JP3767279B2 - Catalyst for producing ethylene oxide and method for producing ethylene oxide - Google Patents

Catalyst for producing ethylene oxide and method for producing ethylene oxide Download PDF

Info

Publication number
JP3767279B2
JP3767279B2 JP28389699A JP28389699A JP3767279B2 JP 3767279 B2 JP3767279 B2 JP 3767279B2 JP 28389699 A JP28389699 A JP 28389699A JP 28389699 A JP28389699 A JP 28389699A JP 3767279 B2 JP3767279 B2 JP 3767279B2
Authority
JP
Japan
Prior art keywords
alkali metal
catalyst
silver
supported
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28389699A
Other languages
Japanese (ja)
Other versions
JP2001104787A (en
Inventor
具敦 岩倉
聡一郎 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP28389699A priority Critical patent/JP3767279B2/en
Publication of JP2001104787A publication Critical patent/JP2001104787A/en
Application granted granted Critical
Publication of JP3767279B2 publication Critical patent/JP3767279B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【0001】
【発明の属する技術分野】
本発明は、エチレンを分子状酸素により気相接触酸化してエチレンオキシドを製造するための改良された銀触媒及びエチレンオキシドの製造方法に関する。
エチレンオキシドは活性水素化合物に付加重合させて非イオン系界面活性剤の製造に向けられる他、水を付加させてエチレングリコールとなし、ポリエステルやポリウレタン系高分子の原料、エンジン用不凍液等に使用される。
【0002】
【従来の技術】
エチレンを分子状酸素により気相接触酸化して工業的にエチレンオキシドを製造する際に使用される触媒は銀触媒である。エチレンオキシドを効率よく生産するために、触媒の改良の要請が強く、より高選択性、長寿命の触媒の出現が望まれている。このため、従来から種々の方法が提案されているが、主活性成分である銀と反応促進剤であるアルカリ金属等との組合せ、その配合比の最適化、これらを担持する担体の改良等がその主なものである。
【0003】
例えば、特開昭50−90591号には、促進量の銅、金、亜鉛、カドミウム、水銀、ニオブ、タンタル、モリブデン、タングステン、バナジウムまたは好ましくはクロム、カルシウム、マグネシウム、ストロンチウムおよび/またはさらに好ましくはバリウム、ならびに好ましくはさらに、アルカリ金属を含有する触媒が開示されている。USP4,908,343号及び5,057,481号には、反応促進剤としてセシウムをカチオンとし3族から7族の元素のオキシアニオンをアニオンとする種々の塩を担持させた触媒が、また、USP5,102,848号には、リチウム、ナトリウム、カリウム、ルビジウム、セシウムなどをカチオンとし硫酸イオン、フッ化物イオン、3族から6族から選ばれた原子番号が21から74である元素のオキシアニオンの3成分をアニオンとする種々の塩を担持させた触媒が開示されている。また、特開平7−820号には、助触媒の一つとしてニオブを含有する触媒により活性および選択性が向上すると述べられている。更に、USP5,736,483号には、レニウムを含まず促進量のアルカリ金属、ニオブもしくはタンタル、硫黄、任意にフッ素を含む触媒により選択性及び寿命が改良されると述べられている。
他方、アルカリ金属を担体に前含浸させた触媒も提案されている(特昭平55−127144号、特開平4−346835号及び特開平8−244477号等参照)。
【0004】
【発明が解決しようとする課題】
以上のように、エチレンオキシド製造用触媒については、反応促進剤などに5族元素を使用すること、また、アルカリ金属を使用する場合でも、いろいろな提案がなされている。しかしながら、未だ十分に満足すべきレベルに達しているとは言えず、触媒性能改善のための努力が、継続して行われている状況にある。
本発明の目的は、従来の触媒に比較してより高い選択率を持つエチレンオキシド製造用触媒を提供することにある。
【0005】
【課題を解決するための手段】
本発明は、多孔性担体に前処理としてアルカリ金属の少なくとも1種と原子番号が41以上である5族元素の少なくとも1種とを担持させ、次いで、銀とアルカリ金属の少なくとも1種とを担持させてなるエチレンを酸化してエチレンオキシドを製造するための触媒、及び該触媒の存在下でのエチレンオキシドの製造方法に関する。
【0006】
【発明の実施の形態】
以下、本発明の触媒について詳細に説明する。
(多孔性担体)
本発明の触媒は多孔性担体に触媒主成分として銀を担持させた触媒である。多孔性担体としては、アルミナ、炭化珪素、チタニア、ジルコニア及びマグネシア等の多孔性耐火物が挙げられるが、主成分がα−アルミナであるものが特に好適である。また、多孔性担体には通常10%程度を上限としてシリカ成分を含有させたものであってもよい。
本発明においては多孔性担体の諸物性がその触媒活性に大きな影響を与える場合があり、多孔性担体の表面積は、通常0.1〜10m2 /g、好ましくは0.6〜5m2 /g、更に好ましくは0.8〜2m2 /gであるものが望ましい。また、かかる表面積を保持して触媒成分の含浸操作を容易にするという点で、担体の吸水率が好ましくは20〜50%、更に好ましくは25〜45%であるものが望ましい。
【0007】
(触媒の調製)
本発明の触媒は、多孔性担体にアルカリ金属と原子番号が41以上である5族元素とを担持させ、次いで、銀とアルカリ金属とを担持させて調製されるものである。この2段の担持処理の内、初めの多孔性担体にアルカリ金属と原子番号が41以上である5族元素とを担持する工程を「前処理工程」といい、また、前処理後に銀とアルカリ金属とを担持する工程を「本処理工程」と定義して説明する。
【0008】
(前処理工程)
前処理工程で多孔性担体に担持する金属は、アルカリ金属と原子番号が41以上である5族元素である。
アルカリ金属としては、例えばリチウム、ナトリウム、カリウム、ルビジウム、セシウム等のいずれでもよいが、セシウムが好ましい。これらは1種又は2種以上で使用される。原子番号が41以上である5族元素としては、例えばニオブ、タンタル等のいずれでもよいが、タンタルが好ましい。これらは1種又は2種以上で使用される。
【0009】
アルカリ金属の担持量は、全触媒重量当たり好ましくは、50〜2000ppm、より好ましくは100〜1000ppmである。原子番号が41以上である5族元素の担持量は、好ましくは10〜2000ppm、より好ましくは10〜1000ppmである。
前処理工程で使用されるアルカリ金属化合物の種類は特に限定はなく、例えば硝酸塩、水酸化物、ハロゲン化物、炭酸塩、重炭酸塩、シュウ酸塩、カルボン酸塩等が挙げられる。また、原子番号が41以上である5族元素化合物の種類も特に限定はなく、例えばオキシ塩化物、ハロゲン化物、シュウ酸塩、ハロゲン化5族酸アンモニウム塩等が挙げられる。
前処理工程において、アルカリ金属と原子番号が41以上である5族元素とを担持させる方法は、従来公知の方法が採用できるが、例えば、多孔性担体にアルカリ金属を含有する溶液と原子番号が41以上である5族元素を含有する溶液とを含浸後、乾燥処理することにより担持することができる。
【0010】
含浸させる方法としてはアルカリ金属化合物を含有する溶液中、および原子番号が41以上である5族元素化合物を含有する溶液中に多孔性担体を浸漬する方法、または多孔性担体にアルカリ金属化合物を含有する溶液および原子番号が41以上である5族元素化合物を含有する溶液を噴霧する方法が挙げられる。なお、該処理は、アルカリ金属化合物を含有する溶液での処理と原子番号が41以上である5族元素化合物を含有する溶液での処理とを別々に行ってもよいし、アルカリ金属化合物を含有する溶液と原子番号が41以上である5族元素化合物を含有する溶液との両方を含有する溶液で行ってもよい。
【0011】
前処理工程で、担体にアルカリ金属化合物と原子番号が41以上である5族元素化合物とを担持するために使用する溶液の溶媒としては、使用するアルカリ金属化合物及び原子番号が41以上である5族元素化合物に対して溶解性があれば、特に限定なく使用でき、水、低沸点の有機溶媒、および水と低沸点の有機溶媒の混合物等が使用できる。
乾燥処理としては、含浸処理後、多孔性担体と余剰のアルカリ金属化合物と原子番号が41以上である5族元素化合物の含有溶液を分離後、減圧乾燥または加熱処理による乾燥等が挙げられる。該加熱処理としては、好ましくは100〜300℃、更に好ましくは130〜270℃での空気、窒素等の不活性ガス、過熱水蒸気を利用する方法が好ましい。特に好ましいのは過熱水蒸気を利用する方法である。
【0012】
(本処理工程)
本発明の本処理工程とは、前記の前処理工程でアルカリ金属と原子番号が41以上である5族元素とを担持させた多孔性担体に、銀とアルカリ金属とを担持させる処理である。
本処理工程に用いるアルカリ金属も前処理と同様、例えばリチウム、ナトリウム、カリウム、ルビジウム、セシウム等のいずれでもよい。これらは1種又は2種以上で担持されうる。
銀の担持量は、全触媒重量当たり好ましくは、5〜30重量%、より好ましくは8〜20重量%である。担持された銀は担体上で通常、金属銀の形態で存在する。また、アルカリ金属の担持量は、全触媒重量当たり好ましくは10〜10000ppm、より好ましくは50〜5000ppmである。
アルカリ金属がセシウムである場合には、特に200〜2000ppmが好ましい。本発明の触媒に含まれるアルカリ金属の総量は、前処理工程で担持された量と本処理工程で担持された量との和となる。
【0013】
本処理工程で、銀を担体に担持させるために有利に使用される銀化合物としては、酸化銀、硝酸銀、炭酸銀、あるいは、酢酸銀、シュウ酸銀などの各種カルボン酸銀を挙げられ、例えば、アミン化合物と溶媒中で可溶な錯体を形成し、そして500℃以下、好ましくは300℃以下、より好ましくは260℃以下の温度で分解して銀を析出するものである。この内、シュウ酸銀が特に好ましい。錯体形成剤としてのアミン化合物は、上記銀化合物を溶媒中で可溶化し得るものが用いられる。かかるアミン化合物としては、例えばピリジン、アンモニア、1〜6個の炭素を有するアミン類などが挙げられる。中でもアンモニア、ピリジン、ブチルアミンなどのモノアミン、エタノールアミンなどのアルカノールアミン、エチレンジアミン、1,3−プロパンジアミンの如きポリアミンが好ましい。特にエチレンジアミン及び/又は1,3−プロパンジアミンの使用、特にその混合使用が最適である。
【0014】
また、本処理工程で使用されるアルカリ金属化合物の種類は特に限定はなく、例えば硝酸塩、水酸化物、ハロゲン化物、炭酸塩、重炭酸塩、シュウ酸塩、カルボン酸塩等が挙げられる。
本処理工程で、銀化合物及びアルカリ金属化合物を担持させる方法は、従来公知の方法が採用でき、例えば、前処理を施した多孔性担体に銀化合物及びアルカリ金属化合物を含有する溶液を含浸させ、次いで加熱処理することにより、担持することができる。
銀化合物の含浸方法としては、銀化合物をアミン化合物との水溶液の形として用いることが最も現実的であるが、アルコールなどを加えた水溶液としても用い得る。最終的には触媒成分として5〜30重量%の銀が担持されるように含浸液中の銀濃度は決定される。また、含浸の後、要すれば減圧、加熱、スプレー吹き付けなどを併せて行うこともできる。アミン化合物は銀化合物を錯化するに必要な量(通常アミノ基2個が銀1原子に対応する)で加えられる。この場合アミン化合物は、上記必要量より5〜30%過剰に加えるのが、反応性の面から好ましい。
【0015】
また、アルカリ金属化合物は銀化合物水溶液中に溶解し、銀と同時に担体上に担持すればよい。含浸後の加熱処理は、銀が担体上に析出するのに必要な温度と時間を測定して実施する。担体上に銀ができるだけ均一に、微細な粒子で存在するように析出する条件を選ぶことが最も好ましい。一般的に加熱処理は、高温、長時間となるほど、析出した銀粒子の凝集を促進するので好ましくない。好ましい加熱処理は、130℃〜300℃で、加熱した空気(又は窒素などの不活性ガス)又は、過熱水蒸気を使用して、5分から30分の短時間行われる。好ましい上記熱処理は、触媒調製工程の時間短縮という観点からも望ましく、他に過熱水蒸気を使用すると、担体上の銀の分布が均一になり触媒性能も向上するので特に好ましい。
【0016】
(反応方法)
本発明の触媒を用いてエチレンをエチレンオキシドに転換する反応は、慣用操作で実施できる。反応圧力は通常0.1〜3.6MPa(0〜35kg/cm2 G)であり、反応温度は通常180〜350℃、好ましくは200〜300℃である。反応原料ガスの組成は、一般に、エチレンが1〜40容量%、分子状酸素が1〜20容量%の混合ガスが用いられ、また、一般に希釈剤、例えばメタンや窒素等の不活性ガスを一定割合、例えば1〜70容量%で存在させることができる。分子状酸素含有ガスとしては、通常、空気あるいは工業用酸素が用いられる。更に、反応改変剤として、例えばハロゲン化炭化水素を0.1〜50ppm程度、反応原料ガスに加えることにより触媒中のホットスポットの形成を防止でき、且つ触媒の性能、殊に触媒選択性を大幅に改善させることができる。
【0017】
【実施例】
以下に実施例を挙げて本発明を具体的に説明するが、本発明はこれらの実施例により限定されるものではない。
実施例1
(1)前処理工程
担体としてα−アルミナ担体(表面積1.04m2 /g、吸水率32.3%、平均細孔径1.4μm、シリカ3%、8φ×3φ×8mmのリング状)30gを炭酸セシウム(Cs2 CO3 )0.043gが溶解した水溶液50mlに浸漬させ、余分な液を切り、次いでこれを150℃の過熱水蒸気にて15分間、2m/秒の流速で加熱し、セシウムを含浸させた担体を調製した。次いで、フッ化タンタル酸アンモニウム((NH4 2 TaF7 )0.003gが溶解した水溶液9.7mlをセシウムが含浸されたα−アルミナ担体30gにエバポレーター中で減圧下、40℃の加温中で含浸した。この含浸担体を200℃の過熱水蒸気にて15分間、2m/秒の流速で加熱し、セシウムとタンタルを含浸させた担体を調製した。
【0018】
(2)シュウ酸銀の調製
硝酸銀(AgNO3 )228gとシュウ酸カリウム(K2 2 4 ・H2 O)135gを各々1リットルの水に溶解した後、水溶液中で60℃に加温しながら徐々に混合し、シュウ酸銀の白色沈殿を得た。濾過後蒸留水により沈殿を洗浄して、沈殿物中のカリウムを除いた。
【0019】
(3)銀アミン錯体溶液の調製
(2)で得られたシュウ酸銀(Ag2 2 4 、含水率17.09%)の一部(6.95g)をエチレンジアミン2.05g、プロパンジアミン0.56g、及び水2.65gよりなるアミン混合水溶液に徐々に溶解して、銀アミン錯体溶液を調製した。この銀アミン錯体溶液に、水0.72mlを添加し、更に、攪拌しながら塩化セシウム(CsCl)1.14重量%と硝酸セシウム(CsNO3 )1.98重量%を含有する混合水溶液0.6mlを添加した。
【0020】
(4)本処理工程
セシウムを含有するこの銀アミン錯体溶液を(1)で調製したセシウムとタンタルが含浸されたα−アルミナ担体30gにエバポレーター中で減圧下、40℃の加温中で含浸した。この含浸担体を200℃の過熱水蒸気にて15分間、2m/秒の流速で加熱し、触媒を得た。該触媒における銀(Ag)、セシウム(Cs)およびタンタル(Ta)の担持量は12%、595ppm、50ppmであった。
【0021】
(5)エチレンオキシドの製造
上記方法で調製した触媒を、6〜10メッシュに砕き、その3mlを内径7.5mmのSUS製反応管に充填し、反応ガス(エチレン30%、酸素8.5%、塩化ビニル1.5ppm、二酸化炭素6.0%、残り窒素)を、GHSV4300h-1、圧力0.8MPa(7kg/cm2 G)で流し、反応を行った。酸素転化率が40%となるときのエチレン基準の酸化エチレンの選択率S40(%)を表1に示す。
【0022】
実施例2
実施例1において、前処理工程のタンタルの担持量が400ppmとなるように溶液の濃度を代え、また本処理工程で担持させるセシウムの量が632ppmとなるように溶液の濃度を代えた他は実施例1と同様の方法で触媒を調製し反応を行った。反応結果を表1に示す。
【0023】
実施例3
実施例1において、前処理工程のフッ化タンタル酸アンモニウムをフッ化ニオブ酸アンモニウム(NH4 NbF6 )に代え、ニオブ(Nb)の担持量が50ppmとなるように溶液の濃度を代えた他は実施例1と同様の方法で触媒を調製し反応を行った。反応結果を表1に示す。
実施例4
実施例3において、前処理工程のニオブの担持量が200ppmとなるように溶液の濃度を代え、また本処理工程で担持させるセシウムの量が632ppmとなるように溶液の濃度を代えた他は実施例3と同様の方法で触媒を調製し反応を行った。反応結果を表1に示す。
【0024】
比較例1
実施例1において、前処理工程で担体にタンタルを担持しない他は実施例1と同様の方法で触媒を調製し反応を行った。反応結果を表1に示す。
比較例2
実施例1において、前処理工程で担体にセシウムとタンタルを担持せず、本処理工程で担持させるセシウムの量が832ppmとなるように溶液の濃度を代え、また本処理工程でフッ化タンタル酸アンモニウムの4.4重量%水溶液0.6mlをタンタルの担持量が400ppmとなるようにセシウムを含有する銀アミン錯体溶液に更に添加した溶液を担体に含浸させた他は実施例1と同様の方法で触媒を調製し反応を行った。反応結果を表1に示す。
【0025】
比較例3
比較例2において、本処理工程でフッ化タンタル酸アンモニウムをフッ化ニオブ酸アンモニウムに代え、フッ化ニオブ酸アンモニウムの5.5重量%水溶液0.3mlをニオブの担持量が200ppmとなるようにセシウムを含有する銀アミン錯体溶液に更に添加した溶液を担体に含浸させた他は比較例2と同様の方法で触媒を調製し反応を行った。反応結果を表1に示す。
比較例4
実施例3において、前処理工程で担体にセシウムを担持せず、本処理工程で担持させるセシウムの量が595ppmとなるように溶液の濃度を代えた他は実施例3と同様の方法で触媒を調製し反応を行った。反応結果を表1に示す。
【0026】
【表1】

Figure 0003767279
【0027】
【発明の効果】
本発明によれば、多孔性担体にアルカリ金属の少なくとも1種と原子番号が41以上である5族元素の少なくとも1種とを担持させ、次いで、銀とアルカリ金属の少なくとも1種とを担持させてなる触媒を用いることにより、従来の触媒と比較して高い選択率でエチレンオキシドを製造することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an improved silver catalyst for producing ethylene oxide by vapor phase catalytic oxidation of ethylene with molecular oxygen and a method for producing ethylene oxide.
Ethylene oxide is added to active hydrogen compounds for production of nonionic surfactants, and water is added to form ethylene glycol, which is used for polyester and polyurethane polymer raw materials, engine antifreeze, etc. .
[0002]
[Prior art]
A catalyst used when industrially producing ethylene oxide by vapor-phase catalytic oxidation of ethylene with molecular oxygen is a silver catalyst. In order to efficiently produce ethylene oxide, there is a strong demand for improvement of the catalyst, and the appearance of a catalyst with higher selectivity and longer life is desired. For this reason, various methods have been proposed in the past, but the combination of silver as the main active ingredient and alkali metal as the reaction accelerator, optimization of the blending ratio, improvement of the carrier supporting these, etc. The main thing.
[0003]
For example, JP-A-50-90591 discloses accelerated amounts of copper, gold, zinc, cadmium, mercury, niobium, tantalum, molybdenum, tungsten, vanadium or preferably chromium, calcium, magnesium, strontium and / or more preferably. Catalysts containing barium, and preferably further alkali metals, are disclosed. In USP 4,908,343 and 5,057,481, catalysts carrying various salts having cesium as a cation and an oxyanion of a group 3 to 7 element as an anion as a reaction accelerator, USP 5,102,848 discloses an oxyanion of an element having an atomic number of 21 to 74 selected from sulfate ion, fluoride ion, group 3 to group 6 using lithium, sodium, potassium, rubidium, cesium, etc. as a cation. Catalysts supporting various salts having the three components as anions are disclosed. JP-A-7-820 states that the activity and selectivity are improved by a catalyst containing niobium as one of the promoters. In addition, US Pat. No. 5,736,483 states that selectivity and lifetime are improved by a catalyst that does not contain rhenium and contains an accelerated amount of alkali metal, niobium or tantalum, sulfur, and optionally fluorine.
On the other hand, catalysts in which a support is pre-impregnated with an alkali metal have also been proposed (see Japanese Patent Publication Nos. 55-127144, 4-346835, and 8-244477, etc.).
[0004]
[Problems to be solved by the invention]
As described above, various proposals have been made for ethylene oxide production catalysts even when using group 5 elements as reaction accelerators or using alkali metals. However, it cannot be said that a satisfactory level has been reached yet, and efforts to improve catalyst performance are ongoing.
An object of the present invention is to provide a catalyst for producing ethylene oxide having a higher selectivity than conventional catalysts.
[0005]
[Means for Solving the Problems]
In the present invention, at least one alkali metal and at least one group 5 element having an atomic number of 41 or more are supported as a pretreatment on a porous carrier, and then silver and at least one alkali metal are supported. The present invention relates to a catalyst for producing ethylene oxide by oxidizing ethylene, and a method for producing ethylene oxide in the presence of the catalyst.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the catalyst of the present invention will be described in detail.
(Porous carrier)
The catalyst of the present invention is a catalyst in which silver is supported as a catalyst main component on a porous carrier. Examples of the porous carrier include porous refractories such as alumina, silicon carbide, titania, zirconia, and magnesia, and those having a main component of α-alumina are particularly suitable. In addition, the porous carrier may contain a silica component with an upper limit of usually about 10%.
In the present invention, various physical properties of the porous carrier may greatly affect the catalytic activity, and the surface area of the porous carrier is usually 0.1 to 10 m 2 / g, preferably 0.6 to 5 m 2 / g. More preferably, it is 0.8 to 2 m 2 / g. Further, in view of facilitating the impregnation operation of the catalyst component while maintaining the surface area, the carrier preferably has a water absorption rate of 20 to 50%, more preferably 25 to 45%.
[0007]
(Preparation of catalyst)
The catalyst of the present invention is prepared by supporting an alkali metal and a group 5 element having an atomic number of 41 or more on a porous carrier, and then supporting silver and an alkali metal. Of these two stages of supporting treatment, the step of supporting an alkali metal and a Group 5 element having an atomic number of 41 or more on the first porous carrier is called a “pretreatment step”. The process for supporting the metal will be defined and defined as “main treatment process”.
[0008]
(Pretreatment process)
The metal supported on the porous carrier in the pretreatment step is an alkali metal and a Group 5 element having an atomic number of 41 or more.
As the alkali metal, for example, any of lithium, sodium, potassium, rubidium, cesium and the like may be used, but cesium is preferable. These are used alone or in combination of two or more. The group 5 element having an atomic number of 41 or more may be any of niobium, tantalum, etc., but tantalum is preferred. These are used alone or in combination of two or more.
[0009]
The supported amount of alkali metal is preferably 50 to 2000 ppm, more preferably 100 to 1000 ppm, based on the total catalyst weight. The loading amount of the group 5 element having an atomic number of 41 or more is preferably 10 to 2000 ppm, more preferably 10 to 1000 ppm.
The kind of alkali metal compound used in the pretreatment step is not particularly limited, and examples thereof include nitrates, hydroxides, halides, carbonates, bicarbonates, oxalates, and carboxylates. Further, the type of the Group 5 element compound having an atomic number of 41 or more is not particularly limited, and examples thereof include oxychlorides, halides, oxalates, and halogenated Group 5 acid ammonium salts.
In the pretreatment step, as a method of supporting an alkali metal and a group 5 element having an atomic number of 41 or more, a conventionally known method can be adopted. For example, a solution containing an alkali metal in a porous carrier and an atomic number are After impregnation with a solution containing a group 5 element that is 41 or more, it can be supported by drying treatment.
[0010]
As the impregnation method, a porous carrier is immersed in a solution containing an alkali metal compound and a group 5 element compound having an atomic number of 41 or more, or an alkali metal compound is contained in the porous carrier. And a method of spraying a solution containing a group 5 element compound having an atomic number of 41 or more. In addition, this process may perform separately the process with the solution containing an alkali metal compound, and the process with the solution containing the group 5 element compound whose atomic number is 41 or more, or contains an alkali metal compound. And a solution containing both a solution containing a group 5 element compound having an atomic number of 41 or more.
[0011]
As the solvent of the solution used for supporting the alkali metal compound and the group 5 element compound having an atomic number of 41 or more on the support in the pretreatment step, the alkali metal compound to be used and the atomic number of 41 or more are used. If it has solubility with respect to a group element compound, it can be used without particular limitation, and water, a low boiling point organic solvent, a mixture of water and a low boiling point organic solvent, and the like can be used.
Examples of the drying treatment include, after the impregnation treatment, separation of a porous carrier, an excess alkali metal compound, and a solution containing a group 5 element compound having an atomic number of 41 or more, followed by drying under reduced pressure or heat treatment. The heat treatment is preferably a method using air, an inert gas such as nitrogen, or superheated steam at 100 to 300 ° C, more preferably 130 to 270 ° C. Particularly preferred is a method using superheated steam.
[0012]
(Main treatment process)
The main treatment step of the present invention is a treatment in which silver and an alkali metal are supported on a porous carrier in which an alkali metal and a group 5 element having an atomic number of 41 or more are supported in the pretreatment step.
The alkali metal used in this treatment step may be any of lithium, sodium, potassium, rubidium, cesium, etc., as in the pretreatment. These can be supported by one or more kinds.
The supported amount of silver is preferably 5 to 30% by weight, more preferably 8 to 20% by weight, based on the total catalyst weight. The supported silver is usually present in the form of metallic silver on the support. The supported amount of alkali metal is preferably 10 to 10,000 ppm, more preferably 50 to 5000 ppm, based on the total catalyst weight.
When the alkali metal is cesium, 200 to 2000 ppm is particularly preferable. The total amount of alkali metal contained in the catalyst of the present invention is the sum of the amount carried in the pretreatment step and the amount carried in the treatment step.
[0013]
Examples of the silver compound that is advantageously used for supporting silver on a carrier in this treatment step include silver oxide, silver nitrate, silver carbonate, or various silver carboxylates such as silver acetate and silver oxalate. , A complex soluble in the solvent with the amine compound is formed, and silver is precipitated by decomposition at a temperature of 500 ° C. or lower, preferably 300 ° C. or lower, more preferably 260 ° C. or lower. Of these, silver oxalate is particularly preferred. As the amine compound as the complex forming agent, those capable of solubilizing the silver compound in a solvent are used. Examples of such amine compounds include pyridine, ammonia, and amines having 1 to 6 carbons. Of these, monoamines such as ammonia, pyridine and butylamine, alkanolamines such as ethanolamine, and polyamines such as ethylenediamine and 1,3-propanediamine are preferred. In particular, the use of ethylenediamine and / or 1,3-propanediamine, especially the mixed use thereof, is optimal.
[0014]
Moreover, the kind of alkali metal compound used in this treatment step is not particularly limited, and examples thereof include nitrates, hydroxides, halides, carbonates, bicarbonates, oxalates, and carboxylates.
In this treatment step, the silver compound and the alkali metal compound can be supported by a conventionally known method, for example, a pre-treated porous carrier is impregnated with a solution containing the silver compound and the alkali metal compound, Subsequently, it can carry | support by heat-processing.
As the impregnation method of the silver compound, it is most realistic to use the silver compound in the form of an aqueous solution with an amine compound, but it can also be used as an aqueous solution to which alcohol or the like is added. Finally, the silver concentration in the impregnating solution is determined so that 5 to 30% by weight of silver is supported as a catalyst component. Further, after impregnation, if necessary, decompression, heating, spraying, etc. can be performed together. The amine compound is added in an amount necessary to complex the silver compound (usually two amino groups correspond to one silver atom). In this case, the amine compound is preferably added in an amount of 5 to 30% in excess of the above required amount from the viewpoint of reactivity.
[0015]
The alkali metal compound may be dissolved in the aqueous silver compound solution and supported on the carrier simultaneously with silver. The heat treatment after impregnation is carried out by measuring the temperature and time required for silver to deposit on the support. Most preferably, conditions are selected so that silver is present on the support as uniformly as possible and in fine particles. In general, the heat treatment is not preferable as the temperature and the time are increased, since the aggregation of the precipitated silver particles is promoted. Preferable heat treatment is performed at 130 ° C. to 300 ° C. for a short time of 5 to 30 minutes using heated air (or an inert gas such as nitrogen) or superheated steam. The preferable heat treatment is also desirable from the viewpoint of shortening the time of the catalyst preparation step, and the use of superheated steam is particularly preferable because the distribution of silver on the support becomes uniform and the catalyst performance is improved.
[0016]
(Reaction method)
The reaction for converting ethylene to ethylene oxide using the catalyst of the present invention can be carried out by a conventional operation. The reaction pressure is usually 0.1 to 3.6 MPa (0 to 35 kg / cm 2 G), and the reaction temperature is usually 180 to 350 ° C., preferably 200 to 300 ° C. The composition of the reaction raw material gas is generally a mixed gas of 1 to 40% by volume of ethylene and 1 to 20% by volume of molecular oxygen. In general, a diluent, for example, an inert gas such as methane or nitrogen is constant. It can be present in proportions, for example 1 to 70% by volume. As the molecular oxygen-containing gas, air or industrial oxygen is usually used. Furthermore, as a reaction modifier, for example, by adding about 0.1 to 50 ppm of halogenated hydrocarbon to the reaction raw material gas, the formation of hot spots in the catalyst can be prevented, and the performance of the catalyst, especially the catalyst selectivity is greatly increased. Can be improved.
[0017]
【Example】
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.
Example 1
(1) 30 g of α-alumina carrier (surface area 1.04 m 2 / g, water absorption 32.3%, average pore diameter 1.4 μm, silica 3%, 8φ × 3φ × 8 mm ring shape) as a pretreatment process carrier Immerse it in 50 ml of an aqueous solution in which 0.043 g of cesium carbonate (Cs 2 CO 3 ) is dissolved, drain the excess liquid, and then heat it with superheated steam at 150 ° C. for 15 minutes at a flow rate of 2 m / sec. An impregnated support was prepared. Next, 9.7 ml of an aqueous solution in which 0.003 g of ammonium fluorinated tantalate ((NH 4 ) 2 TaF 7 ) was dissolved was added to 30 g of α-alumina carrier impregnated with cesium in an evaporator while heating at 40 ° C. under reduced pressure. Impregnated with. This impregnated support was heated with superheated steam at 200 ° C. for 15 minutes at a flow rate of 2 m / second to prepare a support impregnated with cesium and tantalum.
[0018]
(2) Preparation of silver oxalate 228 g of silver nitrate (AgNO 3 ) and 135 g of potassium oxalate (K 2 C 2 O 4 .H 2 O) were each dissolved in 1 liter of water and heated to 60 ° C. in an aqueous solution. The mixture was gradually mixed to obtain a white precipitate of silver oxalate. After filtration, the precipitate was washed with distilled water to remove potassium in the precipitate.
[0019]
(3) Preparation of silver amine complex solution A part (6.95 g) of silver oxalate (Ag 2 C 2 O 4 , water content 17.09%) obtained in (2) was obtained by using 2.05 g of ethylenediamine and propanediamine. A silver amine complex solution was prepared by gradually dissolving in an amine mixed aqueous solution consisting of 0.56 g and 2.65 g of water. 0.72 ml of water was added to this silver amine complex solution, and further 0.6 ml of a mixed aqueous solution containing 1.14% by weight of cesium chloride (CsCl) and 1.98% by weight of cesium nitrate (CsNO 3 ) with stirring. Was added.
[0020]
(4) This treatment step This silver amine complex solution containing cesium was impregnated into 30 g of α-alumina carrier impregnated with cesium and tantalum prepared in (1) under reduced pressure in an evaporator at 40 ° C. under heating. . The impregnated support was heated with superheated steam at 200 ° C. for 15 minutes at a flow rate of 2 m / second to obtain a catalyst. The supported amounts of silver (Ag), cesium (Cs) and tantalum (Ta) in the catalyst were 12%, 595 ppm, and 50 ppm.
[0021]
(5) Production of ethylene oxide The catalyst prepared by the above method is crushed into 6 to 10 mesh, 3 ml of the catalyst is filled into a SUS reaction tube having an inner diameter of 7.5 mm, and reaction gas (ethylene 30%, oxygen 8.5%, A reaction was performed by flowing 1.5 ppm of vinyl chloride, 6.0% carbon dioxide, and the remaining nitrogen) at GHSV 4300 h −1 and a pressure of 0.8 MPa (7 kg / cm 2 G). Table 1 shows ethylene oxide selectivity S40 (%) based on ethylene when the oxygen conversion rate is 40%.
[0022]
Example 2
In Example 1, the concentration of the solution was changed so that the amount of tantalum supported in the pretreatment step was 400 ppm, and the concentration of the solution was changed so that the amount of cesium supported in this treatment step was 632 ppm. A catalyst was prepared and reacted in the same manner as in Example 1. The reaction results are shown in Table 1.
[0023]
Example 3
In Example 1, ammonium fluoride tantalate in the pretreatment step was replaced with ammonium fluoride niobate (NH 4 NbF 6 ), and the concentration of the solution was changed so that the supported amount of niobium (Nb) was 50 ppm. A catalyst was prepared and reacted in the same manner as in Example 1. The reaction results are shown in Table 1.
Example 4
In Example 3, the concentration of the solution was changed so that the amount of niobium supported in the pretreatment step was 200 ppm, and the concentration of the solution was changed so that the amount of cesium supported in this treatment step was 632 ppm. A catalyst was prepared and reacted in the same manner as in Example 3. The reaction results are shown in Table 1.
[0024]
Comparative Example 1
In Example 1, a catalyst was prepared and reacted in the same manner as in Example 1 except that tantalum was not supported on the support in the pretreatment step. The reaction results are shown in Table 1.
Comparative Example 2
In Example 1, the concentration of the solution was changed so that the amount of cesium supported in this treatment step was 832 ppm without supporting cesium and tantalum in the pretreatment step, and ammonium fluoride tantalate in this treatment step. In the same manner as in Example 1, except that the support was impregnated with a solution obtained by further adding 0.6 ml of a 4.4% by weight aqueous solution of the above to a silver amine complex solution containing cesium so that the supported amount of tantalum was 400 ppm. A catalyst was prepared and reacted. The reaction results are shown in Table 1.
[0025]
Comparative Example 3
In Comparative Example 2, in this treatment step, ammonium tantalate was replaced with ammonium fluoride niobate, and 0.3 ml of a 5.5% by weight aqueous solution of ammonium fluoride niobate was added so that the supported amount of niobium was 200 ppm. A catalyst was prepared and reacted in the same manner as in Comparative Example 2 except that the support was impregnated with a solution further added to the silver amine complex solution containing. The reaction results are shown in Table 1.
Comparative Example 4
In Example 3, the cesium was not supported on the support in the pretreatment step, and the concentration of the solution was changed so that the amount of cesium supported in this treatment step was 595 ppm. Prepared and reacted. The reaction results are shown in Table 1.
[0026]
[Table 1]
Figure 0003767279
[0027]
【The invention's effect】
According to the present invention, at least one alkali metal and at least one group 5 element having an atomic number of 41 or more are supported on the porous carrier, and then silver and at least one alkali metal are supported. By using such a catalyst, it is possible to produce ethylene oxide with a higher selectivity than conventional catalysts.

Claims (12)

多孔性担体に前処理としてアルカリ金属の少なくとも1種と原子番号が41以上である5族元素の少なくとも1種とを担持させ、次いで、銀とアルカリ金属の少なくとも1種とを担持させてなることを特徴とするエチレンを酸化してエチレンオキシドを製造するための触媒。As a pretreatment, the porous carrier is loaded with at least one alkali metal and at least one group 5 element having an atomic number of 41 or more, and then loaded with at least one of silver and an alkali metal. A catalyst for producing ethylene oxide by oxidizing ethylene. 多孔性担体に前処理として担持するアルカリ金属がセシウムである請求項1に記載の触媒。The catalyst according to claim 1, wherein the alkali metal supported as a pretreatment on the porous carrier is cesium. 原子番号が41以上である5族元素がタンタルである請求項1または2に記載の触媒。The catalyst according to claim 1 or 2, wherein the Group 5 element having an atomic number of 41 or more is tantalum. 多孔性担体に前処理として担持させるアルカリ金属が全触媒重量当たり50〜2000ppm、また、原子番号が41以上である5族元素が10〜2000ppmである請求項1ないし3のいずれか1項に記載の触媒。The alkali metal supported as a pretreatment on the porous carrier is 50 to 2000 ppm per total catalyst weight, and the group 5 element having an atomic number of 41 or more is 10 to 2000 ppm. Catalyst. 前処理としてアルカリ金属の少なくとも1種と原子番号が41以上である5族元素の少なくとも1種とを担持させた多孔性担体に、担持させる銀が全触媒重量当たり5〜30重量%、また、アルカリ金属が10〜10000ppmである請求項1ないし4のいずれか1項に記載の触媒。As a pretreatment, 5 to 30% by weight of silver to be supported on a porous support in which at least one kind of alkali metal and at least one kind of group 5 element having an atomic number of 41 or more are supported, The catalyst according to any one of claims 1 to 4, wherein the alkali metal is 10 to 10,000 ppm. 多孔性担体の表面積が0.6〜5m2 /gである請求項1ないし5のいずれか1項に記載の触媒。The catalyst according to any one of claims 1 to 5, wherein the porous carrier has a surface area of 0.6 to 5 m 2 / g. 多孔性担体の主成分がα−アルミナである請求項1ないし6のいずれか1項に記載の触媒。The catalyst according to any one of claims 1 to 6, wherein the main component of the porous carrier is α-alumina. 前処理が、多孔性担体にアルカリ金属化合物を含有する溶液と原子番号が41以上である5族元素の化合物を含有する溶液とで含浸後、加熱処理して担持させてなることを特徴とする請求項1ないし7のいずれか1項に記載の触媒。The pretreatment is characterized in that the porous carrier is impregnated with a solution containing an alkali metal compound and a solution containing a group 5 element compound having an atomic number of 41 or more, and then heat-treated and supported. The catalyst according to any one of claims 1 to 7. 前処理の加熱処理の際に過熱水蒸気を用いることを特徴とする請求項8に記載の触媒。The catalyst according to claim 8, wherein superheated steam is used in the pretreatment heat treatment. 前処理としてアルカリ金属の少なくとも1種と原子番号が41以上である5族元素の少なくとも1種とを担持させた多孔性担体に、銀化合物、アルカリ金属化合物の少なくとも1種及び錯体形成剤としてのアミン化合物を含有する溶液を含浸後、加熱処理して銀とアルカリ金属とを担持させてなることを特徴とする請求項1ないし9のいずれか1項に記載の触媒。As a pretreatment, a porous carrier carrying at least one alkali metal and at least one group 5 element having an atomic number of 41 or more is used as a silver compound, at least one alkali metal compound and a complex-forming agent. The catalyst according to any one of claims 1 to 9, wherein the catalyst is impregnated with a solution containing an amine compound and then heat-treated to support silver and an alkali metal. 銀とアルカリ金属とを担持させる加熱処理の際に、過熱水蒸気を用いることを特徴とする請求項10に記載の触媒。The catalyst according to claim 10, wherein superheated steam is used in the heat treatment for supporting silver and an alkali metal. 請求項1ないし11のいずれか1項に記載の触媒の存在下、エチレンを分子状酸素により気相接触酸化することを特徴とするエチレンオキシドの製造方法。12. A process for producing ethylene oxide, comprising subjecting ethylene to gas phase catalytic oxidation with molecular oxygen in the presence of the catalyst according to any one of claims 1 to 11.
JP28389699A 1999-10-05 1999-10-05 Catalyst for producing ethylene oxide and method for producing ethylene oxide Expired - Fee Related JP3767279B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28389699A JP3767279B2 (en) 1999-10-05 1999-10-05 Catalyst for producing ethylene oxide and method for producing ethylene oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28389699A JP3767279B2 (en) 1999-10-05 1999-10-05 Catalyst for producing ethylene oxide and method for producing ethylene oxide

Publications (2)

Publication Number Publication Date
JP2001104787A JP2001104787A (en) 2001-04-17
JP3767279B2 true JP3767279B2 (en) 2006-04-19

Family

ID=17671596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28389699A Expired - Fee Related JP3767279B2 (en) 1999-10-05 1999-10-05 Catalyst for producing ethylene oxide and method for producing ethylene oxide

Country Status (1)

Country Link
JP (1) JP3767279B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8618325D0 (en) * 1986-07-28 1986-09-03 Shell Int Research Catalyst
JP3355661B2 (en) * 1992-10-05 2002-12-09 三菱化学株式会社 Catalyst production method
JPH07820A (en) * 1992-12-03 1995-01-06 Samsung General Chem Co Ltd Silver carrying catalyst for ethylene oxide manufacturing
JP3794070B2 (en) * 1995-09-25 2006-07-05 三菱化学株式会社 Catalyst for ethylene oxide production

Also Published As

Publication number Publication date
JP2001104787A (en) 2001-04-17

Similar Documents

Publication Publication Date Title
JP3961568B2 (en) Production method of epoxidation catalyst
JP3573361B2 (en) Ethylene oxide catalyst and production method
JP3832848B2 (en) Epoxidation catalyst and epoxidation method
JP2619660B2 (en) Catalyst for ethylene oxide and method for producing ethylene oxide in contact
JP2002504911A (en) Epoxidation method using supported silver catalyst pretreated with organic chloride
EP0724479B1 (en) Ethylene oxide catalyst
JP4206404B2 (en) Catalyst for ethylene oxide production
JP3794070B2 (en) Catalyst for ethylene oxide production
EP2682186A1 (en) Catalyst for producing ethylene oxide, process for producing the catalyst and process for producing ethylene oxide
AU678844B2 (en) Epoxidation catalyst
JP3355661B2 (en) Catalyst production method
US20110152073A1 (en) Epoxidation process and microstructure
JP3767279B2 (en) Catalyst for producing ethylene oxide and method for producing ethylene oxide
JP3767251B2 (en) Catalyst for producing ethylene oxide and method for producing ethylene oxide
JP3789261B2 (en) Catalyst for producing ethylene oxide and method for producing ethylene oxide
JP3794215B2 (en) Catalyst for producing ethylene oxide and method for producing ethylene oxide
JP3263967B2 (en) Catalyst for ethylene oxide production
JP2637795B2 (en) Catalyst for ethylene oxide production
JP2701240B2 (en) Catalyst for ethylene oxide production
JP2006524129A (en) Ethylene oxide catalyst
JPH06296867A (en) Catalyst for manufacturing ethylene oxide
JP2007301554A (en) Catalyst for manufacturing ethylene oxide and its manufacturing method and manufacturing method for ethylene oxide
JPH0523594A (en) Silver catalyst for producing ethylene oxide

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060123

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees