JP4980318B2 - Working angle sensor for constant velocity universal joint - Google Patents

Working angle sensor for constant velocity universal joint Download PDF

Info

Publication number
JP4980318B2
JP4980318B2 JP2008218993A JP2008218993A JP4980318B2 JP 4980318 B2 JP4980318 B2 JP 4980318B2 JP 2008218993 A JP2008218993 A JP 2008218993A JP 2008218993 A JP2008218993 A JP 2008218993A JP 4980318 B2 JP4980318 B2 JP 4980318B2
Authority
JP
Japan
Prior art keywords
ring
inner ring
operating angle
constant velocity
universal joint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008218993A
Other languages
Japanese (ja)
Other versions
JP2010053942A (en
Inventor
浩一 岡田
正純 小林
昇 二宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP2008218993A priority Critical patent/JP4980318B2/en
Publication of JP2010053942A publication Critical patent/JP2010053942A/en
Application granted granted Critical
Publication of JP4980318B2 publication Critical patent/JP4980318B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Description

この発明は、自動車や産業機械等における等速自在継手に装備されて等速自在継手の作動角を検出する等速自在継手用作動角センサに関する。   The present invention relates to an operation angle sensor for a constant velocity universal joint that is mounted on a constant velocity universal joint in an automobile, an industrial machine, or the like and detects an operation angle of the constant velocity universal joint.

自動車や産業機械などにおいて、駆動装置と被駆動部とを結合する装置の一つとして等速自在継手が用いられる。このような等速自在継手において、耐久性向上を図った各種構造のものが提案されている(例えば特許文献1)。
特開平9−177814号公報
In automobiles and industrial machines, a constant velocity universal joint is used as one of devices for coupling a driving device and a driven part. In such constant velocity universal joints, various structures with improved durability have been proposed (for example, Patent Document 1).
JP-A-9-177814

しかし、等速自在継手では、その作動角が大きくなるとボールが外輪肉厚の薄い部分を用いて駆動力を伝達することとなり、外輪の材料疲労を促進させてしまう。また、許容作動角を超えると、内輪軸と外輪の接触やボールの脱落が発生する可能性がある。
動作中の等速自在継手の作動角を常にモニタすることを考えた。この作動角が常に検出できれば、作動角が許容上限値に至る前に装置を停止させるなどして、内輪軸と外輪の接触、ボールの脱落、破損による事故を未然に防ぐことができる。
しかし、等速自在継手はその全体が回転し、内輪と外輪とが作動角を生じるため、動作中に作動角を検出することが難しく、このような動作中に作動角を検出可能なセンサは、従来に例がない。
However, in the constant velocity universal joint, when the operating angle increases, the ball transmits a driving force using a portion having a thin outer ring wall thickness, which promotes material fatigue of the outer ring. If the allowable operating angle is exceeded, contact between the inner ring shaft and the outer ring or dropout of the ball may occur.
We considered to constantly monitor the working angle of the constant velocity universal joint during operation. If this operating angle can always be detected, it is possible to prevent an accident caused by contact between the inner ring shaft and the outer ring, ball dropout, or breakage by stopping the device before the operating angle reaches the allowable upper limit value.
However, the constant velocity universal joint rotates as a whole, and the inner ring and the outer ring generate an operating angle. Therefore, it is difficult to detect the operating angle during operation, and sensors that can detect the operating angle during such operation are not available. There is no example in the past.

そこで、本発明者等は、このような作動角センサとして、図9に示すような等速自在継手用作動角センサを開発した。この等速自在継手用作動角センサ41は、等速自在継手の内輪軸34の端面に、等速自在継手の外輪32に対する回動中心Oと同心の凸球面部42を設けると共に、この凸球面部42に隙間を介して対面する凹球面部43を等速自在継手の外輪32の内面に設けたものである。この凹球面部43に外輪32の軸心O1と同心の円周溝44を設け、この円周溝44にセンサ素子として磁気発生用コイル45を設け、等速自在継手の外部に検出回路46を設ける。検出回路46は、交流成分を持つ電流で前記磁気発生用コイル45を駆動し、この電流と電圧の関係より磁気発生用コイル45のインダクタンスの変化を検出して、内輪34と外輪32間の作動角を求める。駆動される磁気発生用コイル45により発生する磁界は、前記凹球面部43の中心部と周辺部を磁極とし、凸球面部42を経由することで閉じた磁界となる。対面する凸球面部42と凹球面部43の間では対向する部分の面積が作動角に応じて変化するため、これに伴い磁界の磁路断面積が変化し、磁気発生用コイル45のインダクタンス変化として現れる。これにより、検出回路46は前記インダクタンス変化から等速自在継手の作動角を検出する。   Accordingly, the present inventors have developed a working angle sensor for a constant velocity universal joint as shown in FIG. 9 as such a working angle sensor. The operation angle sensor 41 for the constant velocity universal joint is provided with a convex spherical portion 42 concentric with the rotation center O with respect to the outer ring 32 of the constant velocity universal joint on the end surface of the inner ring shaft 34 of the constant velocity universal joint. A concave spherical surface portion 43 facing the portion 42 through a gap is provided on the inner surface of the outer ring 32 of the constant velocity universal joint. A circumferential groove 44 concentric with the axial center O1 of the outer ring 32 is provided in the concave spherical surface portion 43, a magnetism generating coil 45 is provided as a sensor element in the circumferential groove 44, and a detection circuit 46 is provided outside the constant velocity universal joint. Provide. The detection circuit 46 drives the magnetism generating coil 45 with a current having an AC component, detects a change in inductance of the magnetism generating coil 45 from the relationship between the current and voltage, and operates between the inner ring 34 and the outer ring 32. Find the corner. The magnetic field generated by the driven magnetism generating coil 45 becomes a magnetic field closed by passing through the convex spherical portion 42 with the central portion and the peripheral portion of the concave spherical portion 43 as magnetic poles. Between the convex spherical surface portion 42 and the concave spherical surface portion 43 that face each other, the area of the facing portion changes according to the operating angle. Accordingly, the magnetic path cross-sectional area of the magnetic field changes, and the inductance change of the magnetism generating coil 45 changes. Appears as Thereby, the detection circuit 46 detects the operating angle of the constant velocity universal joint from the inductance change.

この構成の場合、回転体である等速自在継手の外部に設けられた検出回路46から、等速自在継手に設けられた磁気発生用コイル45に駆動電力を供給し、また磁気発生用コイル45による検出信号(インダクタンス変化)を電気信号として検出回路46に送信する送受信機構が必要である。この送受信機構として、図9の構成では、外輪32のカップ部32aの外面に、磁気発生用コイル45を直接駆動する機能とコイル45の出力信号を処理する機能とを持つ電子回路47を設けると共に、外輪カップ部32aの外面に巻回された回転側コイル48aと、このコイル48aの外周側に設置された固定側コイル48bとでなる非接触電磁カップリング48を設け、検出回路46から前記電子回路47への電力供給および電子回路47から検出回路46への検出信号送信を前記非接触電磁カップリング48で中継して行っている。   In this configuration, driving power is supplied from the detection circuit 46 provided outside the constant velocity universal joint, which is a rotating body, to the magnetism generating coil 45 provided in the constant velocity universal joint, and the magnetism generating coil 45 is also provided. A transmission / reception mechanism for transmitting the detection signal (inductance change) by the detection circuit 46 as an electrical signal is required. As the transmission / reception mechanism, in the configuration of FIG. 9, an electronic circuit 47 having a function of directly driving the magnetism generating coil 45 and a function of processing an output signal of the coil 45 is provided on the outer surface of the cup portion 32a of the outer ring 32. A non-contact electromagnetic coupling 48 comprising a rotating side coil 48a wound around the outer surface of the outer ring cup part 32a and a stationary side coil 48b installed on the outer peripheral side of the coil 48a is provided. The power supply to the circuit 47 and the detection signal transmission from the electronic circuit 47 to the detection circuit 46 are relayed by the non-contact electromagnetic coupling 48.

しかし、上記構成の場合、作動角センサ41のセンサ素子として磁気発生用コイル45を用いるため、等速自在継手側に励磁回路が必要で、消費電力も大きくなるなどの課題がある。   However, in the case of the above configuration, the magnetism generating coil 45 is used as the sensor element of the operating angle sensor 41. Therefore, there is a problem that an excitation circuit is required on the constant velocity universal joint side and power consumption is increased.

この発明の目的は、等速自在継手側に励磁回路を設けることなく、少ない消費電力で動作中の等速自在継手の作動角を検出できる等速自在継手用作動角センサを提供することである。   An object of the present invention is to provide an operation angle sensor for a constant velocity universal joint that can detect the operation angle of the constant velocity universal joint during operation with less power consumption without providing an excitation circuit on the constant velocity universal joint side. .

この発明の第1の発明に係る等速自在継手用作動角センサは、外輪の球形内面と内輪の球形外面とにそれぞれトラック溝を形成し、外輪トラック溝と内輪トラック溝との間にボールを組み込み、上記ボールを保持するケージを設け、上記内輪が外周に取付けられまたは上記内輪と一体に形成された内輪軸を有する等速自在継手に装備される作動角センサであって、
前記内輪軸の端面に設けられこの内輪軸の外輪に対する回動中心と同心の凸球面部と、前記外輪の内面に環状に突出して設けられ先端面が前記凸球面部に隙間を介して沿う凹球面とされた凹球面円環部と、この凹球面円環部の内径側の空間にそれぞれ収められた励磁用の永久磁石およびこの永久磁石の磁界の変化を検出する半導体磁気センサとを備え、内輪と外輪間の作動角の変化による磁気抵抗変化を前記半導体磁気センサの出力で検出することにより上記作動角を求めることを特徴とする。
永久磁石より発生する磁界は、半導体磁気センサ、凸球面部、凹球面円環部を経由する閉じた磁界となる。凹球面円環部の凹球面と凸球面部との対向面積は、作動角に応じて変化する。すなわち、凹球面円環部の凹球面と凸球面部とは、作動角が零度のとき対向面積が最大となり、作動角が増加するにつれて対向面積が減少することから、作動角の変化が磁気抵抗の変化、つまり磁気強度変化となって半導体磁気センサにより検出される。その結果、等速自在継手側に励磁回路を設けることなく、少ない消費電力で動作中の等速自在継手の作動角を検出することができる。
このように、この等速自在継手用作動角センサによると、動作中の等速自在継手の作動角を常にモニターできるので、駆動力や稼働時間と共に作動角を監視することにより、等速自在継手の寿命を類推することが可能となり、破損による事故を未然に防ぐことができる。また、検出した作動角が許容上限値に至る前に警報を発し、等速自在継手を使用した装置を停止することにより、内輪軸と外輪の接触やボールの脱落を未然に防ぐことができる。
The operating angle sensor for a constant velocity universal joint according to the first aspect of the present invention has a track groove formed on the spherical inner surface of the outer ring and the spherical outer surface of the inner ring, and a ball is formed between the outer ring track groove and the inner ring track groove. An operation angle sensor provided in a constant velocity universal joint having an inner ring shaft that is incorporated and provided with a cage for holding the ball, the inner ring being attached to the outer periphery or integrally formed with the inner ring,
A convex spherical surface provided on the end surface of the inner ring shaft and concentric with the center of rotation of the inner ring shaft with respect to the outer ring, and a concave surface provided so as to project annularly on the inner surface of the outer ring, with the front end surface extending along the convex spherical portion via a gap. A concave spherical ring portion that is a spherical surface, an exciting permanent magnet that is housed in a space on the inner diameter side of the concave spherical ring portion, and a semiconductor magnetic sensor that detects a change in the magnetic field of the permanent magnet, The operating angle is obtained by detecting a change in magnetoresistance due to a change in operating angle between the inner ring and the outer ring from the output of the semiconductor magnetic sensor.
The magnetic field generated by the permanent magnet is a closed magnetic field that passes through the semiconductor magnetic sensor, the convex spherical surface portion, and the concave spherical ring portion. The facing area between the concave spherical surface and the convex spherical surface of the concave spherical ring portion changes according to the operating angle. That is, the concave spherical surface and the convex spherical surface of the concave spherical ring portion have a maximum opposing area when the operating angle is zero degrees, and the opposing area decreases as the operating angle increases. , That is, a change in magnetic intensity, which is detected by the semiconductor magnetic sensor. As a result, it is possible to detect the operating angle of the constant velocity universal joint that is operating with low power consumption without providing an excitation circuit on the constant velocity universal joint side.
As described above, according to the operating angle sensor for the constant velocity universal joint, the operating angle of the constant velocity universal joint during operation can be monitored at all times. By monitoring the operating angle together with the driving force and the operating time, the constant velocity universal joint can be obtained. It is possible to estimate the life of the battery and prevent accidents due to breakage. Further, an alarm is issued before the detected operating angle reaches the allowable upper limit value, and the device using the constant velocity universal joint is stopped, thereby preventing the contact between the inner ring shaft and the outer ring and the falling of the ball.

この発明において、前記内輪軸および外輪における、前記永久磁石および半導体磁気センサの磁気回路を構成する部分は、前記内輪軸および外輪の他の箇所とは異なる高透磁率軟磁性材で構成しても良い。
作動角センサの感度は、磁気回路を構成する隙間と磁性体部分(凸球面部,凹球面円環部など)の透磁率の比によって大きく変化するため、前記内輪軸および外輪における、前記永久磁石および半導体磁気センサの磁気回路を構成する部分(凸球面部、凹球面円環部など)を、内輪軸および外輪の他の箇所とは異なる高透磁率軟磁性材(フェライト、PBパーマロイなど)とすると、センサ感度を向上させることができる。
In the present invention, the portions constituting the magnetic circuit of the permanent magnet and the semiconductor magnetic sensor in the inner ring shaft and the outer ring may be made of a high magnetic permeability soft magnetic material different from other portions of the inner ring shaft and the outer ring. good.
The sensitivity of the operating angle sensor varies greatly depending on the ratio of the magnetic permeability of the gap forming the magnetic circuit and the magnetic part (convex spherical part, concave spherical ring part, etc.), so the permanent magnets on the inner ring shaft and the outer ring And a portion of the magnetic circuit of the semiconductor magnetic sensor (convex spherical portion, concave spherical ring portion, etc.) with a high permeability soft magnetic material (ferrite, PB permalloy, etc.) different from other portions of the inner ring shaft and outer ring Then, sensor sensitivity can be improved.

この発明において、前記外輪と前記内輪とが最大の作動角をとった状態で、前記凸球面部と前記凹球面円環部は、少なくとも一部が対面する構成にしても良い。内外輪が最大の作動角をとった場合であっても、磁気抵抗の変化により作動角を確実に検出することが可能となる。したがって、動作中の等速自在継手の作動角をモニターできる範囲を大きくし、等速自在継手の寿命をより正確に類推することができる。   In the present invention, the convex spherical portion and the concave spherical ring portion may be configured such that at least a part thereof faces in a state where the outer ring and the inner ring have a maximum operating angle. Even when the inner and outer rings have the maximum operating angle, the operating angle can be reliably detected by the change in magnetic resistance. Therefore, the range in which the operating angle of the constant velocity universal joint during operation can be monitored can be increased, and the life of the constant velocity universal joint can be more accurately estimated.

この発明において、前記内輪軸の端部に軸頭部を設け、この軸頭部に、前記内輪軸の前記凸球面部を設けても良い。この発明において、前記軸頭部は、前記内輪軸よりも大径の拡径軸頭部であっても良い。この場合、内外輪が最大の作動角をとった状態であっても、拡径軸頭部における凸球面部の外周部分と、前記凹球面円環部とが対面可能となる。したがって、内外輪が最大の作動角をとった場合であっても、磁気抵抗の変化により作動角を確実に検出することが可能となる。
前記外輪の内面に設けられた前記凹球面円環部の外径を、前記内輪軸の外径よりも大径としても良い。この場合、内輪と外輪間の作動角の許容上限値を高くすることができる。つまり、動作中の等速自在継手の作動角をモニターできる範囲を大きくし、等速自在継手の寿命をより正確に類推することができる。
In the present invention, a shaft head may be provided at an end of the inner ring shaft, and the convex spherical portion of the inner ring shaft may be provided at the shaft head. In this invention, the shaft head may be an enlarged shaft head having a larger diameter than the inner ring shaft. In this case, even when the inner and outer rings have the maximum operating angle, the outer peripheral portion of the convex spherical surface portion of the enlarged-diameter shaft head and the concave spherical ring portion can face each other. Therefore, even when the inner and outer rings have the maximum operating angle, the operating angle can be reliably detected by the change in magnetic resistance.
The outer diameter of the concave spherical ring provided on the inner surface of the outer ring may be larger than the outer diameter of the inner ring shaft. In this case, the allowable upper limit value of the operating angle between the inner ring and the outer ring can be increased. That is, the range in which the operating angle of the constant velocity universal joint during operation can be monitored can be increased, and the life of the constant velocity universal joint can be more accurately estimated.

この発明の第2の発明に係る等速自在継手用作動角センサは、外輪の球形内面と内輪の球形外面とにそれぞれトラック溝を形成し、外輪トラック溝と内輪トラック溝との間にボールを組み込み、上記ボールを保持するケージを設け、上記内輪が外周に取付けられまたは上記内輪と一体に形成された内輪軸を有する等速自在継手に装備される作動角センサであって、前記ケージの端部に設けられこのケージの外輪に対する回動中心と同心の凸球面部と、前記外輪の内面に環状に突出して設けられ先端面が前記凸球面部に隙間を介して沿う凹球面とされた凹球面円環部と、この凹球面円環部の内径側の空間にそれぞれ収められた励磁用の永久磁石およびこの永久磁石の磁界の変化を検出する半導体磁気センサとを備え、内輪と外輪間の作動角の変化による磁気抵抗変化を前記半導体磁気センサの出力で検出することにより上記作動角を求めることを特徴とする。   A working angle sensor for a constant velocity universal joint according to a second aspect of the present invention has a track groove formed on a spherical inner surface of an outer ring and a spherical outer surface of an inner ring, and a ball is formed between the outer ring track groove and the inner ring track groove. An operating angle sensor provided in a constant velocity universal joint having an inner ring shaft mounted on the outer periphery or integrally formed with the inner ring. A convex spherical surface concentric with the center of rotation of the cage with respect to the outer ring of the cage, and a concave spherical surface that protrudes annularly from the inner surface of the outer ring and has a distal end surface that extends along the convex spherical portion with a gap. A spherical annular part, an exciting permanent magnet housed in a space on the inner diameter side of the concave spherical annular part, and a semiconductor magnetic sensor for detecting a change in the magnetic field of the permanent magnet, between the inner ring and the outer ring. Change of working angle And obtaining the operation angle by detecting a change in magnetic resistance at the output of said semiconductor magnetic sensor according to.

前記ケージの端部に凸球面部を設けたため、既存の内輪軸を適用することができるうえ、外輪と内輪とが最大の作動角をとった状態で、前記凸球面部と凹球面円環部とを対面させることができる。したがって、動作中の等速自在継手の作動角をモニターできる範囲を大きくすることが可能となる。また、前記凸球面部を成す部材をプレス加工等により簡単に成形することができ、内輪軸の端面に凸球面部を球面加工する場合に比べて、製造コストの低減を図ることが可能となる。その他、第1の発明と同様の作用効果を奏する。   Since the convex spherical portion is provided at the end of the cage, the existing inner ring shaft can be applied, and the convex spherical portion and the concave spherical ring portion can be used with the outer ring and the inner ring having the maximum operating angle. Can face each other. Therefore, it is possible to increase the range in which the operating angle of the constant velocity universal joint during operation can be monitored. Further, the member forming the convex spherical surface portion can be easily formed by press working or the like, and the manufacturing cost can be reduced as compared with the case where the convex spherical surface portion is spherically processed on the end surface of the inner ring shaft. . In addition, the same effects as those of the first invention are achieved.

この発明において、前記外輪の外径部に設けられたリング状の回転側コイル、およびこの回転側コイルと同心のリング状に設けられた静止側コイルからなる非接触電磁カップリングを設け、前記回転側コイルおよび静止側コイルにそれぞれ接続された回転側電子回路および静止側電子回路を設け、前記静止側電子回路は、前記静止側コイルを交流励磁して電磁結合作用で回転側へ電力を供給し、かつ前記静止側コイルに誘導されたセンサ信号を復調するものであり、前記回転側電子回路は前記静止側コイルから供給された電力で前記半導体磁気センサを駆動し、かつ前記電力供給に用いる周波数とは異なる周波数の搬送波を前記半導体磁気センサのセンサ信号によって変調してこの変調信号により前記回転側コイルを励磁するものであっても良い。
この構成の場合、外部から回転体である等速自在継手側への電力供給と、等速自在継手に搭載された半導体磁気センサのセンサ信号の外部への送信とを容易に行うことができる。
In this invention, there is provided a non-contact electromagnetic coupling comprising a ring-shaped rotating side coil provided in the outer diameter portion of the outer ring and a stationary side coil provided in a ring shape concentric with the rotating side coil. A rotating side electronic circuit and a stationary side electronic circuit connected to the side coil and the stationary side coil, respectively, and the stationary side electronic circuit excites the stationary side coil to supply electric power to the rotating side by electromagnetic coupling action. And the sensor signal induced in the stationary coil, and the rotation-side electronic circuit drives the semiconductor magnetic sensor with the power supplied from the stationary coil and uses the frequency for the power supply. Even if a carrier wave having a frequency different from the above is modulated by a sensor signal of the semiconductor magnetic sensor and the rotation side coil is excited by the modulated signal, There.
In the case of this configuration, it is possible to easily supply power from the outside to the constant velocity universal joint, which is a rotating body, and to transmit the sensor signal of the semiconductor magnetic sensor mounted on the constant velocity universal joint to the outside.

この発明の第1の発明に係る等速自在継手用作動角センサは、外輪の球形内面と内輪の球形外面とにそれぞれトラック溝を形成し、外輪トラック溝と内輪トラック溝との間にボールを組み込み、上記ボールを保持するケージを設け、上記内輪が外周に取付けられまたは上記内輪と一体に形成された内輪軸を有する等速自在継手に装備される作動角センサであって、前記内輪軸の端面に設けられこの内輪軸の外輪に対する回動中心と同心の凸球面部と、前記外輪の内面に環状に突出して設けられ先端面が前記凸球面部に隙間を介して沿う凹球面とされた凹球面円環部と、この凹球面円環部の内径側の空間にそれぞれ収められた励磁用の永久磁石およびこの永久磁石の磁界の変化を検出する半導体磁気センサとを備え、内輪と外輪間の作動角の変化による磁気抵抗変化を前記半導体磁気センサの出力で検出することにより上記作動角を求めるものとしたため、等速自在継手側に励磁回路を設けることなく、少ない消費電力で動作中の等速自在継手の作動角を検出することができる。   The operating angle sensor for a constant velocity universal joint according to the first aspect of the present invention has a track groove formed on the spherical inner surface of the outer ring and the spherical outer surface of the inner ring, and a ball is formed between the outer ring track groove and the inner ring track groove. An operation angle sensor provided in a constant velocity universal joint having an inner ring shaft that is incorporated and provided with a cage for holding the ball, the inner ring being attached to the outer periphery or integrally formed with the inner ring, A convex spherical surface provided on the end surface and concentric with the center of rotation of the inner ring shaft with respect to the outer ring, and a concave spherical surface provided so as to project annularly on the inner surface of the outer ring, with the front end surface extending along the convex spherical surface via a gap. A concave spherical ring part, an exciting permanent magnet housed in a space on the inner diameter side of the concave spherical ring part, and a semiconductor magnetic sensor for detecting a change in the magnetic field of the permanent magnet, between the inner ring and the outer ring Change of working angle The operating angle is obtained by detecting the change in magnetoresistance by the output of the semiconductor magnetic sensor, so that there is no excitation circuit on the constant velocity universal joint side, and the constant velocity universal joint in operation with low power consumption is provided. The operating angle can be detected.

この発明の第2の発明に係る等速自在継手用作動角センサは、外輪の球形内面と内輪の球形外面とにそれぞれトラック溝を形成し、外輪トラック溝と内輪トラック溝との間にボールを組み込み、上記ボールを保持するケージを設け、上記内輪が外周に取付けられまたは上記内輪と一体に形成された内輪軸を有する等速自在継手に装備される作動角センサであって、前記ケージの端部に設けられこのケージの外輪に対する回動中心と同心の凸球面部と、前記外輪の内面に環状に突出して設けられ先端面が前記凸球面部に隙間を介して沿う凹球面とされた凹球面円環部と、この凹球面円環部の内径側の空間にそれぞれ収められた励磁用の永久磁石およびこの永久磁石の磁界の変化を検出する半導体磁気センサと、
を備え、内輪と外輪間の作動角の変化による磁気抵抗変化を前記半導体磁気センサの出力で検出することにより上記作動角を求める。
このため、等速自在継手側に励磁回路を設けることなく、少ない消費電力で動作中の等速自在継手の作動角を検出することができる。
A working angle sensor for a constant velocity universal joint according to a second aspect of the present invention has a track groove formed on a spherical inner surface of an outer ring and a spherical outer surface of an inner ring, and a ball is formed between the outer ring track groove and the inner ring track groove. An operating angle sensor provided in a constant velocity universal joint having an inner ring shaft mounted on the outer periphery or integrally formed with the inner ring. A convex spherical surface concentric with the center of rotation of the cage with respect to the outer ring of the cage, and a concave spherical surface that protrudes annularly from the inner surface of the outer ring and has a distal end surface that extends along the convex spherical portion with a gap. A spherical ring part, a permanent magnet for excitation housed in a space on the inner diameter side of the concave spherical ring part, and a semiconductor magnetic sensor for detecting a change in the magnetic field of the permanent magnet,
And determining the operating angle by detecting a change in magnetoresistance due to a change in operating angle between the inner ring and the outer ring based on the output of the semiconductor magnetic sensor.
For this reason, the operating angle of the constant velocity universal joint during operation can be detected with less power consumption without providing an excitation circuit on the constant velocity universal joint side.

この発明の一実施形態を図1および図2と共に説明する。図1(A)は、この実施形態の作動角センサ11が装備された等速自在継手1の一部を破断して示す正面図である。この等速自在継手1は固定式のものであり、外輪2、内輪3、内輪軸4、トルク伝達用の転動体であるボール5、およびボール5を保持するケージ6からなる。
外輪2は、カップ部2aとステム部2bとを有する。外輪2のカップ部2aの内面は、開口側部分内面部分および底面側内面部分に分けたうち、開口側内面部分が球形とされている。その球形内面2aaに、6つ(または8つ)のトラック溝7が軸方向に沿って形成されている。内輪3の外面は球形とされ、その球形外面にも6つ(または8つ)のトラック溝8が、軸方向に沿って形成されている。これら各外輪トラック溝7と内輪トラック溝8とは互いに対向し、その対向する各外輪トラック溝7,8間にボール5が1個ずつ組み込まれる。ケージ6は、各ボール5を同一平面内に保持する部材であり、周方向の複数箇所に設けられたポケット6a内にボール5が保持される。
内輪3は内周にセレーションまたはスプライン等の凹凸部を有する中央孔9を備え、この中央孔9に内輪軸4の一端部がトルク伝達可能に嵌合している。なお、内輪軸4は内輪3と一体に形成されたものであっても良い。
外輪2、内輪3、および内輪軸4は、いずれも鋼材などからなり、従って強磁性体とされている。
An embodiment of the present invention will be described with reference to FIGS. FIG. 1 (A) is a front view showing a part of the constant velocity universal joint 1 equipped with the operating angle sensor 11 of this embodiment. The constant velocity universal joint 1 is a fixed type and includes an outer ring 2, an inner ring 3, an inner ring shaft 4, a ball 5 that is a rolling element for torque transmission, and a cage 6 that holds the ball 5.
The outer ring 2 has a cup part 2a and a stem part 2b. The inner surface of the cup portion 2a of the outer ring 2 is divided into an inner surface portion on the opening side and an inner surface portion on the bottom surface side, and the inner surface portion on the opening side is spherical. Six (or eight) track grooves 7 are formed in the spherical inner surface 2aa along the axial direction. The outer surface of the inner ring 3 is spherical, and six (or eight) track grooves 8 are formed along the axial direction on the spherical outer surface. Each of the outer ring track grooves 7 and the inner ring track grooves 8 face each other, and one ball 5 is incorporated between each of the opposed outer ring track grooves 7 and 8. The cage 6 is a member that holds the balls 5 in the same plane, and the balls 5 are held in pockets 6a provided at a plurality of locations in the circumferential direction.
The inner ring 3 includes a central hole 9 having an uneven portion such as a serration or a spline on the inner periphery, and one end portion of the inner ring shaft 4 is fitted in the central hole 9 so that torque can be transmitted. The inner ring shaft 4 may be formed integrally with the inner ring 3.
The outer ring 2, the inner ring 3 and the inner ring shaft 4 are all made of a steel material and are therefore made of a ferromagnetic material.

内輪軸4における、外輪カップ部2aの内面に対向する端面は、この内輪軸4の外輪カップ部2aに対する回動中心Oと同心の凸球面となる凸球面部12が設けられている。また、外輪カップ部2aの内面における底側内面部分の中心に、環状に突出して凹球面円環部13が設けられている。凹球面円環部13は、先端面が前記内輪軸4の凸球面部12に隙間を介して沿う凹球面13aとされている。
前記凸球面部12と凹球面円環部13とは、図1(A)に示す作動角が零の状態で、凹球面13aの全てが凸球面部12に対向し合い、図2に示すように作動角が発生した状態では凹球面13aの一部に凸球面部12と対向し合わない部分が生じるように設けられる。具体的には、凹球面円環部13は、その円環軸心が外輪2の軸心O1に一致する位置に設けられる。
An end surface of the inner ring shaft 4 facing the inner surface of the outer ring cup portion 2a is provided with a convex spherical surface portion 12 which is a convex spherical surface concentric with the rotation center O of the inner ring shaft 4 with respect to the outer ring cup portion 2a. Further, a concave spherical ring portion 13 is provided so as to protrude annularly at the center of the bottom side inner surface portion of the inner surface of the outer ring cup portion 2a. The concave spherical ring portion 13 is a concave spherical surface 13a whose front end surface follows the convex spherical portion 12 of the inner ring shaft 4 via a gap.
The convex spherical surface portion 12 and the concave spherical ring portion 13 are all in the state where the operating angle shown in FIG. 1A is zero and the concave spherical surface 13a faces the convex spherical surface portion 12, as shown in FIG. When the operating angle is generated, a part of the concave spherical surface 13a is provided so as to have a part that does not face the convex spherical part 12. Specifically, the concave spherical ring portion 13 is provided at a position where the ring axis coincides with the axis O 1 of the outer ring 2.

図1(A)の一部を拡大して図1(B)に示す。同図のように、前記凹球面円環部13の内径側の空間の円環軸心位置には、励磁用の永久磁石14と、この永久磁石14の磁界の変化を検出する半導体磁気センサ15とが軸方向に並べて収められ、固定されている。この場合、永久磁石14の磁極N,Sは軸方向に揃えられる。例えば、永久磁石14を、そのN磁極が凸球面部12に対向する向きに配置した場合、永久磁石14により発生する磁界は、永久磁石14から出た磁力線が、半導体磁気センサ15を通過し、凸球面部12の中心部から周辺部、および凹球面円環部13を経由して永久磁石14の裏面に帰る閉じた磁界となる。
ここでは、凸球面部12および凹球面円環部13が、鋼材からなる内輪軸4および外輪2と一体に形成されているが、前記永久磁石14および半導体磁気センサ15の磁気回路を構成する前記凸球面部12や凹球面円環部13などの部分を、内輪軸4や外輪2と別体に形成して、内輪軸4や外輪2に螺着や締付けにより一体に固定しても良い。その場合には、これらの磁気回路構成部材の素材として、内輪軸4や外輪2の他の箇所とは異なる高透磁率軟磁性材(例えばフェライト、PBパーマロイなど)を用いるのがセンサ感度向上の観点から好ましい。
A part of FIG. 1A is enlarged and shown in FIG. As shown in the figure, at the annular axial center position of the space on the inner diameter side of the concave spherical ring portion 13, an exciting permanent magnet 14 and a semiconductor magnetic sensor 15 that detects a change in the magnetic field of the permanent magnet 14. Are housed side by side in the axial direction and fixed. In this case, the magnetic poles N and S of the permanent magnet 14 are aligned in the axial direction. For example, when the permanent magnet 14 is arranged in a direction in which the N magnetic pole faces the convex spherical portion 12, the magnetic field generated by the permanent magnet 14 passes through the semiconductor magnetic sensor 15 when the magnetic field lines emitted from the permanent magnet 14 pass through the semiconductor magnetic sensor 15. The magnetic field is a closed magnetic field that returns to the back surface of the permanent magnet 14 from the central portion of the convex spherical portion 12 through the peripheral portion and the concave spherical ring portion 13.
Here, the convex spherical portion 12 and the concave spherical ring portion 13 are formed integrally with the inner ring shaft 4 and the outer ring 2 made of steel, but the magnetic circuit of the permanent magnet 14 and the semiconductor magnetic sensor 15 constitutes the magnetic circuit. Portions such as the convex spherical portion 12 and the concave spherical ring portion 13 may be formed separately from the inner ring shaft 4 and the outer ring 2 and may be integrally fixed to the inner ring shaft 4 and the outer ring 2 by screwing or tightening. In that case, the use of a high magnetic permeability soft magnetic material (for example, ferrite, PB permalloy, etc.) different from the other parts of the inner ring shaft 4 and the outer ring 2 as the material of these magnetic circuit constituent members improves the sensor sensitivity. It is preferable from the viewpoint.

等速自在継手1の外部には、等速自在継手1から離れて静止側電子回路16が設けられる。等速自在継手1の外輪2のカップ部2aの外径面には回転側電子回路17が設けられる。回転側電子回路17は、前記半導体磁気センサ15を駆動し、かつ半導体磁気センサ15の出力であるセンサ信号に対して送信のための処理をする機能を持つ。静止側電子回路16は、回転側電子回路17に電力を供給し、かつ回転側電子回路17から送信されたセンサ信号を受信して、そのセンサ信号から作動角を検出する機能を持つ。
静止側電子回路16と回転側電子回路17との間の中継は、外輪2の軸心O1と同心に外輪カップ部2aの外径部に巻回されたリング状の回転側コイル18aと、このコイル18aと同心にこのコイル18aの外周に設置された静止側コイル18bとでなる非接触電磁カップリング18により行われる。前記静止側電子回路16は前記静止側コイル18bに接続され、静止側コイル18bを交流励磁して電磁結合作用で回転側コイル18aを経て回転側電子回路17に電力を供給し、かつ静止側コイル18bに誘導されたセンサ信号を復調する。前記回転側電子回路17は前記回転側コイル18aに接続され、前記静止側コイル18bから供給された電力で半導体磁気センサ15を駆動し、かつ前記電力供給に用いる周波数とは異なる周波数の搬送波を前記半導体磁気センサ15のセンサ信号によって変調して、この変調信号により前記回転側コイル18aを励磁する。
Outside the constant velocity universal joint 1, a stationary side electronic circuit 16 is provided apart from the constant velocity universal joint 1. A rotation-side electronic circuit 17 is provided on the outer diameter surface of the cup portion 2 a of the outer ring 2 of the constant velocity universal joint 1. The rotation-side electronic circuit 17 has a function of driving the semiconductor magnetic sensor 15 and performing processing for transmission on the sensor signal that is the output of the semiconductor magnetic sensor 15. The stationary electronic circuit 16 has a function of supplying electric power to the rotating electronic circuit 17 and receiving a sensor signal transmitted from the rotating electronic circuit 17 and detecting an operating angle from the sensor signal.
The relay between the stationary electronic circuit 16 and the rotating electronic circuit 17 includes a ring-shaped rotating coil 18a wound around the outer diameter portion of the outer ring cup portion 2a concentrically with the axis O1 of the outer ring 2, and this This is performed by a non-contact electromagnetic coupling 18 formed of a stationary side coil 18b installed on the outer periphery of the coil 18a concentrically with the coil 18a. The stationary side electronic circuit 16 is connected to the stationary side coil 18b. The stationary side coil 18b is AC-excited to supply power to the rotating side electronic circuit 17 via the rotating side coil 18a by electromagnetic coupling action. The sensor signal guided to 18b is demodulated. The rotation-side electronic circuit 17 is connected to the rotation-side coil 18a, drives the semiconductor magnetic sensor 15 with power supplied from the stationary-side coil 18b, and generates a carrier wave having a frequency different from the frequency used for the power supply. Modulation is performed by the sensor signal of the semiconductor magnetic sensor 15, and the rotation side coil 18a is excited by the modulation signal.

次に、上記等速自在継手用作動角センサ11の動作を説明する。静止側電子回路16は、静止側コイル18bを交流励磁して電磁結合作用で回転側コイル18aに電力を供給する。この電力を回転側コイル18aから受けて、回転側電子回路17は半導体磁気センサ15を駆動する。永久磁石14より発生する磁界は、上記したように半導体磁気センサ15、凸球面部12、凹球面円環部13を経由する閉じた磁界となる。凹球面円環部13の凹球面13aと凸球面部12との対向面積は、作動角に応じて変化する。すなわち、凹球面円環部13の凹球面13aと凸球面部12とは、作動角が零度のとき対向面積が最大となり、作動角が増加するにつれて対向面積が減少する。これにより、作動角の変化が磁気抵抗の変化、つまり磁気強度変化となって半導体磁気センサ15により検出される。
回転側電子回路17では、電力供給に用いる周波数とは異なる周波数の搬送波を半導体磁気センサ15のセンサ信号によって変調し、この変調信号により回転側コイル18aを励磁し、電磁結合作用で静止側コイル18bに誘導する。静止側電子回路16では、静止側コイル18bに誘導されたセンサ信号を復調して、そのセンサ信号つまり検出された磁気強度の変化から等速自在継手1の作動角を検出する。
Next, the operation of the operation angle sensor 11 for the constant velocity universal joint will be described. The stationary side electronic circuit 16 excites the stationary side coil 18b with alternating current to supply electric power to the rotating side coil 18a by electromagnetic coupling action. Receiving this electric power from the rotating side coil 18 a, the rotating side electronic circuit 17 drives the semiconductor magnetic sensor 15. The magnetic field generated by the permanent magnet 14 becomes a closed magnetic field that passes through the semiconductor magnetic sensor 15, the convex spherical surface portion 12, and the concave spherical ring portion 13 as described above. The facing area between the concave spherical surface 13a and the convex spherical surface portion 12 of the concave spherical ring portion 13 changes according to the operating angle. That is, the concave spherical surface 13a and the convex spherical surface portion 12 of the concave spherical ring portion 13 have the largest facing area when the operating angle is zero degrees, and the facing area decreases as the working angle increases. As a result, the change in operating angle is detected by the semiconductor magnetic sensor 15 as a change in magnetic resistance, that is, a change in magnetic intensity.
In the rotation-side electronic circuit 17, a carrier wave having a frequency different from the frequency used for power supply is modulated by the sensor signal of the semiconductor magnetic sensor 15, the rotation-side coil 18a is excited by this modulation signal, and the stationary-side coil 18b is electromagnetically coupled. To guide. The stationary electronic circuit 16 demodulates the sensor signal induced in the stationary coil 18b and detects the operating angle of the constant velocity universal joint 1 from the sensor signal, that is, the detected change in magnetic strength.

このように、この等速自在継手用作動角センサ11によると、内輪軸4の端面に設けられた凸球面部12と、外輪カップ部2aの内面に突出して設けられ先端面が前記凸球面部12に隙間を介して沿う凹球面13aとされた凹球面円環部13と、この凹球面円環部13の内径側の空間にそれぞれ収められた励磁用の永久磁石14と、この永久磁石14の磁界の変化を検出する半導体磁気センサ15とで磁気回路を構成し、内輪3と外輪2間の作動角の変化による前記磁気回路の磁気抵抗変化を前記半導体磁気センサ15の出力で検出するようにしているので、回転体である等速自在継手1側に検出用の励磁回路を設けることなく、少ない消費電力で動作中の等速自在継手1の作動角を検出することができる。   As described above, according to the constant velocity universal joint operating angle sensor 11, the convex spherical surface portion 12 provided on the end surface of the inner ring shaft 4 and the front end surface projecting from the inner surface of the outer ring cup portion 2a are provided on the convex spherical surface portion. 12, a concave spherical ring portion 13 formed as a concave spherical surface 13a along a gap, an exciting permanent magnet 14 accommodated in a space on the inner diameter side of the concave spherical ring portion 13, and the permanent magnet 14 The semiconductor magnetic sensor 15 that detects a change in the magnetic field of the magnetic circuit constitutes a magnetic circuit, and a change in the magnetic resistance of the magnetic circuit due to a change in operating angle between the inner ring 3 and the outer ring 2 is detected by the output of the semiconductor magnetic sensor 15. Therefore, the operating angle of the constant velocity universal joint 1 in operation can be detected with low power consumption without providing a detection excitation circuit on the constant velocity universal joint 1 side, which is a rotating body.

また、この等速自在継手用作動角センサ11によると、動作中の等速自在継手1の作動角を常にモニターできるので、駆動力や稼働時間と共に作動角を監視することにより、等速自在継手1の寿命を類推することが可能となり、破損による事故を未然に防ぐことができる。また、検出した作動角が許容上限値に至る前に警報を発し、等速自在継手1を使用した装置を停止することにより、内輪軸4と外輪2の接触やボール5の脱落を未然に防ぐことができる。   Further, according to the operation angle sensor 11 for the constant velocity universal joint, since the operation angle of the constant velocity universal joint 1 in operation can always be monitored, by monitoring the operation angle together with the driving force and the operation time, the constant velocity universal joint can be obtained. It is possible to infer the lifetime of 1 and prevent accidents due to breakage. Further, an alarm is issued before the detected operating angle reaches the allowable upper limit value, and the device using the constant velocity universal joint 1 is stopped, thereby preventing the contact between the inner ring shaft 4 and the outer ring 2 and the falling of the ball 5 in advance. be able to.

また、作動角センサ11の感度は、前記磁気回路を構成する隙間と磁性体部分の透磁率の比によって大きく変化するため、この実施形態において、前記内輪軸4および外輪2における、前記永久磁石14および半導体磁気センサ15の磁気回路を構成する部分(凸球面部12、凹球面円環部13など)を、上記したように内輪軸4および外輪2の他の箇所とは異なる高透磁率軟磁性材(フェライト、PBパーマロイなど)とした場合には、センサ感度を向上させることができる。   Further, since the sensitivity of the operating angle sensor 11 varies greatly depending on the ratio of the magnetic permeability to the gap constituting the magnetic circuit, in this embodiment, the permanent magnet 14 in the inner ring shaft 4 and the outer ring 2 is used. As described above, the high magnetic permeability soft magnetism in which the magnetic circuit portion of the semiconductor magnetic sensor 15 (the convex spherical portion 12, the concave spherical ring portion 13, etc.) is different from the other portions of the inner ring shaft 4 and the outer ring 2 is used. When a material (ferrite, PB permalloy, etc.) is used, the sensor sensitivity can be improved.

また、この実施形態では、外輪カップ部2aの外径部に取付けた回転側コイル18aを有する非接触電磁カップリング18を設け、電磁結合作用で回転側へ電力を供給すると共に、電力供給に用いる周波数とは異なる周波数で半導体磁気センサ15のセンサ信号を固定側へ送信するようにしたため、外部から回転体である等速自在継手1側への電力供給と、等速自在継手1に搭載された半導体磁気センサ15のセンサ信号の外部への送信とを容易に行うことができる。   Further, in this embodiment, a non-contact electromagnetic coupling 18 having a rotating side coil 18a attached to the outer diameter portion of the outer ring cup portion 2a is provided, and power is supplied to the rotating side by electromagnetic coupling and used for power supply. Since the sensor signal of the semiconductor magnetic sensor 15 is transmitted to the fixed side at a frequency different from the frequency, power is supplied from the outside to the constant velocity universal joint 1 side which is a rotating body, and the constant velocity universal joint 1 is mounted. The sensor signal of the semiconductor magnetic sensor 15 can be easily transmitted to the outside.

次に、この発明の他の実施形態を図3と共に説明する。
以下の説明においては、各形態で先行する形態で説明している事項に対応している部分には同一の参照符を付し、重複する説明を略する場合がある。構成の一部のみを説明している場合、構成の他の部分は、先行して説明している形態と同様とする。実施の各形態で具体的に説明している部分の組合せばかりではなく、特に組合せに支障が生じなければ、実施の形態同士を部分的に組合せることも可能である。
Next, another embodiment of the present invention will be described with reference to FIG.
In the following description, the same reference numerals are given to portions corresponding to the matters described in the preceding forms in each embodiment, and overlapping description may be omitted. When only a part of the configuration is described, the other parts of the configuration are the same as those described in the preceding section. Not only the combination of the parts specifically described in each embodiment, but also the embodiments can be partially combined as long as the combination does not hinder.

この実施形態では、内輪軸4の一端部に軸頭部JTを設け、この軸頭部JTの表面に、凸球面部12を形成している。この軸頭部JTは、凸球面部12と、この凸球面部12の外周縁部に付設された係合部12bとを有する。この係合部12bは、内輪軸4の軸心に平行に所定小距離突出し、内輪軸4の一端部に形成された環状溝である被係合部4aに係合されている。   In this embodiment, a shaft head portion JT is provided at one end portion of the inner ring shaft 4, and a convex spherical surface portion 12 is formed on the surface of the shaft head portion JT. The shaft head portion JT has a convex spherical surface portion 12 and an engaging portion 12b attached to the outer peripheral edge portion of the convex spherical surface portion 12. The engaging portion 12 b protrudes a predetermined small distance parallel to the axis of the inner ring shaft 4 and is engaged with an engaged portion 4 a that is an annular groove formed at one end of the inner ring shaft 4.

また、軸頭部JTは、例えば、薄板状でありプレス加工等により、凸球面部12および係合部12bを一体形成し得る。ただし、プレス加工だけに限定されるものではない。円周方向に沿って形成される係合部12bを、半径方向外方に弾性変形等により一時的に拡径させ、内輪軸4の被係合部4aに係合可能になっている。なお、内輪軸4への軸頭部JTへの固定方法は、ボルト等の固定具を用いても良い。このような軸頭部JTによると、内輪軸4の端面に凸球面部を球面加工する場合に比べて、製造コストの低減を図ることが可能となる。また、既存の内輪軸4を適用できるため、その分、量産効果を高めることができる。その他、図1の実施形態と同様の構成となっており、同実施形態と同様の作用、効果を奏する。   Further, the shaft head portion JT is, for example, a thin plate, and the convex spherical surface portion 12 and the engaging portion 12b can be integrally formed by pressing or the like. However, it is not limited only to press work. The engagement portion 12b formed along the circumferential direction is temporarily expanded radially outward by elastic deformation or the like, and can be engaged with the engaged portion 4a of the inner ring shaft 4. Note that a fixing tool such as a bolt may be used as a method of fixing the shaft head JT to the inner ring shaft 4. According to such a shaft head JT, it is possible to reduce the manufacturing cost as compared with a case where a convex spherical surface is processed on the end surface of the inner ring shaft 4. Further, since the existing inner ring shaft 4 can be applied, the mass production effect can be enhanced accordingly. In addition, the configuration is the same as that of the embodiment of FIG. 1, and the same operations and effects as those of the embodiment are achieved.

次に、この発明のさらに他の実施形態を図4と共に説明する。
この実施形態では、外輪2の内面に設けられた凹球面円環部13の外径Daを、内輪軸4の外径Dbよりも大径としている。この場合、凸球面部12と凹球面円環部13とは、同図に示す作動角が零の状態で、凹球面13aの外周縁部13aaが露出する。つまり、凹球面13aのうちこの外周縁部13aaを除く残余の部分と凸球面部12の外周縁部12aが対向し合う。また、最大の作動角をとった状態で、凸球面部12と凹球面円環部13とは、少なくとも一部が対面する。なお、図示しないが、作動角の許容上限値において、凹球面円環部13とケージ6とが干渉しないように、凹球面円環部13の外径Daが定められる。その他、図3の実施形態と同様の構成となっている。
Next, still another embodiment of the present invention will be described with reference to FIG.
In this embodiment, the outer diameter Da of the concave spherical ring portion 13 provided on the inner surface of the outer ring 2 is larger than the outer diameter Db of the inner ring shaft 4. In this case, the outer peripheral edge 13aa of the concave spherical surface 13a is exposed between the convex spherical portion 12 and the concave spherical annular portion 13 with the operating angle shown in FIG. That is, the remaining portion of the concave spherical surface 13a excluding the outer peripheral edge portion 13aa and the outer peripheral edge portion 12a of the convex spherical surface portion 12 face each other. Further, in the state where the maximum operating angle is taken, at least a part of the convex spherical surface portion 12 and the concave spherical ring portion 13 face each other. Although not shown, the outer diameter Da of the concave spherical ring portion 13 is determined so that the concave spherical ring portion 13 and the cage 6 do not interfere with each other at the allowable upper limit of the operating angle. Other configurations are the same as those in the embodiment of FIG.

この実施形態では、凹球面円環部13の外径Daを、内輪軸4の外径Dbよりも大径としたため、内輪3と外輪2間の作動角の許容上限値を高くすることができる。その他、図3の実施形態と同様の作用、効果を奏する。   In this embodiment, since the outer diameter Da of the concave spherical ring portion 13 is larger than the outer diameter Db of the inner ring shaft 4, the allowable upper limit value of the operating angle between the inner ring 3 and the outer ring 2 can be increased. . In addition, there are the same operations and effects as the embodiment of FIG.

この発明のさらに他の実施形態について図5と共に説明する。
この実施形態では、内輪軸4の一端部に、この内輪軸4よりも大径の拡径軸頭部KJを設けている。この拡径軸頭部KJの端面に凸球面部KJaを設け、この凸球面部KJaは、内輪軸4の外輪2に対する回動中心Oと同心に形成されている。
また、外輪2の外輪カップ部2aの内面において、凹球面円環部13の外径Daを、前記凸球面部KJaの外径Dcと同一径としている。凹球面円環部13の内径面に嵌合可能な内筒部材13nを介して、永久磁石14および半導体磁気センサ15が軸方向に並べて収められて固着されている。前記内筒部材13nは有底円筒形状であり、この内筒部材13nの底部に、永久磁石14および半導体磁気センサ15を円環軸心位置に位置決めする嵌合孔13naが形成されている。また、内筒部材13nを凹球面円環部13の内径面に嵌合した状態において、凹球面円環部13の先端面および内筒部材13nの先端面は連なりかつ、前記凸球面部KJaに隙間を介して沿う凹球面13aとされている。
Still another embodiment of the present invention will be described with reference to FIG.
In this embodiment, an enlarged-diameter shaft head KJ having a larger diameter than the inner ring shaft 4 is provided at one end of the inner ring shaft 4. A convex spherical surface portion KJa is provided on the end surface of the diameter-expanded shaft head portion KJ, and this convex spherical surface portion KJa is formed concentrically with the rotation center O of the inner ring shaft 4 with respect to the outer ring 2.
Further, on the inner surface of the outer ring cup portion 2a of the outer ring 2, the outer diameter Da of the concave spherical ring portion 13 is the same as the outer diameter Dc of the convex spherical portion KJa. A permanent magnet 14 and a semiconductor magnetic sensor 15 are accommodated side by side in the axial direction and fixed via an inner cylindrical member 13n that can be fitted to the inner diameter surface of the concave spherical ring portion 13. The inner cylinder member 13n has a bottomed cylindrical shape, and a fitting hole 13na for positioning the permanent magnet 14 and the semiconductor magnetic sensor 15 at the annular axis position is formed at the bottom of the inner cylinder member 13n. Further, in a state in which the inner cylindrical member 13n is fitted to the inner diameter surface of the concave spherical ring portion 13, the distal end surface of the concave spherical annular portion 13 and the distal end surface of the inner cylindrical member 13n are continuous with the convex spherical portion KJa. A concave spherical surface 13a is formed along the gap.

本実施形態では、これら凹球面円環部13および内筒部材13nを、外輪カップ部2aとは別体に形成し、この外輪カップ部2aの内面に固着している。ただし、外輪カップ部2aの内面に、凹球面円環部13等を鍛造により一体に形成しても良い。また、凹球面円環部13に、内筒部材13nを設けることなく、永久磁石14および半導体磁気センサ15を円環軸心位置に設けることも可能である。   In the present embodiment, the concave spherical ring portion 13 and the inner cylinder member 13n are formed separately from the outer ring cup portion 2a, and are fixed to the inner surface of the outer ring cup portion 2a. However, the concave spherical ring portion 13 or the like may be integrally formed on the inner surface of the outer ring cup portion 2a by forging. Further, it is possible to provide the permanent magnet 14 and the semiconductor magnetic sensor 15 at the position of the annular axis without providing the inner cylindrical member 13n in the concave spherical ring portion 13.

凸球面部KJaと凹球面13aとは、図5(B)に示す作動角が零の状態で、凹球面13aの全てが凸球面部KJaに対向し合う。図5(A)に示すように、最大の作動角をとった状態で、凸球面部KJaと凹球面13aは、少なくとも一部が対面する。また、作動角が許容上限値において、凸球面部KJaとケージ6とが干渉しないように、凸球面部KJaの外径Dcが定められている。さらに、いかなる作動角をとった状態においても、凸球面部KJaが外輪カップ部2aの内面に干渉しないように、凸球面部KJaの軸方向突出量δJおよび外径Dcが規定されている。その他図1の実施形態と同様の構成となっている。   The convex spherical surface KJa and the concave spherical surface 13a are all in the state in which the operating angle shown in FIG. 5B is zero, and the concave spherical surface 13a faces the convex spherical surface portion KJa. As shown in FIG. 5A, at least a part of the convex spherical surface portion KJa and the concave spherical surface 13a face each other with the maximum operating angle. Further, the outer diameter Dc of the convex spherical surface portion KJa is determined so that the convex spherical surface portion KJa and the cage 6 do not interfere when the operating angle is the allowable upper limit value. Further, the axial protrusion amount δJ and the outer diameter Dc of the convex spherical portion KJa are defined so that the convex spherical portion KJa does not interfere with the inner surface of the outer ring cup portion 2a in any operating angle. The other configuration is the same as that of the embodiment of FIG.

以上説明した図5に示す実施形態によると、内輪軸4の一端部に、この内輪軸4よりも大径の拡径軸頭部KJを設けたため、内外輪が最大の作動角をとった状態であっても、軸径軸頭部KJにおける凸球面部KJaの外周部分と、凹球面13aとが対面可能となる。したがって、磁気抵抗の変化により作動角を確実に検出し得る。このように動作中の等速自在継手の作動角をモニターできる範囲を大きくし、等速自在継手の寿命をより正確に類推することが可能となる。   According to the embodiment shown in FIG. 5 described above, since the enlarged shaft head portion KJ having a larger diameter than the inner ring shaft 4 is provided at one end of the inner ring shaft 4, the inner and outer rings have the maximum operating angle. Even so, the outer peripheral portion of the convex spherical surface portion KJa in the shaft diameter shaft head portion KJ and the concave spherical surface 13a can face each other. Therefore, the operating angle can be reliably detected by the change in the magnetic resistance. Thus, it is possible to increase the range in which the operating angle of the constant velocity universal joint in operation can be monitored, and to estimate the life of the constant velocity universal joint more accurately.

凹球面円環部13の内径面に嵌合可能な内筒部材13nを介して、永久磁石14および半導体磁気センサ15が軸方向に並べて収められて固着されているため、永久磁石14および半導体磁気センサ15を円環軸心位置に容易にかつ正確に位置決めすることができる。前記凹球面円環部13および内筒部材13nを、外輪カップ部2aとは別体に形成した場合、前記内筒部材13nの底部に、永久磁石14および半導体磁気センサ15を設け、さらにこの内筒部材13nを凹球面円環部13に嵌合した組立品を、外輪カップ部2aの内面に容易に固着することができる。この場合、外輪カップ部2aの内面において、永久磁石14および半導体磁気センサ15等を固着させる場合よりも組立を簡単化し、作業工数の低減を図ることが可能となる。外輪カップ部2aの内面に、凹球面円環部13等を鍛造により一体に形成した場合、全体の部品点数の低減を図り、構造を簡単化することができる。その他、図1の実施形態と同様の効果を奏する。   Since the permanent magnet 14 and the semiconductor magnetic sensor 15 are housed and fixed in the axial direction through the inner cylindrical member 13n that can be fitted to the inner diameter surface of the concave spherical ring portion 13, the permanent magnet 14 and the semiconductor magnetic The sensor 15 can be easily and accurately positioned at the annular axis position. When the concave spherical ring portion 13 and the inner cylindrical member 13n are formed separately from the outer ring cup portion 2a, a permanent magnet 14 and a semiconductor magnetic sensor 15 are provided at the bottom of the inner cylindrical member 13n. An assembly in which the cylindrical member 13n is fitted to the concave spherical ring portion 13 can be easily fixed to the inner surface of the outer ring cup portion 2a. In this case, it is possible to simplify the assembly and reduce the number of work steps compared to the case where the permanent magnet 14 and the semiconductor magnetic sensor 15 are fixed on the inner surface of the outer ring cup portion 2a. When the concave spherical ring portion 13 and the like are integrally formed on the inner surface of the outer ring cup portion 2a by forging, the number of parts can be reduced and the structure can be simplified. In addition, the same effects as the embodiment of FIG.

この発明のさらに他の実施形態について図6および図7と共に説明する。
この実施形態では、ケージ6の一端部に、内輪軸4よりも大径の拡径軸頭部材KBを設け、この拡径軸頭部材KBの一表面を、このケージ6の外輪2に対する回動中心と略同心の凸球面12KBに形成している。この拡径軸頭部材KBは、凸球面12KBを成す球面本体12Aと、球面本体12Aの外周縁部に付設された係合部12Bとを有する。この係合部12Bは、ケージ6の半径方向外方に向かって所定小距離突出し、同ケージ6の一端部の内周に形成された環状の段部6bに形成されている。
Still another embodiment of the present invention will be described with reference to FIGS.
In this embodiment, an enlarged shaft head member KB having a diameter larger than that of the inner ring shaft 4 is provided at one end portion of the cage 6, and one surface of the enlarged shaft head member KB is rotated with respect to the outer ring 2 of the cage 6. A convex spherical surface 12KB substantially concentric with the center is formed. This diameter-expanding shaft head member KB includes a spherical main body 12A that forms a convex spherical surface 12KB, and an engaging portion 12B that is attached to the outer peripheral edge of the spherical main body 12A. The engaging portion 12B protrudes a predetermined small distance toward the outside of the cage 6 in the radial direction, and is formed in an annular step portion 6b formed on the inner periphery of one end portion of the cage 6.

また、拡径軸頭部材KBは、例えば、薄板状でありプレス加工等により、球面本体12Aおよび係合部12Bを一体成形し得る。ただしプレス加工だけに限定されるものではない。前記球面本体12Aのうちの頂部12Aaは、作動角零の状態で凹球面13aに対面する。球面本体12Aのうち頂部12Aaを除く外周部12Abには、周方向一定間隔おきに複数の貫通孔12Ahが形成されている。よって、球面本体12Aのうちこれら貫通孔12Ahを除く残余の頂部12Aaと、凹球面13aとが対面する対向面積に応じた磁気抵抗の変化に基づいて、図1の実施形態と同様にこの等速自在継手1の作動角を検出し得る。   Further, the diameter-expanded shaft head member KB is, for example, a thin plate shape, and the spherical body 12A and the engaging portion 12B can be integrally formed by pressing or the like. However, it is not limited to press working. The top portion 12Aa of the spherical body 12A faces the concave spherical surface 13a in a state where the operating angle is zero. A plurality of through holes 12Ah are formed at regular intervals in the circumferential direction in the outer peripheral portion 12Ab excluding the top portion 12Aa of the spherical body 12A. Therefore, based on the change of the magnetic resistance according to the facing area where the remaining top 12Aa excluding these through holes 12Ah of the spherical body 12A and the concave spherical surface 13a face each other, this constant velocity is obtained as in the embodiment of FIG. The operating angle of the universal joint 1 can be detected.

図6(A)に示すように、最大の作動角をとった状態で、前記球面本体12Aの頂部12Aaと凹球面13aは、少なくとも一部が対面する。また、いかなる作動角をとった状態においても、拡径軸頭部材KBと外輪カップ部2aの内面とが干渉しないように、球面本体12Aの寸法または外輪カップ部2aの内面寸法が規定されている。さらに、いかなる作動角をとった状態においても、拡径軸頭部材KBと、内輪3または内輪軸4とが干渉しないようにこれらの寸法が規定されている。その他図1の実施形態と同様の構成となっている。   As shown in FIG. 6A, at least a part of the top 12Aa of the spherical main body 12A and the concave spherical surface 13a face each other in a state where the maximum operating angle is taken. Further, the dimension of the spherical main body 12A or the inner surface dimension of the outer ring cup portion 2a is defined so that the diameter-expanded shaft head member KB and the inner surface of the outer ring cup portion 2a do not interfere with each other at any operating angle. . Furthermore, these dimensions are defined so that the enlarged diameter head member KB and the inner ring 3 or the inner ring shaft 4 do not interfere with each other at any operating angle. The other configuration is the same as that of the embodiment of FIG.

以上説明した実施形態によると、内輪軸の端面に凸球面部を設ける代わりに、ケージ6に拡径軸頭部材KBを設けこの拡径軸頭部材KBの一表面を凸球面12KBとしたものである。この場合、拡径軸頭部材KBを例えばプレス加工等により簡単に製造することができるため、内輪軸の端面を球面加工するよりも製造コストの低減を図ることができる。   According to the embodiment described above, instead of providing the convex spherical portion on the end face of the inner ring shaft, the cage 6 is provided with the enlarged diameter head member KB, and one surface of the enlarged diameter head member KB is formed as the convex spherical surface 12KB. is there. In this case, since the diameter-expanded shaft head member KB can be easily manufactured, for example, by pressing or the like, the manufacturing cost can be reduced as compared with the case where the end surface of the inner ring shaft is spherically processed.

特に、内輪軸4よりも大径のケージ6に拡径軸頭部材KBを設けたため、最大の作動角をとった状態であっても、前記拡径軸頭部材KBの凸球面12KBの一部つまり頂部12Aaと、凹球面13aとが対面可能となる。したがって、動作中の等速自在継手の作動角をモニターできる範囲を大きくすることが可能となる。また、球面本体12Aの外周部12Abに、複数の貫通孔12Ahを形成したため、拡径軸頭部材KBの軽量化を図り、等速自在継手1の軽量化を実現することができる。その他、図1の実施形態と同様の効果を奏する。
本実施形態では、球面本体12Aの外周部12Abに、複数の貫通孔12Ahが形成されているが、各貫通孔の代わりに非磁性材料から成る部位を外周部12Abに設けても良い。この場合、拡径軸頭部材KBの剛性を高めることが可能となる。
In particular, since the diameter-expanded shaft head member KB is provided in the cage 6 having a diameter larger than that of the inner ring shaft 4, a part of the convex spherical surface 12KB of the diameter-expanded shaft head member KB is obtained even when the maximum operating angle is taken. That is, the top portion 12Aa and the concave spherical surface 13a can face each other. Therefore, it is possible to increase the range in which the operating angle of the constant velocity universal joint during operation can be monitored. Further, since the plurality of through holes 12Ah are formed in the outer peripheral portion 12Ab of the spherical main body 12A, the diameter-expanded shaft head member KB can be reduced in weight, and the constant velocity universal joint 1 can be reduced in weight. In addition, the same effects as the embodiment of FIG.
In the present embodiment, a plurality of through holes 12Ah are formed in the outer peripheral portion 12Ab of the spherical main body 12A, but a portion made of a nonmagnetic material may be provided in the outer peripheral portion 12Ab instead of each through hole. In this case, it is possible to increase the rigidity of the diameter-expanded shaft head member KB.

この発明のさらに他の実施形態について図8と共に説明する。
この実施形態では、ケージ6の一端部に凸球面部12を設けている。この凸球面部12は、外輪カップ部2aに対する回動中心Oと同心の凸球面となる球面本体12A、この球面本体12Aの外周縁部に連なり内輪軸軸方向に所定小距離突出する突出部12B、この突出部12Bの先端部分から半径方向外方に凸球面状に拡径する拡径部12C、およびこの拡径部12Cの外周縁部に付設された係合部12Dとを有する。
Still another embodiment of the present invention will be described with reference to FIG.
In this embodiment, a convex spherical portion 12 is provided at one end of the cage 6. The convex spherical portion 12 includes a spherical main body 12A that is a convex spherical surface that is concentric with the rotation center O with respect to the outer ring cup portion 2a, and a protruding portion 12B that is connected to the outer peripheral edge of the spherical main body 12A and protrudes a predetermined small distance in the inner ring axial direction. A diameter-enlarged portion 12C that expands in a convex spherical shape radially outward from the tip portion of the projecting portion 12B, and an engagement portion 12D that is attached to the outer peripheral edge of the diameter-enlarged portion 12C.

前記係合部12Dは、ケージ6の半径方向外方に向かって所定小距離突出し、同ケージ6の一端部の内周に形成された環状の段部6bに係合されている。また、凸球面部12は、例えば、薄板状でありプレス加工等により、球面本体12A、突出部12B、拡径部12C、および係合部12Dを一体成形し得る。ただし、プレス加工だけに限定されるものではない。前記係合部12Dを、半径方向内方に弾性変形等により一時的に縮径させ、ケージ6の段部6bに係合可能になっている。なお、ケージ6への凸球面部12の固定方法は、ボルト等の固定具を用いても良い。このような凸球面部12によると、内輪軸4の端面に凸球面部を球面加工する場合に比べて、製造コストの低減を図ることが可能となる。また、既存の内輪軸4を適用できるため、その分、量産効果を高めることができる。その他、図1、図3に示す実施形態と同様の構成となっており、これら実施形態と同様の作用効果を奏する。
The engaging portion 12D protrudes a predetermined small distance outward in the radial direction of the cage 6, and is engaged with an annular step portion 6b formed on the inner periphery of one end portion of the cage 6. The convex spherical portion 12 is, for example, a thin plate, and the spherical main body 12A, the protruding portion 12B, the enlarged diameter portion 12C, and the engaging portion 12D can be integrally formed by pressing or the like. However, it is not limited only to press work. The engaging portion 12D is temporarily contracted radially inward by elastic deformation or the like, and can be engaged with the step portion 6b of the cage 6. Note that the convex spherical portion 12 may be fixed to the cage 6 using a fixing tool such as a bolt. According to such a convex spherical portion 12, it is possible to reduce the manufacturing cost compared to the case where the convex spherical portion is processed into a spherical surface on the end surface of the inner ring shaft 4. Further, since the existing inner ring shaft 4 can be applied, the mass production effect can be enhanced accordingly. In addition, it has the same configuration as the embodiment shown in FIG. 1 and FIG. 3, and has the same operational effects as these embodiments.

(A)はこの発明の一実施形態にかかる作動角センサを装備した等速自在継手の一部破断正面図、(B)は(A)の部分拡大断面図である。(A) is a partially broken front view of a constant velocity universal joint equipped with an operating angle sensor according to an embodiment of the present invention, and (B) is a partially enlarged sectional view of (A). 同等速自在継手が作動角を持つ状態を示す一部破断正面図である。It is a partially broken front view which shows the state in which an equivalent speed universal joint has an operating angle. (A)はこの発明の他の実施形態にかかる作動角センサを装備した等速自在継手の一部破断正面図、(B)は同(A)の部分拡大断面図である。(A) is a partially broken front view of a constant velocity universal joint equipped with an operating angle sensor according to another embodiment of the present invention, and (B) is a partially enlarged sectional view of the same (A). この発明のさらに他の実施形態にかかる作動角センサの部分拡大断面図である。It is a partial expanded sectional view of the working angle sensor concerning further another embodiment of this invention. (A)はこの発明のさらに他の実施形態にかかる作動角センサを装備した等速自在継手が作動角を持つ状態を示す一部破断正面図、(B)は同等速自在継手が作動角零の状態を示す一部破断正面図である。(A) is a partially broken front view showing a state in which a constant velocity universal joint equipped with an operating angle sensor according to still another embodiment of the present invention has an operating angle, and (B) is an equivalent speed universal joint having a zero operating angle. It is a partially broken front view which shows the state. (A)はこの発明のさらに他の実施形態にかかる作動角センサを装備した等速自在継手が作動角を持つ状態を示す一部破断正面図、(B)は同等速自在継手が作動角零の状態を示す一部破断正面図である。(A) is a partially broken front view showing a state in which a constant velocity universal joint equipped with an operating angle sensor according to still another embodiment of the present invention has an operating angle, and (B) is an equivalent speed universal joint having a zero operating angle. It is a partially broken front view which shows the state. (A)図6(A)の要部を拡大して表す断面図、(B)図6(B)の要部を拡大して表す断面図である。(A) It is sectional drawing which expands and represents the principal part of FIG. 6 (A), (B) It is sectional drawing which expands and represents the principal part of FIG. 6 (B). (A)はこの発明のさらに他の実施形態にかかる作動角センサを装備した等速自在継手の一部破断正面図、(B)は同等速自在継手が作動角を持つ状態を示す一部破断正面図である。(A) is a partially broken front view of a constant velocity universal joint equipped with an operating angle sensor according to still another embodiment of the present invention, and (B) is a partially broken view showing a state in which the equivalent velocity universal joint has an operating angle. It is a front view. 提案例の一部破断正面図である。It is a partially broken front view of a proposal example.

符号の説明Explanation of symbols

1…等速自在継手
2…外輪
3…内輪
4…内輪軸
5…ボール
6…ケージ
7,8…トラック溝
11…作動角センサ
12…凸球面部
13…凹球面円環部
13a…凹球面
14…永久磁石
15…半導体磁気センサ
16…静止側電子回路
17…回転側電子回路
18…非接触電磁カップリング
18a…回転側コイル
18b…静止側コイル
JT…軸頭部
KB…拡径軸頭部材
DESCRIPTION OF SYMBOLS 1 ... Constant velocity universal joint 2 ... Outer ring 3 ... Inner ring 4 ... Inner ring shaft 5 ... Ball 6 ... Cage 7, 8 ... Track groove 11 ... Operating angle sensor 12 ... Convex spherical part 13 ... Concave spherical ring part 13a ... Concave sphere 14 ... permanent magnet 15 ... semiconductor magnetic sensor 16 ... stationary electronic circuit 17 ... rotating electronic circuit 18 ... non-contact electromagnetic coupling 18a ... rotating coil 18b ... stationary coil JT ... shaft head KB ... diameter-expanded shaft head member

Claims (8)

外輪の球形内面と内輪の球形外面とにそれぞれトラック溝を形成し、外輪トラック溝と内輪トラック溝との間にボールを組み込み、上記ボールを保持するケージを設け、上記内輪が外周に取付けられまたは上記内輪と一体に形成された内輪軸を有する等速自在継手に装備される作動角センサであって、
前記内輪軸の端面に設けられこの内輪軸の外輪に対する回動中心と同心の凸球面部と、前記外輪の内面に環状に突出して設けられ先端面が前記凸球面部に隙間を介して沿う凹球面とされた凹球面円環部と、この凹球面円環部の内径側の空間にそれぞれ収められた励磁用の永久磁石およびこの永久磁石の磁界の変化を検出する半導体磁気センサとを備え、内輪と外輪間の作動角の変化による磁気抵抗変化を前記半導体磁気センサの出力で検出することにより上記作動角を求めることを特徴とする等速自在継手用作動角センサ。
A track groove is formed on each of the spherical inner surface of the outer ring and the spherical outer surface of the inner ring, a ball is incorporated between the outer ring track groove and the inner ring track groove, a cage for holding the ball is provided, and the inner ring is attached to the outer periphery or An operating angle sensor provided in a constant velocity universal joint having an inner ring shaft formed integrally with the inner ring,
A convex spherical surface provided on the end surface of the inner ring shaft and concentric with the center of rotation of the inner ring shaft with respect to the outer ring, and a concave surface provided so as to project annularly on the inner surface of the outer ring, with the front end surface extending along the convex spherical portion via a gap. A concave spherical ring portion that is a spherical surface, an exciting permanent magnet that is housed in a space on the inner diameter side of the concave spherical ring portion, and a semiconductor magnetic sensor that detects a change in the magnetic field of the permanent magnet, An operating angle sensor for a constant velocity universal joint characterized in that the operating angle is obtained by detecting a change in magnetoresistance due to a change in operating angle between an inner ring and an outer ring based on an output of the semiconductor magnetic sensor.
請求項1において、前記内輪軸および外輪における、前記永久磁石および半導体磁気センサの磁気回路を構成する部分は、前記内輪軸および外輪の他の箇所とは異なる高透磁率軟磁性材で構成した等速自在継手用作動角センサ。   In Claim 1, the part which comprises the magnetic circuit of the said permanent magnet and a semiconductor magnetic sensor in the said inner ring shaft and an outer ring was comprised with the high magnetic permeability soft magnetic material different from the other location of the said inner ring shaft and an outer ring, etc. Actuating angle sensor for fast universal joints. 請求項1または請求項2において、前記外輪と前記内輪とが最大の作動角をとった状態で、前記凸球面部と前記凹球面円環部は、少なくとも一部が対面する等速自在継手用作動角センサ。   3. The constant velocity universal joint according to claim 1, wherein the convex spherical portion and the concave spherical ring portion are at least partially facing each other with the outer ring and the inner ring having a maximum operating angle. Working angle sensor. 請求項1ないし請求項3のいずれか1項において、前記内輪軸の端部に軸頭部を設け、この軸頭部に、前記内輪軸の前記凸球面部を設けた等速自在継手用作動角センサ。   The operation for a constant velocity universal joint according to any one of claims 1 to 3, wherein a shaft head is provided at an end of the inner ring shaft, and the convex spherical portion of the inner ring shaft is provided at the shaft head. Angular sensor. 請求項4において、前記軸頭部は、前記内輪軸よりも大径の拡径軸頭部である等速自在継手用作動角センサ。   5. The operating angle sensor for a constant velocity universal joint according to claim 4, wherein the shaft head is an enlarged shaft head having a larger diameter than the inner ring shaft. 請求項1ないし請求項5のいずれか1項において、前記外輪の内面に設けられた前記凹球面円環部の外径を、前記内輪軸の外径よりも大径とした等速自在継手用作動角センサ。   The constant velocity universal joint according to any one of claims 1 to 5, wherein an outer diameter of the concave spherical ring portion provided on an inner surface of the outer ring is larger than an outer diameter of the inner ring shaft. Working angle sensor. 外輪の球形内面と内輪の球形外面とにそれぞれトラック溝を形成し、外輪トラック溝と内輪トラック溝との間にボールを組み込み、上記ボールを保持するケージを設け、上記内輪が外周に取付けられまたは上記内輪と一体に形成された内輪軸を有する等速自在継手に装備される作動角センサであって、
前記ケージの端部に設けられこのケージの外輪に対する回動中心と同心の凸球面部と、
前記外輪の内面に環状に突出して設けられ先端面が前記凸球面部に隙間を介して沿う凹球面とされた凹球面円環部と、
この凹球面円環部の内径側の空間にそれぞれ収められた励磁用の永久磁石およびこの永久磁石の磁界の変化を検出する半導体磁気センサと、
を備え、
内輪と外輪間の作動角の変化による磁気抵抗変化を前記半導体磁気センサの出力で検出することにより上記作動角を求めることを特徴とする等速自在継手用作動角センサ。
A track groove is formed on each of the spherical inner surface of the outer ring and the spherical outer surface of the inner ring, a ball is incorporated between the outer ring track groove and the inner ring track groove, a cage for holding the ball is provided, and the inner ring is attached to the outer periphery or An operating angle sensor provided in a constant velocity universal joint having an inner ring shaft formed integrally with the inner ring,
A convex spherical surface provided at an end of the cage and concentric with the rotation center of the cage with respect to the outer ring;
A concave spherical ring portion provided annularly projecting on the inner surface of the outer ring and having a leading end surface formed as a concave spherical surface along the convex spherical portion via a gap;
A permanent magnet for excitation housed in a space on the inner diameter side of the concave spherical ring portion and a semiconductor magnetic sensor for detecting a change in the magnetic field of the permanent magnet;
With
An operating angle sensor for a constant velocity universal joint characterized in that the operating angle is obtained by detecting a change in magnetoresistance due to a change in operating angle between an inner ring and an outer ring based on an output of the semiconductor magnetic sensor.
請求項1ないし請求項7のいずれか1項において、前記外輪の外径部に設けられたリング状の回転側コイル、およびこの回転側コイルと同心のリング状に設けられた静止側コイルからなる非接触電磁カップリングを設け、前記回転側コイルおよび静止側コイルにそれぞれ接続された回転側電子回路および静止側電子回路を設け、前記静止側電子回路は、前記静止側コイルを交流励磁して電磁結合作用で回転側へ電力を供給し、かつ前記静止側コイルに誘導されたセンサ信号を復調するものであり、前記回転側電子回路は前記静止側コイルから供給された電力で前記半導体磁気センサを駆動し、かつ前記電力供給に用いる周波数とは異なる周波数の搬送波を前記半導体磁気センサのセンサ信号によって変調してこの変調信号により前記回転側コイルを励磁するものである等速自在継手用作動角センサ。   8. The method according to claim 1, comprising a ring-shaped rotating side coil provided at an outer diameter portion of the outer ring and a stationary side coil provided in a ring shape concentric with the rotating side coil. A non-contact electromagnetic coupling is provided, and a rotation-side electronic circuit and a stationary-side electronic circuit connected to the rotation-side coil and the stationary-side coil are provided, and the stationary-side electronic circuit electromagnetically excites the stationary-side coil. Power is supplied to the rotating side by a coupling action, and the sensor signal induced in the stationary coil is demodulated, and the rotating electronic circuit uses the power supplied from the stationary coil to power the semiconductor magnetic sensor. The carrier wave having a frequency different from the frequency used for driving and supplying the power is modulated by the sensor signal of the semiconductor magnetic sensor, and the rotation side co-wave is modulated by the modulation signal. The constant velocity universal operating angle sensor joint is intended to excite the Le.
JP2008218993A 2008-08-28 2008-08-28 Working angle sensor for constant velocity universal joint Expired - Fee Related JP4980318B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008218993A JP4980318B2 (en) 2008-08-28 2008-08-28 Working angle sensor for constant velocity universal joint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008218993A JP4980318B2 (en) 2008-08-28 2008-08-28 Working angle sensor for constant velocity universal joint

Publications (2)

Publication Number Publication Date
JP2010053942A JP2010053942A (en) 2010-03-11
JP4980318B2 true JP4980318B2 (en) 2012-07-18

Family

ID=42070094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008218993A Expired - Fee Related JP4980318B2 (en) 2008-08-28 2008-08-28 Working angle sensor for constant velocity universal joint

Country Status (1)

Country Link
JP (1) JP4980318B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108917589A (en) * 2018-07-18 2018-11-30 上海交通大学 A kind of manipulator joint angle measurement system, platform and measurement method
CN112360334A (en) * 2020-09-28 2021-02-12 长春职业技术学院 Universal shaft sealing sleeve of geological exploration screw drill

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101371941B1 (en) 2011-12-14 2014-03-12 현대자동차주식회사 Measurement for angle of constant velocity joint of drive shaft
KR101727174B1 (en) * 2015-06-16 2017-04-14 (주)다이나텍 Constant velocity joint for torque measurement and wireless torque transmission device for the constant velocity joint
CN112747666B (en) * 2020-12-17 2022-10-21 武昌船舶重工集团有限公司 Shafting is detection device in school

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57102804U (en) * 1980-12-16 1982-06-24
JP3849829B2 (en) * 1998-04-27 2006-11-22 株式会社デンソー Vehicle height sensor and vehicle headlamp optical axis adjusting device
JP2003006779A (en) * 2001-06-22 2003-01-10 Nsk Ltd Rotation supporting device for wheel having signal transmission function
DE10339126B4 (en) * 2003-08-22 2009-04-02 Zf Friedrichshafen Ag Ball joint with angle sensor
JP2006170723A (en) * 2004-12-14 2006-06-29 Ntn Corp Detecting method for drive shaft and its knuckle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108917589A (en) * 2018-07-18 2018-11-30 上海交通大学 A kind of manipulator joint angle measurement system, platform and measurement method
CN112360334A (en) * 2020-09-28 2021-02-12 长春职业技术学院 Universal shaft sealing sleeve of geological exploration screw drill

Also Published As

Publication number Publication date
JP2010053942A (en) 2010-03-11

Similar Documents

Publication Publication Date Title
JP4980318B2 (en) Working angle sensor for constant velocity universal joint
JP4963006B2 (en) Wireless sensor system and wheel bearing device with wireless sensor
JP4942665B2 (en) Bearing with sensor mounted on cage
EP1491899B1 (en) A rolling bearing for a wheel of a vehicle and a semi-float type bearing apparatus having it
US20050201648A1 (en) Combined sensor and bearing assembly
JP2008528911A5 (en)
US6231241B1 (en) Rotation support apparatus with rotational speed sensing device
JP4850154B2 (en) Working angle sensor for constant velocity universal joint
US20080157759A1 (en) Combined sensor and bearing assembly
WO2018003054A1 (en) Slide flange
JP2003146196A (en) Rotational speed detection device for wheel
JP2006138873A (en) Rolling bearing unit with rotating speed detector
WO2017051881A1 (en) Rolling bearing unit for supporting wheel
JP3972622B2 (en) Rolling bearing unit with sensor
JP2006005978A (en) Wireless sensor system and bearing device with wireless sensor
US20060186627A1 (en) Axle-supporting device
JP5042946B2 (en) Working angle sensor for constant velocity universal joint
JP2003121454A (en) Rolling bearing unit having rotational speed detector
JP4106893B2 (en) Rolling bearing unit with sensor
JP2004264056A (en) Sensor assembly, sealing device, and antifriction bearing apparatus
JP2005098332A (en) Sealing device
JP2009197961A (en) Bearing unit for supporting wheel
JP3930353B2 (en) Rolling bearing with generator
JP2005301645A (en) Wireless sensor system and bearing device with wireless sensor
JP2008121864A (en) Hub unit bearing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120417

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120418

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150427

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees