JP4980273B2 - Temperature control method and alloying furnace for alloying furnace for producing galvannealed steel sheet - Google Patents
Temperature control method and alloying furnace for alloying furnace for producing galvannealed steel sheet Download PDFInfo
- Publication number
- JP4980273B2 JP4980273B2 JP2008064853A JP2008064853A JP4980273B2 JP 4980273 B2 JP4980273 B2 JP 4980273B2 JP 2008064853 A JP2008064853 A JP 2008064853A JP 2008064853 A JP2008064853 A JP 2008064853A JP 4980273 B2 JP4980273 B2 JP 4980273B2
- Authority
- JP
- Japan
- Prior art keywords
- furnace
- temperature
- alloying
- alloying furnace
- pressure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Coating With Molten Metal (AREA)
Description
本発明は、ガス加熱設備を有する合金化溶融亜鉛めっき鋼板製造用合金炉の温度制御方法及び合金化炉に関わり、さらに詳しくは、溶融亜鉛めっき後の鋼板の加熱保持温度を任意に設定し、その設定温度に合金化炉の温度変更を速やかに実施するための合金炉の温度制御方法及び合金化炉に関するものである。 The present invention relates to a temperature control method and an alloying furnace for an alloying hot-dip galvanized steel sheet production having a gas heating facility, and more specifically, arbitrarily setting the heating and holding temperature of the steel sheet after hot-dip galvanizing, The present invention relates to an alloy furnace temperature control method and an alloying furnace for quickly changing the temperature of the alloying furnace to the set temperature.
近年、自動車、家庭電気製品、建材等の耐用年数の長期化に対応するため、溶融亜鉛めっき鋼板の使用が拡大している。特にZn−Al系、Zn−Al−Mg系等の合金化溶融亜鉛めっき鋼板は耐食性、塗装性、加工性に優れていることから、自動車用鋼板や建材等を中心に多く使用されている。 In recent years, the use of hot-dip galvanized steel sheets has been increasing in order to cope with the prolonged service life of automobiles, household electrical products, building materials, and the like. In particular, alloyed hot-dip galvanized steel sheets such as Zn-Al and Zn-Al-Mg are excellent in corrosion resistance, paintability, and workability, and thus are often used mainly for automobile steel sheets and building materials.
合金化溶融亜鉛めっき鋼板は、通常、図1に示すような工程で製造されている。即ち、連続焼鈍された鋼板1は、溶融亜鉛めっき浴2に浸漬され、シンクロール3により進行方向を変えられて垂直方向に引き上げられる。引き上げられた鋼板の表面に付着した溶融亜鉛めっきの過剰付着量を溶融亜鉛めっき浴の上方に配置してあるワイピングノズル4から、空気、窒素等の高圧ガスを吹き付けて絞り取る。次いで、溶融亜鉛めっき鋼板は、ガス加熱を有する合金化炉5に導入され約450〜560℃に加熱され、引き続き該合金化炉出側上方に配置してある保定炉6で所定の時間保持された後に、保定炉の出側上方に配置してある気水冷却装置7により冷却され、合金化溶融亜鉛めっき鋼板が製造されている。合金化溶融亜鉛めっき鋼板は、冷却装置7上方に配置したトップロール8により進行方向を垂直方向から水平方向に変更されて、次の工程に移動させられる。 The alloyed hot-dip galvanized steel sheet is usually manufactured by a process as shown in FIG. That is, the continuously annealed steel sheet 1 is immersed in a hot dip galvanizing bath 2, the direction of travel is changed by the sink roll 3, and the steel sheet 1 is pulled up in the vertical direction. The excessive amount of hot dip galvanizing adhering to the surface of the pulled steel plate is squeezed by blowing high pressure gas such as air or nitrogen from the wiping nozzle 4 disposed above the hot dip galvanizing bath. Next, the hot dip galvanized steel sheet is introduced into the alloying furnace 5 having gas heating, heated to about 450 to 560 ° C., and subsequently held for a predetermined time in the holding furnace 6 arranged on the upper side of the alloying furnace. After that, it is cooled by an air / water cooling device 7 arranged on the upper exit side of the holding furnace, and an alloyed hot-dip galvanized steel sheet is manufactured. The alloyed hot-dip galvanized steel sheet is moved from the vertical direction to the horizontal direction by the top roll 8 disposed above the cooling device 7 and moved to the next step.
合金化溶融亜鉛めっき鋼板は、亜鉛めっき鋼板を加熱・保持・冷却を行うことでめっき層中に鋼板中の鉄を拡散させ、鉄−亜鉛合金の合金化処理を施したものである。鉄拡散量は鋼中の成分及び鋼板の受ける熱量によって決定されるため、鋼の種類が異なれば必要な熱量もまた異なる。したがって、それぞれの鋼種毎に合金化炉の加熱温度を最適な温度に設定、変更して合金化処理する必要がある。 The alloyed hot-dip galvanized steel sheet is obtained by diffusing iron in the steel sheet into the plating layer by heating, holding, and cooling the galvanized steel sheet and performing an alloying treatment of the iron-zinc alloy. Since the amount of iron diffusion is determined by the components in the steel and the amount of heat received by the steel plate, the amount of heat required varies depending on the type of steel. Therefore, it is necessary to set and change the heating temperature of the alloying furnace to an optimum temperature for each steel type and perform the alloying treatment.
従来のガス加熱による、あるいはガス加熱を併用する合金化炉は、ガスバーナーによる加熱雰囲気ガスによって炉内温度は左右されるので、異なる合金化温度へ設定変更する際には、合金化炉内の高温の雰囲気ガスを低温に変更する。この場合は、高速での雰囲気ガス排出が必要である。また、炉内の雰囲気ガスが低温の場合は、高温に設定変更するためにガス加熱中に炉内圧力を一定に保つための雰囲気ガス排出が必要である。ところが、合金化炉の加熱能力を確保し、雰囲気ガスの排出を効果的に行うためには、従来からある排気ダクトの大型化、煙突長の延長等が必要となり、設備の巨大化を招くため、その建設にあたっては建屋による制約や法規制による制約を受けるという問題が生ずる。 In conventional alloying furnaces using gas heating or in combination with gas heating, the furnace temperature depends on the atmosphere gas heated by the gas burner, so when changing the setting to a different alloying temperature, Change the hot atmosphere gas to a low temperature. In this case, it is necessary to discharge the atmospheric gas at a high speed. Further, when the atmospheric gas in the furnace is low temperature, it is necessary to discharge the atmospheric gas to keep the pressure in the furnace constant during gas heating in order to change the setting to a high temperature. However, in order to ensure the heating capacity of the alloying furnace and effectively discharge atmospheric gas, it is necessary to increase the size of the conventional exhaust duct, extend the chimney length, etc. In the construction, there is a problem that the building is restricted by a building or a law.
このため、従来技術としては、合金化炉の加熱帯に誘導加熱装置とガス加熱装置とを設置し、誘導加熱装置の加熱能力比率を20〜50%とし、鋼板への入熱量を制御するする合金化炉が提案されている(例えば、特許文献1)。 For this reason, as a prior art, an induction heating device and a gas heating device are installed in the heating zone of the alloying furnace, the heating capacity ratio of the induction heating device is set to 20 to 50%, and the amount of heat input to the steel sheet is controlled. An alloying furnace has been proposed (for example, Patent Document 1).
ところが、鋼の種類によらず、めっき層中への鉄拡散量を任意に設定するためには、保持・冷却においても最適な温度設定を行う必要があり、ガス加熱を併用した合金化炉は、ガス加熱による熱を保持・冷却の熱源として使用しているため、合金化炉内の雰囲気ガスを置換することが必要である。したがって、ガス加熱を併用した合金化炉においても、速やかに設定温度移行を行うためには、合金化炉内の雰囲気ガス置換能力の拡大が必要となり、設備の大型化が必要であった。 However, regardless of the type of steel, in order to arbitrarily set the amount of iron diffusion into the plating layer, it is necessary to set the optimum temperature for holding and cooling. Since the heat from gas heating is used as a heat source for holding and cooling, it is necessary to replace the atmospheric gas in the alloying furnace. Therefore, even in an alloying furnace that uses gas heating, it is necessary to expand the atmosphere gas replacement capability in the alloying furnace and to increase the size of the equipment in order to quickly shift to the set temperature.
なお、従来のガス加熱式合金化炉で合金化炉の入口側、及び出口側に正圧室、負圧室を設け、ブロワーによりこれらの室の圧力を制御することにより、合金化炉をシールする技術があるが(例えば、特許文献2)、この技術は本発明のように炉内温度を制御するものではない。 The conventional gas heating type alloying furnace has positive pressure chambers and negative pressure chambers on the inlet side and outlet side of the alloying furnace, and the pressure in these chambers is controlled by a blower to seal the alloying furnace. Although there is a technique (for example, Patent Document 2), this technique does not control the furnace temperature as in the present invention.
また、溶融亜鉛めっき合金化炉の炉入口の炉圧をコントロールすることを目的として、合金化炉出側の排気ダクトに設けたダンパーの開度により合金化炉上部の炉圧をコントロールし、かつ合金化炉直火加熱帯上部に設けた静圧パッドとストリップとの距離を変化させることにより、合金化炉入口部の炉圧をコントロールすることを特徴とする溶融亜鉛めっき用合金化炉も提案されているが(例えば、特許文献3参照)、この技術も炉内温度を制御するものではなく、従来の炉内雰囲気ガスの自然排気を行う技術の域を出ないものである。 In addition, for the purpose of controlling the furnace pressure at the inlet of the hot dip galvanizing alloying furnace, the furnace pressure at the upper part of the alloying furnace is controlled by the opening degree of the damper provided in the exhaust duct on the outlet side of the alloying furnace, and Proposing an alloying furnace for hot dip galvanizing, characterized by controlling the furnace pressure at the inlet of the alloying furnace by changing the distance between the static pressure pad and strip provided at the upper part of the direct heating zone of the alloying furnace However, this technique also does not control the furnace temperature, and does not go beyond the conventional technology for naturally exhausting the atmospheric gas in the furnace.
以上のように、これまで、合金化溶融亜鉛めっき鋼板を製造するための合金化炉において、鋼種毎に合金化炉の加熱温度をコンパクトな設備によって、任意の設定温度に速やかに温度移行することができる合金化炉や合金化炉の温度制御方法ついてはこれまで提案されていないのが実情である。 As described above, in the alloying furnace for producing the alloyed hot-dip galvanized steel sheet, the heating temperature of the alloying furnace for each steel type should be quickly transferred to an arbitrary set temperature by using compact equipment. In fact, no alloying furnace or temperature control method for the alloying furnace that can be used has been proposed.
本発明では、上記実情に鑑み、従来の合金化溶融亜鉛めっき鋼板製造用のガス加熱を有する合金化炉の設備を大幅に変更することなしに、コンパクトな設備によって合金化炉の加熱温度を任意の設定温度に速やかに温度移行することができる合金化炉の温度制御方法及びその合金化炉を提供することを課題とするものである。 In the present invention, in view of the above circumstances, the heating temperature of the alloying furnace can be arbitrarily set by a compact equipment without drastically changing the equipment of the conventional alloying furnace having gas heating for producing a galvannealed steel sheet. It is an object of the present invention to provide a temperature control method for an alloying furnace that can quickly shift the temperature to the set temperature, and the alloying furnace.
本発明者は、合金化溶融亜鉛めっき鋼板製造用のガス加熱を有する合金化炉に、煙突効果による排気を行うのみならず、炉内圧力を調整できるブロワーを設置して、炉内雰囲気ガスの排出を高速に行うことで炉内の温度が速やかに下降でき、また炉内雰囲気ガスの排出を調整することで炉内温度が速やかに上昇でき、合金化炉内の雰囲気温度に拘らず、合金化炉内の温度移行を速やかに行うことができることを知見した。 The present inventor installed not only the exhaust by the chimney effect but also the blower capable of adjusting the pressure in the furnace in the alloying furnace having gas heating for producing the galvannealed steel sheet. By discharging at high speed, the temperature in the furnace can be lowered quickly, and by adjusting the discharge of the atmospheric gas in the furnace, the temperature in the furnace can be raised quickly, regardless of the atmosphere temperature in the alloying furnace. It has been found that the temperature transition in the furnace can be performed quickly.
本発明は上記知見に基づいて完成したもので、その発明の要旨は次の通りである。 The present invention has been completed based on the above findings, and the gist of the invention is as follows.
(1) 鋼板に溶融亜鉛めっきを施し、亜鉛付着量を調整した後、ガス加熱を有する合金化炉で加熱・保持して合金化亜鉛めっき鋼板を製造する際の合金化炉の温度制御方法において、炉内の温度下降を行う際には、合金化炉内の圧力Pを、
P≦−0.5mmAqとし、
炉内の温度上昇を行う際には、合金化炉内の圧力Pを、
P>−5.0mmAq
となるように、炉内雰囲気ガスの排出量を制御することを特徴とする合金化溶融亜鉛めっき鋼板製造用合金化炉の温度制御方法。
(1) In a temperature control method for an alloying furnace in which an alloyed galvanized steel sheet is manufactured by applying hot dip galvanizing to a steel sheet and adjusting the amount of zinc adhered, followed by heating and holding in an alloying furnace having gas heating When the temperature in the furnace is lowered, the pressure P in the alloying furnace is
P ≦ −0.5 mmAq,
When raising the temperature in the furnace, the pressure P in the alloying furnace is
P> −5.0 mmAq
The temperature control method for the alloying furnace for producing the galvannealed steel sheet is characterized by controlling the discharge amount of the atmospheric gas in the furnace.
(2) 合金化炉の炉内温度下降を行う際に、炉内の圧力PがP≦−0.5mmAqとなるように、排気ダクトに設けたダンパーの開閉度の開度を大きくして、ブロワーにより炉内雰囲気ガスの排出を速やかに行うことを特徴とする上記(1)記載の合金化溶融亜鉛めっき鋼板製造用合金化炉の温度制御方法。 (2) When the temperature in the furnace of the alloying furnace is lowered, the opening degree of the opening degree of the damper provided in the exhaust duct is increased so that the pressure P in the furnace becomes P ≦ −0.5 mmAq, The temperature control method for an alloying furnace for producing galvannealed steel sheets according to (1) above, wherein the atmosphere gas in the furnace is quickly discharged by a blower.
(3) 合金化炉の炉内温度上昇を行う際に、炉内の圧力PがP>−5.0mmAqとなるように、排気ダクトに設けたダンパーの開閉度の開度を小さくして、ブロワーにより炉内雰囲気ガスの排出を調整することを特徴とする上記(1)記載の合金化溶融亜鉛めっき鋼板製造用合金化炉の温度制御方法。 (3) When raising the temperature in the furnace of the alloying furnace, the opening degree of the degree of opening and closing of the damper provided in the exhaust duct is reduced so that the pressure P in the furnace becomes P> −5.0 mmAq, The method for controlling the temperature of an alloying furnace for producing galvannealed steel sheets according to (1) above, wherein the discharge of the atmospheric gas in the furnace is adjusted by a blower.
(4) 合金化溶融亜鉛めっき鋼板の製造用のガス加熱を有する合金化炉において、炉内の圧力を調整可能とするブロワーを合金化炉の排気ダクトに設置したことを特徴とする炉内温度制御ができる合金化溶融亜鉛めっき鋼板製造用合金化炉。 (4) In an alloying furnace having gas heating for producing an alloyed hot-dip galvanized steel sheet, an in-furnace temperature characterized by installing a blower capable of adjusting the pressure in the furnace in an exhaust duct of the alloying furnace An alloying furnace for the production of galvannealed steel sheets that can be controlled.
(5) 合金化炉の炉内に設置した炉圧計、炉内雰囲気ガスの排気ダクトに設けたダンパーおよび排気ブロワー、炉圧計で測定した炉内圧を受信し、前記ダンパーの開閉度及び排気ブロワーの駆動を制御して雰囲気ガスの排出量を制御する排ガス流量制御装置を備えていることを特徴とする上記(4)記載の炉内温度制御ができる合金化溶融亜鉛めっき鋼板製造用合金化炉。 (5) Reactor pressure gauge installed in the furnace of the alloying furnace, damper and exhaust blower provided in the exhaust duct of the atmosphere gas in the furnace, receiving the furnace pressure measured by the furnace pressure gauge, opening / closing degree of the damper and exhaust blower An alloying furnace for producing an alloyed hot-dip galvanized steel sheet capable of controlling the in-furnace temperature as described in (4) above, comprising an exhaust gas flow rate control device for controlling the driving and controlling the discharge amount of the atmospheric gas.
本発明によれば、合金化溶融亜鉛めっき鋼板製造用合金化炉に排気ブロワーを設置することにより、コンパクトな設備で炉内温度、特に炉内温度降下を容易に変更でき、従来の合金化炉を大幅に改造する必要がなく、かつ、排気ダクトの大型化、煙突長の延長等の設備の巨大化を必要としない等の顕著な効果が生じる。 According to the present invention, by installing an exhaust blower in an alloying furnace for producing a galvannealed steel sheet, the temperature inside the furnace, in particular, the temperature drop inside the furnace can be easily changed with a compact facility. It is not necessary to make a major modification, and there are significant effects such as no need for enlarging equipment such as a larger exhaust duct and an extended chimney length.
以下本発明を詳細に説明する。 The present invention will be described in detail below.
合金化溶融亜鉛めっき鋼板の鋼板素材としては、種々の鋼種の鋼板が用いられている。そして、合金化溶融亜鉛めっき鋼板は、亜鉛めっき層中に鋼板中の鉄を拡散させ、鉄−亜鉛合金の合金化処理を施したものである。鉄拡散量は鋼中の成分及び鋼板の受ける熱量によって決定されるため、鋼の種類が異なれば必要な熱量もまた異なる。したがって、鋼中の成分が異なる合金化溶融亜鉛めっき鋼板を製造する際には、合金化炉内の温度を、鋼種に応じて、鋼種毎に最適温度に設定、変更する必要がある。 As a steel plate material of the galvannealed steel plate, steel plates of various steel types are used. The alloyed hot-dip galvanized steel sheet is obtained by diffusing iron in the steel sheet into the galvanized layer and subjecting the alloy to an iron-zinc alloy. Since the amount of iron diffusion is determined by the components in the steel and the amount of heat received by the steel plate, the amount of heat required varies depending on the type of steel. Therefore, when manufacturing an alloyed hot-dip galvanized steel sheet having different components in steel, it is necessary to set and change the temperature in the alloying furnace to an optimum temperature for each steel type according to the steel type.
例えば図3に示すように、合金化炉の加熱帯、保熱帯において炉内温度が高温の鋼種Aから炉内温度がそれより低温である鋼種Bに変更する必要が生じる場合がある。この際に、温度の移行を速やかに行うためには、高温となった炉内雰囲気ガスの排出を速やかに行なって炉内温度を低下させる必要がある。 For example, as shown in FIG. 3, it may be necessary to change from a steel type A having a high furnace temperature to a steel type B having a lower furnace temperature in the heating zone of the alloying furnace and in the tropical region. At this time, in order to perform the temperature transition quickly, it is necessary to quickly discharge the furnace atmosphere gas that has become high temperature to lower the furnace temperature.
従来、炉内雰囲気ガスの排出は、煙突による自然排気で行っているが、煙突による自然排気では温度差による上昇気流によって排気を行なわれるので炉内温度低下につれて温度下降代も縮小してくるため、温度変更に時間がかかるという問題がある。温度変更時間を短縮するために、炉内雰囲気ガスの自然排気を大きくしようとすると、排気ダクトの大型化や煙突長を延長する等の合金化炉の設備を大幅に改造しなければならない。 Conventionally, the atmospheric gas in the furnace is discharged by natural exhaust from the chimney, but the natural exhaust by the chimney is exhausted by the rising airflow due to the temperature difference, so the temperature drop is reduced as the furnace temperature decreases. There is a problem that it takes time to change the temperature. In order to shorten the temperature change time, if the natural exhaust of the atmosphere gas in the furnace is to be increased, the equipment of the alloying furnace must be greatly modified, such as increasing the size of the exhaust duct and extending the chimney length.
そこで、本発明では、従来の合金化溶融亜鉛鋼板製造用のガス加熱を有する合金化炉の設備を大幅に改造することなしに、合金化炉の炉内温度を所定の設定温度に速やかに変更することについて究明し、合金化炉にブロワーを設置することで、炉内の設定温度を速やかに変更できることを見出した。 Therefore, in the present invention, the furnace temperature of the alloying furnace is quickly changed to a predetermined set temperature without significantly remodeling the equipment of the conventional alloying furnace having gas heating for producing the alloyed hot-dip galvanized steel sheet. As a result, it was found that the set temperature in the furnace can be quickly changed by installing a blower in the alloying furnace.
図2は、ガス加熱を有する合金化炉にブロワーを設置した本発明合金化炉の実施例を模式的に示す図である。図2に示すように、溶融亜鉛めっき鋼板1を合金化するガス加熱式合金化炉9にブロワー10を設置し、炉内の高温雰囲気ガスはダンパーを設けた配管(ダクト)を介して強制的に排気11できるようになっている。 FIG. 2 is a diagram schematically showing an embodiment of the alloying furnace of the present invention in which a blower is installed in an alloying furnace having gas heating. As shown in FIG. 2, a blower 10 is installed in a gas heating type alloying furnace 9 for alloying a hot-dip galvanized steel sheet 1, and high-temperature atmosphere gas in the furnace is forced through a pipe (duct) provided with a damper. The exhaust 11 can be exhausted.
合金化炉の炉内温度を下降させる場合には、炉内の圧力Pが常にP≦−0.5mmAqとなる条件で、炉内の高温雰囲気ガスを排気ブロワーで高速に排気する。炉内の圧力Pが、P≦−0.5mmAqの条件を満たさないと、排気ブロワーによる高温雰囲気ガスの排気量が不足して、炉内の温度降下を効果的に実現することができない。 When lowering the temperature in the alloying furnace, the high-temperature atmosphere gas in the furnace is exhausted at high speed by the exhaust blower under the condition that the pressure P in the furnace is always P ≦ −0.5 mmAq. If the pressure P in the furnace does not satisfy the condition of P ≦ −0.5 mmAq, the exhaust amount of the high-temperature atmosphere gas by the exhaust blower is insufficient, and the temperature drop in the furnace cannot be effectively realized.
図4は、炉圧コントロールなしの従来の自然排気、及び本発明のブロワー排気による合金化炉の炉内温度降下試験の試験結果を示す図である。 FIG. 4 is a diagram showing test results of an in-furnace temperature drop test of an alloying furnace using conventional natural exhaust without furnace pressure control and blower exhaust according to the present invention.
炉内温度降下試験は、合金化炉の炉内温度1000℃から自然排気(A)及びブロワー排気(B)によって温度降下試験を行った。図4に示すように、従来の自然排気に比較して本発明のブロワー排気によれば、例えば、1000℃から700℃へ温度下降させる温度移行の時間を約1/3以下の短時間とすることができる。これにより、従来温度移行を行うために使用していた時間を生産に充当することが可能となる。 In the furnace temperature drop test, a temperature drop test was conducted from natural furnace (A) and blower exhaust (B) from a furnace temperature of 1000 ° C. in the alloying furnace. As shown in FIG. 4, according to the blower exhaust of the present invention as compared with the conventional natural exhaust, for example, the temperature transition time for lowering the temperature from 1000 ° C. to 700 ° C. is shortened to about 1/3 or less. be able to. Thereby, it becomes possible to devote the time used for performing the temperature transition in the past to production.
また、図3に示すように合金化炉において約1000℃の温度が必要な鋼種Aから約700℃の温度が必要な鋼種Bに鋼種を変更する際には、炉内温度を降下させる必要が生じる。温度降下のためには十分な雰囲気ガスの排気を確保して炉内の圧力をP≦−0.5mmAqとしなければ炉内圧力上昇によるガス燃焼量の制約が発生する。したがって、本発明に追いては、炉内の温度降下を行う際の合金化炉内の圧力Pを、P≦−0.5mmAqとした。 In addition, as shown in FIG. 3, when changing the steel type from a steel type A that requires a temperature of about 1000 ° C. to a steel type B that requires a temperature of about 700 ° C., it is necessary to lower the temperature in the furnace. Arise. In order to lower the temperature, if sufficient atmospheric gas exhaust is ensured and the pressure in the furnace is not set to P ≦ −0.5 mmAq, a restriction on the amount of gas combustion occurs due to an increase in the pressure in the furnace. Therefore, following the present invention, the pressure P in the alloying furnace when the temperature in the furnace is lowered is set to P ≦ −0.5 mmAq.
なお、この際の圧力Pの下限は、排気能力にもより特に限定するものではないが−2.0mmAq程度、さらには、−3.0mmAq程度とすることが好ましい。 The lower limit of the pressure P at this time is not particularly limited to the exhaust capacity, but is preferably about −2.0 mmAq, and more preferably about −3.0 mmAq.
一方、合金化炉の炉内温度を上昇させる場合には、炉内の圧力Pが常にP>−5.0mmAqとなる条件に、炉内の高温雰囲気ガスの排気を調整する。炉内加熱時に炉内の圧力Pが常にP>−5.0mmAqとすることで、炉内の加熱能力及び効率を最大限に活用することができる。炉内の圧力PがP>−5.0mmAqの条件を満たさないと、炉内高温雰囲気ガスの排気量が多くなり過ぎて、炉内温度の上昇が困難となる。また、炉内圧力低下による加熱能力の制約が発生する。したがって、本発明においては、炉内の温度上昇を行う際の合金化炉内の圧力Pを、P>−5.0mmAqとした。 On the other hand, when raising the temperature in the furnace of the alloying furnace, the exhaust of the high-temperature atmosphere gas in the furnace is adjusted so that the pressure P in the furnace is always P> −5.0 mmAq. When the pressure P in the furnace is always P> −5.0 mmAq during the heating in the furnace, the heating capacity and efficiency in the furnace can be utilized to the maximum. If the pressure P in the furnace does not satisfy the condition of P> −5.0 mmAq, the exhaust amount of the high-temperature furnace gas in the furnace becomes excessive, and it becomes difficult to increase the temperature in the furnace. In addition, the heating capacity is restricted due to the pressure drop in the furnace. Therefore, in the present invention, the pressure P in the alloying furnace when the temperature in the furnace is increased is set to P> −5.0 mmAq.
なお、この際の圧力Pの上限は、高温の加熱ガスを炉内に吹き込むことで炉内圧力が上昇するが、炉内圧力があまりに高いと加熱ガスを吹き込むことが出来なくなるので、圧力Pはあまり高くすることは出来ない。通常は0mmAqで良いが、2mmAq程度としてもよい。 In addition, the upper limit of the pressure P at this time increases the pressure in the furnace by blowing a high-temperature heating gas into the furnace, but if the pressure in the furnace is too high, the heating gas cannot be blown. It cannot be too high. Usually, 0 mmAq is sufficient, but it may be about 2 mmAq.
図5は、従来の炉圧コントロールなしの自然排気及び本発明のブロワー排気による合金化炉の炉内温度上昇試験の試験結果を示す図である。 FIG. 5 is a diagram showing test results of an in-furnace temperature rise test of an alloying furnace using conventional natural exhaust without furnace pressure control and blower exhaust according to the present invention.
炉内温度上昇試験は、炉内温度400℃から炉圧コントロールなしの自然排気(A)及びブロワー排気(B)によって温度上昇試験を行った。図5に示すように、従来の自然排気も本発明のブロワー排気も、炉内圧はほぼ同じ圧力Pとなるので、昇温時間には両者格別の差が生じない。 In the furnace temperature rise test, a temperature rise test was performed from a furnace temperature of 400 ° C. using natural exhaust (A) and blower exhaust (B) without controlling the furnace pressure. As shown in FIG. 5, both the conventional natural exhaust and the blower exhaust of the present invention have almost the same pressure P in the furnace, so that there is no particular difference in the temperature rising time.
合金化溶融亜鉛めっき鋼板を得るための合金化炉の温度制御には、図2に示すように、合金化炉9に炉内圧力を測定する炉圧計12を設置し、炉圧計で測定した測定値を排ガス流量制御装置13に送信する。合金化炉の温度下降を実施する際には、排ガス流量制御装置13は、炉圧計12で測定した炉内の圧力PがP≦−0.5mmAqとなるように、排気ダクトに設けたダンパー14の開閉度の開度を大きくして、炉内の高温雰囲気ガスを排気ブロワー10で高速に排気するように、配管(排気ダクト)に設けた排気ブロワー10の回転数およびダンパー14の開閉度を制御する。なお、排気ブロワーの能力が大きいほうが降温時間は短くなる。また、合金化炉の温度上昇を実施する際には、排ガス流量制御装置13は、炉圧計12で測定した炉内の圧力PがP>−5.0mmAqとなるように、排気ダクトに設けたダンパー14の開閉度の開度を小さくして、ブロワー10により炉内雰囲気ガスの排出を調整し、炉内の高温雰囲気ガスの排気量を抑制して炉内温度の上昇を行う。
For temperature control of the alloying furnace for obtaining the alloyed hot-dip galvanized steel sheet, as shown in FIG. 2, a
以上のように、本発明は、合金化炉内の雰囲気温度に拘らず、排気能力を確保し、炉内の圧力制御を可能とすることで、コンパクトな設備で、かつ短時間で合金化炉内の温度制御を可能とするものである。 As described above, the present invention secures the exhaust capacity regardless of the ambient temperature in the alloying furnace and enables the pressure control in the furnace to be performed. The temperature inside can be controlled.
以下実施例に基づいて本願発明を説明する。
合金化炉での合金化温度(加熱帯温度)が異なる2種類の鋼種の溶融亜鉛めっき鋼板を準備した。各鋼種の成分は表1に示すとおりであった。
Hereinafter, the present invention will be described based on examples.
Two hot-dip galvanized steel sheets with different alloying temperatures (heating zone temperatures) in an alloying furnace were prepared. The components of each steel type were as shown in Table 1.
溶融めっき鋼板は、常法どおり、連続焼鈍した鋼板を溶融亜鉛めっき浴に浸漬し、めっき浴から引き上げた鋼板表面の過剰付着量の溶融めっきをワイピングノズルで取り除くことで得られた。次いで、溶融めっき鋼板は合金化炉で合金化処理をした。 The galvanized steel sheet was obtained by immersing the continuously annealed steel sheet in a hot dip galvanizing bath and removing the excessive amount of hot dip plating on the steel sheet surface pulled up from the plating bath with a wiping nozzle as usual. Next, the hot dip galvanized steel sheet was alloyed in an alloying furnace.
鋼種Aの溶融亜鉛めっき鋼板を合金化炉で合金化温度530℃に加熱して合金化(Zn−Fe)するには合金化炉の加熱帯温度1000℃が必要とされる。 In order to alloy a hot dip galvanized steel sheet of steel type A to an alloying temperature of 530 ° C. in an alloying furnace (Zn—Fe), a heating zone temperature of 1000 ° C. of the alloying furnace is required.
次いで、鋼種Aから鋼種Bの溶融亜鉛めっき鋼板に切り換えて合金化処理するには、鋼種Bの合金化温度470℃に加熱して合金化するには、合金化炉の加熱帯温度700℃に炉内温度を降下させなければならない。この温度が高すぎるとめっき層の剥離が生じる。鋼種A及びBの合金化炉における炉内温度及び鋼板温度の関係を図3に示した。 Next, in order to switch from steel type A to hot dip galvanized steel sheet of steel type B and to perform alloying treatment, to heat alloying temperature of steel type B to 470 ° C and to alloy it, the heating zone temperature of the alloying furnace is set to 700 ° C. The furnace temperature must be lowered. When this temperature is too high, peeling of the plating layer occurs. The relationship between the in-furnace temperature and the steel plate temperature in the alloying furnaces of steel types A and B is shown in FIG.
炉内温度を降下させるには、ブロワーへの配管に設けられているダンパーの開閉度の開度を大きくしてブロワーの排気量が大きくなるよう調整し、炉圧をコントロールし、炉圧計により測定した炉圧Pが−1.5〜−2.0mmAq(P≦−0.5mmAqを満足する)となるようにする。炉圧をコントロールすることで降温時間は14minで行うことができた。一方、従来のように炉圧をコントロールせずに炉圧Pを0mmAqのままに排気を続けると降温時間が長くなり、降温時間は37minを要した。 To lower the furnace temperature, increase the opening degree of the damper provided in the pipe to the blower, adjust the blower displacement to increase, control the furnace pressure, and measure with the furnace pressure gauge The furnace pressure P is set to −1.5 to −2.0 mmAq (P ≦ −0.5 mmAq is satisfied). By controlling the furnace pressure, the temperature lowering time was 14 min. On the other hand, if the evacuation was continued while the furnace pressure P was kept at 0 mmAq without controlling the furnace pressure as in the prior art, the temperature lowering time became longer and the temperature lowering time required 37 min.
さらに、鋼種Bから鋼種Aの溶融亜鉛めっき鋼板に切り換える場合には、加熱帯温度を700℃から1000℃へ昇温させることが必要となる。この場合は、ダンパーの開度を小さくしてブロワーの排気量を少なくなるよう調整し、炉圧Pを−0.5Aqmm以上(通常は0mmAqで良い)にして昇温させる。昇温時間は48minで従来と差は生じなかった。 Furthermore, when switching from the steel type B to the hot dip galvanized steel sheet of the steel type A, it is necessary to raise the heating zone temperature from 700 ° C to 1000 ° C. In this case, the damper opening is reduced to adjust the blower exhaust amount to be reduced, and the furnace pressure P is set to -0.5 Aqmm or more (usually 0 mmAq may be sufficient) to raise the temperature. The temperature raising time was 48 min, which was not different from the conventional one.
その結果を表2に示す。 The results are shown in Table 2.
表2に示すように、本発明によれば、降温時間が従来の降温時間の約1/3となっていて、大幅に降温時間が短縮された。 As shown in Table 2, according to the present invention, the temperature lowering time was about 1/3 of the conventional temperature lowering time, and the temperature lowering time was greatly shortened.
1 鋼板
2 溶融亜鉛めっき浴
3 シンクロール
4 ワイピングノズル
5 合金化炉加熱帯
6 合金化炉保熱帯
7 冷却装置
8 トップロール
9 合金化炉
10 ブロワー
11 排気
12炉圧計
13排ガス流量制御装置
14ダンパー
DESCRIPTION OF SYMBOLS 1 Steel plate 2 Hot dip galvanizing bath 3 Sink roll 4 Wiping nozzle 5 Alloying furnace heating zone 6 Alloying furnace heat retention 7 Cooling device 8 Top roll 9 Alloying furnace 10 Blower 11
Claims (5)
P≦−0.5mmAqとし、
炉内の温度上昇を行う際には、合金化炉内の圧力Pを、
P>−5.0mmAq
となるように、炉内雰囲気ガスの排出量を制御することを特徴とする合金化溶融亜鉛めっき鋼板製造用合金化炉の温度制御方法。 In the temperature control method of an alloying furnace when producing a galvanized steel sheet by applying hot dip galvanizing to a steel sheet and adjusting the zinc adhesion amount, and heating and holding it in an alloying furnace having gas heating, When the temperature is lowered, the pressure P in the alloying furnace is
P ≦ −0.5 mmAq,
When raising the temperature in the furnace, the pressure P in the alloying furnace is
P> −5.0 mmAq
The temperature control method for the alloying furnace for producing the galvannealed steel sheet is characterized by controlling the discharge amount of the atmospheric gas in the furnace.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008064853A JP4980273B2 (en) | 2008-03-13 | 2008-03-13 | Temperature control method and alloying furnace for alloying furnace for producing galvannealed steel sheet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008064853A JP4980273B2 (en) | 2008-03-13 | 2008-03-13 | Temperature control method and alloying furnace for alloying furnace for producing galvannealed steel sheet |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009221502A JP2009221502A (en) | 2009-10-01 |
JP4980273B2 true JP4980273B2 (en) | 2012-07-18 |
Family
ID=41238583
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008064853A Expired - Fee Related JP4980273B2 (en) | 2008-03-13 | 2008-03-13 | Temperature control method and alloying furnace for alloying furnace for producing galvannealed steel sheet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4980273B2 (en) |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6237364A (en) * | 1985-08-09 | 1987-02-18 | Sumitomo Metal Ind Ltd | Method and apparatus for alloyed galvanized steel sheet |
JPH0711169Y2 (en) * | 1988-07-15 | 1995-03-15 | 三菱重工業株式会社 | Heating equipment for alloying furnace |
JPH02166267A (en) * | 1988-12-19 | 1990-06-26 | Kawasaki Steel Corp | Alloying furnace |
JPH0517861A (en) * | 1991-07-11 | 1993-01-26 | Nkk Corp | Alloying furnace |
JP2848074B2 (en) * | 1992-01-06 | 1999-01-20 | 日本鋼管株式会社 | Galvanizing steel strip alloying equipment |
JP2698012B2 (en) * | 1993-01-12 | 1998-01-19 | 新日本製鐵株式会社 | Operating method of alloying furnace for galvanizing and alloying furnace |
JP3004879B2 (en) * | 1994-09-28 | 2000-01-31 | 川崎製鉄株式会社 | Temperature control method of steel strip entering galvanizing bath |
JP2000297357A (en) * | 1999-04-09 | 2000-10-24 | Nippon Steel Corp | Cooling apparatus in heat treatment furnace |
JP4990699B2 (en) * | 2007-07-06 | 2012-08-01 | 新日本製鐵株式会社 | Alloying furnace equipment |
-
2008
- 2008-03-13 JP JP2008064853A patent/JP4980273B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2009221502A (en) | 2009-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101011897B1 (en) | Method of continous annealing/hot-dipping of steel sheet containing silicon and apparatus for continuous annealing/hot-dipping | |
TWI488975B (en) | Continuous steel strip annealing furnace and method of continuous annealing of steel strip | |
WO2013187039A1 (en) | Method of continuous annealing of steel strip, device for continuous annealing of steel strip, method of manufacturing hot-dip galvanized steel strip, and device for manufacturing hot-dip galvanized steel strip | |
WO2013175757A1 (en) | Steel strip continuous annealing furnace, steel strip continuous annealing method, continuous hot-dip galvanization equipment, and production method for hot-dip galvanized steel strip | |
JP5365760B1 (en) | Continuous hot dip galvanizing equipment | |
WO2013175758A1 (en) | Steel strip continuous annealing furnace, continuous annealing method, continuous hot-dip galvanization equipment, and production method for hot-dip galvanized steel strip | |
KR20180064497A (en) | Manufacturing method of hot-dip galvanized steel sheet | |
JP4797601B2 (en) | High strength hot dip galvanized steel sheet manufacturing method and hot dip galvanized steel sheet manufacturing equipment | |
CN206188872U (en) | Compared with prior art, | |
JP5790898B1 (en) | Continuous annealing equipment and continuous annealing method | |
KR100704692B1 (en) | Method and apparatus for producing hot-dip coated metal belt | |
CN113136537B (en) | Method for improving surface quality of hot-base galvanized strip steel | |
JP4700527B2 (en) | Continuous molten metal plating equipment | |
JP4980273B2 (en) | Temperature control method and alloying furnace for alloying furnace for producing galvannealed steel sheet | |
JP6740973B2 (en) | Method for manufacturing hot-dip galvanized steel sheet | |
CN107287395A (en) | A kind of trolley type annealing furnace | |
JP2007031806A (en) | Method for manufacturing galvannealed steel sheet | |
JPS5844133B2 (en) | Continuous annealing method for cold rolled steel strip | |
JP2848074B2 (en) | Galvanizing steel strip alloying equipment | |
JP2009228073A (en) | Method for manufacturing hot dip coated steel sheet | |
JP2698012B2 (en) | Operating method of alloying furnace for galvanizing and alloying furnace | |
JP5729008B2 (en) | Method for producing hot-dip galvanized steel sheet | |
JP2004315901A (en) | Hot dip zinc coating method | |
JPH02277758A (en) | Alloying furnace and its operation | |
JP2009013481A (en) | Alloying furnace equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100209 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100526 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120327 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120418 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150427 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4980273 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150427 Year of fee payment: 3 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150427 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |