JP4691307B2 - Microbial growth control method - Google Patents

Microbial growth control method Download PDF

Info

Publication number
JP4691307B2
JP4691307B2 JP2002125018A JP2002125018A JP4691307B2 JP 4691307 B2 JP4691307 B2 JP 4691307B2 JP 2002125018 A JP2002125018 A JP 2002125018A JP 2002125018 A JP2002125018 A JP 2002125018A JP 4691307 B2 JP4691307 B2 JP 4691307B2
Authority
JP
Japan
Prior art keywords
light
growth
microorganisms
irradiation
anthracnose
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002125018A
Other languages
Japanese (ja)
Other versions
JP2003274930A (en
JP2003274930A5 (en
Inventor
善信 谷内
孝昭 石井
幸江 堀井
研正 岡本
Original Assignee
孝昭 石井
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=29208152&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP4691307(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 孝昭 石井 filed Critical 孝昭 石井
Priority to JP2002125018A priority Critical patent/JP4691307B2/en
Publication of JP2003274930A publication Critical patent/JP2003274930A/en
Publication of JP2003274930A5 publication Critical patent/JP2003274930A5/ja
Application granted granted Critical
Publication of JP4691307B2 publication Critical patent/JP4691307B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、光照射によって微生物の生長を制御し、その微生物の培養技術の向上を図る微生物の生長制御方法に関するものである。
【0002】
【従来の技術】
光が微生物の生長に影響を及ぼすことに関して、紫外線領域の光が微生物の生長を著しく阻害することがよく知られていることである。また光合成細菌のような微生物では光合成や生長のために660nm前後の赤色光や430nm前後の青色光の光を必要としていることも明らかになっている。しかし、紫外線領域以外の可視領域の光が、光合成細菌以外の微生物の生長に及ぼす影響についてはこれまでほとんど知られておらず、そのため光合成細菌以外の微生物の培養では一般に暗黒下で行われているのが現状である。
【0003】
一方、微生物の培養に当たって、糸状菌の一つである菌根菌のような有益な微生物の人工培養技術の確立は重要である。菌根菌は植物に感染し、植物の養水分吸収を助ける共生微生物の一つであり、これからの低投入で持続可能な栽培体系を築く上で、現在非常に着目されている共生微生物であるからである。この菌は植物絶対共生菌であり、純粋培養がこれまで不可能と言われてきたが、本発明者の一人、石井らはVA菌根菌を生きた植物根を用いず人工的に培養する技術を世界に先駆けて成功した(例えば、特許文献1参照。)。また本菌の場合、毛状根を用いた培養において容器内に光が入ると胞子形成が阻害されるという報告もある(例えば、非特許文献1参照。)。
【0004】
【特許文献1】
特開平8−191685号公報
【0005】
【非特許文献1】
林達男、安達宏、石丸英彦,遺伝47(7),1993年,p.66−71
【0006】
【発明が解決しようとする課題】
しかしながら、上述の培養技術(光環境条件は暗黒下とした)では菌糸の生長が遅く、胞子形成が起こるまでに時間がかかるという問題がある。
【0007】
本発明は、このような点に鑑みなされたもので、培養技術の向上を図ることができる微生物の生長制御方法を提供することを目的としている。
【0008】
【課題を解決するための手段】
請求項1記載の微生物の生長制御方法は、ショウロ菌、マツタケ菌、アブラナ炭疽病菌およびウリ炭疽病菌のいずれかの微生物を、およそ600nmから800nmまでの光波長領域にある光の照射下で培養して、この微生物の生長を促進させるものである。
【0009】
そして、ショウロ菌、マツタケ菌、アブラナ炭疽病菌およびウリ炭疽病菌のいずれかの微生物を、およそ600nmから800nmまでの光波長領域にある光の照射下で培養することによって、この微生物の生長を促進できるから、この微生物の培養技術の向上を図ることができる。
【0010】
請求項2記載の微生物の生長制御方法は、ショウロ菌、マツタケ菌、アブラナ炭疽病菌、ウリ炭疽病菌、枯草菌および黄色ブドウ状球菌のいずれかの微生物を、およそ400nmから490nmまでの光波長領域にある光の照射下で培養して、この微生物の生長を抑制させるものである。
【0011】
そして、ショウロ菌、マツタケ菌、アブラナ炭疽病菌、ウリ炭疽病菌、枯草菌および黄色ブドウ状球菌のいずれかの微生物を、およそ400nmから490nmまでの光波長領域にある光の照射下で培養することによって、この微生物の生長を抑制させ、ショウロ菌、マツタケ菌、アブラナ炭疽病菌ウリ炭疽病菌、枯草菌および黄色ブドウ状球菌では胞子形成を促すことができるので、この微生物の培養技術の向上を図ることができる。
【0012】
【発明の実施の形態】
様々の発光ダイオードなどを用いて、光質が微生物の生長にどのように影響するかを研究してきた結果、だいだい色光から遠赤色光の照射は微生物の生長を促進させること、一方青色光の照射は微生物の生長を抑えて胞子形成を促進させることを見出した。供試した微生物は、ショウロ菌、マツタケ菌、アブラナ炭疽病菌、ウリ炭疽病菌のような糸状菌や、枯草菌(Bacillus subtilis IAM12021)、黄色ブドウ状球菌(Staphylococcus aureus 3062)のような細菌である。
【0013】
なお、だいだい色光から遠赤色光とは、およそ600nm(ナノメータ)から800nmまでの光波長領域にある光である。また、青色光とは、およそ400nmから490nmまでの光波長領域にある光である。
【0014】
研究の結果、だいだい色光から遠赤色光による光照射の下での培養によって微生物の生長が促進されること、並びに青色光による光照射の下での培養によって微生物の生長が抑制されながら、この微生物の生長が阻害されて、胞子形成が促されることを見出した。すなわち、微生物の増殖もしくは抑制を引き起こす光照射による微生物の生長制御技術および微生物の人工培養技術を提供する。
【0015】
よって、微生物、特に糸状菌の生長をだいだい色光から遠赤色光や青色光の照射で制御を行い、培養技術の向上を図る。なお、光照射の効果がよくみられる微生物は、特に糸状菌であり、この微生物の生長制御を行い、培養技術の向上を図ることができる。
【0016】
本発明によれば、光質が微生物、特に糸状菌の生長に著しい影響を及ぼしていることが認められる。従って、だいだい色光から遠赤色光までの波長領域の光照射によって微生物の生長が促進されること、また青色光波長領域の光照射によって微生物の生長が抑えられて胞子形成が促進される微生物の生長制御技術とその培養法を提供するものとして有用なものである。
【0017】
【実施例】
次に、本発明を参考例および実施例により詳しく説明する。
【0018】
参考例1〔暗黒下、並びに蛍光灯の白色光下および赤色光下での培養がVA菌根菌菌糸生長に及ぼす影響〕基本培地(村松秀則、石井孝昭、松本勲、門屋一臣,園芸学会誌64別冊2,1995年,p.106−107)のグルコースをマンニトール50ppmに替えた培地をシャーレ(直径70mm)に10ml入れ、オートクレイブで滅菌処理(121℃、15分)した後、表面殺菌したギガスポラ・マルガリータ(Gigaspora margarita)の胞子を培地上に置いた。その後、27℃の暗黒下、並びに蛍光灯の白色光下(光強度:30μE・m−2s−1)および赤色光下(光強度:10μE・m−2s−1)で1週間培養し、CCDカメラを装備した実体顕微鏡およびパソコンによる画像処理法(石井ら,園芸学会雑誌65(3),1996年,p.525−529)にて、胞子からの菌糸の生長を測定した。なお、赤色光の波長は図1に示すように、660nmをピークとしたものである。その結果、暗黒並びに蛍光灯の白色光下では菌糸長が1〜2mmで有意差がみられなかったが、赤色光下では、暗黒や白色光下と比較して、4〜9倍の著しい生長促進効果が認められた(図2)。
【0019】
参考例2[いろいろな波長の発光ダイオード(LED)による光照射がギガスポラ・マルガリータ菌糸生長に及ぼす影響]表面殺菌したギガスポラ・マルガリータ(Gigaspora margarita)の胞子を、参考例1で用いた基本培地にバヒアグラス25%MeOH溶出物(0.1gDW/10ml)を加えた培地上(直径70mmのシャーレを使用)に置き、27℃の暗黒下、並びに450nm、510nm、590nm、612nm、660nmおよび730nmの波長をピークとしたLED(図3、光強度:10μE・m−2s−1)下で10日間培養し、参考例1と同じ方法で菌糸長を測定した。なお、660nmでは光強度40μE・m−2s−1下でも調査した。その結果、LEDを用いた参考例2においてもほぼ同様に、612〜730nmの赤色領域の光照射は暗黒下の場合と比較して、3〜5倍の顕著な菌糸生長促進効果を示した。また光強度の違いによる影響も40μE・m−2s−1までは差異が認められなかった。510nmおよび590nm下では暗黒下との間に有意差がみられなかった。一方、450nm付近の青色領域の照射では菌糸生長が著しく抑制された(図4)。
【0020】
実施例1[いろいろな波長の発光ダイオード(LED)による光照射がショウロ菌およびマツタケ菌菌糸生長に及ぼす影響]また、ショウロ菌およびマツタケ菌をあらかじめ培養した寒天培地から菌糸を含む寒天(直径:7mm)を切り取り、それぞれMMN培地に植え付けた。その後、27℃の赤色光、青色光および暗黒下で培養を行い、各処理区での菌糸生長を比較調査した。その結果、ショウロ菌およびマツタケ菌においてもほぼ同様な結果が得られ、暗黒下と比べて、赤色光照射下では菌糸生長が促進され、反対に青色光照射下では阻害された(図11および図12)。
【0021】
参考例3〔青色光LED(BL)による光照射が菌根菌菌糸生長に及ぼす影響〕青色光の影響をさらに詳細に調査した。すなわち、参考例1と同様の方法で表面殺菌したギガスポラ・マルガリータ(Gigaspora margarita)の胞子を、参考例2に用いた培地上(直径70mmのシャーレを使用)に置き、27℃の赤色光下で2週間あらかじめ培養しておいた。その後、暗黒、並びに0.25、0.5、1、3時間(h)の450nm(青色光LED)の光照射後暗黒、さらに連続BL光照射の6処理区を設けた。なお、青色光の光強度は50μE・m−2s−1とした。処理0、1、3および6日後、菌糸の伸長を参考例1と同じ方法で測定した。その結果、0.25h、0.5hおよび1hの青色光を照射した後の暗黒区では連続暗黒区と比べて有意差が認められなかったが、3hの青色光照射後暗黒区や連続青色光照射区では著しい生長抑制効果がみられた(図5)。また、図6は青色光処理前と青色光処理6日後における暗黒区と3時間の青色光照射区の菌糸生長を示す顕微鏡写真である。
【0022】
参考例4〔赤色光および青色光LED(BL)による光照射が青カビの生長に及ぼす影響〕この青カビをあらかじめ培養したPDA(ポテト・デキストロース寒天)培地から菌糸を取り、再度、無菌のPDA培地に植え付けた。その後、27℃の赤色光、青色光および暗黒下で培養を行い、各処理区での菌糸生長や胞子形成状態を比較調査した。なお、赤色光および青色光LEDの光強度は30μE・m−2s−1とした。その結果、菌根菌の場合と同様に、青カビでも、暗黒下と比べて、赤色光照射下では菌糸生長が促進され、反対に青色光照射下では阻害された(図13)。また、青カビでは青色光照射区において、多数の胞子がシャーレ内に形成されているのが観察された。
【0023】
実施例2〔赤色光および青色光LED(BL)による光照射がアブラナ炭疽病菌およびウリ炭疽病菌の生長に及ぼす影響〕これらアブラナ炭疽病菌およびウリ炭疽病菌をあらかじめ培養したPDA(ポテト・デキストロース寒天)培地から菌糸を取り、再度、無菌のPDA培地に植え付けた。その後、27℃の赤色光、青色光および暗黒下で培養を行い、各処理区での菌糸生長や胞子形成状態を比較調査した。なお、赤色光および青色光LEDの光強度は30μE・m−2s−1とした。その結果、菌根菌の場合と同様に、アブラナ炭疽病菌およびウリ炭疽病菌のいずれでも、暗黒下と比べて、赤色光照射下では菌糸生長が促進され、反対に青色光照射下では阻害された(図7および図8)。また、アブラナ炭疽病菌およびウリ炭疽病菌では青色光照射区において、多数の胞子がシャーレ内に形成されているのが観察された。
【0024】
実施例3〔青色光LED(BL)による光照射が枯草菌(Bacillus subtilis IAM12021)および黄色ブドウ状球菌(Staphylococcus aureus 3062)の生長に及ぼす影響〕これらの細菌をあらかじめ培養したペプトン寒天培地から取り、再度、無菌のペプトン培地に植え付けた。その後、27℃の青色光および暗黒下で培養を行い、青色光照射が細菌の生長抑制に及ぼす効果について調査した。なお、青色光LEDの光強度は30μE・m−2s−1とした。その結果、細菌の増殖は、暗黒下と比べて、青色光照射下ではわずかに抑制される傾向が観察された(図9および図10)。
【0025】
【発明の効果】
請求項1記載の微生物の生長制御方法によれば、ショウロ菌、マツタケ菌、アブラナ炭疽病菌およびウリ炭疽病菌のいずれかの微生物を、およそ600nmから800nmまでの光波長領域にある光の照射下で培養することによって、この微生物の生長を促進できるから、この微生物の培養技術の向上を図ることができる。
【0026】
請求項2記載の微生物の生長制御方法によれば、ショウロ菌、マツタケ菌、アブラナ炭疽病菌、ウリ炭疽病菌、枯草菌および黄色ブドウ状球菌のいずれかの微生物を、およそ400nmから490nmまでの光波長領域にある光の照射下で培養することによって、この微生物の生長を抑制できるから、この微生物の培養技術の向上を図ることができる。
【図面の簡単な説明】
【図1】 参考例1において用いた赤色蛍光灯の波長スペクトラルを示す図である。
【図2】 参考例1において調べた暗黒、並びに蛍光灯による白色光および赤色光それぞれの区におけるVA菌根菌の菌糸生長を示す図である。
【図3】 参考例2および実施例1において用いたすべてのLEDの波長スペクトラルを示す図である
【図4】 参考例2において調べた暗黒、並びに450nm、510nm、590nm、612nm、660nmおよび730nmの波長のLED光照射区におけるVA菌根菌の菌糸生長を示す図である。
【図5】 参考例3において調べた処理6日後の暗黒、および0.25、0.5、1、3時間の青色光(BL)照射後暗黒、さらに連続BL光照射それぞれの区における菌根菌の菌糸生長を示す図である。
【図6】 参考例3において調べた青色光(BL)処理前とBL処理6日後における暗黒区と3時間のBL光照射区における菌根菌の菌糸生長を示す顕微鏡写真である。
【図7】 実施例2において調べた暗黒、並びに赤色光および青色光照射区におけるアブラナ炭疽病菌の生長を示す図である。
【図8】 実施例2において調べた暗黒、並びに赤色光および青色光照射区におけるウリ炭疽病菌の生長を示す図である。
【図9】 実施例3において調べた青色光照射区における枯草菌(Bacillus subtilis IAM12021)の生長を示す写真である。
【図10】 実施例3において調べた青色光照射区における黄色ブドウ状球菌(Staphylococcus aureus 3062)の生長を示す写真である。
【図11】 実施例1において調べた暗黒、並びに赤色光および青色光照射区におけるショウロ菌の生長を示す表である。
【図12】 実施例1において調べた暗黒、並びに赤色光および青色光照射区におけるマツタケ菌の生長を示す表である。
【図13】 参考例4において調べた暗黒、並びに赤色光および青色光照射区における青カビの生長を示す表である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for controlling the growth of microorganisms by controlling the growth of microorganisms by light irradiation and improving the culture technique of the microorganisms.
[0002]
[Prior art]
With regard to the effect of light on the growth of microorganisms, it is well known that light in the ultraviolet region significantly inhibits the growth of microorganisms. It has also been clarified that microorganisms such as photosynthetic bacteria require red light of around 660 nm and blue light of around 430 nm for photosynthesis and growth. However, little is known about the effects of light in the visible region other than the ultraviolet region on the growth of microorganisms other than photosynthetic bacteria, and as a result, cultivation of microorganisms other than photosynthetic bacteria is generally performed in the dark. is the current situation.
[0003]
On the other hand, in culturing microorganisms, it is important to establish a technique for artificially culturing beneficial microorganisms such as mycorrhizal fungi that are one of the filamentous fungi. Mycorrhizal fungi are one of the symbiotic microorganisms that infect plants and help them absorb nutrients, and are the symbiotic microorganisms that are currently attracting much attention in building sustainable cultivation systems with low inputs. Because. Although this bacterium is a plant symbiotic bacterium and it has been said that pure culture is impossible until now, one of the present inventors, Ishii et al. Cultivates VA mycorrhizal fungi artificially without using live plant roots. Technology was the first in the world to succeed (see, for example, Patent Document 1). In the case of this bacterium, there is also a report that spore formation is inhibited when light enters the container in the culture using hairy roots (see, for example, Non-Patent Document 1).
[0004]
[Patent Document 1]
Japanese Patent Laid-Open No. 8-191685
[Non-Patent Document 1]
Tatsuo Hayashi, Hiroshi Adachi, Hidehiko Ishimaru, Genetics 47 (7), 1993, p. 66-71
[0006]
[Problems to be solved by the invention]
However, the above-described culture technique (the light environment condition is dark) has a problem that mycelium growth is slow and it takes time until sporulation occurs.
[0007]
This invention is made | formed in view of such a point, and it aims at providing the growth control method of microorganisms which can aim at the improvement of a culture technique.
[0008]
[Means for Solving the Problems]
Growth method of controlling microorganisms according to claim 1 is rhizopogon roseolus bacteria, matsutake fungi, one of the microorganisms of rapeseed anthracnose fungus and Uri anthrax bacteria, cultured under irradiation of light in the light wavelength region from about 600nm to 800nm Thus, the growth of this microorganism is promoted.
[0009]
Then, rhizopogon roseolus bacteria, matsutake fungi, one of the microorganisms of rapeseed anthracnose fungus and Uri anthrax bacterium by culturing under irradiation of light in the light wavelength region from about 600nm to 800 nm, promotes the growth of the microorganism Therefore, it is possible to improve the culture technique of this microorganism.
[0010]
The method for controlling the growth of a microorganism according to claim 2, wherein any one of the microorganisms of Drosophila, Tricholoma matsutake, Brassica anthracnose, Uri anthracnose , Bacillus subtilis and Staphylococcus aureus is placed in a light wavelength region from about 400 nm to 490 nm. Cultivation under certain light irradiation suppresses the growth of these microorganisms.
[0011]
Then, by cultivating any one of the microorganisms of S. cholera, matsutake, rape anthracnose, cucurbit anthracnose , Bacillus subtilis and Staphylococcus aureus under light irradiation in the light wavelength region from about 400 nm to 490 nm To suppress the growth of these microorganisms and to promote the formation of spores in S. cholera, matsutake, rape anthracnose , cucurbit anthracnose , Bacillus subtilis and Staphylococcus aureus. It is Ru can.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
As a result of studying how light quality affects the growth of microorganisms using various light emitting diodes, etc., irradiation of far red light from colored light promotes the growth of microorganisms, while irradiation of blue light Has found that sporulation is promoted by suppressing the growth of microorganisms. The tested microorganisms are filamentous fungi such as Drosophila, Tricholoma matsutake, Brassica anthracnose fungus, Worm anthracnose fungus, and bacteria such as Bacillus subtilis IAM12021 and Staphylococcus aureus 3062.
[0013]
Note that the color light to far-red light is light in the light wavelength region from approximately 600 nm (nanometer) to 800 nm. The blue light is light in the light wavelength region from about 400 nm to 490 nm.
[0014]
As a result of research, the growth of microorganisms was promoted by culturing under irradiation with light from far-red light to far-red light, and growth of microorganisms was suppressed by culturing under light irradiation with blue light. It was found that the growth of spore was inhibited and sporulation was promoted. That is, the present invention provides a technique for controlling the growth of microorganisms by light irradiation that causes the growth or suppression of microorganisms and a technique for artificial culture of microorganisms.
[0015]
Therefore, the growth of microorganisms, particularly filamentous fungi, is controlled by irradiating far red light or blue light from colored light to improve the culture technique. In addition, the microorganisms in which the effect of light irradiation is often seen are particularly filamentous fungi, and the growth of these microorganisms can be controlled to improve the culture technique.
[0016]
According to the present invention, it is recognized that the light quality has a significant influence on the growth of microorganisms, particularly filamentous fungi. Therefore, the growth of microorganisms is promoted by light irradiation in the wavelength range from orange to far-red light, and the growth of microorganisms is promoted by suppressing the growth of microorganisms by light irradiation in the blue light wavelength range. It is useful for providing control technology and its culture method.
[0017]
【Example】
Next, the present invention will be described in more detail with reference examples and examples.
[0018]
Reference Example 1 [Effect of culturing under dark and white light and red light of fluorescent lamp on VA mycorrhizal mycelium growth] Basic medium (Hidenori Muramatsu, Takaaki Ishii, Isao Matsumoto, Kazuomi Kadoya, Horticultural Society) 64, volume 2, 1995, pp. 106-107), 10 ml of a medium in which glucose was replaced with mannitol 50 ppm was put into a petri dish (diameter 70 mm), sterilized by autoclaving (121 ° C., 15 minutes), and then surface sterilized. Gigaspora margarita spores were placed on the medium. Thereafter, the cells were cultured for 1 week in the dark at 27 ° C. and in the white light of a fluorescent lamp (light intensity: 30 μE · m-2s-1) and red light (light intensity: 10 μE · m-2s-1). The growth of mycelia from spores was measured by an image processing method using a stereomicroscope equipped with a camera and a personal computer (Ishii et al., Horticultural Society Journal 65 (3), 1996, p. 525-529). The wavelength of red light has a peak at 660 nm as shown in FIG. As a result, the mycelial length was 1 to 2 mm under dark and white light of fluorescent lamps, but no significant difference was observed. Under red light, the growth was 4 to 9 times that of dark or white light. A promoting effect was observed (FIG. 2).
[0019]
Reference Example 2 [Effect of Light Irradiation by Light-Emitting Diodes (LED) of Various Wavelengths on Gigaspora Margarita Mycelium Growth] Surface-sterilized Gigaspora margarita spores were used as the basic medium used in Reference Example 1. Place on medium supplemented with 25% MeOH eluate (0.1 g DW / 10 ml) (use petri dish with 70 mm diameter) and peak in the dark at 27 ° C. and wavelengths of 450 nm, 510 nm, 590 nm, 612 nm, 660 nm and 730 nm The cells were cultured for 10 days under the LED (FIG. 3, light intensity: 10 μE · m−2s−1), and the mycelial length was measured in the same manner as in Reference Example 1. In addition, at 660 nm, it investigated also under light intensity of 40 microe * m-2s-1. As a result, also in Reference Example 2 using LEDs, light irradiation in the red region of 612 to 730 nm showed a remarkable mycelial growth promotion effect 3 to 5 times that in the dark. Moreover, the difference by light intensity difference was not recognized up to 40 μE · m−2s−1. Under 510 nm and 590 nm, no significant difference was observed between dark and dark. On the other hand, mycelial growth was remarkably suppressed by irradiation in the blue region near 450 nm (FIG. 4).
[0020]
Example 1 [Effect of Light Irradiation by Light-Emitting Diodes (LEDs) of Various Wavelengths on Growth of Drosophila and Tricholoma matsutake Mycelium In addition, agar containing hyphae (diameter: 7 mm) from an agar medium in which Drosophila and Tricholoma matsutake were cultured in advance ), And each planted in MMN medium. Then, it culture | cultivated under 27 degreeC red light, blue light, and darkness, and the hyphal growth in each process division was compared and investigated. As a result, almost the same results were obtained with the bacterium Shou and Matsutake, and mycelial growth was promoted under irradiation with red light and inhibited under irradiation with blue light compared to that under dark conditions (FIGS. 11 and FIG. 11). 12).
[0021]
Reference Example 3 [Effect of light irradiation by blue light LED (BL) on mycorrhizal mycelium growth] The effect of blue light was investigated in more detail. That is, the spores of Gigaspora margarita (Gigaspora margarita) sterilized by the same method as in Reference Example 1 were placed on the medium used in Reference Example 2 (using a petri dish having a diameter of 70 mm), and under red light at 27 ° C. Pre-cultured for 2 weeks. Thereafter, there were provided 6 treatment zones of darkness, darkness after irradiation with 450 nm (blue light LED) for 0.25, 0.5, 1, 3 hours (h), and further continuous BL light irradiation. The light intensity of the blue light was 50 μE · m−2s−1. After 0, 1, 3 and 6 days of treatment, hyphal elongation was measured in the same manner as in Reference Example 1. As a result, no significant difference was observed in the dark areas after irradiating blue light of 0.25 h, 0.5 h, and 1 h as compared with the continuous dark areas. In the irradiated area, a remarkable growth suppression effect was observed (FIG. 5). FIG. 6 is a photomicrograph showing the mycelial growth of the dark area and the blue light irradiated area for 3 hours before the blue light treatment and 6 days after the blue light treatment.
[0022]
Reference Example 4 [Effect of Light Irradiation with Red Light and Blue Light LED (BL) on Growth of Blue Mold] The mycelium is removed from a PDA (potato dextrose agar) medium in which this blue mold has been pre-cultured, and again into a sterile PDA medium. Planted. Then, it culture | cultivated under 27 degreeC red light, blue light, and darkness, and compared and investigated the hyphal growth and spore formation state in each processing section. The light intensity of the red light and blue light LEDs was 30 μE · m−2s−1. As a result, as in the case of mycorrhizal fungi, in the case of blue mold, mycelial growth was promoted under irradiation with red light as compared with under darkness, and on the contrary, it was inhibited under irradiation with blue light (FIG. 13). In the blue mold, it was observed that many spores were formed in the petri dish in the blue light irradiation section.
[0023]
Example 2 [Effect of Light Irradiation by Red Light and Blue Light LED (BL) on Growth of Brassica Anthracnose Fungus and Woolly Anthracnose Fungus] PDA (Potato Dextrose Agar) Medium Cultured in advance The mycelium was taken from and again planted in sterile PDA medium. Then, it culture | cultivated under 27 degreeC red light, blue light, and darkness, and compared and investigated the hyphal growth and spore formation state in each processing section. The light intensity of the red light and blue light LEDs was 30 μE · m−2s−1. As a result, as in the case of mycorrhizal fungi, both rape anthracnose fungus and cucurbit anthracnose fungus promoted mycelial growth under red light irradiation and, on the contrary, inhibited under blue light irradiation as compared to darkness. (FIGS. 7 and 8). In the case of rape anthracnose fungus and cucumber anthracnose fungus, it was observed that many spores were formed in the petri dish in the blue light irradiation zone.
[0024]
Example 3 (Effect of light irradiation by blue light LED (BL) on the growth of Bacillus subtilis IAM12021 and Staphylococcus aureus 3062) Take these bacteria from a pre-cultured peptone agar medium, Again, they were planted in sterile peptone medium. Then, it culture | cultivated under 27 degreeC blue light and darkness, and investigated the effect which blue light irradiation has on the growth suppression of bacteria. The light intensity of the blue light LED was 30 μE · m−2s−1. As a result, it was observed that bacterial growth tended to be slightly suppressed under blue light irradiation as compared to darkness (FIGS. 9 and 10).
[0025]
【The invention's effect】
According to the growth method of controlling microorganisms according to claim 1, rhizopogon roseolus bacteria, matsutake fungi, one of the microorganisms of rapeseed anthracnose fungus and Uri anthrax bacteria, under irradiation of light in the light wavelength region from about 600nm to 800nm Since the growth of the microorganisms can be promoted by culturing in this manner, the cultivation technique of the microorganisms can be improved.
[0026]
According to the method for controlling the growth of microorganisms according to claim 2, any one of the microorganisms of Drosophila, Tricholoma matsutake, Brassica anthracnose, Cucurbit anthracnose , Bacillus subtilis and Staphylococcus aureus has a light wavelength of about 400 nm to 490 nm. by culturing under irradiation of light in the region, since it inhibited the growth of this microorganism, Ru can be improved culture techniques of this microorganism.
[Brief description of the drawings]
FIG. 1 is a diagram showing a wavelength spectrum of a red fluorescent lamp used in Reference Example 1. FIG.
FIG. 2 is a diagram showing mycelial growth of VA mycorrhizal fungi in the darkness examined in Reference Example 1, and in each of white light and red light by a fluorescent lamp.
FIG. 3 is a diagram showing the wavelength spectra of all LEDs used in Reference Example 2 and Example 1. FIG. 4 shows darkness and 450 nm, 510 nm, 590 nm, 612 nm, 660 nm, and 730 nm investigated in Reference Example 2. It is a figure which shows the mycelial growth of VA mycorrhizal fungi in the LED light irradiation area of a wavelength.
FIG. 5: Mycorrhiza in darkness 6 days after treatment examined in Reference Example 3, darkness after 0.25, 0.5, 1, 3 hours of blue light (BL) irradiation and further continuous BL light irradiation It is a figure which shows the mycelial growth of a fungus.
6 is a photomicrograph showing mycelial growth of mycorrhizal fungi in the dark area and the 3-hour BL light irradiation area before and after 6 days of blue light (BL) treatment examined in Reference Example 3. FIG.
7 is a graph showing the growth of Brassica anthracnose fungi in the darkness, red light and blue light irradiation areas examined in Example 2. FIG.
FIG. 8 is a graph showing the growth of cucumber anthracnose fungi in the darkness, red light and blue light irradiation areas examined in Example 2.
9 is a photograph showing the growth of Bacillus subtilis IAM12021 in the blue light-irradiated area examined in Example 3. FIG.
10 is a photograph showing the growth of Staphylococcus aureus 3062 in the blue light-irradiated area examined in Example 3. FIG.
FIG. 11 is a table showing the growth of Drosophila in the dark, red light and blue light irradiation areas examined in Example 1.
12 is a table showing the growth of matsutake fungi in the darkness, red light and blue light irradiation areas examined in Example 1. FIG.
FIG. 13 is a table showing the growth of blue mold in the darkness and red light and blue light irradiation areas examined in Reference Example 4.

Claims (2)

ショウロ菌、マツタケ菌、アブラナ炭疽病菌およびウリ炭疽病菌のいずれかの微生物を、およそ600nmから800nmまでの光波長領域にある光の照射下で培養して、この微生物の生長を促進させる
ことを特徴とする微生物の生長制御方法。
Rhizopogon roseolus bacteria, matsutake fungi, one of the microorganisms of rapeseed anthracnose fungus and Uri anthrax bacteria, cultured under irradiation of light in the light wavelength region from about 600nm to 800 nm, that to promote the growth of the microorganism A method for controlling the growth of microorganisms.
ショウロ菌、マツタケ菌、アブラナ炭疽病菌、ウリ炭疽病菌、枯草菌および黄色ブドウ状球菌のいずれかの微生物を、およそ400nmから490nmまでの光波長領域にある光の照射下で培養して、この微生物の生長を抑制させる
ことを特徴とする微生物の生長制御方法。
A microorganism of any one of Pseudomonas, Tricholoma matsutake, Brassica anthracnose, Uri anthracnose , Bacillus subtilis, and Staphylococcus aureus is cultured under irradiation with light in a light wavelength region of approximately 400 nm to 490 nm. A method for controlling the growth of microorganisms, characterized by suppressing the growth of microorganisms.
JP2002125018A 2002-03-24 2002-03-24 Microbial growth control method Expired - Lifetime JP4691307B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002125018A JP4691307B2 (en) 2002-03-24 2002-03-24 Microbial growth control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002125018A JP4691307B2 (en) 2002-03-24 2002-03-24 Microbial growth control method

Publications (3)

Publication Number Publication Date
JP2003274930A JP2003274930A (en) 2003-09-30
JP2003274930A5 JP2003274930A5 (en) 2005-09-02
JP4691307B2 true JP4691307B2 (en) 2011-06-01

Family

ID=29208152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002125018A Expired - Lifetime JP4691307B2 (en) 2002-03-24 2002-03-24 Microbial growth control method

Country Status (1)

Country Link
JP (1) JP4691307B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5082395B2 (en) * 2006-04-19 2012-11-28 パナソニック株式会社 refrigerator
JP4979551B2 (en) * 2007-09-28 2012-07-18 孝昭 石井 Mycorrhizal fungus culture method
JP4989423B2 (en) 2007-10-30 2012-08-01 オリンパス株式会社 Optical microscope
JP5934458B2 (en) * 2009-03-25 2016-06-15 学校法人光産業創成大学院大学 Eukaryotic microorganism culture method
CN109439536A (en) * 2017-08-18 2019-03-08 黄国仁 Drink water bacteria fast culture device and total plate count rapid detection system

Also Published As

Publication number Publication date
JP2003274930A (en) 2003-09-30

Similar Documents

Publication Publication Date Title
US8574566B2 (en) Strain of entomopathogenic fungus Isaria fumosorosea CCM 8367 (CCEFO.011.PFR) and the method for controlling insect and mite pests
JP2009511012A (en) Composition for controlling plant diseases comprising Bacillus subtilis KCCM10639 or KCCM10640 and method for controlling plant diseases using these
CN113025505B (en) Metarhizium lepigone and biological control method and application thereof in pupal stage of Spodoptera frugiperda
CN107189950A (en) A kind of bacterial strain GFDZ1 of weed removal mulch film of degrading and bacterial preparation process and application
Preece et al. Quantitative and scanning electron microscope observations on the attachment of Pseudomonas tolaasii and other bacteria to the surface of Agaricus bisporus
Guerin-Laguette et al. Growth stimulation of a Shiro-like, mycorrhiza forming, mycelium of Tricholoma matsutake on solid substrates by non-ionic surfactants or vegetable oil
JP4691307B2 (en) Microbial growth control method
Werner et al. In vitro evidence of mycoparasitism of the ectomycorrhizal fungus Laccaria laccata against Mucor hiemalis in the rhizosphere of Pinus sylvestris
KR20090119175A (en) Oligotrophic bacteria bacillus vallismorits 1a strain with antifungal activity against plant pathogenic fungi and inhibiting method of phytophthora blight by using the strain
CN105886424B (en) It is a kind of with the molten bacillus of Powdery Mildew in Tobacco resistance and its application
CA2714670A1 (en) Bacillus subtilis and use thereof as a green mold inhibitor
CN101182471A (en) Highly effective cultivating method for Chinese caterpillar fungus
CN1027671C (en) Weed control compositions containing drechslera spp. or metabolite thereof and weed control methods using drechslera spp. or metabolite thereof
CN103283488A (en) Method for purifying substrate mycelium from edible fungi mother culture
CN1637133A (en) Banana endophyte and its use
CN1228440C (en) Method for preparing young pine infected by armillaria matsutake
EP2489270A1 (en) Plant-rearing agent, plant disease resistance inducer, and plant disease control method
KR101208746B1 (en) Rhodobacter sp. KB-HHK-1 with plant growth promotion efficacy, microbial agent containing the same and method of culturing the same
KR20170130056A (en) Protaetia brevitarsis fungal diseases controlling compositions
KR100474662B1 (en) Microorganism of Pseudomonas putida which stimulates the growth of mushroom and method for culturing mushrooms using the same
CN104304328A (en) A preparing method of a hyperparasitic fungal inoculant for sclerotinia sclerotiorum
Sharma et al. Suppression of soil borne fungal pathogens associated with apple replant disease by cyclic application of native strains of Pseudomonas aeruginosa
Compant et al. Use of DOPE‐FISH Tool to Better Visualize Colonization of Plants by Beneficial Bacteria? An Example with Saccharothrix algeriensis NRRL B‐24137 Colonizing Grapevine Plants
CN104830697B (en) A kind of preparation method of thread spore fungal cultures dry preserved specimen
CN104745522B (en) A kind of method for inducing silk spore fungi spore

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20020704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20041102

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20041102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050225

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050225

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20071005

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20071022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071219

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080123

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20080222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080324

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080418

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20080423

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20080509

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20080514

C141 Inquiry by the administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C141

Effective date: 20100818

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20100818

C54 Written response to inquiry

Free format text: JAPANESE INTERMEDIATE CODE: C54

Effective date: 20101014

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20110112

C302 Record of communication

Free format text: JAPANESE INTERMEDIATE CODE: C302

Effective date: 20110117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110119

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20110119

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20110216

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20110216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110221

R150 Certificate of patent or registration of utility model

Ref document number: 4691307

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term