JP4978566B2 - Atmospheric pressure plasma generation method and apparatus - Google Patents

Atmospheric pressure plasma generation method and apparatus Download PDF

Info

Publication number
JP4978566B2
JP4978566B2 JP2008151505A JP2008151505A JP4978566B2 JP 4978566 B2 JP4978566 B2 JP 4978566B2 JP 2008151505 A JP2008151505 A JP 2008151505A JP 2008151505 A JP2008151505 A JP 2008151505A JP 4978566 B2 JP4978566 B2 JP 4978566B2
Authority
JP
Japan
Prior art keywords
plasma
noise
antenna
atmospheric pressure
vicinity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008151505A
Other languages
Japanese (ja)
Other versions
JP2009301730A (en
Inventor
正史 松森
茂樹 中塚
裕之 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2008151505A priority Critical patent/JP4978566B2/en
Publication of JP2009301730A publication Critical patent/JP2009301730A/en
Application granted granted Critical
Publication of JP4978566B2 publication Critical patent/JP4978566B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Plasma Technology (AREA)

Description

本発明は、大気圧プラズマ発生方法及び装置に関し、特に大気圧プラズマから放出されるノイズの低減を図った大気圧プラズマ発生方法及び装置に関するものである。   The present invention relates to an atmospheric pressure plasma generation method and apparatus, and more particularly to an atmospheric pressure plasma generation method and apparatus that reduce noise emitted from atmospheric pressure plasma.

従来から、大気圧若しくはその近傍の圧力下の所定の反応空間にプラズマ発生用のガスを供給するとともに、その反応空間の近傍に配置したアンテナ又は電極に高周波電圧を印加することで、プラズマを発生する大気圧プラズマ発生装置は知られている(例えば、特許文献1参照)。   Conventionally, plasma is generated by supplying a plasma generating gas to a predetermined reaction space under atmospheric pressure or a pressure near it, and applying a high-frequency voltage to an antenna or electrode disposed in the vicinity of the reaction space. Such an atmospheric pressure plasma generator is known (see, for example, Patent Document 1).

この種の大気圧プラズマ発生装置の構成例を、図11〜図13を参照して説明する。図11に示すように、所定の反応空間を形成する反応管11の一端11aからガス13を供給し、反応管11の周囲に配置したコイル状のアンテナ6に、高周波発生部3から整合回路7を介して高周波電圧を印加することで、反応管11内の反応空間でプラズマ14を発生させて反応管11の他端11bからプラズマ14を吹き出すように構成されている。整合回路7は、図12に示すように、アンテナ6の一端6aと高周波発生部3の高圧端子側との間に配置されたインダクタンス素子8(L1)と、高周波発生部3の接地端子側とアンテナ6の他端6bとの間に配置されたコンデンサ素子9(C1)と、アンテナ6に並列して高周波発生部3の高圧端子と接地端子との間に配置されたコンデンサ素子10(C2)とで構成されている。さらに、プラズマ14を発生させて被処理表面に照射するプラズマヘッド2の構成として、図13に示すように、反応管11とアンテナ6を備えるとともに整合回路7を内蔵し、かつ反応管11の両端部を除いてそれら周囲を金属材料から成る遮蔽カバー15にて覆うとともに、高周波発生部3から高周波電圧が供給される同軸ケーブル4のコネクタ5を遮蔽カバー15から突出させて設け、外部に放出される高周波ノイズの低減を図った構成のものが考えられている。   A configuration example of this type of atmospheric pressure plasma generator will be described with reference to FIGS. As shown in FIG. 11, a gas 13 is supplied from one end 11 a of a reaction tube 11 that forms a predetermined reaction space, and a matching antenna 7 is connected from a high-frequency generator 3 to a coiled antenna 6 disposed around the reaction tube 11. By applying a high-frequency voltage via the, a plasma 14 is generated in the reaction space in the reaction tube 11 and the plasma 14 is blown out from the other end 11 b of the reaction tube 11. As shown in FIG. 12, the matching circuit 7 includes an inductance element 8 (L1) disposed between one end 6a of the antenna 6 and the high-voltage terminal side of the high-frequency generator 3, and a ground terminal side of the high-frequency generator 3 A capacitor element 9 (C1) disposed between the other end 6b of the antenna 6 and a capacitor element 10 (C2) disposed in parallel with the antenna 6 between the high-voltage terminal and the ground terminal of the high-frequency generator 3 It consists of and. Further, as shown in FIG. 13, the plasma head 2 that generates plasma 14 and irradiates the surface to be processed includes a reaction tube 11 and an antenna 6, a matching circuit 7, and both ends of the reaction tube 11. The surroundings are covered with a shielding cover 15 made of a metal material except for the portion, and the connector 5 of the coaxial cable 4 to which a high-frequency voltage is supplied from the high-frequency generator 3 is provided so as to protrude from the shielding cover 15 and discharged to the outside. The thing of the structure which aimed at reduction of the high frequency noise which is considered is considered.

また、高周波ノイズの放出防止を図った大気圧プラズマ発生装置として、図15に示すような構成のものが知られている(例えば、特許文献2参照)。図15において、一端からガスを供給する角筒状の反応容器61の外周に軸心方向に間隔をあけて一対の電極62a、62bを配設し、高周波電源63から整合回路64と逆位相印加手段65を介して一対の電極62a、62bに対して互いに逆位相の高周波電圧を印加するように構成されている。逆位相印加手段65は、整合回路64に接続された一次巻線66と、中間点68が接地された二次巻線67とから成り、二次巻線67の一端67aを一方の電極62aに、他端67bを他方の電極62bに接続して構成されている。これにより、従来の構成では図16(a)に示すように、両電極62a、62bに高周波電源の高圧端子と接地端子が接続され、他方の電極62bが接地電位で、一方の電極62aに所定電圧Vの高周波電圧が印加されるため、外部に高周波ノイズが放出されるのに対して、この構成では図16(b)に示すように、接地端子同士が接続された一対の高周波電源63a、63bの高圧端子がそれぞれ両電極62a、62bに接続され、両電極62a、62bに電圧がV/2の互いに逆位相の高周波電圧が印加された状態となるため、両電極62a、62bから放出される高周波ノイズが相互に相殺しあうことになって、高周波ノイズが外部に放出されるのを防止することができるものである。
特許第3616088号明細書 特開2001−334147号公報
Further, as an atmospheric pressure plasma generator for preventing the emission of high frequency noise, a device having a structure as shown in FIG. 15 is known (see, for example, Patent Document 2). In FIG. 15, a pair of electrodes 62 a and 62 b are arranged on the outer periphery of a rectangular tube-shaped reaction vessel 61 that supplies gas from one end with an axial center interval, and a high-frequency power supply 63 applies an antiphase to the matching circuit 64. A high-frequency voltage having phases opposite to each other is applied to the pair of electrodes 62a and 62b via the means 65. The anti-phase applying means 65 includes a primary winding 66 connected to the matching circuit 64 and a secondary winding 67 whose ground point 68 is grounded. One end 67a of the secondary winding 67 is connected to one electrode 62a. The other end 67b is connected to the other electrode 62b. Accordingly, in the conventional configuration, as shown in FIG. 16A, the high-voltage terminal and the ground terminal of the high-frequency power source are connected to both the electrodes 62a and 62b, the other electrode 62b is at the ground potential, and the one electrode 62a has a predetermined value. Since a high frequency voltage of voltage V is applied, high frequency noise is emitted to the outside. In this configuration, as shown in FIG. 16B, a pair of high frequency power sources 63a having ground terminals connected to each other, The high-voltage terminal 63b is connected to the electrodes 62a and 62b, respectively, and a high-frequency voltage having a voltage of V / 2 opposite to each other is applied to the electrodes 62a and 62b. Thus, the high frequency noises cancel each other, and the high frequency noises can be prevented from being emitted to the outside.
Japanese Patent No. 3616088 JP 2001-334147 A

ところで、図11、図12に示したような大気圧プラズマ発生装置においては、特に図13に示したように遮蔽カバー15で覆ったプラズマヘッド2を備えたものにおいても、プラズマ14が吹き出す反応管11の他端11bから放出される高周波ノイズを無くすことができないという問題があることが判明した。   By the way, in the atmospheric pressure plasma generator as shown in FIGS. 11 and 12, the reaction tube from which the plasma 14 blows out even in the case where the plasma head 2 covered with the shielding cover 15 as shown in FIG. 13 is provided. It has been found that there is a problem that high-frequency noise emitted from the other end 11b of 11 cannot be eliminated.

さらに、図13に示すように、反応管11の他端11bから所定距離の位置にアンテナ21aを配置してノイズ測定手段21にて放出されるノイズを測定したところ、図14に示すように、整合回路7はプラズマ14の点灯時に反射波がゼロ近傍となるように調整設定されているため、プラズマ14の消灯時には6〜7Wの反射波が生じている状態となっているが、ノイズのレベルは、プラズマ消灯時には65dBμV/m未満に収まっているのに対して、点灯時に70〜75dBμV/mという高いノイズが測定され、ノイズ対策が要請されることになる。   Further, as shown in FIG. 13, when the antenna 21a is disposed at a predetermined distance from the other end 11b of the reaction tube 11 and the noise emitted by the noise measuring means 21 is measured, as shown in FIG. Since the matching circuit 7 is adjusted and set so that the reflected wave is close to zero when the plasma 14 is turned on, a reflected wave of 6 to 7 W is generated when the plasma 14 is turned off. Is less than 65 dBμV / m when the plasma is extinguished, but a high noise of 70 to 75 dBμV / m is measured when the plasma is turned on, and noise countermeasures are required.

一方、特許文献2に開示されたノイズ対策は、接地電位を中心にして逆位相の電圧を印加することができないようなアンテナや電極の構成、例えば反応管11の近傍に配置したコイル状や波形状のアンテナ6の両端に高周波電圧を印加してプラズマを発生するような構成には適用するのが難しいという問題がある。また、仮に逆位相の高周波電圧を印加するようにしたとしても、高周波領域では位相のずれが簡単に大きく発生するため、効果的にノイズを低減するのは困難であるという問題があることが判明した。さらに、実験を重ねて行く内に、吹き出すプラズマ14からノイズが放出されることが判明し、そのようなノイズを低減する対策も必要であることが判明した。このように大気圧プラズマ発生装置における高周波ノイズの発生は多様であり、しかも高周波ノイズに関しては、各国で様々な規制があるため、任意のレベルの高周波ノイズを効果的に低減することができる根本的な解決手段の提案が要請されている。   On the other hand, the noise countermeasure disclosed in Patent Document 2 is an antenna or electrode configuration that cannot apply a reverse-phase voltage centered on the ground potential, for example, a coil shape or a wave disposed near the reaction tube 11. There is a problem that it is difficult to apply to a configuration in which plasma is generated by applying a high-frequency voltage to both ends of the antenna 6 having a shape. Even if a high-frequency voltage having an opposite phase is applied, it is found that there is a problem that it is difficult to effectively reduce noise because a large phase shift easily occurs in the high-frequency region. did. Furthermore, it was found that noise was emitted from the plasma 14 to be blown out as the experiment was repeated, and it was found that measures to reduce such noise were also necessary. In this way, the generation of high-frequency noise in the atmospheric pressure plasma generator is diverse, and there are various regulations regarding high-frequency noise in each country, so it is possible to effectively reduce high-frequency noise of any level. Proposals for new solutions are required.

本発明は、上記従来の課題を解決するもので、大気圧プラズマを発生させる工程で多様に発生する高周波ノイズが周囲に放出されるのを確実に防止できる大気圧プラズマ発生方法及び装置を提供することを目的とする。   The present invention solves the above-described conventional problems, and provides an atmospheric pressure plasma generation method and apparatus that can reliably prevent high-frequency noises that are generated variously in the process of generating atmospheric pressure plasma from being released to the surroundings. For the purpose.

本発明の大気圧プラズマ発生方法は、大気圧近傍の反応空間にガスを供給するとともに高周波電圧を印加してプラズマを発生させるプラズマ発生工程と、プラズマ発生位置の近傍に配置されたノイズ消去アンテナに、前記高周波電圧と同じ周波数で所定の位相差と所定の振幅を有する高周波電圧を供給してノイズ消去電波を発生するノイズ消去電波発生工程とを有し、前記所定の位相差及び所定の振幅を、プラズマ発生位置の近傍で計測したノイズが最小若しくはその近傍になるように予め設定するものである。なお、大気圧近傍とは、大気圧を含めてその近傍の圧力を意味し、具体的に500mmHg〜1500mmHg程度の圧力範囲である。   The atmospheric pressure plasma generation method of the present invention includes a plasma generation step of generating a plasma by supplying a gas to a reaction space near the atmospheric pressure and applying a high frequency voltage, and a noise canceling antenna disposed in the vicinity of the plasma generation position. A noise canceling radio wave generating step of generating a noise canceling radio wave by supplying a high frequency voltage having a predetermined phase difference and a predetermined amplitude at the same frequency as the high frequency voltage, the predetermined phase difference and the predetermined amplitude being The noise measured in the vicinity of the plasma generation position is set in advance so as to be minimal or in the vicinity thereof. In addition, the atmospheric pressure vicinity means the pressure of the vicinity including atmospheric pressure, and is specifically the pressure range of about 500 mmHg-1500 mmHg.

この構成によれば、プラズマ発生位置の近傍でノイズを測定し、そのノイズが最小に近づくように、プラズマ発生位置の近傍に配置したノイズ消去アンテナに所定の位相差と所定の振幅を有する高周波電圧を供給してノイズ消去電波を発生することで、多様に発生したノイズであっても、それに対応するように調整設定されたノイズ消去電波にて確実に消去することができ、大気圧プラズマを発生させる工程で多様に発生する高周波ノイズが周囲に放出されるのを確実に防止できる。   According to this configuration, noise is measured in the vicinity of the plasma generation position, and a high-frequency voltage having a predetermined phase difference and a predetermined amplitude is applied to the noise canceling antenna disposed in the vicinity of the plasma generation position so that the noise approaches the minimum. By generating a noise canceling radio wave, even if a variety of noises are generated, it can be reliably erased with a noise canceling radio wave adjusted and set to correspond to it, generating atmospheric pressure plasma Thus, it is possible to reliably prevent high-frequency noise generated in various ways from being released to the surroundings.

また、前記所定の位相差及び所定の振幅を、プラズマの点灯時と消灯時で変更すると、プラズマの点灯時と消灯時で発生する高周波ノイズの発生状況が異なっても、それぞれに対応してアンテナ又は電極に対して供給する高周波電圧の位相と振幅が変更されるので、何れのときにも高周波ノイズが放出されるのを確実に防止することができる。   Further, when the predetermined phase difference and the predetermined amplitude are changed between when the plasma is turned on and when the plasma is turned on, even if the generation state of high frequency noise generated when the plasma is turned on and turned off differs, Alternatively, since the phase and amplitude of the high-frequency voltage supplied to the electrodes are changed, it is possible to reliably prevent high-frequency noise from being emitted at any time.

また、大気圧近傍の反応空間にガスを供給するとともに高周波電圧を印加してプラズマを発生させるプラズマ発生工程と、プラズマ発生位置の近傍に配置されたノイズ消去アンテナに、前記高周波電圧と同じ周波数で所定の位相差と所定の振幅を有する高周波電圧を供給してノイズ消去電波を発生するノイズ消去電波発生工程とを有し、前記所定の位相差及び所定の振幅を、プラズマ発生位置の近傍で計測したノイズが最小若しくはその近傍になるように制御するようにし、プラズマを発生させつつ連続的にフィードバック制御するようにしても良い。   In addition, a plasma generation step of supplying a gas to a reaction space near the atmospheric pressure and generating a plasma by applying a high frequency voltage, and a noise canceling antenna disposed near the plasma generation position at the same frequency as the high frequency voltage. A noise canceling radio wave generating step of generating a noise canceling radio wave by supplying a high frequency voltage having a predetermined phase difference and a predetermined amplitude, and measuring the predetermined phase difference and the predetermined amplitude in the vicinity of the plasma generation position The noise may be controlled to be minimal or in the vicinity thereof, and the feedback control may be continuously performed while generating plasma.

また、高周波電圧が、RF周波数帯、VHF周波数帯、又はマイクロ波周波数帯である場合には、特に誘導結合型プラズマを大気圧下で効率的に発生することができるとともに、その場合には位相ずれが簡単に発生するため、上記効果が顕著に発揮されるので特に好適である。   In addition, when the high-frequency voltage is in the RF frequency band, VHF frequency band, or microwave frequency band, inductively coupled plasma can be efficiently generated particularly under atmospheric pressure, and in that case, the phase Since the deviation easily occurs, the above effect is remarkably exhibited, which is particularly preferable.

本発明の大気圧プラズマ発生装置は、大気圧近傍の反応空間と前記反応空間の近傍に配設されたアンテナ又は電極とを有するプラズマヘッドと、前記反応空間にガスを供給するガス供給部と、前記アンテナ又は電極に高周波電圧を印加する高周波発生部と、前記高周波発生部と前記アンテナ又は電極との間に配置され、前記アンテナ又は電極からの反射電力を調整する整合回路と、プラズマヘッド内又は外部の近傍に配置されたノイズ消去アンテナと、前記高周波電圧と同周波数でかつ所定の位相差及び所定の振幅を有する高周波電圧をノイズ消去アンテナに印加するノイズ消去電圧印加手段と、プラズマ発生位置の近傍で計測したノイズが最小若しくはその近傍になる前記所定の位相差及び所定の振幅が予め設定され、その設定値に基づいてノイズ消去電圧印加手段から出力する高周波電圧を制御する制御部とを備えたものである。   An atmospheric pressure plasma generator of the present invention includes a plasma head having a reaction space near atmospheric pressure and an antenna or an electrode disposed in the vicinity of the reaction space, a gas supply unit for supplying gas to the reaction space, A high-frequency generator that applies a high-frequency voltage to the antenna or electrode, a matching circuit that is disposed between the high-frequency generator and the antenna or electrode, and that adjusts the reflected power from the antenna or electrode; A noise canceling antenna disposed in the vicinity of the outside, a noise canceling voltage applying means for applying to the noise canceling antenna a high frequency voltage having the same frequency as the high frequency voltage and having a predetermined phase difference and a predetermined amplitude, and a plasma generation position The predetermined phase difference and predetermined amplitude at which the noise measured in the vicinity is minimum or in the vicinity thereof are preset and based on the set value It is obtained and a control unit for controlling the high-frequency voltage outputted from the noise erasing voltage applying means.

この構成によれば、プラズマ発生位置の近傍でノイズを測定し、制御部にてノイズ消去電圧印加手段を制御して、ノイズを最小に近づけるように所定の位相差と所定の振幅を有する高周波電圧をプラズマ発生位置の近傍に配置したノイズ消去アンテナに供給することで、ノイズ消去アンテナからノイズ消去電波が発生してノイズを消去でき、かくして多様に発生したノイズであっても、それに対応するように設定調整されたノイズ消去電波にて確実に消去することができ、大気圧プラズマを発生させる工程で多様に発生する高周波ノイズが周囲に放出されるのを確実に防止できる。   According to this configuration, the noise is measured in the vicinity of the plasma generation position, and the noise erasing voltage applying means is controlled by the control unit, and the high-frequency voltage having a predetermined phase difference and a predetermined amplitude so as to bring the noise close to the minimum. To the noise canceling antenna placed near the plasma generation position, noise canceling radio waves can be generated from the noise canceling antenna so that the noise can be canceled. It can be surely erased by the noise elimination radio wave that has been set and adjusted, and it is possible to reliably prevent the high-frequency noise that is generated variously in the process of generating atmospheric pressure plasma from being released to the surroundings.

また、制御部を、プラズマの点灯時と消灯時で、前記所定の位相差及び所定の振幅を変更するように構成すると、プラズマの点灯時と消灯時で発生する高周波ノイズの発生状況が異なっても、それぞれに対応してアンテナに対して供給する高周波電圧の位相と振幅が変更されるので、何れのときにも高周波ノイズが放出されるのを確実に防止することができる。   In addition, when the control unit is configured to change the predetermined phase difference and the predetermined amplitude between when the plasma is turned on and when the plasma is turned off, the generation state of the high-frequency noise generated when the plasma is turned on and off is different. However, since the phase and amplitude of the high-frequency voltage supplied to the antenna are changed correspondingly, it is possible to reliably prevent high-frequency noise from being emitted at any time.

また、大気圧近傍の反応空間と前記反応空間の近傍に配設されたアンテナ又は電極とを有するプラズマヘッドと、前記反応空間にガスを供給するガス供給部と、前記アンテナ又は電極に高周波電圧を印加する高周波発生部と、前記高周波発生部と前記アンテナ又は電極との間に配置され、前記アンテナ又は電極からの反射電力を調整する整合回路と、プラズマヘッド内又は外部の近傍に配置されたノイズ消去アンテナと、前記高周波電圧と同周波数でかつ所定の位相差及び所定の振幅を有する高周波電圧をノイズ消去アンテナに印加するノイズ消去電圧印加手段と、プラズマ発生位置の近傍で計測したノイズが最小若しくはその近傍になる前記所定の位相差及び所定の振幅となるように、ノイズ消去電圧印加手段から出力する高周波電圧を制御する制御部とを備えた構成として、プラズマを発生させつつ連続的にフィードバック制御するようにしても良い。   In addition, a plasma head having a reaction space near atmospheric pressure and an antenna or electrode disposed in the vicinity of the reaction space, a gas supply unit that supplies gas to the reaction space, and a high-frequency voltage to the antenna or electrode A high frequency generator to be applied, a matching circuit that is disposed between the high frequency generator and the antenna or electrode, and that adjusts reflected power from the antenna or electrode, and noise that is disposed in or near the plasma head An erasing antenna, a noise erasing voltage applying means for applying a high frequency voltage having the same frequency as the high frequency voltage and having a predetermined phase difference and a predetermined amplitude to the noise erasing antenna, and noise measured in the vicinity of the plasma generation position is minimized The high frequency voltage output from the noise erasing voltage applying means is controlled so that the predetermined phase difference and predetermined amplitude in the vicinity thereof are obtained. A configuration in which a control unit which may be continuous feedback control while generating a plasma.

また、プラズマヘッドが、前記反応空間とアンテナ又は電極とを備えて一次プラズマを発生する一次プラズマ発生部と、前記反応空間に連通した空間に導入される、不活性ガスと反応性ガスの混合ガスからなる第2のガスに前記一次プラズマを衝突させて二次プラズマを発生する二次プラズマ発生部とを備えていると、小電力にて発生させた微小な一次プラズマにて二次プラズマを展開させることができて高出力の大気圧プラズマを効率的に発生することができ、かつ上記構成によるとそのようなプラズマヘッドから発生するノイズに対しても確実に防止することができる。 The plasma head includes the reaction space and an antenna or an electrode, and generates a primary plasma. A mixed gas of an inert gas and a reactive gas is introduced into a space communicating with the reaction space. A secondary plasma generator that generates a secondary plasma by colliding the primary plasma with a second gas consisting of the secondary gas, and develops the secondary plasma with a small primary plasma generated with a small electric power. Therefore, it is possible to efficiently generate high-pressure atmospheric pressure plasma, and according to the above configuration, it is possible to reliably prevent noise generated from such a plasma head.

また、プラズマヘッドは、一次プラズマ又は二次プラズマを噴射する部分とガスと第2のガスを供給する部分とを除いて周囲を金属材料から成る遮蔽カバーにて覆われるとともに、その内部に整合回路を内蔵しているのが好適である。こうすることで、プラズマ発生部のアンテナ又は電極及び整合回路が金属材料にて遮蔽されているので、その内部で発生したノイズが外部に放出されるのを確実に防止でき、プラズマの噴出部分とガス供給部分だけしかノイズが放出されないので、プラズマヘッドの外部へのノイズの放出を一層確実に防止することができる。   The plasma head is covered with a shielding cover made of a metal material except for a portion for injecting the primary plasma or the secondary plasma and a portion for supplying the gas and the second gas. It is suitable to incorporate. By doing so, the antenna or electrode of the plasma generation unit and the matching circuit are shielded by the metal material, so that it is possible to reliably prevent noise generated inside from being released to the outside, and Since only the gas supply portion emits noise, it is possible to more reliably prevent noise from being emitted to the outside of the plasma head.

また、ノイズ消去アンテナを、アンテナ又は電極の近傍に配置し、プラズマヘッドに内蔵すると、プラズマヘッド内でノイズ消去作用を奏することができ、プラズマヘッドの動作に際して周囲の部材と干渉する恐れのある突出物の無いコンパクトな構成とすることができる。   If the noise canceling antenna is arranged near the antenna or electrode and built in the plasma head, the noise canceling action can be achieved in the plasma head, and the protrusion that may interfere with surrounding members during the operation of the plasma head. It can be set as a compact structure without an object.

本発明の大気圧プラズマ発生方法及び装置によれば、プラズマ発生位置の近傍でノイズを測定し、そのノイズが最小に近づくように、プラズマ発生位置の近傍に配置したノイズ消去アンテナに所定の位相差と所定の振幅を有する高周波電圧を供給してノイズ消去電波を発生することで、多様に発生したノイズであっても、それに対応するように設定調整されたノイズ消去電波にて確実に消去することができ、大気圧プラズマの発生過程で生じる多様なノイズが周囲に放出されるのを確実に防止することができる。   According to the atmospheric pressure plasma generation method and apparatus of the present invention, noise is measured in the vicinity of the plasma generation position, and a predetermined phase difference is applied to the noise canceling antenna disposed in the vicinity of the plasma generation position so that the noise approaches the minimum. By generating a noise canceling radio wave by supplying a high frequency voltage having a predetermined amplitude, it is possible to reliably erase even a variety of generated noise with a noise canceling radio wave set and adjusted to correspond to it. Therefore, it is possible to reliably prevent various noises generated in the process of generating atmospheric pressure plasma from being emitted to the surroundings.

以下、本発明に係る大気圧プラズマ発生装置の各実施形態について、図1〜図10を参照しながら説明する。   Hereinafter, each embodiment of the atmospheric pressure plasma generator according to the present invention will be described with reference to FIGS.

(第1の実施形態)
まず、本発明の大気圧プラズマ発生装置の第1の実施形態について,図1〜図4を参照して説明する。
(First embodiment)
First, a first embodiment of the atmospheric pressure plasma generator of the present invention will be described with reference to FIGS.

本実施形態の大気圧プラズマ発生装置1は、図1に示すように、プラズマヘッド2と、商用交流電源(図示せず)を電源としてRF周波数帯、又はVHF周波数帯、又はマイクロ波周波数帯の高周波電圧を発生する高周波発生部3とを備え、高周波発生部3から同軸ケーブル4を通してプラズマヘッド2に設けられたコネクタ5を介して高周波電圧を供給するように構成されている。プラズマヘッド2の基本的な構成は、図11、図12を参照して説明した従来の構成と同じであり、図11に示すように、誘電体から成り内部に反応空間を構成する反応管11と、反応管11の近傍に配設されたコイル状若しくは波形状のアンテナ6とを備え、高周波発生部3からアンテナ6に対して、アンテナ6からの反射波を低減する整合回路7を介して高周波電圧を印加するように構成されている。整合回路7はプラズマヘッド2に内蔵されており、図12に示すように、コネクタ5の高圧端子5aとアンテナ6の一端6aの間に配置されたインダクタンス素子8(L1)と、コネクタ5の接地端子5bとアンテナ6の他端6bとの間に配置されたターン側のコンデンサ素子9(C1)と、アンテナ6に並列してコネクタ5の高圧端子5aと接地端子5bとの間に配置されたロード側のコンデンサ素子10(C2)とで構成されている。   As shown in FIG. 1, the atmospheric pressure plasma generator 1 of the present embodiment has an RF frequency band, a VHF frequency band, or a microwave frequency band using a plasma head 2 and a commercial AC power source (not shown) as power sources. A high-frequency voltage generator 3 that generates a high-frequency voltage, and is configured to supply the high-frequency voltage from the high-frequency voltage generator 3 through the coaxial cable 4 and the connector 5 provided in the plasma head 2. The basic configuration of the plasma head 2 is the same as the conventional configuration described with reference to FIGS. 11 and 12, and as shown in FIG. 11, a reaction tube 11 made of a dielectric material and forming a reaction space therein. And a coiled or corrugated antenna 6 disposed in the vicinity of the reaction tube 11, via a matching circuit 7 that reduces the reflected wave from the antenna 6 to the antenna 6 from the high frequency generator 3. A high frequency voltage is applied. The matching circuit 7 is built in the plasma head 2, and as shown in FIG. 12, an inductance element 8 (L1) disposed between the high voltage terminal 5a of the connector 5 and one end 6a of the antenna 6, and the ground of the connector 5 The capacitor element 9 (C1) on the turn side disposed between the terminal 5b and the other end 6b of the antenna 6 and the high voltage terminal 5a of the connector 5 and the ground terminal 5b disposed in parallel with the antenna 6 It is comprised with the load side capacitor | condenser element 10 (C2).

また、ガス供給部12から不活性ガス若しくは不活性ガスと反応性ガスの混合ガスから成るプラズマ発生用のガス13を反応管11の一端11aから内部の反応空間に供給するように構成されている。かくして、反応管11内の反応空間にガス13を供給しつつ高周波発生部3から整合回路7を介してアンテナ6に高周波電圧を印加することで、反応管11内の反応空間でプラズマ14が発生し、そのプラズマ14が反応管11の他端11bから吹き出される。   In addition, the gas supply unit 12 is configured to supply a gas 13 for plasma generation made of an inert gas or a mixed gas of an inert gas and a reactive gas from one end 11a of the reaction tube 11 to the internal reaction space. . Thus, plasma 14 is generated in the reaction space in the reaction tube 11 by supplying a gas 13 to the reaction space in the reaction tube 11 and applying a high-frequency voltage from the high-frequency generator 3 to the antenna 6 via the matching circuit 7. Then, the plasma 14 is blown out from the other end 11 b of the reaction tube 11.

プラズマヘッド2は、反応管11の一端11aと他端11bのみを突出させた状態で、その外面が金属製の遮蔽カバー15にて覆われ、アンテナ6や整合回路7で発生した高周波ノイズが外部に放出されるのを防止している。また、遮蔽カバー15からコネクタ5の一部、すなわち同軸ケーブル4側のコネクタ端子5dを接続する接続端子5cが突出されている。   The plasma head 2 has only one end 11a and the other end 11b of the reaction tube 11 protruding, and its outer surface is covered with a metal shielding cover 15, and high frequency noise generated by the antenna 6 and the matching circuit 7 is externally generated. Is prevented from being released. Further, a part of the connector 5, that is, a connection terminal 5 c for connecting the connector terminal 5 d on the coaxial cable 4 side protrudes from the shielding cover 15.

プラズマヘッド2の内部又は外部で、プラズマ発生部である反応管11の近傍にノイズ消去アンテナ16が配設されている。このノイズ消去アンテナ16に対して、高周波発生部3から位相回路17と増幅器18を介して、アンテナ6に供給される高周波電圧と同周波数でかつ所定の位相差及び所定の振幅を有する高周波電圧を印加するように構成されている。これら位相回路17と増幅器18にてノイズ消去電圧印加手段19が構成されるとともに、制御部20にて位相差及び振幅を調整設定するように構成されている。なお、ノイズ消去アンテナ16には一端部に高周波電圧が印加され、他端部は接地(GND)されている。   A noise canceling antenna 16 is disposed in the vicinity of the reaction tube 11 serving as a plasma generating unit inside or outside the plasma head 2. A high-frequency voltage having the same frequency as the high-frequency voltage supplied to the antenna 6 from the high-frequency generator 3 via the phase circuit 17 and the amplifier 18 and having a predetermined phase difference and a predetermined amplitude is applied to the noise canceling antenna 16. It is comprised so that it may apply. These phase circuit 17 and amplifier 18 constitute a noise elimination voltage applying means 19 and a control unit 20 is configured to adjust and set the phase difference and amplitude. Note that a high frequency voltage is applied to one end of the noise erasing antenna 16 and the other end is grounded (GND).

21は、プラズマヘッド2から放出されるノイズを測定するノイズ測定手段であり、そのアンテナ21aを、プラズマ14が吹き出す反応管11の他端11bから所定の距離L(3m)の位置に配置して3m法によってノイズ測定を行うようにしている。このノイズ測定手段21にて測定されたノイズが最小若しくはその近傍になるように、予め制御部20が設定され、制御部20にて位相回路17と増幅器18を調整するように構成されている。   Reference numeral 21 denotes noise measuring means for measuring noise emitted from the plasma head 2, and the antenna 21a is arranged at a predetermined distance L (3 m) from the other end 11b of the reaction tube 11 from which the plasma 14 blows out. Noise measurement is performed by the 3m method. The control unit 20 is set in advance so that the noise measured by the noise measuring unit 21 is minimized or in the vicinity thereof, and the phase circuit 17 and the amplifier 18 are adjusted by the control unit 20.

本実施形態においては、位相回路17は周知の容量素子と抵抗素子から成るCR回路が適用され、増幅器18はゲート電圧を変化させることで出力が変化する周知のアンプが適用されている。さらに、図14を参照して説明したように、プラズマ14を点灯している場合と消灯している場合とで放出されるノイズのレベルが異なるため、各々の場合について位相回路17と増幅器18が調整される。   In the present embodiment, a CR circuit composed of a known capacitive element and a resistive element is applied to the phase circuit 17, and a known amplifier whose output is changed by changing the gate voltage is applied to the amplifier 18. Furthermore, as described with reference to FIG. 14, since the level of noise emitted differs between when the plasma 14 is turned on and when the plasma 14 is turned off, the phase circuit 17 and the amplifier 18 are different in each case. Adjusted.

この位相回路17と増幅器18の調整を行う制御部20の設定は、大気圧プラズマ発生装置1の出荷前若しくは実稼動する前に予め行われる。また、必要に応じて実稼動中に稼動を停止して調整設定される。実際の設定作業は、高周波発生部3から整合回路7を介してアンテナ6に高周波電圧を印加し、反応管11にガス13を供給して所定のパワーのプラズマ14を点灯するように高周波発生部3及びガス供給部12を調整してその調整値を制御部20に設定し、次にプラズマ14を消灯した状態での調整値を制御部20に設定する。次に、プラズマ14を消灯した状態で、ノイズ測定手段21でノイズを測定し、その測定値が最小若しくはその近傍になるように位相回路17のCR回路を調整してその調整値を設定する。すなわち、図2(a)に示すように、増幅器18の増幅度を一定にした状態で、高周波発生部3(図1のA点)と位相回路17出口(図1のD点)との間の位相角度を位相回路17を調整して変化させながらノイズ測定レベルを測定し、ノイズ測定レベルが最小若しくはその近傍になる位相角度aに位相回路17を調整し、その調整値を制御部20に設定し、次に図2(b)に示すように、増幅器18の増幅度を変化させながらノイズ測定レベルを測定し、ノイズ測定レベルが最小若しくはその近傍になる増幅度bに増幅器18を調整し、その調整値を制御部20に設定する。次に、プラズマ14を点灯した状態で、同様に位相回路17を調整し、その調整値を制御部20に設定し、増幅器18を調整し、その調整値を制御部20設定する。かくして、大気圧プラズマ発生装置1の実稼動時には、制御部20にてプラズマ14の消灯時と点灯時にそれぞれ、位相回路17と増幅器18が各々の設定値に自動的に調整されることで、ノイズの放出レベルが確実に最小に抑制される。   The setting of the control unit 20 for adjusting the phase circuit 17 and the amplifier 18 is performed in advance before shipment of the atmospheric pressure plasma generator 1 or before actual operation. Further, adjustment is set by stopping operation during actual operation as required. The actual setting operation involves applying a high-frequency voltage from the high-frequency generator 3 to the antenna 6 via the matching circuit 7 and supplying a gas 13 to the reaction tube 11 to turn on the plasma 14 having a predetermined power. 3 and the gas supply unit 12 are adjusted and the adjustment value is set in the control unit 20, and then the adjustment value in a state where the plasma 14 is turned off is set in the control unit 20. Next, with the plasma 14 turned off, the noise is measured by the noise measuring means 21, and the adjustment value is set by adjusting the CR circuit of the phase circuit 17 so that the measured value is minimized or in the vicinity thereof. That is, as shown in FIG. 2A, with the amplification factor of the amplifier 18 kept constant, between the high frequency generator 3 (point A in FIG. 1) and the phase circuit 17 exit (point D in FIG. 1). The noise measurement level is measured while changing the phase angle by adjusting the phase circuit 17, the phase circuit 17 is adjusted to the phase angle a at which the noise measurement level is minimum or close thereto, and the adjustment value is sent to the control unit 20. Next, as shown in FIG. 2 (b), the noise measurement level is measured while changing the amplification degree of the amplifier 18, and the amplifier 18 is adjusted to the amplification degree b at which the noise measurement level is minimized or in the vicinity thereof. The adjustment value is set in the control unit 20. Next, with the plasma 14 turned on, the phase circuit 17 is similarly adjusted, the adjustment value is set in the control unit 20, the amplifier 18 is adjusted, and the adjustment value is set in the control unit 20. Thus, during actual operation of the atmospheric pressure plasma generator 1, the control circuit 20 automatically adjusts the phase circuit 17 and the amplifier 18 to the respective set values when the plasma 14 is turned off and when the plasma 14 is turned on. The release level of is reliably suppressed to a minimum.

なお、プラズマ14を点灯している場合と消灯している場合とで位相を変化させる構成として、位相回路17にCR回路とともに、図3に示すように、CR回路との接続点のH点と出口端子のD点との間に、通電路長dの複数の分割通電路22aから成るとともに、任意の分割通電路22aに並列通電路22bとそれを開閉するスイッチ23(SW)を有する構成の通電路22を設け、スイッチ23(SW)の開閉によって高周波における通電路長を変化させることで位相を変化させるようにした構成としても良い。すなわち、図3(a)に示すようにスイッチ23(SW)を開いた状態では、高周波に対してH点とD点の間の通電路長が3dであるのに対して、図3(b)に示すようにスイッチ23を閉じた状態では高周波に対してH点とD点の間の通電路長が2dと短くなる。そのため、高周波では図3(a)のようにスイッチ23(SW)を開くことで図3(b)の場合に対して位相を遅らせることができ、スイッチ23(SW)によって簡便に切り換えができる。   As a configuration in which the phase is changed between when the plasma 14 is turned on and when the plasma 14 is turned off, the phase circuit 17 and the CR circuit, as shown in FIG. It is composed of a plurality of divided energization paths 22a having an energization path length d between a point D of the outlet terminal and a parallel energization path 22b and a switch 23 (SW) for opening / closing the same in any divided energization path 22a. A configuration may be adopted in which the current path 22 is provided and the phase is changed by changing the length of the current path at a high frequency by opening and closing the switch 23 (SW). That is, when the switch 23 (SW) is opened as shown in FIG. 3A, the current path length between the H point and the D point is 3d with respect to the high frequency, whereas FIG. ), When the switch 23 is closed, the energization path length between the point H and the point D becomes as short as 2d with respect to the high frequency. Therefore, at a high frequency, the phase can be delayed with respect to the case of FIG. 3B by opening the switch 23 (SW) as shown in FIG. 3A, and can be easily switched by the switch 23 (SW).

以上のように位相回路17及び増幅器18を調整設定しておくことで、高周波発生部3の出力端子のA点での位相と、アンテナ6の他端のB点(図12参照)での位相と、プラズマ14の吹き出し部である放電管11の他端11bのC点での位相と、調整設定した位相回路17の出口のD点での位相と、増幅器18の出口のE点での位相と、ノイズ消去アンテナ16のF点での位相とがそれぞれ図4に示すようになる。なお、実際にはB点とC点間で多少の位相ずれが発生し、E点とF点間でも位相ずれがあるが、ノイズ測定手段21にて測定したノイズレベルによって調整設定し、最終的にC点での位相及び振幅とF点での位相及び振幅とが互いに逆位相で相互に相殺し合うようにしていることで、ノイズの周辺への放出を確実に防止することができる。   By adjusting and setting the phase circuit 17 and the amplifier 18 as described above, the phase at the point A of the output terminal of the high frequency generator 3 and the phase at the point B of the other end of the antenna 6 (see FIG. 12). The phase at the point C of the other end 11b of the discharge tube 11 that is the blow-out part of the plasma 14, the phase at the point D at the outlet of the adjusted phase circuit 17, and the phase at the point E at the outlet of the amplifier 18 4 and the phase at point F of the noise canceling antenna 16 are as shown in FIG. Actually, a slight phase shift occurs between the point B and the point C, and there is also a phase shift between the point E and the point F. However, the phase is adjusted and set according to the noise level measured by the noise measuring unit 21, and finally In addition, since the phase and amplitude at the point C and the phase and amplitude at the point F cancel each other out of phase with each other, it is possible to reliably prevent noise from being emitted to the periphery.

(第2の実施形態)
次に、本発明の大気圧プラズマ発生装置の第2の実施形態について,図5、図6を参照して説明する。なお、以下の実施形態の説明においては、先行する実施形態の構成要素と同一のものについては、同一参照符号を付して説明を省略し、主として相違点についてのみ説明する。
(Second Embodiment)
Next, a second embodiment of the atmospheric pressure plasma generator of the present invention will be described with reference to FIGS. In the following description of the embodiments, the same components as those of the preceding embodiments are denoted by the same reference numerals, and the description thereof will be omitted. Only differences will be mainly described.

上記第1の実施形態では、ノイズ測定手段21による測定結果を作業者が読み取り、測定結果に応じて制御部20を操作して位相回路17及び増幅器18を調整するようにした例を示したが、本実施形態では、図5に示すように、ノイズ測定手段21による測定結果が制御部20に入力され、測定されたノイズが最小若しくはその近傍になるように、制御部20が設定され、その設定に基づいて位相回路17と増幅器18が調整されるように構成されている。   In the first embodiment, the example is shown in which the operator reads the measurement result by the noise measuring means 21 and operates the control unit 20 according to the measurement result to adjust the phase circuit 17 and the amplifier 18. In the present embodiment, as shown in FIG. 5, the measurement result by the noise measuring means 21 is input to the control unit 20, and the control unit 20 is set so that the measured noise becomes the minimum or the vicinity thereof. The phase circuit 17 and the amplifier 18 are adjusted based on the setting.

また、本実施形態では、図6に示すように、位相回路17が、多数(1〜N)の分割通電路22aと各分割通電路22aに並列する並列通電路22bとから成る通電路22から成り、各並列通電路22bにそれぞれを開閉するスイッチ23(SW1、SW2・・SW(N−1)、SWN)を設けて構成され、制御部20にて各スイッチ23を開閉制御するように構成されている。また、制御部20のD/A変換器からなる増幅率制御手段にて増幅器18を構成しているアンプのゲート電圧を制御するように構成されている。この位相回路17においては、CR回路を設けていても良いが、設けなくて良い場合もある。   Further, in the present embodiment, as shown in FIG. 6, the phase circuit 17 includes an energization path 22 including a large number (1 to N) of divided energization paths 22a and parallel energization paths 22b parallel to the respective divided energization paths 22a. The switch 23 (SW1, SW2,... SW (N-1), SWN) for opening / closing each parallel energization path 22b is provided, and the control unit 20 controls the opening / closing of each switch 23. Has been. The gate voltage of the amplifier constituting the amplifier 18 is controlled by an amplification factor control means including a D / A converter of the control unit 20. The phase circuit 17 may be provided with a CR circuit, but may not be provided.

本実施形態によれば、ノイズ測定手段21による測定結果に基づいて、測定されたノイズが最小若しくはその近傍になるように制御部20が自動的に設定され、制御部20にて位相回路17及び増幅器18が自動調整されることになる。   According to the present embodiment, the control unit 20 is automatically set based on the measurement result by the noise measurement unit 21 so that the measured noise is minimum or in the vicinity thereof. The amplifier 18 is automatically adjusted.

(第3の実施形態)
次に、本発明の大気圧プラズマ発生装置の第3の実施形態について,図7、図8を参照して説明する。
(Third embodiment)
Next, a third embodiment of the atmospheric pressure plasma generator of the present invention will be described with reference to FIGS.

本実施形態では、図7に示すように、高周波発生部3と位相回路17と増幅器18と制御部20を制御装置24に内蔵させてユニット化し、制御装置24とプラズマヘッド2を同軸ケーブル3にて接続するように構成し、またプラズマヘッド2にノイズ消去アンテナ16を内蔵させるとともに、その遮蔽カバー15にノイズ消去アンテナ16に接続するコネクタ25を設けて、制御装置24の増幅器18とコネクタ25を同軸ケーブル26にて接続している。また、ノイズ消去アンテナ16で放射された電磁波をプラズマ14の吹き出し部に導いてプラズマ14から放射されるノイズを消去するための開口27が遮蔽カバー15に形成されている。なお、電磁波を外部に導出する開口27として、図7の例では円形の短寸の円筒体にて構成した例を示しているが、図8に示すように、図示の位置に配置した方形穴にて構成しても良い。   In the present embodiment, as shown in FIG. 7, the high frequency generator 3, the phase circuit 17, the amplifier 18, and the controller 20 are built in the control device 24 to form a unit, and the control device 24 and the plasma head 2 are connected to the coaxial cable 3. The noise elimination antenna 16 is built in the plasma head 2 and a connector 25 connected to the noise elimination antenna 16 is provided on the shielding cover 15 so that the amplifier 18 and the connector 25 of the control device 24 are connected. A coaxial cable 26 is used for connection. An opening 27 is formed in the shielding cover 15 for guiding the electromagnetic wave radiated from the noise erasing antenna 16 to the blowing portion of the plasma 14 and erasing the noise radiated from the plasma 14. In addition, in the example of FIG. 7, although the example comprised by the circular short cylindrical body is shown as the opening 27 which derives electromagnetic waves outside, as shown in FIG. 8, the square hole arrange | positioned in the position shown in figure You may comprise.

以上の実施形態では、プラズマヘッド2が反応管11とアンテナ6とからなる構成の例を示したが、図9に示すように、プラズマヘッド2として、反応管11の下端11b近傍の周囲に反応管11の下端11bより下方に延出された円筒状又は角筒形状の混合ガス容器28を配設し、その周壁上部に混合ガス33を内部に供給する複数のガス供給口29を配設した構成とし、ガス供給口29から混合ガス33を供給することで、混合ガス容器28内に混合ガス領域30を形成し、混合ガス領域30に反応管11から吹き出したプラズマ14を衝突させることで二次プラズマ31を発生させ、その二次プラズマ31を混合ガス容器28の下端開口から吹き出させて被処理表面32に照射するようにした構成であっても良い。このようなプラズマヘッド2の場合にも、本発明を適用することで同様にノイズの放出を防止することができる。   In the above embodiment, an example in which the plasma head 2 includes the reaction tube 11 and the antenna 6 has been shown. However, as shown in FIG. 9, the plasma head 2 reacts around the lower end 11 b of the reaction tube 11. A cylindrical or rectangular mixed gas container 28 extending downward from the lower end 11b of the pipe 11 is disposed, and a plurality of gas supply ports 29 for supplying the mixed gas 33 to the inside are disposed at the upper part of the peripheral wall. The mixed gas region 30 is formed in the mixed gas container 28 by supplying the mixed gas 33 from the gas supply port 29, and the plasma 14 blown out from the reaction tube 11 collides with the mixed gas region 30. The configuration may be such that the secondary plasma 31 is generated, and the secondary plasma 31 is blown out from the lower end opening of the mixed gas container 28 to irradiate the surface 32 to be processed. Also in the case of such a plasma head 2, noise emission can be similarly prevented by applying the present invention.

また、以上のようにコイル状のアンテナ6にて高周波電力を印加して誘導結合型のプラズマ14を発生するようにしたプラズマヘッド2に限らず、図10(a)に示すように、反応空間41を挟んでその両側に誘電体42を介して一対の電極43a、43bを配設し、電極43a、43b間に高周波電圧を印加し、反応空間41の一端からガス(不活性ガス又は不活性ガスと反応性ガスの混合ガス)44を供給することで反応空間41の他端から容量結合型のプラズマ45を吹き出すように構成したプラズマヘッド2においても、本発明を適用することで同様の効果を奏することができる。   Further, as shown in FIG. 10A, the reaction space is not limited to the plasma head 2 in which high frequency power is applied by the coiled antenna 6 to generate the inductively coupled plasma 14 as described above. A pair of electrodes 43a and 43b are disposed on both sides of the substrate 41 via a dielectric 42, a high frequency voltage is applied between the electrodes 43a and 43b, and a gas (inert gas or inert gas) is applied from one end of the reaction space 41. The same effect can be obtained by applying the present invention to the plasma head 2 configured to blow out the capacitively coupled plasma 45 from the other end of the reaction space 41 by supplying a mixed gas 44 of gas and reactive gas). Can be played.

また、図10(b)に示すように、誘電体から成る反応管46の外周に軸心方向に間隔をあけて一対の電極47a、47bを配設し、電極47a、47b間に高周波電圧を印加し、反応管46の一端からガス44を供給することで反応管46の他端からプラズマ45を吹き出すように構成したものでも良い。また、図10(c)に示すように、断面形状が細長い長方形状の誘電体から成る反応管48の外周に軸心方向に間隔をあけて一対の電極49a、49bを配設し、電極49a、49b間に高周波電圧を印加するようにしたものでも良い。   Further, as shown in FIG. 10B, a pair of electrodes 47a and 47b are arranged on the outer periphery of a reaction tube 46 made of a dielectric material with an interval in the axial direction, and a high-frequency voltage is applied between the electrodes 47a and 47b. The plasma 45 may be blown out from the other end of the reaction tube 46 by applying and supplying the gas 44 from one end of the reaction tube 46. Further, as shown in FIG. 10C, a pair of electrodes 49a and 49b are arranged on the outer periphery of a reaction tube 48 made of a rectangular dielectric material having a long and narrow cross-sectional shape with a space in the axial direction, and the electrode 49a 49b, a high-frequency voltage may be applied between them.

さらに、図10(d)に示すように、誘電体から成る反応管50の内側に内側電極51を、外周に外側電極52を配設し、電極51、52間に高周波電圧を印加し、反応管50内にガスを供給することで反応管50内でプラズマ45を発生して吹き出し口53から吹き出すように構成したものでも良い。さらに、図10(e)に示すように、内側電極54の先端部を円錐形にするとともに、その円錐部55の外面を誘電体56にて覆い、その外側を反応空間57をあけて取り囲むとともに、円錐部55の先端部に対向して吹き出し口60を形成された外側電極58を配置し、外側電極58に形成したガス供給通路59から空間57内にガスに供給するとともに、内側電極54と外側電極58間に高周波電圧を印加し、反応空間57でプラズマを発生させて吹き出し口60から吹き出すように構成したものでも良い。さらに、プラズマヘッド2としては、その他の種々の構成のものを適用することができる。   Further, as shown in FIG. 10 (d), an inner electrode 51 is disposed inside a reaction tube 50 made of a dielectric, an outer electrode 52 is disposed on the outer periphery, and a high frequency voltage is applied between the electrodes 51 and 52 to react. A configuration may be adopted in which plasma 45 is generated in the reaction tube 50 by supplying gas into the tube 50 and blown out from the blowing port 53. Furthermore, as shown in FIG. 10 (e), the tip of the inner electrode 54 is conical, the outer surface of the conical portion 55 is covered with a dielectric 56, and the outside is surrounded by a reaction space 57. An outer electrode 58 formed with a blowout opening 60 is disposed opposite to the tip of the conical portion 55, and gas is supplied into the space 57 from a gas supply passage 59 formed in the outer electrode 58, and the inner electrode 54 and A configuration may be adopted in which a high-frequency voltage is applied between the outer electrodes 58 to generate plasma in the reaction space 57 and blow out from the blow-out port 60. Further, various other configurations can be applied as the plasma head 2.

なお、本発明は、以上の実施形態に限定されるものではなく、第2の実施形態で示した構成で、ノイズ測定手段21によりノイズレベルを連続的に測定し、ノイズ測定手段21の測定値が所定の値以下になるように位相回路17、増幅器18を連続的又は断続的に制御しても良い。また、ノイズ測定手段21の測定値は、プラズマヘッド2の配置位置や周囲環境によっても大きく変化するものであり、その変化値に追随して位相回路17、増幅器18を制御するようにしても良い。   Note that the present invention is not limited to the above-described embodiment, and with the configuration shown in the second embodiment, the noise level is continuously measured by the noise measuring unit 21, and the measured value of the noise measuring unit 21 is measured. The phase circuit 17 and the amplifier 18 may be controlled continuously or intermittently so that is less than a predetermined value. The measured value of the noise measuring means 21 changes greatly depending on the position of the plasma head 2 and the surrounding environment, and the phase circuit 17 and the amplifier 18 may be controlled following the changed value. .

また、ノイズ測定手段21の配置位置は、以上の実施形態で示したものに限定されるものではなく、ノイズを低減したい位置に配置しても良い。また、ノイズ消去アンテナ16は1つに限定されるものではなく、複数配置して、それに対応したノイズ消去電圧印加手段や位相回路や増幅器等をを設けて、ノイズ測定手段21による測定値を下げるようにしても良い。   Further, the arrangement position of the noise measuring means 21 is not limited to that shown in the above embodiment, and may be arranged at a position where noise is desired to be reduced. Further, the number of noise canceling antennas 16 is not limited to one, and a plurality of noise canceling antennas 16 are arranged, and corresponding noise canceling voltage applying means, phase circuits, amplifiers, etc. are provided to lower the measurement value by the noise measuring means 21. You may do it.

本発明の大気圧プラズマ発生方法及び装置によれば、プラズマ発生位置の近傍でノイズを測定し、そのノイズが最小に近づくように、プラズマ発生位置の近傍に配置したノイズ消去アンテナに所定の位相差と所定の振幅を有する高周波電圧を供給してノイズ消去電波を発生することで、多様に発生したノイズであっても、それに対応するように設定調整されたノイズ消去電波にて確実に消去することができ、大気圧プラズマの発生過程で生じる多様なノイズが周囲に放出されるのを確実に防止することができるので、各種大気圧プラズマ発生装置、特に各種装置に搭載する小型の大気圧プラズマ発生装置に好適に利用することができる。   According to the atmospheric pressure plasma generation method and apparatus of the present invention, noise is measured in the vicinity of the plasma generation position, and a predetermined phase difference is applied to the noise canceling antenna disposed in the vicinity of the plasma generation position so that the noise approaches the minimum. By generating a noise canceling radio wave by supplying a high frequency voltage having a predetermined amplitude, it is possible to reliably erase even a variety of generated noise with a noise canceling radio wave set and adjusted to correspond to it. It is possible to reliably prevent various noises generated during the generation process of atmospheric pressure plasma from being released to the surroundings, so that various atmospheric pressure plasma generators, especially small atmospheric plasma generators mounted on various devices, can be generated. It can utilize suitably for an apparatus.

本発明の大気圧プラズマ発生装置の第1の実施形態の全体構成図。BRIEF DESCRIPTION OF THE DRAWINGS The whole block diagram of 1st Embodiment of the atmospheric pressure plasma generator of this invention. 同実施形態における位相回路と増幅器の調整設定工程の説明図。Explanatory drawing of the adjustment setting process of the phase circuit and amplifier in the embodiment. 同実施形態における位相回路の構成例を示し、(a)、(b)は位相切換状態を示す図。The structural example of the phase circuit in the embodiment is shown, (a), (b) is a figure which shows a phase switching state. 同実施形態における各部位における位相状態の説明図。Explanatory drawing of the phase state in each site | part in the embodiment. 本発明の大気圧プラズマ発生装置の第2の実施形態の全体構成図。The whole block diagram of 2nd Embodiment of the atmospheric pressure plasma generator of this invention. 同実施形態の位相回路と制御部の構成例の構成図。The block diagram of the structural example of the phase circuit of the same embodiment, and a control part. 本発明の大気圧プラズマ発生装置の第3の実施形態の全体構成図。The whole block diagram of 3rd Embodiment of the atmospheric pressure plasma generator of this invention. 同実施形態のプラズマヘッドの変形構成例を示す斜視図。The perspective view which shows the modification structural example of the plasma head of the embodiment. 本発明の各実施形態に適用可能なプラズマ発生部の変形構成例を示す縦断面図。The longitudinal cross-sectional view which shows the modification structural example of the plasma generation part applicable to each embodiment of this invention. 本発明の各実施形態に適用可能なプラズマ発生部のその他の各種変形構成例を示し、(a)〜(c)は斜視図、(d)、(e)は縦断面図。The other various modified structural examples of the plasma generation part applicable to each embodiment of this invention are shown, (a)-(c) is a perspective view, (d), (e) is a longitudinal cross-sectional view. 第1の従来例の大気圧プラズマ発生装置の概略構成図。The schematic block diagram of the atmospheric pressure plasma generator of the 1st prior art example. 同従来例の整合回路の構成図。The block diagram of the matching circuit of the prior art example. 同従来例の外観斜視図。The external appearance perspective view of the conventional example. 同従来例におけるプラズマ点灯時と消灯時におけるノイズレベルと反射波の出力の説明図。Explanatory drawing of the noise level and the output of a reflected wave at the time of plasma lighting and extinguishing in the conventional example. 第2の従来例の大気圧プラズマ発生装置の構成図。The block diagram of the atmospheric pressure plasma generator of the 2nd prior art example. 電極に印加される高周波電圧波形を示し、(a)は比較例の波形説明図、(b)は同従来例における波形説明図。The high frequency voltage waveform applied to an electrode is shown, (a) is waveform explanatory drawing of a comparative example, (b) is waveform explanatory drawing in the prior art example.

符号の説明Explanation of symbols

1 大気圧プラズマ発生装置
2 プラズマヘッド
3 高周波発生部
6 アンテナ
7 整合回路
11 反応管
12 ガス供給部
13 ガス
14 プラズマ
15 遮蔽カバー
16 ノイズ消去アンテナ
17 位相回路
18 増幅器
19 ノイズ消去電圧印加手段
20 制御部
21 ノイズ測定手段
DESCRIPTION OF SYMBOLS 1 Atmospheric pressure plasma generator 2 Plasma head 3 High frequency generation part 6 Antenna 7 Matching circuit 11 Reaction tube 12 Gas supply part 13 Gas 14 Plasma 15 Shielding cover 16 Noise elimination antenna 17 Phase circuit 18 Amplifier 19 Noise elimination voltage application means 20 Control part 21 Noise measurement means

Claims (10)

大気圧近傍の反応空間にガスを供給するとともに高周波電圧を印加してプラズマを発生させるプラズマ発生工程と、
プラズマ発生位置の近傍に配置されたノイズ消去アンテナに、前記高周波電圧と同じ周波数で所定の位相差と所定の振幅を有する高周波電圧を供給してノイズ消去電波を発生するノイズ消去電波発生工程とを有し、
前記所定の位相差及び所定の振幅を、プラズマ発生位置の近傍で計測したノイズが最小若しくはその近傍になるように予め設定する
ことを特徴とする大気圧プラズマ発生方法。
A plasma generation step of generating a plasma by supplying a gas to a reaction space near atmospheric pressure and applying a high-frequency voltage;
A noise canceling radio wave generating step of generating a noise canceling radio wave by supplying a high frequency voltage having a predetermined phase difference and a predetermined amplitude at the same frequency as the high frequency voltage to a noise canceling antenna disposed in the vicinity of the plasma generation position. Have
The method for generating atmospheric pressure plasma, wherein the predetermined phase difference and the predetermined amplitude are set in advance so that noise measured in the vicinity of the plasma generation position is minimized or in the vicinity thereof.
前記所定の位相差及び所定の振幅は、プラズマの点灯時と消灯時で変更することを特徴とする請求項1記載の大気圧プラズマ発生方法。   2. The atmospheric pressure plasma generation method according to claim 1, wherein the predetermined phase difference and the predetermined amplitude are changed when the plasma is turned on and off. 大気圧近傍の反応空間にガスを供給するとともに高周波電圧を印加してプラズマを発生させるプラズマ発生工程と、
プラズマ発生位置の近傍に配置されたノイズ消去アンテナに、前記高周波電圧と同じ周波数で所定の位相差と所定の振幅を有する高周波電圧を供給してノイズ消去電波を発生するノイズ消去電波発生工程とを有し、
前記所定の位相差及び所定の振幅を、プラズマ発生位置の近傍で計測したノイズが最小若しくはその近傍になるように制御する
ことを特徴とする大気圧プラズマ発生方法。
A plasma generation step of generating a plasma by supplying a gas to a reaction space near atmospheric pressure and applying a high-frequency voltage;
A noise canceling radio wave generating step of generating a noise canceling radio wave by supplying a high frequency voltage having a predetermined phase difference and a predetermined amplitude at the same frequency as the high frequency voltage to a noise canceling antenna disposed in the vicinity of the plasma generation position. Have
An atmospheric pressure plasma generation method, wherein the predetermined phase difference and the predetermined amplitude are controlled so that noise measured in the vicinity of the plasma generation position is minimized or in the vicinity thereof.
高周波電圧は、RF周波数帯、VHF周波数帯、又はマイクロ波周波数帯であることを特徴とする請求項1又は3記載の大気圧プラズマ発生方法。   4. The atmospheric pressure plasma generation method according to claim 1, wherein the high-frequency voltage is an RF frequency band, a VHF frequency band, or a microwave frequency band. 大気圧近傍の反応空間と前記反応空間の近傍に配設されたアンテナ又は電極とを有するプラズマヘッドと、
前記反応空間にガスを供給するガス供給部と、
前記アンテナ又は電極に高周波電圧を印加する高周波発生部と、
前記高周波発生部と前記アンテナ又は電極との間に配置され、前記アンテナ又は電極からの反射電力を調整する整合回路と、
プラズマヘッド内又は外部の近傍に配置されたノイズ消去アンテナと、
前記高周波電圧と同周波数でかつ所定の位相差及び所定の振幅を有する高周波電圧をノイズ消去アンテナに印加するノイズ消去電圧印加手段と、
プラズマ発生位置の近傍で計測したノイズが最小若しくはその近傍になる前記所定の位相差及び所定の振幅が予め設定され、その設定値に基づいてノイズ消去電圧印加手段から出力する高周波電圧を制御する制御部と
を備えたことを特徴とする大気圧プラズマ発生装置。
A plasma head having a reaction space near atmospheric pressure and an antenna or electrode disposed in the vicinity of the reaction space;
A gas supply unit for supplying gas to the reaction space;
A high frequency generator for applying a high frequency voltage to the antenna or electrode;
A matching circuit that is disposed between the high-frequency generator and the antenna or electrode and adjusts the reflected power from the antenna or electrode;
A noise canceling antenna disposed in the plasma head or in the vicinity of the outside;
A noise erasing voltage applying means for applying a high frequency voltage having the same frequency as the high frequency voltage and having a predetermined phase difference and a predetermined amplitude to a noise erasing antenna;
The predetermined phase difference and the predetermined amplitude at which the noise measured near the plasma generation position is minimized or in the vicinity thereof are set in advance, and control for controlling the high frequency voltage output from the noise erasing voltage applying means based on the set value And an atmospheric pressure plasma generator.
制御部は、プラズマの点灯時と消灯時で、前記所定の位相差及び所定の振幅を変更することを特徴とする請求項5記載の大気圧プラズマ発生装置。   6. The atmospheric pressure plasma generation apparatus according to claim 5, wherein the control unit changes the predetermined phase difference and the predetermined amplitude between when the plasma is turned on and when the plasma is turned off. 大気圧近傍の反応空間と前記反応空間の近傍に配設されたアンテナ又は電極とを有するプラズマヘッドと、
前記反応空間にガスを供給するガス供給部と、
前記アンテナ又は電極に高周波電圧を印加する高周波発生部と、
前記高周波発生部と前記アンテナ又は電極との間に配置され、前記アンテナ又は電極からの反射電力を調整する整合回路と、
プラズマヘッド内又は外部の近傍に配置されたノイズ消去アンテナと、
前記高周波電圧と同周波数でかつ所定の位相差及び所定の振幅を有する高周波電圧をノイズ消去アンテナに印加するノイズ消去電圧印加手段と、
プラズマ発生位置の近傍で計測したノイズが最小若しくはその近傍になる前記所定の位相差及び所定の振幅となるように、ノイズ消去電圧印加手段から出力する高周波電圧を制御する制御部と
を備えたことを特徴とする大気圧プラズマ発生装置。
A plasma head having a reaction space near atmospheric pressure and an antenna or electrode disposed in the vicinity of the reaction space;
A gas supply unit for supplying gas to the reaction space;
A high frequency generator for applying a high frequency voltage to the antenna or electrode;
A matching circuit that is disposed between the high-frequency generator and the antenna or electrode and adjusts the reflected power from the antenna or electrode;
A noise canceling antenna disposed in the plasma head or in the vicinity of the outside;
A noise erasing voltage applying means for applying a high frequency voltage having the same frequency as the high frequency voltage and having a predetermined phase difference and a predetermined amplitude to a noise erasing antenna;
A control unit that controls the high-frequency voltage output from the noise erasing voltage application means so that the noise measured near the plasma generation position is the minimum or near the predetermined phase difference and the predetermined amplitude. An atmospheric pressure plasma generator characterized by.
プラズマヘッドは、前記反応空間とアンテナ又は電極とを備えて一次プラズマを発生する一次プラズマ発生部と、前記反応空間に連通した空間に導入される、不活性ガスと反応性ガスの混合ガスからなる第2のガスに前記一次プラズマを衝突させて二次プラズマを発生する二次プラズマ発生部とを備えていることを特徴とする請求項5〜7の何れか1つに記載の大気圧プラズマ発生装置。 The plasma head includes a primary plasma generation unit that includes the reaction space and an antenna or an electrode to generate primary plasma, and a mixed gas of an inert gas and a reactive gas that is introduced into a space communicating with the reaction space. The atmospheric pressure plasma generation according to any one of claims 5 to 7, further comprising a secondary plasma generation unit that generates a secondary plasma by colliding the primary plasma with a second gas. apparatus. プラズマヘッドは、一次プラズマ又は二次プラズマを噴射する部分とガスと第2のガスを供給する部分とを除いて周囲を金属材料から成る遮蔽カバーで覆われるとともに、その内部に整合回路を内蔵していることを特徴とする請求項8に記載の大気圧プラズマ発生装置。 The plasma head is covered with a shielding cover made of a metal material except for the portion for injecting the primary plasma or the secondary plasma and the portion for supplying the gas and the second gas, and has a matching circuit incorporated therein. The atmospheric pressure plasma generator according to claim 8, wherein: ノイズ消去アンテナを、アンテナ又は電極の近傍に配置し、プラズマヘッドに内蔵したことを特徴とする請求項5〜9の何れか1つに記載の大気圧プラズマ発生装置。   The atmospheric pressure plasma generator according to any one of claims 5 to 9, wherein the noise canceling antenna is disposed in the vicinity of the antenna or the electrode and is built in the plasma head.
JP2008151505A 2008-06-10 2008-06-10 Atmospheric pressure plasma generation method and apparatus Active JP4978566B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008151505A JP4978566B2 (en) 2008-06-10 2008-06-10 Atmospheric pressure plasma generation method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008151505A JP4978566B2 (en) 2008-06-10 2008-06-10 Atmospheric pressure plasma generation method and apparatus

Publications (2)

Publication Number Publication Date
JP2009301730A JP2009301730A (en) 2009-12-24
JP4978566B2 true JP4978566B2 (en) 2012-07-18

Family

ID=41548451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008151505A Active JP4978566B2 (en) 2008-06-10 2008-06-10 Atmospheric pressure plasma generation method and apparatus

Country Status (1)

Country Link
JP (1) JP4978566B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6541623B2 (en) * 2016-06-20 2019-07-10 東京エレクトロン株式会社 Plasma processing apparatus and waveform correction method
JP6768153B2 (en) * 2017-05-16 2020-10-14 株式会社Fuji Plasma generator

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3951557B2 (en) * 2000-05-26 2007-08-01 松下電工株式会社 Plasma processing apparatus and plasma processing method
JP2002353201A (en) * 2001-05-28 2002-12-06 Matsushita Electric Ind Co Ltd Plasma monitoring equipment and method
JP3900524B2 (en) * 2002-10-07 2007-04-04 株式会社島津製作所 High frequency power supply and ICP emission spectroscopic analyzer

Also Published As

Publication number Publication date
JP2009301730A (en) 2009-12-24

Similar Documents

Publication Publication Date Title
KR102509476B1 (en) Control of impedance of rf return path
KR100849708B1 (en) Plasma generation and control using a dual frequency RF source
US7510665B2 (en) Plasma generation and control using dual frequency RF signals
JP2014236993A (en) System, method, and device for generating plasma
US10998168B2 (en) Plasma processing apparatus
JP6624833B2 (en) Microwave plasma source and plasma processing apparatus
JP2009038025A (en) Control device of plasma forming region and plasma processing device
JP6491888B2 (en) Plasma processing method and plasma processing apparatus
JP4978566B2 (en) Atmospheric pressure plasma generation method and apparatus
US7320941B2 (en) Plasma stabilization method and plasma apparatus
KR20200135114A (en) Plasma control apparatus and plasma processing system comprising the same apparatus
KR102690756B1 (en) Plasma processing apparatus and precoating method
KR20200051663A (en) Ultra-local and plasma uniformity control in the wafer manufacturing process
JP5162828B2 (en) Atmospheric pressure plasma processing method and apparatus
KR20030043670A (en) Plasma treating device
KR101137692B1 (en) Plasma generation apparatus and plasma ignition method using the same
JP5132487B2 (en) Plasma processing equipment
JPH07142453A (en) Plasma etching system
JP4946456B2 (en) Atmospheric pressure plasma generation method and apparatus
JP2009206022A (en) Atmospheric pressure plasma processing method and device
JP2010244948A (en) Plasma processing method and device
JP5026169B2 (en) Plasma processing equipment
JP5067006B2 (en) Atmospheric pressure plasma treatment method
JP6864995B2 (en) Microwave plasma generator and microwave plasma generation method
JP2011044433A (en) Plasma treatment method and device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120321

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120403

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150427

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4978566

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250