許容引張力Ptaと延長床版13の摩擦抵抗Fの比較を行う。
Next, the time of contraction of the bridge girder 11 when the temperature falls will be examined. As described above, the horizontal load P acting on the extended floor slab 13 by the contraction of the bridge girder 11 due to the temperature drop is expressed by the equation (1).
P = E ・ B ・ t ・ α ・ ΔT (1)
The allowable tensile force Pta of the menase hinge 29 made of reinforcing steel is expressed by the equation (10).
Pta = 2 × n × σsa × As (10)
Here, rebar allowable stress: σsa (= 1.15 × 140N / mm 2), rebar sectional area: As (D16 → 198.6mm 2) , rebar arrangement number: a n (250 pitch, n = B / 0.25, the number of reinforcing bars of the menase hinge).
If Pta = P, then equation (11) is obtained from equations (1) and (10).
2 × n × σsa × As = E · B · t · α · ΔT (11)
When this equation (11) is modified and a predetermined numerical value is substituted, the temperature change amount ΔT becomes the equation (12).
ΔT = 2 × n × σsa × As / (E · B · t · α)
= 2 · σsa · As / (250 · E · t · α)
= -3.05 ° C ......... (12)
Therefore, the tension of the menase hinge 29 becomes critical when the temperature drops. Therefore, the allowable tensile force Pta and the frictional resistance F of the extended floor slab 13 are compared.

滑り面が機能する条件は(13)式となる。
Pta>F ………(13)
この(13)式に、(1)、(10)式を代入すると(14)式となる。
2×n×σsa×As>μb・γ・B・Le・t………(14)
ここで、収縮時摩擦係数:μbである。
The condition for the sliding surface to function is given by equation (13).
Pta> F (13)
If the expressions (1) and (10) are substituted into the expression (13), the expression (14) is obtained.
2 × n × σsa × As> μb · γ · B · Le · t (14)
Here, the friction coefficient at the time of contraction: μb.

そして、収縮時摩擦係数μbの満たすべき条件は(14)式を変形して(15)式となる。
μb<2×n×σsa×As/(γ・B・Le・t)………(15)
この(15)式に所定の値を代入すると(16)式となる。
μb<2・σsa・As/(0.25・γ・Le・t)
=2×1.15×140×198.6/(0.25×24.5×6.5×0.3×1000)=5.354 ………(16)
したがって、橋桁11の収縮時における床版側板材17aと底版側板材9と、床版側板材17bと底版側板材9との収縮時摩擦係数μbが5.354より小さくなるように設計する。
Then, the condition to be satisfied by the contraction coefficient of friction μb is obtained by modifying equation (14) into equation (15).
μb <2 × n × σsa × As / (γ · B · Le · t) (15)
Substituting a predetermined value into this equation (15) yields equation (16).
μb <2 · σsa · As / (0.25 · γ · Le · t)
= 2 × 1.15 × 140 × 198.6 / (0.25 × 24.5 × 6.5 × 0.3 × 1000) = 5.354 (16)
Therefore, when the bridge girder 11 is contracted, the floor slab side plate material 17a, the bottom slab side plate material 9, and the floor slab side plate material 17b and the bottom slab side plate material 9 are designed to have a friction coefficient μb smaller than 5.354.

(16)式より算出された収縮時の摩擦係数5.354は、上述したように、本実施形態において用いられる高靱性セメントボードの摩擦係数0.53に比べて非常に大きいために、メナーゼヒンジ29がクリティカルになることなく、延長床版13が引張側に十分な滑り面を確保していることが確認された。   As described above, the friction coefficient 5.354 at the time of contraction calculated from the equation (16) is much larger than the friction coefficient 0.53 of the high toughness cement board used in the present embodiment. It was confirmed that the extended floor slab 13 secured a sufficient sliding surface on the tension side without becoming critical.

以上のように、高靱性セメントボード同士の摩擦係数0.53は、温度変化時の延長床版13の機能を阻害することなく、十分な滑り面を確保する値であることが確認された。   As described above, it was confirmed that the coefficient of friction 0.53 between the high toughness cement boards is a value that ensures a sufficient sliding surface without hindering the function of the extended floor slab 13 when the temperature changes.

連続床版15及び延長床版13が長期間にわたって滑動するためには、底版側板材9及び床版側板材17a、17bが高い耐摩耗性を有することが必要である。そこで、複数の測定手法を用いて上記と同様に高靭性セメントボードの摩耗性について測定した結果を以下に説明する。   In order for the continuous floor slab 15 and the extended floor slab 13 to slide over a long period of time, it is necessary that the bottom plate side plate material 9 and the floor plate side plate materials 17a and 17b have high wear resistance. Then, the result measured about the abrasion property of the high toughness cement board similarly to the above using a several measuring method is demonstrated below.

最初に、落砂法及び研磨紙法による測定結果を示す。
まず、底版側板材9及び床版側板材17の材料である高靭性セメントボードからなる一辺の長さ50mm×50mm、110mm×110mmで厚さ7mmの2枚の板材を供試体とした。また、比較用として同サイズで厚さ8mmの石綿セメント板も用いた。
落砂法の場合においては、JIS−A−5209「陶磁器質タイル」7.8摩耗試験に準じ、板材の一方の面(凹凸加工の無い面)に対して試験を行った。
また、研磨紙法の場合においては、JIS−A−1453「建築材料および建築構成部分の摩耗試験方法(研磨紙法)」に準じ、板材の一方の面(凹凸加工の無い面)について500回転の摩耗試験を行い、途中100回転毎に供試体質量を測定し、各回転毎及び累計の摩耗減量を求めた。
First, measurement results by the falling sand method and the abrasive paper method are shown.
First, two plate materials each having a side length of 50 mm × 50 mm, 110 mm × 110 mm and a thickness of 7 mm made of a high-toughness cement board, which is a material of the bottom plate side plate material 9 and the floor plate side plate material 17, were used as test specimens. For comparison, an asbestos cement board having the same size and a thickness of 8 mm was also used.
In the case of the falling sand method, the test was performed on one surface (surface without uneven processing) of the plate material in accordance with JIS-A-5209 “ceramic tile” 7.8 abrasion test.
In the case of the abrasive paper method, according to JIS-A-1453 “Abrasion test method for building materials and building components (abrasive paper method)”, 500 revolutions on one surface of the plate (surface without uneven processing) A wear test was performed, and the specimen mass was measured every 100 rotations during the rotation, and the total wear loss was determined for each rotation.

図10は、本実施形態に係る摩耗試験結果を示す図である。また、図11は、本実施形態に係る研磨紙法における試験回転数と累計摩耗減量との関係を示す図で、図12は、本実施形態に係る研磨紙法における試験回転数と100回転毎の摩耗減量との関係を示す図である。
図10に示すように、落差法による板材の摩耗減量は2mgと少量であった。また、図10及び図11に示すように、研磨紙法による板材の摩耗減量は775mgで、石綿セメント板に比べて摩耗減量が少なかった。
そして、図12に示すように、100回転毎の板材の摩耗減量は、石綿セメント板に比べて常に少なかった。
FIG. 10 is a diagram showing a wear test result according to the present embodiment. FIG. 11 is a diagram showing the relationship between the test rotation speed and the cumulative wear loss in the polishing paper method according to the present embodiment. FIG. 12 shows the test rotation speed in the polishing paper method according to this embodiment and every 100 rotations. It is a figure which shows the relationship with the amount of wear loss.
As shown in FIG. 10, the wear loss of the plate material by the drop method was as small as 2 mg. Moreover, as shown in FIG.10 and FIG.11, the abrasion loss of the board | plate material by an abrasive paper method was 775 mg, and there was little abrasion loss compared with the asbestos-cement board.
And as shown in FIG. 12, the abrasion loss of the board | plate material for every 100 rotations was always few compared with the asbestos-cement board.

次に、回転円盤機法による測定結果を示す。
まず、高靭性セメントボードからなる一辺の長さ300mm×300mmで厚さ8mmの3枚の板材を供試体とする。
摩耗試験はASTM−C−779「水平なコンクリート表面の耐摩耗試験方法」のA法(回転円盤機)に準じて行った。この摩耗試験は、試験機上部のギャードモーターによって直径30cmの円盤が9rpmで回転するとともに、この円盤に取付けられた直径6cmの3個の摩耗輪が210rpmで回転し、試験時には摩耗面に研磨材(No.60のカーボランダム)が4〜6g/minの量が連続的に散布され,面圧108g/cmで供試体上面をドーナツ状に摩耗するものである。
摩耗量の測定は、供試体の四隅に測定板の脚部を固定するためのチップを貼り付け、供試体上に設置した測定板上面から供試体上面までの深さを摩耗面24点についてデジタルゲージ(1/1000mm)で測定した。摩耗量の測定間隔は、摩耗時間0分、15分、30分、60分に行い、各時間の摩耗深さを24点の平均値で示した。
Next, the measurement result by the rotating disk machine method is shown.
First, three plate materials each having a length of 300 mm × 300 mm and a thickness of 8 mm made of a high-toughness cement board are used as specimens.
The abrasion test was performed in accordance with ASTM method C (rotary disk machine) of ASTM-C-779 “Abrasion resistance test method for horizontal concrete surface”. In this wear test, a 30 cm diameter disc was rotated at 9 rpm by a geared motor at the top of the testing machine, and three 6 cm diameter wear wheels attached to this disc were rotated at 210 rpm. A material (No. 60 carborundum) is continuously sprayed in an amount of 4 to 6 g / min, and the upper surface of the specimen is worn in a donut shape at a surface pressure of 108 g / cm 2 .
For the measurement of the amount of wear, tips for fixing the legs of the measurement plate were attached to the four corners of the specimen, and the depth from the upper surface of the measurement plate installed on the specimen to the upper surface of the specimen was digitally measured for 24 points on the wear surface. It measured with the gauge (1 / 1000mm). The measurement interval of the wear amount was performed at wear times of 0 minutes, 15 minutes, 30 minutes, and 60 minutes, and the wear depth at each time was shown as an average value of 24 points.

図13は、本実施形態に係る板材の磨耗試験結果を示す図で、図14は、本実施形態に係る経過時間と磨耗量との関係を示す図である。また、図15は、本実施形態に係る摩耗量の比較として一般コンクリートの磨耗試験結果を示す図である。   FIG. 13 is a diagram showing a result of the wear test of the plate material according to the present embodiment, and FIG. 14 is a diagram showing a relationship between the elapsed time and the wear amount according to the present embodiment. Moreover, FIG. 15 is a figure which shows the wear test result of general concrete as a comparison of the amount of wear which concerns on this embodiment.

図13及び図14に示すように、60分経過後の板材の磨耗量の平均値は0.503mmであった。また、図15に示すように、板材の摩耗量は、一般の砕石コンクリート(青梅産砂岩砕石、大井川産細砂使用)に比べて、すべての測定時間において少なかった。   As shown in FIG.13 and FIG.14, the average value of the abrasion amount of the board | plate material after progress for 60 minutes was 0.503 mm. Further, as shown in FIG. 15, the amount of wear of the plate material was small in all measurement times compared with general crushed concrete (use of Ome sandstone crushed stone and Oigawa fine sand).

上述したように、高靭性セメントボードからなる板材の摩耗量は小さく、高い耐摩耗性を有することが確認された。   As described above, it was confirmed that the amount of wear of the plate material made of the high toughness cement board is small and has high wear resistance.

以上説明した本実施形態の橋台部3付近の接合構造によれば、所定の摩擦係数よりも小さい面を有する底版側板材9及び床版側板材17a、17bを現場で打設されるコンクリートと一体化するために、底版7、延長床版13及び連続床版15を現場打設にて構築することが可能となる。また、底版7、延長床版13及び連続床版15は現場打設にて構築されるために、PCa部材を使用する場合と比べて作業性に優れているとともに、コストが削減され、経済的な施工が可能となる。さらに、橋桁11が温度変化により伸縮しても、底版側板材9及び床版側板材17a、17bの摩擦係数が小さいために、延長床版13及び連続床版15は容易に滑動可能となる。そして、延長床版13及び連続床版15が容易に滑動するために、確実に橋桁11の伸縮が伸縮装置19に伝達され、伸縮装置19にて橋桁11の伸縮を吸収することが可能である。   According to the joint structure in the vicinity of the abutment part 3 of the present embodiment described above, the bottom slab side plate material 9 and the floor slab side plate materials 17a and 17b having a surface smaller than a predetermined friction coefficient are integrated with the concrete placed on site. Therefore, the bottom plate 7, the extended floor slab 13 and the continuous floor slab 15 can be constructed on site. Further, since the bottom plate 7, the extended floor slab 13 and the continuous floor slab 15 are constructed on site, the workability is excellent compared with the case of using the PCa member, and the cost is reduced, which is economical. Construction is possible. Furthermore, even if the bridge girder 11 expands and contracts due to a temperature change, the extended floor slab 13 and the continuous floor slab 15 can easily slide because the friction coefficients of the bottom plate side plate material 9 and the floor plate side plate materials 17a, 17b are small. Since the extended floor slab 13 and the continuous floor slab 15 slide easily, the expansion and contraction of the bridge girder 11 is reliably transmitted to the expansion and contraction device 19 and the expansion and contraction device 19 can absorb the expansion and contraction of the bridge girder 11. .

また、本実施形態の橋台部3付近の接合構造によれば、継手29をヒンジ構造とすることにより、延長床版13のキックアップを防止することが可能となる。   Further, according to the joint structure in the vicinity of the abutment portion 3 of the present embodiment, the joint 29 can be prevented from being kicked up by the hinge structure.

そして、本実施形態の橋台部3付近の接合構造によれば、底版側板材9及び床版側板材17a、17bの摩擦係数の小さい面は耐摩耗性も有するために、延長床版13及び連続床版15が底版7上を長期間にわたって確実に滑動することが可能となる。また、橋桁11の伸縮による水平荷重を考慮した摩擦係数を算出することが可能となる。さらに、正確な摩擦係数が算出されるために、確実に連続床版15を滑動させることが可能となる。   And according to the joining structure near the abutment part 3 of this embodiment, since the surface with a small coefficient of friction of the bottom plate side plate member 9 and the floor plate side plate members 17a and 17b also has wear resistance, It becomes possible for the floor slab 15 to slide reliably on the bottom slab 7 over a long period of time. Further, it is possible to calculate a friction coefficient in consideration of a horizontal load due to expansion and contraction of the bridge girder 11. Furthermore, since an accurate friction coefficient is calculated, the continuous floor slab 15 can be reliably slid.

さらに、本実施形態の橋台部3付近の接合構造によれば、連続床版15と延長床版13との接続部分を遮水シート31で覆うことにより、接続部分への雨水等の浸透を防止することが可能である。そして、連続床版15と延長床版13との間に膨潤性止水材33を充填することにより、連続床版15と延長床版13との間の雨水等の通過を防止することが可能である。また、底版7の上部に排水溝35を設けることにより、連続床版15と延長床版13との間を通過した雨水等をすべて所定の箇所に排水することが可能である。そして、連続床版15と橋桁11とが剛結結合されるために、連続床版15と橋桁11との間への雨水等の浸透を防止することが可能である。したがって、支承2への雨水等の浸透を確実に防止するために、支承2の性能を長期間維持することができ、橋梁1の耐久性を向上させることが可能となる。   Furthermore, according to the joint structure in the vicinity of the abutment part 3 of the present embodiment, the connection portion between the continuous floor slab 15 and the extended floor slab 13 is covered with the water shielding sheet 31, thereby preventing the penetration of rainwater and the like into the connection portion. Is possible. Then, by filling the swellable water blocking material 33 between the continuous floor slab 15 and the extended floor slab 13, it is possible to prevent the passage of rainwater or the like between the continuous floor slab 15 and the extended floor slab 13. It is. Further, by providing the drainage groove 35 on the upper portion of the bottom slab 7, it is possible to drain all rainwater and the like that have passed between the continuous floor slab 15 and the extended floor slab 13 to a predetermined location. And since the continuous floor slab 15 and the bridge girder 11 are rigidly connected, it is possible to prevent permeation of rainwater or the like between the continuous floor slab 15 and the bridge girder 11. Therefore, in order to reliably prevent rainwater and the like from penetrating into the support 2, the performance of the support 2 can be maintained for a long time, and the durability of the bridge 1 can be improved.

なお、本実施形態においては、底版7及び延長床版13を共に現場打設し、底版7の上方及び延長床版13の下方にそれぞれ底版側板材9、床版側板材17を固着させ、床版側板材17を底版側板材9に対して滑動させる方法について説明したが、これに限定されるものではなく、底版7のみを現場打設して底版7の上部に板材を固着させ、延長床版はPCa部材を用いて、延長床版を底版側板材9に対して滑動させる方法や、底版はPCa部材を用いて、延長床版のみを現場打設して延長床版の下方に板材を固着させ、床版側板材17を底版に対して滑動させる方法でもよい。   In the present embodiment, both the bottom slab 7 and the extended floor slab 13 are cast on-site, and the bottom slab side plate 9 and the floor slab side plate 17 are fixed to the upper side of the bottom slab 7 and the lower side of the extended floor slab 13, respectively. Although the method of sliding the plate side plate material 17 with respect to the bottom plate side plate material 9 has been described, the present invention is not limited to this, and only the bottom plate 7 is placed on-site and the plate material is fixed to the upper portion of the bottom plate 7 to extend the floor. The plate uses a PCa member to slide the extended floor slab with respect to the bottom plate side plate material 9, or the bottom plate uses the PCa member to place only the extended floor slab on-site and place the plate below the extended floor slab. Alternatively, the floor plate side plate 17 may be slid with respect to the bottom plate.

本発明の第一実施形態に係る接合構造を適用した橋台付近の平面図である。It is a top view near the abutment to which the joining structure concerning a first embodiment of the present invention is applied. 図1のA−A’矢視図である。It is an A-A 'arrow line view of FIG. 図1のB−B’矢視図である。It is a B-B 'arrow line view of FIG. 図3のa部拡大図である。It is the a section enlarged view of FIG. 図4のb部拡大図である。It is the b section enlarged view of FIG. 図5のc部拡大図である。It is the c section enlarged view of FIG. 本実施形態に係る摩擦係数の測定状況を示す図である。It is a figure which shows the measurement condition of the friction coefficient which concerns on this embodiment. 本実施形態に係る摩擦係数の測定条件を示す図である。It is a figure which shows the measurement conditions of the friction coefficient which concerns on this embodiment. 本実施形態に係る摩擦係数の測定結果を示す図である。It is a figure which shows the measurement result of the friction coefficient which concerns on this embodiment. 本実施形態に係る摩耗試験結果を示す図である。It is a figure which shows the abrasion test result which concerns on this embodiment. 本実施形態に係る研磨紙法における試験回転数と累計摩耗減量との関係を示す図である。It is a figure which shows the relationship between the test rotation speed in the abrasive paper method which concerns on this embodiment, and cumulative wear reduction. 本実施形態に係る研磨紙法における試験回転数と100回転毎の摩耗減量との関係を示す図である。It is a figure which shows the relationship between the test rotation speed in the abrasive paper method which concerns on this embodiment, and the abrasion loss for every 100 rotations. 本実施形態に係る板材の磨耗試験結果を示す図である。It is a figure which shows the abrasion test result of the board | plate material which concerns on this embodiment. 本実施形態に係る経過時間と磨耗量との関係を示す図である。It is a figure which shows the relationship between the elapsed time which concerns on this embodiment, and the amount of wear. 本実施形態に係る摩耗量の比較として一般コンクリートの磨耗試験結果を示す図である。It is a figure which shows the wear test result of general concrete as a comparison of the amount of wear which concerns on this embodiment. 従来の橋台部付近の接合構造を示す図である。It is a figure which shows the junction structure of the conventional abutment part vicinity.

符号の説明Explanation of symbols

1 橋梁 2 支承 3 橋台部
4 橋台 5 アスファルト 6 土工部
7 底版 9 底版側板材 11 橋桁
13 延長床版 15 連続床版 17 床版側板材
19 伸縮装置 21 可動材 23 固定材
25 錘 27 ロードセル 29 メナーゼヒンジ
31 遮水シート 33 膨潤性止水材 35 排水溝
37 コンクリート 39 アンカーボルト 41 鉄筋
43 緩衝ゴム 50 底版 51 延長床版
52 着脱式床版 53 連続床版 54 継手
DESCRIPTION OF SYMBOLS 1 Bridge 2 Support 3 Abutment part 4 Abutment 5 Asphalt 6 Earthworking part 7 Bottom plate 9 Bottom plate side plate material 11 Bridge girder 13 Extension floor plate 15 Continuous floor plate 17 Floor plate side plate material 19 Telescopic device 21 Movable material 23 Fixed material 25 Weight 27 Load cell 29 Menase hinge 31 Water-blocking sheet 33 Swellable waterproofing material 35 Drainage groove 37 Concrete 39 Anchor bolt 41 Reinforcement 43 Buffer rubber 50 Bottom plate 51 Removable floor slab 52 Removable floor slab 53 Continuous floor slab 54 Joint

Claims (7)

橋梁の橋台上及び土工部の路盤上に設置される底版と、該底版上に設置される延長床版と、該延長床版の土工部側に設置される伸縮装置とから構成され、前記橋梁の伸縮に応じて前記延長床版が前記底版上を橋軸方向に滑動するとともに、前記伸縮装置が伸縮して前記橋梁の伸縮を吸収する橋台部付近の接合構造であって、
前記底版又は前記延長床版の少なくとも一方は、現場で水硬化性物質を打設して構築されてなり、
該現場で水硬化性物質を打設して構築された前記底版又は前記延長床版の少なくとも一方は、他方の前記底版又は前記延長床版と接触する側の面に、その接触面の摩擦係数が所定の摩擦係数以下である板材が前記打設された水硬化性物質と一体に固着されており、
前記板材は、ビニロン繊維で補強されたセメントボードであり、前記底版又は前記延長床版に固着される側の面に、凹凸部が形成されると共に吸水を規制するための吸水調整剤が塗布されていることを特徴とする橋台部付近の接合構造。
The bridge comprises a bottom slab installed on the abutment of the bridge and the roadbed of the earthwork section, an extended floor slab installed on the bottom slab, and a telescopic device installed on the earthwork part side of the extension floor slab, The extension floor slab slides in the direction of the bridge axis on the bottom slab according to the expansion and contraction of the bridge plate, and the expansion structure expands and contracts to absorb the expansion and contraction of the bridge,
At least one of the bottom slab or the extended floor slab is constructed by placing a water curable material on site,
At least one of the bottom slab or the extended floor slab constructed by placing a water curable material on the site is a friction coefficient of the contact surface on the surface in contact with the other bottom slab or the extended floor slab. A plate material having a predetermined coefficient of friction or less is fixed integrally with the placed water curable substance ,
The plate material is a cement board reinforced with vinylon fibers, and an uneven portion is formed on a surface fixed to the bottom plate or the extended floor slab and a water absorption adjusting agent for regulating water absorption is applied. junction structure in the vicinity of abutment part, characterized in that is.
前記板材の前記接触面は、耐摩耗性を有することを特徴とする請求項1に記載の橋台部付近の接合構造。   The joint structure in the vicinity of the abutment part according to claim 1, wherein the contact surface of the plate member has wear resistance. 前記橋桁と前記延長床版との間に現場で水硬化性物質を打設して構築された連続床版と、
該連続床版と前記延長床版とを接続するための継手と、
該連続床版と前記延長床版との接続部分を覆うように前記連続床版及び前記延長床版の上面に配置された遮水シートと、
該連続床版と前記延長床版との間に充填された膨潤性止水材と、
前記底版上部の所定の位置に設けられた排水溝とを更に備えることを特徴とする請求項1に記載の橋台付近の接合構造。
A continuous floor slab constructed by placing a water curable material on site between the bridge girder and the extended floor slab;
A joint for connecting the continuous floor slab and the extended floor slab;
A water shielding sheet disposed on an upper surface of the continuous floor slab and the extended floor slab so as to cover a connection portion between the continuous floor slab and the extended floor slab;
A swellable waterstop material filled between the continuous floor slab and the extended floor slab;
The joint structure near an abutment according to claim 1, further comprising a drainage groove provided at a predetermined position of the upper part of the bottom plate.
前記継手はヒンジ構造を有することを特徴とする請求項3に記載の橋台付近の接合構造。   The joint structure according to claim 3, wherein the joint has a hinge structure. 前記連続床版は、前記橋桁と剛結されてなること特徴とする請求項3に記載の橋台付近の接合構造。   The joint structure near an abutment according to claim 3, wherein the continuous floor slab is rigidly connected to the bridge girder. 橋梁の橋台上及び土工部の路盤上に設置される底版と、該底版上に設置される延長床版と、該延長床版の土工部側に設置される伸縮装置とから構成され、前記橋梁が伸縮すると、前記延長床版が前記底版上を橋軸方向に滑動するとともに、前記伸縮装置が伸縮して前記橋梁の伸縮を吸収する橋台部付近の接合方法において、
前記底版又は前記延長床版の少なくとも一方を現場で水硬化性物質を打設して構築する打設工程と、
該現場で水硬化性物質を打設して構築された前記底版又は前記延長床版の少なくとも一方に、他方の前記底版又は前記延長床版と接触する側の面の摩擦係数が所定の摩擦係数以下である板材を前記打設された水硬化性物質と一体に固着する板材設置工程とを備え
前記板材として、ビニロン繊維で補強されたセメントボードであって、前記底版又は前記延長床版に固着される側の面に、凹凸部が形成されると共に吸水を規制するための吸水調整剤が塗布されたものを用いることを特徴とする橋台部付近の接合方法。
The bridge comprises a bottom slab installed on the abutment of the bridge and the roadbed of the earthwork section, an extended floor slab installed on the bottom slab, and a telescopic device installed on the earthwork part side of the extension floor slab, When extending and contracting, the extension floor slab slides on the bottom slab in the direction of the bridge axis, and in the joining method in the vicinity of the abutment part where the expansion and contraction device expands and contracts to absorb expansion and contraction of the bridge,
A placing step of constructing at least one of the bottom plate or the extended floor slab by placing a water-curable material on site; and
At least one of the bottom slab or the extended floor slab constructed by placing a water curable material on the site, the friction coefficient of the surface in contact with the other bottom slab or the extended floor slab is a predetermined friction coefficient. A plate material installation step of fixing the plate material which is the following integrally with the placed water curable substance ,
The plate material is a cement board reinforced with vinylon fiber, and a water absorption adjusting agent for regulating water absorption is applied to the bottom plate or the surface fixed to the extended floor slab and the water absorption is regulated. A joining method in the vicinity of the abutment part, characterized by using the above.
前記底版上部の所定の位置に排水溝を設ける溝設置工程と、
前記橋桁と前記延長床版との間に現場で水硬化性物質を打設して連続床版を構築する連続床版構築工程と、
該連続床版と前記延長床版とを継手にて接続する接続工程と、
該連続床版と前記延長床版との間に膨潤性止水材を充填する充填工程と、
前記連続床版と前記延長床版との接続部分を覆うように前記連続床版及び前記延長床版の上面に遮水シートを設置する遮水シート設置工程とを更に備えることを特徴とする請求項6に記載の橋台付近の接合方法
A groove installation step for providing a drainage groove at a predetermined position on the bottom plate;
A continuous floor slab construction step of constructing a continuous floor slab by placing a water-curable material on-site between the bridge girder and the extended floor slab;
A connecting step of connecting the continuous floor slab and the extended floor slab with a joint;
A filling step of filling a swellable water blocking material between the continuous floor slab and the extended floor slab;
A water shielding sheet installation step of installing a water shielding sheet on an upper surface of the continuous floor slab and the extended floor slab so as to cover a connection portion between the continuous floor slab and the extended floor slab. Item 7. A method of joining near an abutment according to item 6.
JP2006058720A 2006-03-03 2006-03-03 Joining structure and joining method near the abutment Expired - Fee Related JP4982093B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006058720A JP4982093B2 (en) 2006-03-03 2006-03-03 Joining structure and joining method near the abutment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006058720A JP4982093B2 (en) 2006-03-03 2006-03-03 Joining structure and joining method near the abutment

Publications (2)

Publication Number Publication Date
JP2007239178A JP2007239178A (en) 2007-09-20
JP4982093B2 true JP4982093B2 (en) 2012-07-25

Family

ID=38584983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006058720A Expired - Fee Related JP4982093B2 (en) 2006-03-03 2006-03-03 Joining structure and joining method near the abutment

Country Status (1)

Country Link
JP (1) JP4982093B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5102695B2 (en) * 2008-05-15 2012-12-19 東日本高速道路株式会社 Sliding surface structure of on-site extension floor slab
KR101037134B1 (en) 2009-06-23 2011-05-26 주식회사동일기술공사 Expansion joint for multi-road
JP5791913B2 (en) * 2011-02-09 2015-10-07 ダイチ工営株式会社 Longitudinal joint structure for bridge
JP6263334B2 (en) * 2013-04-04 2018-01-17 東京パワーテクノロジー株式会社 Floor slab unit and pavement structure and method using the same
CN103469725B (en) * 2013-09-06 2016-02-03 重庆交通大学 Bridge construction breaking joint dislocation expansion joint structure
CN104499430B (en) * 2014-12-18 2016-03-23 上海市城市建设设计研究总院 Section connection structure is connect for wet between full prefabricated bridge
CN108301306B (en) * 2018-04-02 2024-02-27 广东中天市政工程设计有限公司 Half-way half-bridge structure
CN113529562B (en) * 2021-07-20 2023-03-17 中国路桥工程有限责任公司 Bridge facility for preventing geological disasters and construction method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4472894B2 (en) * 2001-05-31 2010-06-02 株式会社石井鐵工所 Outdoor playground
JP2004003277A (en) * 2002-04-26 2004-01-08 Gaeart Kumagai Co Ltd Expansion joint for road
JP3806681B2 (en) * 2002-08-27 2006-08-09 株式会社ガイアートT・K Road construction method and construction material
JP3789412B2 (en) * 2002-10-01 2006-06-21 元之助 新井 Buried joints for road bridge buried joints and buried bridge joints for road bridges
JP2005068696A (en) * 2003-08-21 2005-03-17 Eko Japan Kk Drainage structure of bridge joint section
JP2005171730A (en) * 2003-12-15 2005-06-30 Obayashi Road Corp Waterproof structure of floor slab pavement
JP3973642B2 (en) * 2004-04-30 2007-09-12 株式会社ガイアートT・K Road construction method near abutment
JP2006328867A (en) * 2005-05-27 2006-12-07 Gaeart Tk:Kk Structure and construction method of road built near abutment

Also Published As

Publication number Publication date
JP2007239178A (en) 2007-09-20

Similar Documents

Publication Publication Date Title
JP4982093B2 (en) Joining structure and joining method near the abutment
Gil-Martín et al. Cyclic behavior of RC beam-column joints with epoxy resin and ground tire rubber as partial cement replacement
Hassan et al. Structural assessment of corroded self-consolidating concrete beams
JP2007070859A (en) Base isolation construction method and base isolation structure of building
Kim A study of pipe splice sleeves for use in precast beamn-column connections
Hoppe Field study of integral backwall with elastic inclusion.
Baraghith et al. Improving the shear behavior of RC dapped-end beams using precast strain-hardening cementitious composite (P-SHCC) plates
O’neill et al. Response of drilled shafts with minor flaws to axial and lateral loads
CN115341596B (en) Implementation method for double-side additional construction of slope-shaped independent foundation
JP6030873B2 (en) Pile foundation structure
Lougheed Limit states testing of a buried deep-corrugated large-span box culvert
Kaliyaperumal et al. Seismic retrofit of columns in buildings for flexure using concrete jacket
Singh et al. Concrete in Residential Construction
CN115341597B (en) Implementation method for four-side additional construction of slope-shaped independent foundation
Army et al. Review of The Use of Cross Iron in Reinforced Concrete Column as An Alternative to Shoes Column
JP7328927B2 (en) How to design a dirt floor
Vaz Rodrigues Shear Strength of RC bridge deck cantilevers
Akdağ An investigation of the behavior of fiber reinforced concrete piles under lateral loading
Rahal et al. Experimental investigation of shear strength of epoxy-modified longitudinally reinforced concrete beams
Al-Hedad et al. 2. CHAPTER TWO: Effect of Geogrid Reinforcement on the Flexural Behaviour of Concrete Pavements
Ahmadi End Regions Repair of Prestressed Girders for Restoring the Shear Capacity Using UHPC, FR-SCC, and MALP
Al Rikabi Experimental and Numerical Study on Synthetic Fiber-Reinforced Concrete Pipes
Irving Soil structure interaction of fibre reinforced concrete floor slabs on grade
Korkiala-Tanttu et al. Reinforcement of the edge of a steep-sloped pavement
Vighe A Unique Design of RCC Bridge on Godavari River at Sironcha Dist. Gadchiroli-India

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120327

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120423

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150427

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees