JP4978277B2 - Catalyst for producing ethylene oxide, method for producing the same, and method for producing ethylene oxide - Google Patents
Catalyst for producing ethylene oxide, method for producing the same, and method for producing ethylene oxide Download PDFInfo
- Publication number
- JP4978277B2 JP4978277B2 JP2007093058A JP2007093058A JP4978277B2 JP 4978277 B2 JP4978277 B2 JP 4978277B2 JP 2007093058 A JP2007093058 A JP 2007093058A JP 2007093058 A JP2007093058 A JP 2007093058A JP 4978277 B2 JP4978277 B2 JP 4978277B2
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- carrier
- content
- support
- ethylene oxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000003054 catalyst Substances 0.000 title claims description 110
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 title claims description 35
- 238000004519 manufacturing process Methods 0.000 title claims description 28
- 239000011734 sodium Substances 0.000 claims description 47
- 229910052702 rhenium Inorganic materials 0.000 claims description 34
- 229910052792 caesium Inorganic materials 0.000 claims description 31
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 23
- 229910052709 silver Inorganic materials 0.000 claims description 16
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims description 15
- 239000005977 Ethylene Substances 0.000 claims description 15
- 239000004332 silver Substances 0.000 claims description 15
- 229910052783 alkali metal Inorganic materials 0.000 claims description 14
- 150000001340 alkali metals Chemical class 0.000 claims description 14
- 229910052744 lithium Inorganic materials 0.000 claims description 13
- 229910052708 sodium Inorganic materials 0.000 claims description 12
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 11
- 229910052710 silicon Inorganic materials 0.000 claims description 11
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 claims description 9
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 claims description 9
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 3
- 239000003513 alkali Substances 0.000 claims description 3
- 239000010703 silicon Substances 0.000 claims description 3
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical group [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims 2
- 229910052751 metal Inorganic materials 0.000 claims 2
- 239000002184 metal Substances 0.000 claims 2
- 230000001590 oxidative effect Effects 0.000 claims 2
- 238000006243 chemical reaction Methods 0.000 description 19
- 239000002253 acid Substances 0.000 description 16
- 238000000034 method Methods 0.000 description 15
- 239000000243 solution Substances 0.000 description 12
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 10
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 9
- 230000000694 effects Effects 0.000 description 9
- 238000010438 heat treatment Methods 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 7
- 150000001875 compounds Chemical class 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- -1 and the like Chemical class 0.000 description 6
- 239000007864 aqueous solution Substances 0.000 description 6
- 238000005470 impregnation Methods 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 239000002585 base Substances 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- 150000001412 amines Chemical class 0.000 description 4
- NLSCHDZTHVNDCP-UHFFFAOYSA-N caesium nitrate Chemical compound [Cs+].[O-][N+]([O-])=O NLSCHDZTHVNDCP-UHFFFAOYSA-N 0.000 description 4
- 239000012535 impurity Substances 0.000 description 4
- 230000000704 physical effect Effects 0.000 description 4
- XNGYKPINNDWGGF-UHFFFAOYSA-L silver oxalate Chemical compound [Ag+].[Ag+].[O-]C(=O)C([O-])=O XNGYKPINNDWGGF-UHFFFAOYSA-L 0.000 description 4
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 description 4
- XFNJVJPLKCPIBV-UHFFFAOYSA-N trimethylenediamine Chemical compound NCCCN XFNJVJPLKCPIBV-UHFFFAOYSA-N 0.000 description 4
- 239000011230 binding agent Substances 0.000 description 3
- HQABUPZFAYXKJW-UHFFFAOYSA-N butan-1-amine Chemical compound CCCCN HQABUPZFAYXKJW-UHFFFAOYSA-N 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 239000003426 co-catalyst Substances 0.000 description 3
- 230000001965 increasing effect Effects 0.000 description 3
- 239000011261 inert gas Substances 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 239000011819 refractory material Substances 0.000 description 3
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 2
- JCYPECIVGRXBMO-UHFFFAOYSA-N 4-(dimethylamino)azobenzene Chemical compound C1=CC(N(C)C)=CC=C1N=NC1=CC=CC=C1 JCYPECIVGRXBMO-UHFFFAOYSA-N 0.000 description 2
- ZPLCXHWYPWVJDL-UHFFFAOYSA-N 4-[(4-hydroxyphenyl)methyl]-1,3-oxazolidin-2-one Chemical compound C1=CC(O)=CC=C1CC1NC(=O)OC1 ZPLCXHWYPWVJDL-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 2
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 150000001339 alkali metal compounds Chemical class 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- FJDQFPXHSGXQBY-UHFFFAOYSA-L caesium carbonate Chemical compound [Cs+].[Cs+].[O-]C([O-])=O FJDQFPXHSGXQBY-UHFFFAOYSA-L 0.000 description 2
- 229910000024 caesium carbonate Inorganic materials 0.000 description 2
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 229910001882 dioxygen Inorganic materials 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 150000004679 hydroxides Chemical class 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- CEQFOVLGLXCDCX-WUKNDPDISA-N methyl red Chemical compound C1=CC(N(C)C)=CC=C1\N=N\C1=CC=CC=C1C(O)=O CEQFOVLGLXCDCX-WUKNDPDISA-N 0.000 description 2
- 150000002823 nitrates Chemical class 0.000 description 2
- 229910017604 nitric acid Inorganic materials 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 229910001961 silver nitrate Inorganic materials 0.000 description 2
- NDVLTYZPCACLMA-UHFFFAOYSA-N silver oxide Chemical compound [O-2].[Ag+].[Ag+] NDVLTYZPCACLMA-UHFFFAOYSA-N 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- ZXSQEZNORDWBGZ-UHFFFAOYSA-N 1,3-dihydropyrrolo[2,3-b]pyridin-2-one Chemical compound C1=CN=C2NC(=O)CC2=C1 ZXSQEZNORDWBGZ-UHFFFAOYSA-N 0.000 description 1
- 101710134784 Agnoprotein Proteins 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical class OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 150000007942 carboxylates Chemical class 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- QCPTVXCMROGZOL-UHFFFAOYSA-L dipotassium;oxalate;hydrate Chemical compound O.[K+].[K+].[O-]C(=O)C([O-])=O QCPTVXCMROGZOL-UHFFFAOYSA-L 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 150000008282 halocarbons Chemical class 0.000 description 1
- 229910052808 lithium carbonate Inorganic materials 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000010534 mechanism of action Effects 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 150000003891 oxalate salts Chemical class 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 238000003918 potentiometric titration Methods 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 239000012495 reaction gas Substances 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- CQLFBEKRDQMJLZ-UHFFFAOYSA-M silver acetate Chemical compound [Ag+].CC([O-])=O CQLFBEKRDQMJLZ-UHFFFAOYSA-M 0.000 description 1
- 229940071536 silver acetate Drugs 0.000 description 1
- 229910001958 silver carbonate Inorganic materials 0.000 description 1
- LKZMBDSASOBTPN-UHFFFAOYSA-L silver carbonate Substances [Ag].[O-]C([O-])=O LKZMBDSASOBTPN-UHFFFAOYSA-L 0.000 description 1
- 229940100890 silver compound Drugs 0.000 description 1
- 150000003379 silver compounds Chemical class 0.000 description 1
- 229910001923 silver oxide Inorganic materials 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Epoxy Compounds (AREA)
- Catalysts (AREA)
Description
本発明は酸化エチレン製造用触媒およびその製造方法ならびに酸化エチレンの製造方法に関する。 The present invention relates to a catalyst for producing ethylene oxide, a method for producing the same, and a method for producing ethylene oxide.
エチレンから酸化エチレンを製造するために使用する触媒は、主成分が銀(Ag)であり、Agは担体に担持される。工業的には、触媒主成分であるAgに対し、アルカリ金属、レニウム(Re)等の元素が助触媒として添加され、触媒性能の向上が図られている(特許文献1)。 The catalyst used for producing ethylene oxide from ethylene is mainly composed of silver (Ag), and Ag is supported on a carrier. Industrially, elements such as alkali metals and rhenium (Re) are added as co-catalysts to Ag, which is the main component of the catalyst, to improve the catalyst performance (Patent Document 1).
アルカリ金属の作用効果に関し、担体上で存在し担体の酸点を中和する効果、または、Ag表面に存在しAgの触媒作用を修飾する効果などが報告されているが、詳細は不明である。一方、Reについては、触媒中での存在箇所、助触媒としての作用機構が不明であるが、助触媒として作用するためにはアルカリ金属との共存が必須であるとされている(特許文献2)。 Regarding the action effect of alkali metal, the effect of neutralizing the acid sites of the support existing on the support or the effect of modifying the catalytic action of Ag existing on the Ag surface has been reported, but details are unknown. . On the other hand, for Re, the location in the catalyst and the mechanism of action as a co-catalyst are unknown, but coexistence with an alkali metal is essential to act as a co-catalyst (Patent Document 2). ).
担体は、通常、α−アルミナを主成分とするものであり、α−アルミナは、原料粉、結合剤、気孔形成剤の混合物を焼成して製造される。こうして製造した担体には、通常、不純物として、ケイ素(Si)、ナトリウム(Na)等の不純物が含まれており、Siの含有率はSiO2換算で0.1〜数十重量%、Naの含有率はNa2O換算で0.01〜数重量%である。 The carrier usually has α-alumina as a main component, and α-alumina is produced by firing a mixture of raw material powder, a binder, and a pore-forming agent. The carrier thus produced usually contains impurities such as silicon (Si) and sodium (Na) as impurities, and the content of Si is 0.1 to several tens wt% in terms of SiO 2 and Na. the content is 0.01 number wt% in terms of Na 2 O.
担体中のSiやNa量は、Ag、アルカリ金属、担体から成り、Reが含まれない触媒の性能に大きな影響を及ぼすことが報告されている(特許文献3及び4)。従って、α−アルミナ原料粉、結合剤、気孔形成剤中のSiやNa量を管理し、担体中のSiやNa量を調整する必要がある。また、Re含有触媒においては、Ag含有率を20重量%以上と規定した触媒が報告されている(特許文献5及び6)。 It has been reported that the amount of Si and Na in the support is composed of Ag, an alkali metal, and the support, and has a great influence on the performance of the catalyst not containing Re (Patent Documents 3 and 4). Accordingly, it is necessary to control the amounts of Si and Na in the carrier by managing the amounts of Si and Na in the α-alumina raw material powder, the binder, and the pore forming agent. As Re-containing catalysts, catalysts having an Ag content of 20% by weight or more have been reported (Patent Documents 5 and 6).
本発明者らは、少なくとも、Ag、Cs、Re及び担体から成る改良された酸化エチレン製造用触媒の提供を目的として鋭意検討を重ねた結果、次の様な知見を得た。すなわち、高表面積担体、Ag、Cs、Reから成る触媒の場合、担体中のSiやNa成分は、通常、Reの助触媒としての性質に影響しないとされていた。しかしながら、担体中のSi成分とNa成分の比を一定の範囲にするならば、意外にも、Reの助触媒作用が高められて選択性が顕著に改良された触媒が得られる。 As a result of intensive studies aimed at providing an improved ethylene oxide production catalyst comprising at least Ag, Cs, Re and a support, the present inventors have obtained the following knowledge. That is, in the case of a catalyst comprising a high surface area support, Ag, Cs, and Re, it has been said that Si and Na components in the support usually do not affect the properties of Re as a promoter. However, if the ratio of the Si component to the Na component in the support is kept within a certain range, a catalyst having a remarkably improved selectivity can be obtained surprisingly by increasing the Re cocatalyst action.
本発明は、上記の知見に基づき完成されたものであり、連関する1群の発明から成り、各発明の要旨は次の通りである。 The present invention has been completed on the basis of the above findings, and consists of a group of related inventions. The gist of each invention is as follows.
第1発明の要旨は、エチレンから酸化エチレン製造するために使用する酸化エチレン製造用触媒であって、少なくとも、銀(Ag)、セシウム(Cs)、レニウム(Re)及び担体から成り、担体に必要に応じ前処理としてアルカリ金属を担持させ、次いで、AgとCsとReを担持させて得られ、上記の担体として、比表面積が0.6〜3.0m2/g、Si及びNaの含有量の重量比がSiO2/Na2O換算値で2〜50である担体を使用し、上記Reの含有率(担体基準)が担体の上記比表面積1m2/g当たり170〜600ppmであり、上記Cs/Reのモル比が0.3〜19であることを特徴とする酸化エチレン製造用触媒に存する。 The gist of the first invention is an ethylene oxide production catalyst used for producing ethylene oxide from ethylene, which is composed of at least silver (Ag), cesium (Cs), rhenium (Re) and a carrier, and is necessary for the carrier. As a pretreatment, it is obtained by supporting an alkali metal and then supporting Ag, Cs, and Re, and the carrier has a specific surface area of 0.6 to 3.0 m 2 / g, Si and Na contents. Using a support having a weight ratio of 2 to 50 in terms of SiO 2 / Na 2 O, and the Re content (support basis) is 170 to 600 ppm per 1 m 2 / g of the specific surface area of the support, It exists in the catalyst for ethylene oxide manufacture characterized by the molar ratio of Cs / Re being 0.3-19.
第2発明は、前記の知見に基づき更に検討を重ねてなされたものであり、その要旨は、エチレンから酸化エチレンを製造するために使用する酸化エチレン製造用触媒であって、少なくとも、銀(Ag)、セシウム(Cs)、レニウム(Re)及び担体から成り、担体に必要に応じ前処理としてアルカリ金属を担持させ、次いで、AgとCsとReを担持させて得られ、上記の担体として、比表面積が0.6〜3.0m2/gであり且つpKa5.0以下の酸点が存在する担体を使用し、上記Reの含有率(担体基準)が担体の上記比表面積1m2/g当たり170〜600ppmであり、上記Cs/Reのモル比が0.3〜19であることを特徴とする酸化エチレン製造用触媒に存する。 The second invention has been made by further study based on the above knowledge, and the gist thereof is an ethylene oxide production catalyst used for producing ethylene oxide from ethylene, which is at least silver (Ag). ), Cesium (Cs), rhenium (Re), and a carrier, and the carrier is obtained by carrying an alkali metal as a pretreatment if necessary, and then carrying Ag, Cs, and Re. A carrier having a surface area of 0.6 to 3.0 m 2 / g and having an acid point of pKa of 5.0 or less is used, and the Re content (carrier standard) is 1 m 2 / g per specific surface area of the carrier. It is 170-600 ppm, and exists in the catalyst for ethylene oxide manufacture characterized by the molar ratio of said Cs / Re being 0.3-19.
本発明の他の要旨は、少なくとも、銀(Ag)、セシウム(Cs)、レニウム(Re)及び担体から成る第1発明に係る触媒の製造方法であって、上記のAgの担持操作を2回以上に分割して行い、触媒が含有するCsとReの量の少なくとも一部はAgの最後の担持操作の際に担持することを特徴とする製造方法に存し、本発明の更に他の要旨は、第1発明に係る触媒の存在下にエチレンを酸化することを特徴とする酸化エチレンの製造方法に存する。 Another gist of the present invention is a method for producing a catalyst according to the first invention comprising at least silver (Ag), cesium (Cs), rhenium (Re) and a support, wherein the above Ag loading operation is performed twice. The present invention is divided into the above, and the production method is characterized in that at least a part of the amount of Cs and Re contained in the catalyst is supported in the last supporting operation of Ag. Lies in a method for producing ethylene oxide, characterized in that ethylene is oxidized in the presence of the catalyst according to the first invention.
本発明の更に他の要旨は、少なくとも、銀(Ag)、セシウム(Cs)、レニウム(Re)及び担体から成る第2発明に係る触媒の製造方法であって、上記のAgの担持操作を2回以上に分割して行い、触媒が含有するCsとReの量の少なくとも一部はAgの最後の担持操作の際に担持することを特徴とする製造方法に存し、本発明の更に他の要旨は、第2発明に係る触媒の存在下にエチレンを酸化することを特徴とする酸化エチレンの製造方法に存する。 Still another subject matter of the present invention is a method for producing a catalyst according to the second invention comprising at least silver (Ag), cesium (Cs), rhenium (Re), and a carrier, wherein the above-described Ag loading operation is performed in 2 steps. The production method is characterized in that at least a part of the amount of Cs and Re contained in the catalyst is supported at the time of the last support operation of Ag. The gist lies in a method for producing ethylene oxide, characterized in that ethylene is oxidized in the presence of the catalyst according to the second invention.
第1発明または第2発明によれば、少なくとも、Ag、Cs、Re及び担体から成り、特に選択性の改良された酸化エチレン製造用触媒が提供される。 According to the first invention or the second invention, there is provided a catalyst for producing ethylene oxide comprising at least Ag, Cs, Re, and a support, and having particularly improved selectivity.
以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.
<第1発明に係る触媒>
第1発明に係る酸化エチレン製造用触媒は、少なくとも、Ag、Cs、Re及び担体から成り、好ましい態様として、Liを含有する。
<Catalyst according to the first invention>
The ethylene oxide production catalyst according to the first invention is composed of at least Ag, Cs, Re, and a carrier, and contains Li as a preferred embodiment.
上記の担体としては、アルミナ、炭化珪素、チタニア、ジルコニア、マグネシア等の多孔性耐火物が挙げられるが、主成分がα−アルミナであるものが特に好適である。これらの多孔性耐火物は、原料粉、結合剤、気孔形成剤の混合物を焼成して製造され、不純物として、Si成分とNa成分を含有する。Si含有率は、SiO2換算値として、通常0.5〜7.0重量%、好ましくは1.8〜7.0重量%であり、Na含有率は、Na2O換算値として、通常0.05〜0.50重量%、好ましくは0.16〜0.45重量%である。上記のSi成分とNa成分の含有量の範囲は触媒の選択性向上の観点から決定された値である。 Examples of the carrier include porous refractories such as alumina, silicon carbide, titania, zirconia, and magnesia, and those having a main component of α-alumina are particularly suitable. These porous refractories are manufactured by firing a mixture of raw material powder, a binder, and a pore-forming agent, and contain Si and Na components as impurities. The Si content is usually 0.5 to 7.0% by weight, preferably 1.8 to 7.0% by weight in terms of SiO 2 , and the Na content is usually 0 in terms of Na 2 O. 0.05 to 0.50% by weight, preferably 0.16 to 0.45% by weight. The range of the content of the Si component and the Na component is a value determined from the viewpoint of improving the selectivity of the catalyst.
第1発明においては、高表面積で且つSi成分とNa成分の比が一定の範囲の担体、すなわち、比表面積が0.6〜3.0m2/g、Si及びNaの含有量の重量比がSiO2/Na2O換算値で2〜50である担体を使用する。斯かる条件を満足する担体を使用した場合にReの助触媒作用が高められて選択性が顕著に改良された触媒が得られる。 In the first invention, the carrier having a high surface area and a constant ratio of Si component to Na component, that is, the specific surface area is 0.6 to 3.0 m 2 / g, and the weight ratio of the contents of Si and Na is using the carrier 2 to 50 with SiO 2 / Na 2 O equivalent. When a carrier satisfying such conditions is used, a catalyst having a remarkably improved selectivity can be obtained by enhancing the Re-catalyst action.
担体の比表面積は、特に触媒の選択性維持などの触媒寿命の観点から、好ましくは0.8〜2.0m2/g、更に好ましくは1.2〜1.6m2/gであり、Si及びNaの含有量の重量比(SiO2/Na2O換算値)は、特に選択性の向上の観点から、好ましくは6〜27である。なお、上記の比表面積は、B.E.T.法により測定した値である。 The specific surface area of the support is preferably 0.8 to 2.0 m 2 / g, more preferably 1.2 to 1.6 m 2 / g, particularly from the viewpoint of catalyst life such as maintaining the selectivity of the catalyst. And the weight ratio (SiO 2 / Na 2 O converted value) of the content of Na is preferably 6 to 27, particularly from the viewpoint of improving selectivity. In addition, said specific surface area is B.I. E. T.A. It is a value measured by the method.
触媒担体用の多孔性耐火物、特に、α−アルミナは、比表面積や不純物含量の異なる各種のグレードのものが市販されている。従って、第1発明においては、市販の多孔性耐火物の中から上記の物性を満足するものを選択し、担体として使用することが出来る。また、担体中のSi成分とNa成分の含有量は、適当な濃度の酸水溶液で担体を洗浄することにより調節することが出来る。 Porous refractories for catalyst supports, particularly α-alumina, are commercially available in various grades having different specific surface areas and different impurity contents. Therefore, in the first invention, a commercially available porous refractory that satisfies the above physical properties can be selected and used as a carrier. The contents of the Si component and Na component in the carrier can be adjusted by washing the carrier with an acid aqueous solution having an appropriate concentration.
銀の含有量は、全触媒重量当たり、通常5〜40重量%であるが、触媒寿命の改良効果の観点から、好ましくは15〜30重量%である。Csの含有量は、従来公知の触媒と同様、全触媒重量当たり、通常10〜10000ppm、好ましくは50〜5000ppmである。 The silver content is usually 5 to 40% by weight based on the total catalyst weight, but is preferably 15 to 30% by weight from the viewpoint of improving the catalyst life. The content of Cs is usually 10 to 10000 ppm, preferably 50 to 5000 ppm, based on the total catalyst weight, as in the conventionally known catalysts.
Csの含有量は、後述するReの含有量に依存し、Cs/Reモル比が0.3〜19の範囲でなければならない。Cs/Reモル比は、好ましくは1.7〜4.5、更に好ましくは2.2〜4.5である。Cs/Reモル比が0.3未満の場合および19を超える場合は、何れも、触媒の選択性改良効果が不十分となる。 The Cs content depends on the Re content described later, and the Cs / Re molar ratio must be in the range of 0.3 to 19. The Cs / Re molar ratio is preferably 1.7 to 4.5, more preferably 2.2 to 4.5. In both cases where the Cs / Re molar ratio is less than 0.3 and exceeds 19, the effect of improving the selectivity of the catalyst is insufficient.
また、Reの含有量は、使用する担体の比表面積に依存し、担体の前記の比表面積(触媒の中に組み込まれる前の担体としての比表面積)1m2/g当たり170〜600ppmであり、好ましくは200〜500ppm、更に好ましくは250〜450ppmである。Reの含有量が170ppm/(m2/g)未満の場合および600ppm/(m2/g)を超える場合は触媒の選択性改良効果が不十分となる。 The content of Re depends on the specific surface area of the support used, and the specific surface area of the support (specific surface area as the support before being incorporated into the catalyst) is 170 to 600 ppm per 1 m 2 / g, Preferably it is 200-500 ppm, More preferably, it is 250-450 ppm. If the content of Re exceeds 170 ppm / a (m 2 / g) less than in the case and 600ppm / (m 2 / g) becomes insufficient selectivity improving effect of the catalyst.
第1発明においては、前記の担体には、必要に応じ前処理としてアルカリ金属を担持させることが出来る。斯かる担体の前処理は触媒性能を一層高める観点から推奨される。ここで、前処理とは、銀化合物を担持させる前に行われるアルカリ金属の担持処理をいう。前処理に使用するアルカリとしては、通常Li及び/又はCsが使用され、好ましくはLiとCsが使用される。なお、上記の「Cs/Reモル比」におけるCsは、後処理(AgとReとCsを担持させる処理)において触媒に担持されたCs含量を意味する。後処理で触媒に担持されたCsは、Reと共にAgの表面に存在していると考えられる。 In the first invention, an alkali metal can be supported on the carrier as a pretreatment if necessary. Such a pretreatment of the support is recommended from the viewpoint of further improving the catalyst performance. Here, the pretreatment refers to an alkali metal carrying treatment performed before carrying a silver compound. As the alkali used for the pretreatment, Li and / or Cs are usually used, and Li and Cs are preferably used. Cs in the above “Cs / Re molar ratio” means the Cs content supported on the catalyst in the post-treatment (treatment in which Ag, Re, and Cs are supported). Cs supported on the catalyst in the post-treatment is considered to be present on the surface of Ag together with Re.
Li及びCsの使用量は、前処理後の担体中のLi又はCs含有量として、通常100〜1000ppmである。Li含有量は、好ましくは400〜1000ppm、更に好ましくは550〜1000ppm、特に好ましくは585〜1000ppmである。Cs含有量は、好ましくは100〜500ppmである。担体中のLi及びCs含有量が100ppm未満の場合は触媒寿命の改良効果が不十分であり、1000ppmを超える場合は効果が頭打ちとなり経済的ではない。なお、ここで使用されるCsは担体に直接担持される点で上記の後処理のCsとは異なる。前述したように、後処理のCsはReと共にAgに付着していると推定されるからである。 The usage-amount of Li and Cs is 100-1000 ppm normally as Li or Cs content in the support | carrier after a pretreatment. The Li content is preferably 400 to 1000 ppm, more preferably 550 to 1000 ppm, and particularly preferably 585 to 1000 ppm. The Cs content is preferably 100 to 500 ppm. When the content of Li and Cs in the support is less than 100 ppm, the effect of improving the catalyst life is insufficient, and when it exceeds 1000 ppm, the effect reaches a peak and is not economical. Cs used here is different from Cs in the post-treatment described above in that it is directly supported on the carrier. This is because, as described above, post-processing Cs is estimated to be attached to Ag together with Re.
第1発明に係る酸化エチレン製造用触媒においては、触媒寿命の改良効果の観点から、Li/Reのモル比は、通常6〜63、好ましくは25〜63、更に好ましくは35〜63、特に好ましくは37〜63であり、Li/Agの重量比は、通常0.0007〜0.0073、好ましくは0.0029〜0.0073、更に好ましくは0.0040〜0.0073、特に好ましくは0.0043〜0.0073である。 In the ethylene oxide production catalyst according to the first invention, from the viewpoint of improving the catalyst life, the Li / Re molar ratio is usually 6 to 63, preferably 25 to 63, more preferably 35 to 63, and particularly preferably. The weight ratio of Li / Ag is usually 0.0007 to 0.0073, preferably 0.0029 to 0.0073, more preferably 0.0040 to 0.0073, and particularly preferably 0.00. 0043-0.0073.
前記の前処理におけるアルカリ金属(Li及びCs)の担持は、従来公知の方法に従って、水溶性のアルカリ金属化合物を使用して行うことが出来る。上記のアルカリ金属化合物としては、例えば、硝酸塩、水酸化物、ハロゲン化物、炭酸塩、重炭酸塩、シュウ酸塩、カルボン酸塩などが挙げられ、特に炭酸塩が好ましい。これらは、含有量に合わせて適当な濃度の水溶液として使用される。 The alkali metal (Li and Cs) can be supported in the pretreatment using a water-soluble alkali metal compound according to a conventionally known method. Examples of the alkali metal compound include nitrates, hydroxides, halides, carbonates, bicarbonates, oxalates, carboxylates, and the like, and carbonates are particularly preferable. These are used as an aqueous solution having an appropriate concentration according to the content.
前記の後処理においては、Agアミン錯体溶液に水溶性のRe化合物と水溶性のCs化合物と必要に応じて水溶性のLi化合物とを溶解して調製して得た触媒含浸液を使用するのが簡便である。 In the post-treatment, a catalyst impregnating solution obtained by dissolving a water-soluble Re compound, a water-soluble Cs compound and, if necessary, a water-soluble Li compound in an Ag amine complex solution is used. Is simple.
Agアミン錯体溶液に使用するAg化合物としては、酸化銀、硝酸銀、炭酸銀、酢酸銀、シュウ酸銀などが挙げられ、アミンとしては、アンモニア、ピリジン、ブチルアミン等のモノアミン、エタノールアミン等のアルカノールアミン、エチレンジアミン、1,3−ジアミノプロパン等の多価アミンが挙げられる。水溶性のRe化合物としては、ハロゲン化レニウム、オキシハロゲン化レニウム、レニウム酸塩、過レニウム酸塩などが挙げられる。水溶性のCs化合物としては、前処理におけると同様の化合物が挙げられるが、硝酸塩または水酸化物が好ましい。触媒含浸液中の上記の各成分の濃度は、各成分毎の含有量に合わせて適宜決定される。 Examples of the Ag compound used in the Ag amine complex solution include silver oxide, silver nitrate, silver carbonate, silver acetate, and silver oxalate. Examples of the amine include monoamines such as ammonia, pyridine, and butylamine, and alkanolamines such as ethanolamine. And polyvalent amines such as ethylenediamine and 1,3-diaminopropane. Examples of water-soluble Re compounds include rhenium halides, rhenium oxyhalides, rhenates, and perrhenates. Examples of the water-soluble Cs compound include the same compounds as in the pretreatment, but nitrates or hydroxides are preferable. The concentration of each component in the catalyst impregnating liquid is appropriately determined according to the content of each component.
前処理工程における含浸方法としては、溶液中に担体を浸漬する方法、または、担体に溶液を噴霧する方法が挙げられる。乾燥処理としては、含浸処理後、担体と余剰の溶液を分離した後、減圧乾燥または加熱処理による乾燥などが挙げられる。加熱処理としては、空気、窒素などの不活性ガス、過熱水蒸気を利用する方法が挙げられ、加熱温度は通常100〜300℃、好ましくは130〜270℃である。 Examples of the impregnation method in the pretreatment step include a method of immersing the carrier in the solution, or a method of spraying the solution onto the carrier. As the drying treatment, after the impregnation treatment, the support and the excess solution are separated, followed by drying under reduced pressure or heat treatment. Examples of the heat treatment include a method using an inert gas such as air or nitrogen, or superheated steam, and the heating temperature is usually 100 to 300 ° C, preferably 130 to 270 ° C.
後処理工程における含浸方法としては、上記と同様の方法が挙げられる。含浸後の加熱処理は、Agが担体上に析出するのに必要な温度と時間を測定して実施する。担体上にAgができるだけ均一に且つ微細な粒子で存在する様に析出する条件を選ぶことが好ましい。加熱処理は、加熱した空気(又は窒素などの不活性ガス)又は過熱水蒸気を使用して行われる。加熱温度は通常130℃〜300℃、加熱時間は通常5〜30分である。 Examples of the impregnation method in the post-treatment step include the same methods as described above. The heat treatment after impregnation is carried out by measuring the temperature and time required for Ag to precipitate on the support. It is preferable to select conditions under which Ag is deposited on the support so as to be as uniform and fine as possible. The heat treatment is performed using heated air (or an inert gas such as nitrogen) or superheated steam. The heating temperature is usually from 130 ° C to 300 ° C, and the heating time is usually from 5 to 30 minutes.
特に、Ag担持率が高い触媒、例えばAg担持率 15〜30重量%(触媒基準)の触媒は、本発明に係る触媒の製造方法、すなわち、Agの担持操作を2回以上に分割して行い、触媒が含有するCsとReの量の少なくとも一部はAgの最後の担持操作の際に担持することを特徴とする製造方法によって容易に得ることが出来る。触媒性能の観点からは、CsとReの量の半分以上をAgの最後の担持操作の際に担持するのが好ましい。Agの最後の担持操作の際に担持するCsとReの量は、より好ましくはCsとReの量の3/4以上、最適はCsとReの量の全量である。また、CsとRe以外の成分についても上記と同様である。本発明に係る触媒の製造方法によれば、Cs、Re等は、Agの最後の担持操作の際にAgと共に担持されることになるが、Agの最後の担持操作の後に当該操作とは別個にCs、Re等を担持させる方法では触媒の性能が低下する。 In particular, a catalyst having a high Ag loading rate, for example, a catalyst having an Ag loading rate of 15 to 30% by weight (catalyst standard) is obtained by dividing the method for producing a catalyst according to the present invention, that is, the Ag loading operation into two or more times. In addition, at least a part of the amount of Cs and Re contained in the catalyst can be easily obtained by a production method characterized in that the catalyst is supported during the final supporting operation of Ag. From the viewpoint of catalyst performance, it is preferable that more than half of the amount of Cs and Re is supported in the last support operation of Ag. The amount of Cs and Re carried during the last loading operation of Ag is more preferably 3/4 or more of the amount of Cs and Re, and most preferably the total amount of Cs and Re. The same applies to the components other than Cs and Re. According to the method for producing a catalyst according to the present invention, Cs, Re and the like are supported together with Ag at the time of the last support operation of Ag. In the method of supporting Cs, Re and the like on the catalyst, the performance of the catalyst is lowered.
第1発明に係る酸化エチレン製造用触媒を使用した酸化エチレンの製造方法は、公知の条件に従って行うことが出来る。反応圧力は、通常0〜3.5MPaGであり、反応温度は、通常180〜350℃、好ましくは200〜300℃である。反応原料ガスの組成としては、一般に、エチレンが1〜40容量%、分子状酸素が1〜20容量%の混合ガスが使用され、また、一般に、希釈剤、例えば、メタンや窒素などの不活性ガスを一定割合(例えば1〜70容量%)で存在させることが出来る。分子状酸素含有ガスとしては、通常、空気または工業用酸素が使用される。更に反応原料ガスに、反応調整剤として、例えばハロゲン化炭化水素を0.1〜50ppm程度加えることにより、触媒中のホットスポットの形成を防止でき、且つ、触媒の性能、特に選択性を大幅に改善させることが出来る。 The method for producing ethylene oxide using the catalyst for producing ethylene oxide according to the first invention can be carried out according to known conditions. The reaction pressure is usually 0 to 3.5 MPaG, and the reaction temperature is usually 180 to 350 ° C., preferably 200 to 300 ° C. As the composition of the reaction raw material gas, a mixed gas containing 1 to 40% by volume of ethylene and 1 to 20% by volume of molecular oxygen is generally used, and a diluent such as an inert gas such as methane or nitrogen is generally used. The gas can be present at a constant rate (for example, 1 to 70% by volume). As the molecular oxygen-containing gas, air or industrial oxygen is usually used. Furthermore, for example, by adding about 0.1 to 50 ppm of halogenated hydrocarbon as a reaction modifier to the reaction raw material gas, formation of hot spots in the catalyst can be prevented, and the performance of the catalyst, particularly the selectivity, can be greatly increased. It can be improved.
<第2発明に係る触媒>
第2発明に係る酸化エチレン製造用触媒は、エチレンから酸化エチレンを製造するために使用する酸化エチレン製造用触媒であって、少なくとも、銀(Ag)、セシウム(Cs)、レニウム(Re)及び担体から成り、担体に必要に応じ前処理としてアルカリ金属を担持させ、次いで、AgとCsとReを担持させて得られ、上記の担体として、比表面積が0.6〜3.0m2/gであり且つpKa5.0以下の酸点が存在する担体を使用し、上記Reの含有率(担体基準)が担体の上記比表面積1m2/g当たり170〜600ppmであり、上記Cs/Reのモル比が0.3〜19であることを特徴とする。すなわち、第2発明は、第1発明で担体について規定するSiO2/Na2O比の代わりに酸点を規定し、この点で第1発明と異なる。そして、上記の酸点の規定により、SiO2/Na2O比の規定の場合と同様にReの助触媒作用が高められる。
<Catalyst according to the second invention>
The ethylene oxide production catalyst according to the second invention is an ethylene oxide production catalyst used for producing ethylene oxide from ethylene, and includes at least silver (Ag), cesium (Cs), rhenium (Re) and a carrier. It is obtained by supporting an alkali metal as a pretreatment on a support as necessary, and then supporting Ag, Cs, and Re. The support has a specific surface area of 0.6 to 3.0 m 2 / g. And a carrier having an acid point of pKa of 5.0 or less is used, the Re content (support basis) is 170 to 600 ppm per 1 m 2 / g of the specific surface area of the carrier, and the molar ratio of Cs / Re Is 0.3-19. That is, the second invention differs from the first invention in that the acid point is defined instead of the SiO 2 / Na 2 O ratio defined for the carrier in the first invention. Then, the regulation of the acid point enhances the Re cocatalytic action as in the case of the regulation of the SiO 2 / Na 2 O ratio.
第2発明で規定する適当な酸点とはpKaが5.0以下の強さであり、メチルレッドを指示薬とした呈色反応を示す。また、pKaが3.2以下の強さの酸点は、弱い呈色反応程度の量であれば触媒の選択性に影響しないが、強い呈色反応を起こす程に多くなると触媒の選択性を低下させるため好ましくない。pKa3.2以下の酸点とは、メチルイエローで呈色反応を示すものである。また、pKaが7.3以上の塩基点は好ましくなく、これはブロモチモールブルーで呈色反応を示すものである。 The appropriate acid point defined in the second invention has a strength of pKa of 5.0 or less, and shows a color reaction using methyl red as an indicator. In addition, the acid point with a pKa of 3.2 or less does not affect the selectivity of the catalyst if it is in an amount of a weak color reaction, but if the amount increases so as to cause a strong color reaction, the selectivity of the catalyst is reduced. Since it lowers, it is not preferable. An acid point of pKa 3.2 or lower indicates a color reaction with methyl yellow. Further, a base point having a pKa of 7.3 or more is not preferable, and this shows a color reaction with bromothymol blue.
担体表面の酸・塩基性は、指示薬法による呈色反応により容易に判定することが出来る(昭和41年4月26日、産業図書株式会社発行、田部浩三および竹下常一著「酸塩基触媒」161頁、昭和61年5月1日、講談社発行、触媒学会編「触媒講座別巻触媒実験ハンドブック」170頁、昭和59年6月25日丸善株式会社発行、日本化学会編「化学便覧 基礎編」第3版、II−342頁)。 The acid / basicity of the surface of the carrier can be easily determined by a color reaction by an indicator method (April 26, 1966, published by Sangyo Tosho Co., Ltd., Kozo Tabe and Tsuneichi Takeshita “Acid-base catalyst”) 161, May 1, 1986, published by Kodansha, edited by the Catalysis Society of Japan, "Catalyst Course Separate Volume Catalyst Experiment Handbook", page 170, published by Maruzen Co., Ltd., June 25, 1984, The Chemical Society of Japan, "Chemical Handbook Basics" 3rd edition, page II-342).
また、酸点の量は、上記の指示薬により呈色した試料をn−ブチルアミン等の塩基で滴定することにより求めることが出来る。指示薬による呈色反応および塩基による滴定の終点の判定は、通常、目視により十分可能である。 The amount of acid sites can be determined by titrating a sample colored with the above indicator with a base such as n-butylamine. The determination of the end point of the color reaction with the indicator and the titration with the base is usually sufficient visually.
以下、本発明を実施例により更に詳細に説明するが、本発明は、その要旨を超えない限り、以下の実施例に限定されるものではない。なお、以下の諸例で使用した物性の測定方法は次の通りである。 EXAMPLES Hereinafter, although an Example demonstrates this invention still in detail, this invention is not limited to a following example, unless the summary is exceeded. In addition, the measuring method of the physical property used in the following examples is as follows.
(1)比表面積:
B.E.T.法により測定した。窒素の吸着は77Kで行い、比表面積はBET1点法で算出した。
(1) Specific surface area:
B. E. T.A. Measured by the method. Nitrogen adsorption was performed at 77K, and the specific surface area was calculated by the BET one-point method.
(2)担体中のSi及びNa含有率:
試料を粉砕した後に加圧成形し、蛍光X線分析法で測定した。
(2) Si and Na contents in the carrier:
The sample was pulverized and then pressure-molded and measured by fluorescent X-ray analysis.
(3)前処理担体および触媒中のCs、Re及びLiの含有率:
硝酸で上記の成分を抽出し、Cs及びLiは原子吸光法で測定し、ReはICP発光法で測定した。
(3) Cs, Re and Li contents in the pretreatment support and catalyst:
The above components were extracted with nitric acid, Cs and Li were measured by atomic absorption method, and Re was measured by ICP emission method.
(4)触媒中のAg含有率:
硝酸でAgを抽出し、電位差滴定法で測定した。
(4) Ag content in the catalyst:
Ag was extracted with nitric acid and measured by potentiometric titration.
(5)担体の酸、塩基性度:
担体の酸、塩基性度の測定は以下のようにして実施した。すなわち、担体を120℃で3時間乾燥し、冷却後、乾燥したトルエン中に投入した。それに、トルエンに溶解した指示薬(0.001wt%)を数滴加え、よく振った後に静置した。そして、各指示薬ごとに呈色反応の有無を調査する。
(5) Carrier acid and basicity:
The acid and basicity of the carrier were measured as follows. That is, the carrier was dried at 120 ° C. for 3 hours, cooled, and then poured into dried toluene. A few drops of an indicator (0.001 wt%) dissolved in toluene was added thereto, and the mixture was shaken well and allowed to stand. And the presence or absence of a color reaction is investigated for every indicator.
実施例1:
(1)担体の酸、塩基性度の測定:
α−アルミナ担体(表面積1.0m2/g、吸水率35.7重量%、SiO23.0重量%、Na2O0.35重量%、SiO2/Na2O重量比9、形状8mmφ×8mmのリング状)について、酸、塩基性度の測定を行った。
Example 1:
(1) Measurement of acid and basicity of carrier:
α- alumina carrier (surface area 1.0 m 2 / g, water absorption rate 35.7 wt%, SiO 2 3.0 wt%, Na 2 O0.35 wt%, SiO 2 / Na 2 O weight ratio of 9, the shape 8 mm × The acidity and basicity were measured for a ring shape of 8 mm.
pKaが3.2以下のメチルイエローでは赤色の呈色反応を示さなかったが、pKaが5.0以下のメチルレッドでは赤色の呈色反応を示した。また、pKaが7.3以上のブロモチモールブルーでは青色の呈色反応を示さなかった。以上より、上記の担体には、3.2<pKa≦5.0の酸点が存在するが、pKa≧7.3の塩基点は存在しないことが分かった。 Methyl yellow with a pKa of 3.2 or less did not show a red color reaction, but a methyl red with a pKa of 5.0 or less showed a red color reaction. Further, bromothymol blue having a pKa of 7.3 or more did not show a blue color reaction. From the above, it was found that the above carrier has an acid point of 3.2 <pKa ≦ 5.0, but no base point of pKa ≧ 7.3.
(2)担体の前処理:
上記のα−アルミナ担体100gを炭酸セシウム(Cs2CO3)0.156gと炭酸リチウム(Li2CO3)1.69gとが溶解した水溶液200mLに浸漬させ、余分な液を切り、次いで、これを150℃の過熱水蒸気にて15分間、2m/秒の流速で加熱し、LiとCs成分を含浸させた担体を調製した。担体におけるLi含有率は500ppm、Cs含有率は230ppmであった。表1に使用した担体の物性を示す。
(2) Pretreatment of carrier:
100 g of the α-alumina carrier is immersed in 200 mL of an aqueous solution in which 0.156 g of cesium carbonate (Cs 2 CO 3 ) and 1.69 g of lithium carbonate (Li 2 CO 3 ) are dissolved, and then the excess liquid is cut. Was heated with superheated steam at 150 ° C. for 15 minutes at a flow rate of 2 m / sec to prepare a support impregnated with Li and Cs components. The Li content in the support was 500 ppm, and the Cs content was 230 ppm. Table 1 shows the physical properties of the carriers used.
(3)銀アミン錯体溶液の調製:
硝酸銀(AgNO3)322gとシュウ酸カリウム一水和物(K2C2O4・H2O)192gを各々1.4L、1.6Lの水に溶解した後、湯浴中で60℃に加温しながら徐々に混合し、シュウ酸銀(AgC2O4)の白色沈殿を得た。ろ過により沈殿物を回収し、蒸留水により洗浄し、含水シュウ酸銀(含水率23.3重量%)を得た。こうして得た含水シュウ酸銀375gを、エチレンジアミン103g、1,3−ジアミノプロパン28.1g、及び水133gより成る水溶液に徐々に添加して溶解させ、銀アミン錯体溶液を調製した。
(3) Preparation of silver amine complex solution:
322 g of silver nitrate (AgNO 3 ) and 192 g of potassium oxalate monohydrate (K 2 C 2 O 4 .H 2 O) were dissolved in 1.4 L and 1.6 L of water, respectively, and then heated to 60 ° C. in a hot water bath. The mixture was gradually mixed while warming to obtain a white precipitate of silver oxalate (AgC 2 O 4 ). The precipitate was collected by filtration and washed with distilled water to obtain hydrous silver oxalate (water content: 23.3% by weight). 375 g of hydrous silver oxalate thus obtained was gradually added and dissolved in an aqueous solution consisting of 103 g of ethylenediamine, 28.1 g of 1,3-diaminopropane, and 133 g of water to prepare a silver amine complex solution.
(4)Ag触媒の調製:
上記で得た銀アミン錯体溶液12.7gに、硝酸セシウム(CsNO3)濃度5.54重量%の水溶液0.6mL、過レニウム酸アンモニウム(NH4ReO4)濃度3.05重量%の水溶液0.6mL、水2.1mLを添加し、含浸溶液を得た。こうして得た含浸溶液を、LiとCsが含浸されたα−アルミナ担体30gに、エバポレーター中で減圧下、40℃に加温し含浸した。この含浸担体を200℃の過熱水蒸気にて15分間、2m/秒の流速で加熱し、触媒を得た。当該触媒におけるAg、Cs、Re、Liの含有率(担体基準)は、夫々、13.6重量%(触媒基準で12.0重量%)、980ppm、420ppm、500ppmであった。
(4) Preparation of Ag catalyst:
To 12.7 g of the silver amine complex solution obtained above, 0.6 mL of an aqueous solution having a cesium nitrate (CsNO 3 ) concentration of 5.54 wt% and an aqueous solution having an ammonium perrhenate (NH 4 ReO 4 ) concentration of 3.05 wt% 6 mL and 2.1 mL of water were added to obtain an impregnation solution. The impregnation solution thus obtained was impregnated with 30 g of α-alumina support impregnated with Li and Cs by heating to 40 ° C. under reduced pressure in an evaporator. The impregnated support was heated with superheated steam at 200 ° C. for 15 minutes at a flow rate of 2 m / second to obtain a catalyst. The contents of Ag, Cs, Re, and Li (support basis) in the catalyst were 13.6% by weight (12.0% by weight on the catalyst basis), 980 ppm, 420 ppm, and 500 ppm, respectively.
(5)エチレンの酸化反応:
上記で調製したAg触媒を6〜10メッシュに砕き、その3mLを内径7.5mmのSUS製反応管に充填し、反応ガス(エチレン30%、酸素8.5%、塩化ビニル1.5ppm、二酸化炭素6.0%、残り窒素)をGHSV4300hr−1、圧力0.7MPaGで流し、反応を行った。反応温度は、触媒単位体積、単位時間当たりの酸化エチレンの生産量(STY)が0.25kg−EO/h・L−catとなる様に調節した。酸化エチレンへの選択性は、評価時間が長くなるに従って向上し、その後、低下した。表3及び表4に触媒成分および触媒性能を示す。なお、酸化エチレンへの選択性はエチレン基準で表した。また、表3及び表4中の「Cs*/Re」におけるCs*は後処理において触媒に担持されたCsの含有量を意味する。また、触媒性能の「劣化速度」は累積酸化エチレン(EO)1000kg−EO/L−cat当たりの選択性低下を表し、単位は「%/EO1000」である。
(5) Ethylene oxidation reaction:
The Ag catalyst prepared above is crushed into 6-10 mesh, 3 mL of the catalyst is filled into a SUS reaction tube having an inner diameter of 7.5 mm, and reaction gas (ethylene 30%, oxygen 8.5%, vinyl chloride 1.5 ppm, carbon dioxide). Carbon 6.0%, remaining nitrogen) was flowed at GHSV 4300 hr-1 and pressure 0.7 MPaG to carry out the reaction. The reaction temperature was adjusted so that the production volume (STY) of ethylene oxide per unit volume of catalyst and unit time was 0.25 kg-EO / h · L-cat. The selectivity to ethylene oxide improved as the evaluation time increased and then decreased. Tables 3 and 4 show the catalyst components and catalyst performance. The selectivity to ethylene oxide was expressed on an ethylene basis. In Tables 3 and 4, Cs * in “Cs * / Re” means the content of Cs supported on the catalyst in the post-treatment. Further, the “degradation rate” of the catalyst performance represents a decrease in selectivity per cumulative ethylene oxide (EO) 1000 kg-EO / L-cat, and the unit is “% / EO1000”.
実施例2〜12及び比較例1〜11:
表1及び表2に示す物性の担体を使用し、表3及び表4に示した様な前処理時のLi及びCs含有率となる様に、炭酸リチウム及び炭酸セシウムの量を変更した以外は、実施例1と同様の前処理を行った。次いで、実施例1におけると同一組成の「銀アミン錯体溶液」を調製し、実施例1における「Ag触媒の調製」の際、硝酸セシウムと過レニウム酸アンモニウムの濃度を変更し、CsとReの含有率が表3及び表4に示す触媒を得た。なお、Agの含有率(担体基準)は何れの触媒も13.6重量%である。次いで、各触媒を使用し実施例1と同様にエチレンの酸化反応を行った。表3及び表4に触媒成分と触媒性能を示す。
Examples 2-12 and Comparative Examples 1-11:
Except for changing the amount of lithium carbonate and cesium carbonate so as to obtain Li and Cs contents during pretreatment as shown in Tables 3 and 4 using the physical properties of the carriers shown in Tables 1 and 2. The same pretreatment as in Example 1 was performed. Next, a “silver amine complex solution” having the same composition as in Example 1 was prepared, and during the “preparation of Ag catalyst” in Example 1, the concentrations of cesium nitrate and ammonium perrhenate were changed, and Cs and Re Catalysts with content rates shown in Tables 3 and 4 were obtained. Note that the content of Ag (based on the carrier) is 13.6% by weight for all the catalysts. Subsequently, the oxidation reaction of ethylene was performed in the same manner as in Example 1 using each catalyst. Tables 3 and 4 show the catalyst components and catalyst performance.
上記の表1〜表4から次のことが理解される。 The following is understood from Tables 1 to 4 above.
(1)Ag、Cs、Re及び担体から成る触媒においては、使用する担体のSiO2/Na2O重量比が2〜50(又はpKa5.0以下の酸点が存在)、Re含有率(担体基準)が担体比表面積1m2/g当たり170〜600ppm、Cs*/Reモル比が0.3〜19を満たす実施例1〜12では、最高選択性が84.7〜86.5%である。 (1) In a catalyst composed of Ag, Cs, Re and a carrier, the carrier used has a SiO 2 / Na 2 O weight ratio of 2 to 50 (or an acid site having a pKa of 5.0 or less), Re content (carrier In Examples 1 to 12 where the standard) satisfies 170 to 600 ppm per 1 m 2 / g of the specific surface area of the support and the Cs * / Re molar ratio is 0.3 to 19, the maximum selectivity is 84.7 to 86.5%. .
(2)特に、使用する担体のSiO2/Na2O重量比が6〜27、Cs*/Reモル比が2.2〜4.5である実施例1〜8の場合に、最高選択性が85.7〜86.5%と高く、上記の範囲がより好ましいことが理解される。 (2) Especially in the case of Examples 1 to 8 where the SiO 2 / Na 2 O weight ratio of the carrier used is 6 to 27 and the Cs * / Re molar ratio is 2.2 to 4.5, the highest selectivity Is as high as 85.7 to 86.5%, and it is understood that the above range is more preferable.
(3)担体のSiO2/Na2O重量比が2〜50の範囲外である比較例1〜3では、実施例1〜12の場合に比較し、最高選択性は80.8〜83.4%と低く、触媒の選択性を高くするためには、担体のSiO2/Na2O重量比が上記の範囲内であることが必要であることが理解される。なお、担体のSiO2/Na2O重量比2〜50の範囲内外における選択性差は、最高値で比較すると3.1%と非常に大きかった。 (3) In Comparative Examples 1 to 3, in which the SiO 2 / Na 2 O weight ratio of the support is outside the range of 2 to 50, the maximum selectivity is 80.8 to 83. 8 as compared with Examples 1 to 12. It is understood that the SiO 2 / Na 2 O weight ratio of the support needs to be within the above range in order to increase the selectivity of the catalyst as low as 4%. The selectivity difference between the inside and outside the range of the SiO 2 / Na 2 O weight ratio of 2 to 50 of the support was as large as 3.1% when compared at the maximum value.
(4)Re含有率(担体基準)が担体比表面積1m2/g当たり170〜600ppmの範囲外である比較例4では、実施例1〜12の場合に比較し、最高選択性は81.9%と低かった。このことより、触媒の選択性を高くするためには、Re含有率が上記の範囲内であることが必要であることが理解される。 (4) In Comparative Example 4 in which the Re content (based on the support) is outside the range of 170 to 600 ppm per 1 m 2 / g of the specific surface area of the support, the maximum selectivity is 81.9 compared to the cases of Examples 1 to 12. % Was low. From this, it is understood that the Re content must be in the above range in order to increase the selectivity of the catalyst.
(5)比較例5〜11は、Reを含有しない触媒に対しては、担体のSiO2/Na2O重量比が触媒の選択性に殆ど効果のないことを示している。すなわち、担体のSiO2/Na2O重量比が2〜50の範囲内、すなわち11である比較例5及び6では、Cs含有率を最適化した結果、最高選択性は81.9%であった。それに対し、担体のSiO2/Na2O重量比が0.6である比較例7及び8の最高選択性はCs含有率を最適化した結果、80.8%であり、担体のSiO2/Na2O重量比が68である比較例9〜11ではCs含有率を最適化した結果81.6%であり、担体のSiO2/Na2O重量比が2〜50の範囲外の触媒の選択性は80.8〜81.6%であった。すなわち、担体のSiO2/Na2O重量比が2〜50の範囲内外における選択性差は、最高値で比較すると0.3%であり、Reを含有した触媒に対して10分の1以下と非常に小さく、その効果は殆どないことが理解される。 (5) Comparative Examples 5 to 11 show that for catalysts not containing Re, the SiO 2 / Na 2 O weight ratio of the carrier has little effect on the selectivity of the catalyst. That is, in Comparative Examples 5 and 6 in which the SiO 2 / Na 2 O weight ratio of the support was in the range of 2 to 50, ie 11, the maximum selectivity was 81.9% as a result of optimizing the Cs content. It was. In contrast, the highest selectivity of Comparative Examples 7 and 8 SiO 2 / Na 2 O weight ratio of the carrier is 0.6 As a result of optimizing the Cs content is 80.8% of the carrier SiO 2 / In Comparative Examples 9 to 11 in which the Na 2 O weight ratio is 68, the result of optimization of the Cs content was 81.6%, and the catalyst had a SiO 2 / Na 2 O weight ratio of the support outside the range of 2 to 50. The selectivity was 80.8-81.6%. That is, the selectivity difference within the range of the SiO 2 / Na 2 O weight ratio of the support within the range of 2 to 50 is 0.3% as compared with the maximum value, which is 1/10 or less of the catalyst containing Re. It is understood that it is very small and has little effect.
Claims (13)
させて得られ、上記の担体として、比表面積が0.6〜3.0m2/g、担体中のNa含有率がNa2O換算値で0.05〜0.50重量%、ケイ素(Si)及びナトリウム(Na)の含有量の重量比がSiO2/Na2O換算値で2〜50である担体を使用し、上記Reの含有率(担体基準)が担体の上記比表面積1m2/g当たり170〜600ppmであり、上記Cs/Reのモル比が0.3〜19であることを特徴とする酸化エチレン製造用触媒。 A catalyst for producing ethylene oxide used to produce ethylene oxide from ethylene, which comprises at least silver (Ag), cesium (Cs), rhenium (Re) and a carrier, and an alkali as a pretreatment if necessary. It is obtained by supporting a metal and then supporting Ag, Cs, and Re. As the above-mentioned support, the specific surface area is 0.6 to 3.0 m 2 / g, and the Na content in the support is a Na 2 O equivalent value. 0.05 to 0.50 wt%, using a support having a silicon (Si) and sodium (Na) content weight ratio of 2 to 50 in terms of SiO 2 / Na 2 O, and containing the above Re A catalyst for ethylene oxide production, characterized in that the rate (based on support) is 170 to 600 ppm per 1 m 2 / g of the specific surface area of the support, and the molar ratio of Cs / Re is 0.3 to 19.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007093058A JP4978277B2 (en) | 2006-04-10 | 2007-03-30 | Catalyst for producing ethylene oxide, method for producing the same, and method for producing ethylene oxide |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006107329 | 2006-04-10 | ||
JP2006107329 | 2006-04-10 | ||
JP2007093058A JP4978277B2 (en) | 2006-04-10 | 2007-03-30 | Catalyst for producing ethylene oxide, method for producing the same, and method for producing ethylene oxide |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011152600A Division JP5644705B2 (en) | 2006-04-10 | 2011-07-11 | Catalyst for producing ethylene oxide, method for producing the same, and method for producing ethylene oxide |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007301553A JP2007301553A (en) | 2007-11-22 |
JP4978277B2 true JP4978277B2 (en) | 2012-07-18 |
Family
ID=38835951
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007093058A Active JP4978277B2 (en) | 2006-04-10 | 2007-03-30 | Catalyst for producing ethylene oxide, method for producing the same, and method for producing ethylene oxide |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4978277B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010234264A (en) * | 2009-03-31 | 2010-10-21 | Nippon Shokubai Co Ltd | Catalyst for producing ethylene oxide and method for producing ethylene oxide |
US20110152073A1 (en) * | 2009-12-23 | 2011-06-23 | Scientific Design Company, Inc. | Epoxidation process and microstructure |
JP5984593B2 (en) * | 2011-09-30 | 2016-09-06 | 株式会社日本触媒 | Catalyst for producing ethylene oxide and method for producing ethylene oxide using the same |
JP2015501212A (en) * | 2011-10-28 | 2015-01-15 | ビーエーエスエフ ソシエタス・ヨーロピアBasf Se | Method for producing a supported silver catalyst |
JP2013202592A (en) * | 2012-03-29 | 2013-10-07 | Mitsubishi Chemicals Corp | Catalyst for ethylene oxide production and method for production of ethylene oxide |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2597098B1 (en) * | 1986-04-11 | 1989-01-13 | Atochem | SILVER-BASED CATALYSTS FOR THE MANUFACTURE OF ETHYLENE OXIDE |
JPH084745B2 (en) * | 1986-05-09 | 1996-01-24 | 三菱化学株式会社 | Silver catalyst for ethylene oxide production |
JP2561678B2 (en) * | 1987-11-06 | 1996-12-11 | 三菱化学株式会社 | Silver catalyst for ethylene oxide production |
DE69520409T3 (en) * | 1994-12-15 | 2010-02-18 | Shell Internationale Research Maatschappij B.V. | Process for the preparation of ethylene oxide catalysts |
JP4206404B2 (en) * | 1995-09-25 | 2009-01-14 | 三菱化学株式会社 | Catalyst for ethylene oxide production |
CA2343783C (en) * | 1998-09-14 | 2008-02-12 | Shell Internationale Research Maatschappij B.V. | Process for removing ionizable species from catalyst surface to improve catalytic properties |
TW200600190A (en) * | 2004-04-01 | 2006-01-01 | Shell Int Research | Process for preparing a silver catalyst, the catalyst, and use thereof in olefin oxidation |
-
2007
- 2007-03-30 JP JP2007093058A patent/JP4978277B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2007301553A (en) | 2007-11-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0874688B1 (en) | Process for preparing epoxidation catalysts | |
US9067198B2 (en) | Calcination process for producing an improved ethylene oxide catalyst | |
KR101528879B1 (en) | Process for production of an olefin oxide | |
JP4824569B2 (en) | Catalyst with enhanced stability, efficiency and / or activity for the production of alkylene oxides | |
US9006127B2 (en) | Support for silver catalyst in ethylene oxide production, methods for preparing the same, silver catalyst prepared therefrom, and use thereof | |
KR101698945B1 (en) | An alumina support, a preparation method for the same, and a silver catalyst prepared from the same, and use thereof | |
KR101502919B1 (en) | Carrier for olefin oxide catalyst | |
US20140179516A1 (en) | Catalyst for producing ethylene oxide, process for producing the catalyst and process for producing ethylene oxide | |
JP4978277B2 (en) | Catalyst for producing ethylene oxide, method for producing the same, and method for producing ethylene oxide | |
US11400437B2 (en) | Catalyst for the oxidation of ethylene to ethylene oxide | |
US9714227B2 (en) | Catalyst for the epoxidation of alkenes | |
EP0315911A1 (en) | Silver-deposited catalyst for production of ethylene oxide | |
RU2538969C2 (en) | Method of initiating highly selective catalyst for obtaining ethylene oxide | |
JP2006521927A (en) | Silver catalyst composition, process for preparing catalyst composition and use of catalyst composition for epoxidation of ethylene | |
CN102145306A (en) | Method for adjusting properties of alumina carrier by selecting hydrated alumina with different grain size, carrier obtained by method and application | |
JP5644705B2 (en) | Catalyst for producing ethylene oxide, method for producing the same, and method for producing ethylene oxide | |
JP4206404B2 (en) | Catalyst for ethylene oxide production | |
JP2007301554A (en) | Catalyst for manufacturing ethylene oxide and its manufacturing method and manufacturing method for ethylene oxide | |
JP5211924B2 (en) | Catalyst for producing ethylene oxide and method for producing ethylene oxide | |
CN107442109B (en) | Silver catalyst carrier, preparation method and application thereof | |
JP3767279B2 (en) | Catalyst for producing ethylene oxide and method for producing ethylene oxide |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20091105 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110519 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110531 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110711 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20111115 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120321 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120403 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150427 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4978277 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |