JP4979551B2 - Mycorrhizal fungus culture method - Google Patents
Mycorrhizal fungus culture method Download PDFInfo
- Publication number
- JP4979551B2 JP4979551B2 JP2007303968A JP2007303968A JP4979551B2 JP 4979551 B2 JP4979551 B2 JP 4979551B2 JP 2007303968 A JP2007303968 A JP 2007303968A JP 2007303968 A JP2007303968 A JP 2007303968A JP 4979551 B2 JP4979551 B2 JP 4979551B2
- Authority
- JP
- Japan
- Prior art keywords
- mycorrhizal
- culture
- fungi
- mycorrhizal fungi
- fungus
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Description
本発明は、菌根菌の菌糸および胞子を培養する菌根菌培養方法に関する。 The present invention relates to a mycorrhizal culture method for culturing mycelium and spores of mycorrhizal fungi.
従来、この種の菌根菌培養方法としては、宿主の根を用いた菌糸の培養や胞子生産方法が知られている。また、消毒した宿主の根を用いて、体外的なイン ビトロ(in vitro)において無菌状態下で菌根菌を培養することも知られている。すなわち、従来は、これら菌根菌培養方法のように、絶対共生菌である菌根菌の培養においては、宿主の根なくしては無菌状態下で純粋に菌根菌を培養して、胞子を得るまで増殖できないと考えられていた。 Conventionally, as this mycorrhizal fungi culture method, a mycelial culture or spore production method using a host root is known. It is also known to cultivate mycorrhizal fungi under aseptic conditions in vitro in vitro using disinfected host roots. In other words, conventionally, in the culture of mycorrhizal fungi, which are absolute symbiotic fungi, like these mycorrhizal culture methods, the mycorrhizal fungi are cultured purely under aseptic conditions without the roots of the host, and the spores are obtained. It was thought that it could not grow until it was obtained.
ところが、近年、フラッシュクロマトグラフィーで得たバヒアグラス根の25質量%のメタノール溶出物を用いて、菌根菌の中でも代表的なアーバスキュラー菌根(Arbuscular Mycorrhiza:AM)菌の純粋培養が成功している(例えば、特許文献1、並びに非特許文献1および2参照)。そして、この培養方法においては、赤色光から遠赤色光までの光の照射によって、菌根菌の菌糸生長が著しく促進することも知られている(例えば、特許文献2参照)。しかしながら、これらの培養方法は、バヒアグラスという宿主から得た根抽出物を用いた培養基においての成功であり、バヒアグラス根の採取時期の判断が極めて重要であるとともに、胞子の生産効率が余り良くないので、実用化が容易ではない(例えば、非特許文献2参照)。 However, in recent years, pure culture of Arbuscular Mycorrhiza (AM), a representative mycorrhizal fungus, has succeeded using 25% by mass methanol eluate of bahiagrass root obtained by flash chromatography. (See, for example, Patent Document 1 and Non-Patent Documents 1 and 2). In this culture method, it is also known that mycelial growth of mycorrhizal fungi is significantly promoted by irradiation with light from red light to far red light (see, for example, Patent Document 2). However, these culturing methods are successful in a culture medium using a root extract obtained from a host called bahiagrass, and it is extremely important to determine the timing of collecting bahiagrass roots, and the spore production efficiency is not so good. It is not easy to put into practical use (for example, see Non-Patent Document 2).
ここで、菌根菌は、植物の根に共生し、宿主の植物から光合成産物を得る見返りとして、植物の養水分を促進させ、生長を旺盛にさせるとともに、病害虫や環境ストレスに対する抵抗性を植物に付与する働きを有している。このため、この菌根菌の利用としては、1)低投入で持続可能な作物生産、2)環境に優しく、安心・安全な食料生産、3)乾燥地・半乾燥地における環境緑化、などに着目されている。ところが、菌根菌は絶対共生微生物であるので、この菌の純粋培養が容易ではないと考えられていたため(例えば、非特許文献3参照)、この菌の基礎研究や応用研究が非常に制限されていた。
以上のように、菌根菌は絶対共生微生物であることから、この菌根菌の純粋培養が容易ではないと考えられていたという問題を有している。 As described above, since mycorrhizal fungi are absolute symbiotic microorganisms, there is a problem that pure culture of mycorrhizal fungi has been considered not easy.
本発明は、このような点に鑑みなされたもので、菌根菌の純粋培養が容易にできる菌根菌培養方法を提供することを目的とする。 This invention is made | formed in view of such a point, and it aims at providing the mycorrhizal fungus culture method which can perform pure culture | cultivation of mycorrhizal fungi easily.
請求項1記載の菌根菌培養方法は、下記式(1)で表される菌根菌生長促進物質としてのペプチドを加え、無機養分、ビタミン類、糖類、リン脂質および核酸物質を加えた固形培地または液体培地である培養基で、菌根菌を培養するものである。 請 Motomeko 1 method mycorrhizal fungus culture described, plus a peptide as mycorrhizal growth-promoting substances represented by the following formula (1), mineral nutrients, vitamins, saccharides, phospholipids and nucleic acid material was added Mycorrhizal fungi are cultured in a culture medium that is a solid medium or a liquid medium.
請求項2記載の菌根菌培養方法は、請求項1記載の菌根菌培養方法において、下記式(2)で表されるぺプチドを培養基に加えるものである。 A mycorrhizal fungus culture method according to claim 2 is the mycorrhizal fungus culture method according to claim 1, wherein a peptide represented by the following formula (2) is added to the culture medium.
請求項3記載の菌根菌培養方法は、請求項1または2記載の菌根菌培養方法において、菌根菌は、アーバスキュラー菌根菌、エリコイド菌根菌および外生菌根菌のいずれかであるものである。 The mycorrhizal fungus culture method according to claim 3 is the mycorrhizal fungus culture method according to claim 1 or 2, wherein the mycorrhizal fungus is any one of arbuscular mycorrhizal fungi, ericoidal mycorrhizal fungi, and ectomycorrhizal fungi. Ru der thing is.
請求項4記載の菌根菌培養方法は、請求項1ないし3いずれか記載の菌根菌培養方法において、炭素繊維を活性化させた活性炭素繊維を培養基に加えるものである。 A mycorrhizal fungus culture method according to claim 4 is the mycorrhizal fungi culture method according to any one of claims 1 to 3 , wherein activated carbon fibers having activated carbon fibers are added to the culture medium.
請求項5記載の菌根菌培養方法は、請求項1ないし4いずれか記載の菌根菌培養方法において、赤色光照射の光環境条件で、菌根菌を培養するものである。 The mycorrhizal fungi culture method according to claim 5 is the mycorrhizal fungus culture method according to any one of claims 1 to 4 , wherein the mycorrhizal fungi are cultured under light environment conditions of red light irradiation.
請求項1記載の菌根菌培養方法によれば、式(1)で表される菌根菌生長促進物質としてのペプチドを加えた培養基で、菌根菌を培養することにより、純粋に菌根菌の菌糸を生長でき、この菌根菌の胞子を生産できるから、この菌根菌の純粋培養が容易にできる。 According to the mycorrhizal fungi culture method according to claim 1, pure mycorrhiza is obtained by culturing mycorrhizal fungi in a culture medium to which a peptide as a mycorrhizal mycelia growth promoting substance represented by formula (1) is added. Since the mycelium of the fungus can be grown and the spores of the mycorrhizal fungus can be produced, the pure culture of the mycorrhizal fungus can be facilitated.
また、無機養分、ビタミン類、糖類、リン脂質および核酸物質を加えた固形培地および液体培地のいずれかの培地基とすることにより、菌根菌の菌糸の生長を旺盛にでき、胞子の形成率を向上できる。In addition, the growth of mycorrhizal mycelium can be vigorous and the spore formation rate by using either a solid medium or a liquid medium containing inorganic nutrients, vitamins, sugars, phospholipids and nucleic acid substances. Can be improved.
請求項2記載の菌根菌培養方法によれば、請求項1記載の菌根菌培養方法の効果に加え、式(2)で表されるぺプチドを加えた培養基で、菌根菌を培養することにより、菌根菌の菌糸がより効率よく生長し、この菌根菌の胞子を生産できるから、この菌根菌の純粋培養をより効率よくできる。 According to the mycorrhizal fungus culture method of claim 2, in addition to the effect of the mycorrhizal fungi culture method of claim 1, the mycorrhizal fungi are cultured in a culture medium to which the peptide represented by formula (2) is added. By doing so, the mycelium of mycorrhizal fungi grows more efficiently and can produce spores of the mycorrhizal fungi, so that the pure culture of the mycorrhizal fungi can be performed more efficiently.
請求項3記載の菌根菌培養方法によれば、請求項1または2記載の菌根菌培養方法の効果に加え、アーバスキュラー菌根菌、エリコイド菌根菌および外生菌根菌のいずれの菌根菌であっても、これら菌根菌の胞子を効率良く増殖できる。 According to the mycorrhizal fungus culture method of claim 3, in addition to the effects of the mycorrhizal fungus culture method of claim 1 or 2, any of arbuscular mycorrhizal fungi, ericoidal mycorrhizal fungi and ectomycorrhizal fungi even mycorrhizal fungi, Ru can efficiently grow the spores of these mycorrhizal fungi.
請求項4記載の菌根菌培養方法によれば、請求項1ないし3いずれか記載の菌根菌培養方法の効果に加え、活性炭素繊維を培養基に加えることにより、菌根菌の菌糸の生長および分岐を促進できるから、この菌根菌の胞子形成率をより向上できる。 According to the mycorrhizal fungi culture method according to claim 4 , in addition to the effects of the mycorrhizal fungi culture method according to any one of claims 1 to 3 , by adding activated carbon fiber to the culture medium, the growth of mycorrhiza mycelium And since the branching can be promoted, the spore formation rate of this mycorrhizal fungus can be further improved.
請求項5記載の菌根菌培養方法によれば、請求項1ないし4いずれか記載の菌根菌培養方法の効果に加え、赤色光照射の光環境条件で、菌根菌を培養することにより、この菌根菌の菌糸の生長がさらに旺盛になるから、この菌根菌の胞子形成率をより向上できる。 According to the mycorrhizal fungi culture method according to claim 5 , in addition to the effects of the mycorrhizal fungi culture method according to any one of claims 1 to 4 , by culturing mycorrhizal fungi under light environment conditions of red light irradiation Since the growth of the mycelium of this mycorrhizal fungus becomes more vigorous, the spore formation rate of this mycorrhizal fungus can be further improved.
次に、本発明の菌根菌培養方法の一実施の形態について説明する。 Next, an embodiment of the mycorrhizal fungus culture method of the present invention will be described.
まず、この菌糸菌培養方法は、菌根菌が感染し得る宿主の根や根抽出物を全く用いない人工の培養基を用い、この培養基に活性炭素繊維を添加したり、光環境条件を調整したりすることによって、菌根菌の菌糸および胞子を純粋に増殖できる菌根菌の純粋培養技術である。なお、この菌根菌としては、この種の菌根菌を代表とするアーバスキュラー菌根菌(VA菌根菌)、エリコイド菌根菌および外生菌根菌のいずれかが用いられる。ただし、これらアーバスキュラー菌根菌、エリコイド菌根菌および外生菌根菌以外の菌根菌であっても用いることができる。 First, this mycelium culture method uses an artificial culture medium that does not use any host roots or root extract that can be infected with mycorrhizal fungi, and adds activated carbon fiber to this culture medium or adjusts the light environment conditions. This is a pure culture technique of mycorrhizal fungi that can purely grow mycelium and spores of mycorrhizal fungi. As this mycorrhizal fungus, any one of arbuscular mycorrhizal fungi (VA mycorrhizal fungi), ericoidal mycorrhizal fungi and ectomycorrhizal fungi that are representative of this type of mycorrhizal fungi is used. However, even mycorrhizal fungi other than these arbuscular mycorrhizal fungi, ericoidal mycorrhizal fungi and ectomycorrhizal fungi can be used.
また、この菌根菌の純粋培養技術には、特別な化学物質である菌根菌生長促進物質としてのペプチドと、菌根菌の栄養素、例えば無機養分、ビタミン類、糖類、リン脂質および核酸物質とを添加した固形培地または液体培地のような人工の培養基を用いる。ここで、菌根菌生長促進物質としては、下記式(1)で表されるトリプトファンダイマー(Trp−Trp)であるAM菌生長促進物質と、下記式(2)で表される活性分であるロイシルプロリン(Leu−Pro)とのような低分子のペプチドが用いられる。 In addition, the mycorrhizal fungus has a pure culture technique that includes a special chemical substance, a mycorrhizal fungi growth-promoting substance, and mycorrhizal fungi nutrients such as inorganic nutrients, vitamins, sugars, phospholipids and nucleic acid substances. An artificial culture medium such as solid medium or liquid medium supplemented with Here, the mycorrhizal growth-promoting substance includes an AM fungal growth-promoting substance that is a tryptophan dimer (Trp-Trp) represented by the following formula (1) and an active component represented by the following formula (2). A low molecular weight peptide such as leucylproline (Leu-Pro) is used.
ここで、上記式(1)で表されるトリプトファンダイマーは、AM菌の菌糸生長を促進させる作用を有するとともに、この菌糸を引きつけるシグナル物質である。また、上記式(2)で表されるロイシルプロリンは、AM菌の菌糸生長を促進させる作用を有しており、トリプトファンダイマーの補助剤としての作用を有している。 Here, the tryptophan dimer represented by the above formula (1) has a function of promoting hyphal growth of AM fungi and is a signal substance that attracts the mycelium. In addition, leucylproline represented by the above formula (2) has an effect of promoting mycelial growth of AM fungi, and has an effect as an adjuvant for tryptophan dimer.
次いで、活性炭素繊維(Activated Carbon Fiber:ACF)は、通常の炭素繊維を活性化させたものであり、菌根菌生長促進物質が添加された固形培地または液体培地に添加されて、これら固形培地または液体培地にて培養させる菌根菌の菌糸の生長および分岐を促進させ、この菌根菌の胞子形成率を向上させる。 Next, activated carbon fiber (Activated Carbon Fiber: ACF) is obtained by activating normal carbon fiber and added to a solid medium or liquid medium to which a mycorrhizal growth promoting substance is added. Or the growth and branching of mycorrhizal mycelium cultivated in a liquid medium are promoted, and the spore formation rate of this mycorrhizal fungus is improved.
さらに、この菌根菌の培養期間中に調整する光環境条件としては、暗黒または赤色光照射がある。そして、赤色光照射としては、赤色発光ダイオード(redLED)を用いた光照射(5μEm−2S−1)が好ましい。ここで、この菌根菌は、暗黒条件下でも菌糸が生長して胞子を形成するが、赤色光照射条件下ではより菌糸の生長が旺盛になり、胞子の形成率がより高まる。 Further, the light environment conditions adjusted during the culture period of the mycorrhizal fungi include dark or red light irradiation. And as red light irradiation, the light irradiation (5 microEm <-2 > S < -1 >) using a red light emitting diode (redLED) is preferable. Here, this mycorrhizal fungus grows mycelium even under dark conditions to form spores, but under red light irradiation conditions, the mycelium grows more vigorously and the spore formation rate increases.
次に、上記一実施の形態の菌根菌培養方法にて用いるトリプトファンダイマーおよびロイシルプロリンの抽出方法について説明する。 Next, a method for extracting tryptophan dimer and leucylproline used in the mycorrhizal fungus culture method of the above embodiment will be described.
まず、原料としてバヒアグラスの根または、この根の滲出物を用い、これらバヒアグラスの根または、この根の滲出物からメタノール溶出物を濾過する。 First, bahiagrass roots or exudates of the roots are used as raw materials, and methanol eluate is filtered from the bahiagrass roots or exudates of the roots.
この後、この濾過にて得られたメタノール溶出物を減圧濃縮してからフラッシュクロマトグラフィー装置を用いて分画して、菌根菌の生長を促進するペプチドが含まれる25質量%メタノール溶出分画を得る。ここで、フラッシュクロマトグラフィーとは、カラムクロマトグラフィーの一種であって、圧縮空気などの加圧された条件下で試料を分離する方法である。 Thereafter, the methanol eluate obtained by this filtration is concentrated under reduced pressure, and fractionated using a flash chromatography apparatus, and a 25 mass% methanol elution fraction containing a peptide that promotes the growth of mycorrhizal fungi. Get. Here, flash chromatography is a kind of column chromatography, and is a method of separating a sample under a pressurized condition such as compressed air.
次いで、この25質量%メタノール溶出分画を、ロトファーと呼ばれる等電点遊動装置で精製して精製液を得る。ここで、等電点遊動とは、等電点の違いを利用して目的とする精製液を分離して精製する方法である。さらに、等電点遊動にて精製された精製液を高速液体クロマトグラフィーで活性を有する部分を分離して取り分け、ニンヒドリン反応液によってペプチドが検出された部分を単離する。 Subsequently, the 25 mass% methanol elution fraction is purified by an isoelectric point floating device called a lotofer to obtain a purified solution. Here, the isoelectric point movement is a method of separating and purifying a target purified solution using the difference in isoelectric point. Further, the purified portion purified by isoelectric point migration is separated by separating the active portion by high performance liquid chromatography, and the portion where the peptide is detected by the ninhydrin reaction solution is isolated.
この後、この単離された部分を、タンパク質やペプチドのアミノ酸配列(シーケンス)を決定する装置であるアミノ酸シーケンサー、または核磁気共鳴(Nuclear Magnetic Resonance:NMR)装置にて活性のあるペプチドを同定する。この結果、この部分に含まれているペプチドが、トリプトファンダイマーおよびロイシルプロリンであることを確認できる。なお、この部分に含まれているトリプトファンダイマーおよびロイシルプロリン以外のペプチドについては、微量なため同定することが容易ではない。 After this, the isolated part is identified with an amino acid sequencer which is a device for determining the amino acid sequence (sequence) of proteins and peptides, or a nuclear magnetic resonance (NMR) device. . As a result, it can be confirmed that the peptides contained in this part are tryptophan dimer and leucylproline. It should be noted that peptides other than tryptophan dimer and leucylproline contained in this part are not easy to identify because they are trace amounts.
上述したように、上記一実施の形態によれば、菌根菌が感染し得る宿主の根や根抽出物を全く用いない特別な化学物質であるトリプトファンダイマーおよびロイシルプロリンをそれぞれ含む人工の培養基内で、菌根菌を培養することにより、純粋にこの菌根菌の菌糸を旺盛に生長させることができる。よって、植物の根や根抽出物を全く用いなくても、この菌根菌の胞子を効率良く増殖できるから、この菌根菌の胞子を効率良く多量に生産でき、この菌根菌の菌糸および胞子の純粋培養が容易にできる。 As described above, according to the above-described embodiment, artificial culture media each containing tryptophan dimer and leucylproline, which are special chemical substances that do not use any host roots or root extracts that can be infected by mycorrhizal fungi. The mycorrhizal fungi can be vigorously grown vigorously by culturing the mycorrhizal fungi. Therefore, the mycorrhizal fungus spores can be efficiently propagated without using plant roots or root extracts at all, and thus the mycorrhizal fungi spores can be efficiently produced in large quantities. Pure culture of spores can be easily performed.
このとき、この培養基に無機養分、ビタミン類、糖類、リン脂質および核酸物質を添加して、ペプチドの固形培地または液体培地とすることにより、この培養基での菌根菌の生長をより良好にできる。 At this time, by adding inorganic nutrients, vitamins, saccharides, phospholipids and nucleic acid substances to the culture medium to obtain a solid or liquid medium for the peptide, the growth of mycorrhizal fungi in this culture medium can be improved. The
さらに、この培養基に活性炭素繊維を添加することにより、菌根菌の菌糸の生長や分岐をさらに促進できる。また、この菌根菌の培養期間中に赤色光照射して光環境条件を調整することによって、この菌根菌の菌糸の生長がさらに旺盛になり、この菌根菌の胞子の生産がさらに促進されるから、この胞子の生産をさらに安定化できる。なお、この菌根菌としては、アーバスキュラー菌根菌を用いた場合に、特に顕著に純粋培養の効果を得ることができる。 Furthermore, the growth and branching of mycorrhizal mycelium can be further promoted by adding activated carbon fibers to the culture medium. Also, by adjusting the light environment conditions by irradiating with red light during the culture period of this mycorrhizal fungus, the growth of mycelium of this mycorrhizal fungus becomes more vigorous and the production of spores of this mycorrhizal fungus is further promoted Therefore, this spore production can be further stabilized. In addition, when arbuscular mycorrhizal fungi are used as the mycorrhizal fungi, the effect of pure culture can be obtained particularly remarkably.
まず、実施例1として、本発明の菌根菌培養方法を用いた純粋培養技術による新しいAM菌胞子生産について説明する。 First, as Example 1, new AM mycospore production by a pure culture technique using the mycorrhizal fungus culture method of the present invention will be described.
この実施例1での実験には、表1に示す基本培養液(Base Media:BM)に、トリプトファンダイマーおよびロイシルプロリンのそれぞれを10ppm加えたゲルライト(1.5質量%)固形培地を用いた。 For the experiment in Example 1, a gellite (1.5% by mass) solid medium in which 10 ppm each of tryptophan dimer and leucylproline was added to the basic culture solution (Base Media: BM) shown in Table 1 was used. .
また、この培地のみの他に、ACFを加えて利用した場合や、redLEDにて光照射(5μEm−2S−1)した場合、およびこれらACFとredLEDとを併用した場合それぞれの効果についても確認した。ここで、この培地を用いて菌根菌としてのAM菌の培養温度を25℃とした。また、このAM菌としては、主としてギガスポラ・アルビダ(Gigaspora albida)、グロムス・エツニカタム(Glomus etunicatum)およびグロムス・カレドニウム(Glomus caledonium)を用いた。これらAM菌の胞子の表面は、消毒剤で充分に殺菌した。なお、糸状菌の培養に広く用いられているポテトデキストロース寒天培地(PDA)を比較のため用いた。そして、これら培地を用いたAM菌の培養を開始した後に、これらAM菌の菌糸生長や新しく形成された胞子を赤色光下で観察した。 In addition to this medium alone, when ACF is added and used, when light is irradiated with redLED (5 μEm −2 S −1 ), and when these ACF and redLED are used in combination, the respective effects are also confirmed. did. Here, the culture temperature of AM fungi as mycorrhizal fungi was set to 25 ° C. using this medium. Moreover, as this AM bacterium, mainly Gigaspora albida, Glomus etunicatum and Glomus caledonium were used. The surface of these AM spore was thoroughly sterilized with a disinfectant. A potato dextrose agar medium (PDA) widely used for culturing filamentous fungi was used for comparison. And after starting culture | cultivation of AM fungi using these culture media, the mycelial growth of these AM fungi and newly formed spores were observed under red light.
この結果、ポテトデキストロース寒天培地(PDA)上において暗黒条件で菌根菌を培養したところ(PDA+暗黒区)、いずれの菌根菌においても菌糸生長や胞子形成を全く確認できなかった。また、表1に示す基本培養液(BM)上において暗黒条件で菌根菌を培養した場合では(BM+暗黒区)、いずれの菌根菌の菌糸生長も良好であったが、胞子形成が全く確認できなかった。 As a result, when mycorrhizal fungi were cultured under dark conditions on potato dextrose agar medium (PDA) (PDA + dark ward), no mycelial growth or spore formation could be confirmed in any mycorrhizal fungi. In addition, when mycorrhizal fungi were cultured under dark conditions on the basic culture solution (BM) shown in Table 1 (BM + dark ward), mycelial growth of any mycorrhizal fungi was good, but spore formation was completely I could not confirm.
これに対して、表1に示す基本培養液にトリプトファンダイマーおよびロイシルプロリンをそれぞれ加えた培地上おいて暗黒条件で菌根菌を培養した場合では(BM+ペプチド+暗黒区)、いずれの菌根菌の菌糸生長が促進されており、これら菌根菌の胞子形成を確認できた。この傾向は、培地へのACFの添加や、redLEDによる赤色光照射によって促進された。 On the other hand, when mycorrhizal fungi were cultured under dark conditions on a medium obtained by adding tryptophan dimer and leucylproline to the basic culture solution shown in Table 1 (BM + peptide + dark ward), any mycorrhiza The mycelial growth of fungi was promoted, and sporulation of these mycorrhizal fungi was confirmed. This tendency was promoted by the addition of ACF to the medium and red light irradiation by redLED.
特に、表1に示す基本培養液にトリプトファンダイマーおよびロイシルプロリンをそれぞれ加えるとともにACFを入れた培地上にredLEDにて赤色光照射した条件で菌根菌を培養した場合では(BM+ペプチド+ACF+redLED)、表2に示すように、いずれの菌根菌でも菌糸生長が著しく促進され、新しい胞子の形成がさらに高まっていることを確認できた。 In particular, in the case where mycorrhizal fungi are cultured under the condition of adding red tryptophan dimer and leucylproline to the basic culture solution shown in Table 1 and irradiating red light with redLED on a medium containing ACF (BM + peptide + ACF + redLED), As shown in Table 2, it was confirmed that mycorrhizal growth was remarkably promoted by any mycorrhizal fungus and the formation of new spores was further increased.
また、この(BM+ペプチド+ACF+redLED)処理区では、図1に示すように、培養2週間後でさえも1個の母胞子から数個の新しい胞子が得られた。ここで、この図1中の△印は、母胞子から発芽した菌糸から新しく形成されたAM菌(グロムス・カレドニウム)の胞子である。 Further, in this (BM + peptide + ACF + redLED) treatment group, as shown in FIG. 1, several new spores were obtained from one mother spore even after 2 weeks of culture. Here, Δ marks in FIG. 1 are spores of AM fungi (Gromus caledonium) newly formed from hyphae sprouted from mother spores.
さらに、この(BM+ペプチド+ACF+redLED)処理区では、培養1か月後には、図2に示すように、新しく形成されたAM菌胞子は母胞子とほとんど変わらない大きさとなった。なお、この図2中の△印は、母胞子から新しく形成され、この母胞子とほとんど変わらない大きさのAM菌(グロムス・カレドニウム)の胞子である。 Furthermore, in this (BM + peptide + ACF + redLED) treatment group, as shown in FIG. 2, newly formed AM fungal spores became almost the same size as mother spores after one month of culture. The Δ mark in FIG. 2 is a spore of an AM bacterium (Gromus caledonium) that is newly formed from the mother spore and has almost the same size as this mother spore.
なお、このAM菌の菌糸の生長は、青色発光ダイオード(blueLED)を用いた10μEm−2S−1以上の光照射で抑制される。 The growth of the hyphae of the AM fungus is suppressed by light irradiation of 10 μEm −2 S −1 or more using a blue light emitting diode (blueLED).
次に、実施例2として、実施例1での菌根菌培養方法にて生産されたAM菌胞子の感染性について説明する。 Next, as Example 2, the infectivity of AM fungal spores produced by the mycorrhizal fungus culture method in Example 1 will be described.
この実施例2での実験には、バーミキュライトを入れた2号プラスチックポットに、養成したバヒアグラスの幼苗を移植して用いた。そして、実施例1での純粋培養にてグロムス・カレドニウム(Glomus caledonium)の母胞子を植付けてから1か月後に、新しく形成された胞子(直径50μm〜80μm)を含むゲルライト培地から、この母胞子を取り除いた後に、直径約1cmのゲルライト切片となるように切り取り、このゲルライト切片に含まれている新しく形成されたAM菌の胞子や菌糸をバヒアグラスの根に接触させて接種した。 In the experiment in Example 2, a cultivated Bahiagrass seedling was transplanted and used in a No. 2 plastic pot containing vermiculite. Then, one month after planting the spore of Glomus caledonium in the pure culture in Example 1, from the gellite medium containing the newly formed spore (diameter 50 μm to 80 μm), Then, the gellite slices having a diameter of about 1 cm were cut out and inoculated with the newly formed spores and mycelia of AM fungi contained in the gellite slices in contact with the roots of bahiagrass.
この接種から1か月後に、バヒアグラスの根を採取し、このバヒアグラスに接種させたAM菌の菌根形成状態を、フィリップスおよびハイマン(Phillips, J.M. and Hayman, D.S.),トランザクションズ オブ ザ ブリティッシュ マイコロジカル ソサイエティ(Transactions of the British Mycological Society),(英国),1970年,55巻,p.158−161に記載の方法で染色した。 One month after the inoculation, bahiagrass roots were collected and the mycorrhizal formation of the AM fungus inoculated into the bahiagrass was confirmed by Phillips, JM and Hayman, DS, Transactions of the British Mycological. Society (Transactions of the British Mycological Society), (UK), 1970, 55, p. Stained by the method described in 158-161.
この後、この染色したAM菌の菌根形成状態を、石井および門屋(Ishii, T. and Kadoya, K.),ジャーナル オブ ザ ジャパニーズ ソサエティ フォー ホーティカルチャラル サイエンス(Journal of the Japanese Society for Horticultural Science),1994年,63巻,p.529−535に記載の方法で確認した。 After this, the mycorrhiza formation of the stained AM fungus was examined by Ishii, T. and Kadoya, K., Journal of the Japanese Society for Horticultural Science. ), 1994, 63, p. It confirmed with the method of 529-535.
さらに、この実験は、側面および天井面がガラスにて覆われたガラスハウスの内部で行い、他の胞子の混入を防ぐためにバヒアグラスを移植したポットをそれぞれ隔離した。そして、この実験の期間中は、十分に潅水し、移植2週間後と移植3週間後とのそれぞれにリン濃度を1/2に減らしたホーグランド溶液10mlを用いて施肥した。 Furthermore, this experiment was performed inside a glass house whose side and ceiling surfaces were covered with glass, and in order to prevent mixing of other spores, the pots transplanted with bahiagrass were isolated. During this experiment, water was sufficiently irrigated and fertilized with 10 ml of a Hogland solution in which the phosphorous concentration was reduced to ½ after 2 weeks and 3 weeks after transplantation, respectively.
この結果、図3に示すように、実施例1の純粋培養にて生産されたAM菌(グロムス・カレドニウム)の胞子を含むゲルライト切片で接種したバヒアグラスの根の周辺に多数の菌糸が確認でき、このバヒアグラスの根の内部には、のう状体や胞子の形成が数多く確認できた。 As a result, as shown in FIG. 3, a large number of mycelia can be confirmed around the roots of bahiagrass inoculated with gellite sections containing spores of AM fungus (Gromus caledonium) produced in the pure culture of Example 1, Numerous formations of rods and spores were confirmed inside the bahiagrass root.
次に、実施例3として、実施例1での菌根菌培養方法にて生産されたAM菌胞子の継代培養について説明する。 Next, as Example 3, subculture of AM fungal spores produced by the mycorrhizal fungus culture method in Example 1 will be described.
この実施例3の実験では、実施例1で用いた培養液に核酸物質を加えた液体培地に、適度な大きさのACFを入れ、新しく形成されたグロムス・カレドニウム(Glomus caledonium)の胞子(直径約80μm)を植菌した。この後、この液体培地を、redLED(5μEm−2S−1)照射下で、90rpmで振とうし、3週間後にCCDカメラを用いて観察した。 In the experiment of Example 3, a moderately sized ACF was placed in a liquid medium obtained by adding a nucleic acid substance to the culture medium used in Example 1, and newly formed Glomus caledonium spores (diameter). About 80 μm). Thereafter, the liquid medium was shaken at 90 rpm under irradiation of redLED (5 μEm −2 S −1 ), and observed with a CCD camera after 3 weeks.
この結果、図4に示すように、この液体培地に加えたACF上に、新しく形成された胞子から伸長した菌糸が確認でき、この菌糸の先端に3世代目のグロムス・カレドニウム(Glomus caledonium)の胞子が形成されていた。この胞子の大きさは、約60μmで黄白色であった。 As a result, as shown in FIG. 4, on the ACF added to the liquid medium, hyphae extended from newly formed spores can be confirmed, and the third generation of Glomus caledonium (Glomus caledonium) is observed at the tip of the hyphae. Spores were formed. The size of the spore was about 60 μm and yellowish white.
以上の結果、菌根菌が感染し得る宿主の根や根抽出物を全く用いなくても、無機養分、ビタミン類、糖類、リン脂質、核酸物質を添加した人工の培養基に、ある種のペプチドであるトリプトファンダイマーおよびロイシルプロリンを添加することによって、この菌根菌の菌糸を増殖させて、この菌糸菌の胞子を純粋に多量に生産できる。 As a result, certain peptides can be added to an artificial culture medium supplemented with inorganic nutrients, vitamins, sugars, phospholipids, and nucleic acid substances without using host roots or root extracts that can be infected by mycorrhizal fungi. By adding tryptophan dimer and leucylproline, the mycelium of the mycorrhizal fungi can be grown to produce pure mycelium fungi in large quantities.
さらに、この菌根菌の人工の培養基への活性炭素繊維の添加や、この菌根菌の培養期間中での赤色光照射は、この菌根菌の菌糸の生長や胞子の形成をさらに向上させる上で非常に有効である。また、この純粋培養によって生産された菌根菌の胞子は、培養1か月という短期間で成熟して、植物に感染できる能力を有しているとともに、新しく形成された2世代目の胞子からの継代培養も可能である。 Furthermore, the addition of activated carbon fiber to the artificial culture medium of this mycorrhizal fungus and the irradiation of red light during the culture period of this mycorrhizal fungus further improve the mycelial mycelium growth and spore formation. Very effective above. In addition, the mycorrhizal spore produced by this pure culture matures in a short period of one month and has the ability to infect plants, and from newly formed second generation spores. Can be subcultured.
よって、この菌根菌の純粋培養技術の確立は、培養が困難であるために制限されてきた菌根菌と植物との共生メカニズムを解明する糸口となるだけでなく、この菌根菌の胞子を純粋に安定的に大量生産できるという重要な意味を有している。 Therefore, the establishment of pure culture technology for this mycorrhizal fungus not only provides a clue to elucidating the symbiotic mechanism between mycorrhizal fungi and plants, which has been limited due to the difficulty of culturing, but also the spores of this mycorrhizal fungus. It has an important meaning that it can be mass-produced purely and stably.
Claims (5)
ことを特徴とする菌根菌培養方法。
ことを特徴とする請求項1記載の菌根菌培養方法。
ことを特徴とする請求項1または2記載の菌根菌培養方法。 The mycorrhizal fungus is any one of arbuscular mycorrhizal fungi, ericoidal mycorrhizal fungi, and ectomycorrhizal fungi. The mycorrhizal fungi culture method according to claim 1 or 2.
ことを特徴とする請求項1ないし3いずれか記載の菌根菌培養方法。 4. The method of cultivating mycorrhizal fungi according to any one of claims 1 to 3 , wherein activated carbon fibers having activated carbon fibers are added to the culture medium.
ことを特徴とする請求項1ないし4いずれか記載の菌根菌培養方法。 The mycorrhizal fungus culture method according to any one of claims 1 to 4 , wherein the mycorrhizal fungi are cultured under light environment conditions of red light irradiation.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007303968A JP4979551B2 (en) | 2007-09-28 | 2007-11-26 | Mycorrhizal fungus culture method |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007253001 | 2007-09-28 | ||
JP2007253001 | 2007-09-28 | ||
JP2007303968A JP4979551B2 (en) | 2007-09-28 | 2007-11-26 | Mycorrhizal fungus culture method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009095332A JP2009095332A (en) | 2009-05-07 |
JP4979551B2 true JP4979551B2 (en) | 2012-07-18 |
Family
ID=40698934
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007303968A Active JP4979551B2 (en) | 2007-09-28 | 2007-11-26 | Mycorrhizal fungus culture method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4979551B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6030908B2 (en) * | 2012-09-28 | 2016-11-24 | 孝昭 石井 | Mycorrhizal culturing method, mycorrhizal spore formation promoting method and mycorrhizal spore formation promoting composition |
CN113403204B (en) * | 2021-05-12 | 2022-10-11 | 广东省科学院微生物研究所(广东省微生物分析检测中心) | Method for promoting non-symbiotic spore production of arbuscular mycorrhizal fungi and application of method |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4691307B2 (en) * | 2002-03-24 | 2011-06-01 | 孝昭 石井 | Microbial growth control method |
-
2007
- 2007-11-26 JP JP2007303968A patent/JP4979551B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2009095332A (en) | 2009-05-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Abad et al. | Phytophthora niederhauserii sp. nov., a polyphagous species associated with ornamentals, fruit trees and native plants in 13 countries | |
US20090145023A1 (en) | Artificial cultivating method of fruiting body of antrodia camphorata | |
CN102037849A (en) | Tremella fuciformis strain culture method | |
Danell | Cantharellus cibarius: mycorrhiza formation and ecology. | |
CN108260470B (en) | Method for improving mycorrhizal seedling raising of tricholoma matsutake | |
Obase et al. | Revisiting phylogenetic diversity and cryptic species of Cenococcum geophilum sensu lato | |
CN105861332B (en) | A kind of bacterial strain of the promotion with leaf pocket orchid plant strain growth and its application | |
Nicoletti et al. | Endophytic fungi and ecological fitness of chestnuts | |
Telagathoti et al. | Mortierellaceae from subalpine and alpine habitats: new species of Entomortierella, Linnemannia, Mortierella, Podila and Tyroliella gen. nov. | |
JP5612340B2 (en) | Novel method of mycorrhiza formation | |
Vohník et al. | Inoculation of Rhododendron cv. Belle-Heller with two strains of Phialocephala fortinii in two different substrates | |
Estrada et al. | Diversispora clara (Glomeromycetes)—a new species from saline dunes in the Natural Park Cabo de Gata (Spain) | |
WO2017028767A1 (en) | Method of using specialized fungus source formed from ectomycorrhiza under natural forest | |
JP4979551B2 (en) | Mycorrhizal fungus culture method | |
Wang et al. | A new edible Rhizopogon species from Southwest China, and its mycorrhizal synthesis with two native pines | |
Yu et al. | Species diversity of fungal pathogens on cultivated mushrooms: a case study on morels (Morchella, Pezizales) | |
JP6030908B2 (en) | Mycorrhizal culturing method, mycorrhizal spore formation promoting method and mycorrhizal spore formation promoting composition | |
KOBAYASHI et al. | Two-year survival of Tricholoma matsutake ectomycorrhizas on Pinus densiflora seedlings after outplanting to a pine forest | |
Oehl et al. | Acaulospora minuta, a new arbuscular mycorrhizal fungal species from sub-Saharan savannas of West Africa | |
CN110760448B (en) | Strain for promoting growth of paphiopedilum hirsutissimum plant and application thereof | |
Yang et al. | First Report of Potato Stem Canker Caused by Rhizoctonia solani AG-2-2IIIB in Heilongjiang Province, China | |
CN105803040A (en) | Method for identifying pathogenic bacteria of potato early blight | |
KR102504389B1 (en) | Novel Beauveria pseudobassiana strain and Composition for controlling Bemisia tabaci containing the same | |
CN103250552B (en) | A kind of high yield resistance straw mushroom bacterial utilizing Banana Leaf to produce | |
CN108441430A (en) | The separation method of one plant tea Anthracnose Pathogen bacterium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20091019 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20111213 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20120105 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120125 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120314 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120404 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120417 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150427 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4979551 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |