JP3794070B2 - Catalyst for ethylene oxide production - Google Patents

Catalyst for ethylene oxide production Download PDF

Info

Publication number
JP3794070B2
JP3794070B2 JP24606296A JP24606296A JP3794070B2 JP 3794070 B2 JP3794070 B2 JP 3794070B2 JP 24606296 A JP24606296 A JP 24606296A JP 24606296 A JP24606296 A JP 24606296A JP 3794070 B2 JP3794070 B2 JP 3794070B2
Authority
JP
Japan
Prior art keywords
compound
cesium
lithium
catalyst
silver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP24606296A
Other languages
Japanese (ja)
Other versions
JPH09150058A (en
Inventor
具敦 岩倉
孝子 今元
克己 仲代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP24606296A priority Critical patent/JP3794070B2/en
Publication of JPH09150058A publication Critical patent/JPH09150058A/en
Application granted granted Critical
Publication of JP3794070B2 publication Critical patent/JP3794070B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、エチレンを分子状酸素により気相接触酸化してエチレンオキシドを製造するための改良された銀触媒及びその製造方法に関する。
エチレンオキシドは活性水素化合物に付加重合させて非イオン系界面活性剤の製造に向けられるほか、水を付加させてエチレングリコールとなし、ポリエステルやポリウレタン系高分子の原料、エンジン用不凍液などに使用される。
【0002】
【従来の技術】
エチレンを分子状酸素により気相接触酸化して工業的にエチレンオキシドを製造する際に使用される触媒は銀触媒である。エチレンオキシドを効率よく生産するために、この銀触媒の改良の要請が強く、より高選択性、長寿命の触媒の出現が望まれている。このため、従来から種々の方法が提案されているが、主活性成分である銀と反応促進剤であるアルカリ金属等との組合せ、その配合比の最適化、これらを担持する担体の改良等がその主なものである。
【0003】
例えば、特開昭49−30286号公報には、多孔性の担体に特定量のカリウム、ルビジウム及び/又はセシウムを銀と同時に堆積せしめた触媒により高い選択性が得られると述べられている。特開昭53−1191号公報には、銀及び特定量のナトリウム、カリウム、ルビジウム又はセシウムを含有する触媒により活性及び選択性が改良されると述べられている。また、特公昭60−1054号公報においてナトリウム、カリウム、ルビジウム、及びセシウムの2種以上のアルカリ金属の組合わせによる効果が述べられている。
【0004】
更に、反応促進剤であるアルカリ金属のうちで、セシウムとリチウムの併用も知られており、特公昭62−35813号公報や特開昭55−127144号公報などに、セシウム成分とリチウム成分を銀と同時に含浸させてなる触媒が示されている。また、特開平4−317741号公報には、特定物性の多孔性担体にアルカリ金属類を含浸させる場合は、銀と同時含浸する方法か、特にセシウム成分については担体に銀を担持させ後に含浸させる方法が触媒性能を向上させる方法として好ましいと述べられている。
【0005】
【発明が解決しようとする課題】
以上のように、エチレンオキシド製造用触媒については、反応促進剤がアルカリ金属である場合に限ってもいろいろな提案がなされているが、未だ十分に満足すべきレベルに達しているとは言えず、触媒性能改善のための努力が、継続して行われている状況にある。
本発明の目的は、従来の触媒に比較してより高い選択率と優れた活性を合わせ持ち、且つ長寿命のエチレンオキシド製造用触媒を提供することにある。
【0006】
【課題を解決するための手段】
本発明者等は、上記課題を解決するために鋭意研究を行った結果、リチウムとセシウムによる前処理を施した多孔性担体に銀とセシウムを担持した触媒を用いることによりエチレンオキシドについて高い選択率が得られることを見出し、本発明を完成した。即ち、本発明は、多孔性担体にリチウム化合物とセシウム化合物を含有する溶液を含浸後、加熱処理し、次いで、銀化合物及びセシウム化合物を含浸させ加熱処理してなることを特徴とするエチレンを酸化してエチレンオキシドを製造するための触媒に存する。
【0007】
【発明の実施の形態】
以下、本発明の触媒について詳細に説明する。
(多孔性担体)
本発明の触媒は多孔性担体に触媒主成分として銀を担持させた触媒である。多孔性担体としては、アルミナ、炭化珪素、チタニア、ジルコニア、マグネシア等の多孔性耐火物が挙げられるが、主成分がα−アルミナであるものが特に好適である。また、多孔性担体には通常10%程度を上限としてシリカ成分を含有させたものであってもよい。
【0008】
本発明においては多孔性担体の諸物性がその触媒活性に大きな影響を与える場合がある。多孔性担体の表面積は、通常0.1〜10m2/g、好ましくは0.6〜5m2/g、更に好ましくは0.8〜2m2/gであるものが望ましい。また、かかる表面積を保持して触媒成分の含浸操作を容易にするという点で、担体の吸水率が好ましくは20〜50%、更に好ましくは25〜45%であるものが望ましい。
【0009】
(触媒組成)
本発明の触媒は、全触媒重量に対して、銀を、好ましくは5〜30重量%、更に好ましくは8〜20重量%含有する。
また、本発明の触媒は、銀以外にリチウムとセシウムを必須成分とする。かかる成分の触媒中での含有量は、全触媒重量に対して、好ましくは、リチウムが100〜2000ppm及びセシウム250〜2000ppmであり、更に好ましくは、リチウムが200〜1000ppm及びセシウム300〜1600ppmである。かかる範囲以外では公知の銀触媒以上の充分な触媒としての効果が得られにくい。また、セシウムとリチウムの含有割合としては、その重量比(Li/Cs)が、好ましくは0.05〜8、更に好ましくは0.1〜4である。
【0010】
更に、本発明の触媒は、リチウムとセシウム以外のアルカリ金属成分の含有を排除するものではなく、本発明の触媒の特徴を損なわない範囲において、ナトリウム、カリウム、ルビジウム、セシウム等を金属原子として通常10〜10000ppm程度含有していてもよい。
【0011】
また、本発明の触媒の特徴を損なわない範囲において、助触媒成分として作用しうるその他成分も通常10〜10000ppm程度含有させてもよく、ベリリウム、カルシウム、ストロンチウム、バリウム、マグネシウム等のアルカリ土類金属、銅、金等の11族金属、亜鉛、カドミウム、水銀等の12族元素、ホウ素、ガリウム、インジウム、タリウム等の13族元素、ゲルマニウム、スズ、鉛等の14族元素、リン、砒素、アンチモン、ビスマス等の15族元素、チタン、ジルコニウム、ハフニウム等の4族元素、珪素、バナジウム、ニオブ、タンタル等の5族元素、クロム、モリブデン、タングステン等の6族金属、レニウム等の7族金属、スカンジウムイットリウム、サマリウム、セリウム、ランタン、ネオジウム、プラセオジウム、ユーロピウム等の希土類金属などが例示される。以上の任意成分は、後述の触媒調製における前処理工程及び本処理工程のいずれにおいて担体に担持させてもよいが、好ましくは、本処理工程で銀成分と同時含浸する方法が採用される。
【0012】
(触媒の調製、前処理工程)
本発明の触媒は、多孔性担体にリチウム化合物とセシウム化合物を含有する溶液で前処理し、次いで、銀化合物及びセシウム化合物を含有する溶液を含浸させ、加熱処理して調製されるものであるが、以下、初めの多孔性担体にリチウム化合物を含有する溶液で前処理する工程を「前処理工程」、また、前処理後の銀化合物及びセシウム化合物を含浸させ、加熱処理する工程を「本処理工程」と、各々定義することで説明する。
【0013】
本発明の前処理とは、多孔性担体にリチウム及びセシウムを沈着させる処理であり、多孔性担体にリチウム化合物とセシウム化合物を含有する溶液を含浸させ、これを乾燥処理することをいう。含浸させる方法としては、リチウム化合物とセシウム化合物を含有する溶液中に多孔性担体を浸漬する方法または多孔性担体にリチウム化合物とセシウム化合物の含有溶液を噴霧する方法が挙げられる。なお、該処理は、リチウム化合物とセシウム化合物の両方を含有する溶液で行ってもよいし、リチウム化合物含有溶液での処理とセシウム化合物含有溶液の処理を別々に行ってもよい。乾燥処理としては、含浸処理後、多孔性担体と余剰のリチウム化合物とセシウム化合物の含有溶液を分離後、減圧乾燥、あるいは加熱処理による乾燥等が挙げられる。該加熱処理としては、好ましくは100〜300℃、更に好ましくは130〜200℃での空気、窒素等の不活性ガス、過熱水蒸気を利用する方法が好ましい。特に好ましいのは過熱水蒸気を利用する方法である。
【0014】
本発明の前処理工程で使用されるリチウム化合物は特に制限はないが、本処理工程で、一旦担体に担持させたリチウム成分の再溶出の起こりにくいという観点から、水への溶解度が比較的低いものが望ましく、炭酸リチウム、重炭酸リチウムあるいは、シュウ酸リチウム、酢酸リチウム等のカルボン酸のリチウム塩が好ましく、炭酸リチウム又は重炭酸リチウムが特に好ましい。また、溶媒としては、使用するリチウム化合物に対して、不活性で、溶解性が高ければ、特に限定なく使用でき、低沸点の有機溶媒、水等が挙げられる。
【0015】
また、本発明で使用されるセシウム化合物の種類は特に限定はなく、セシウムの硝酸塩、水酸化物、ハロゲン化物、炭酸塩、重炭酸塩、カルボン酸塩等が例示される。なお、この場合に使用するリチウム化合物と同一のアニオン塩を使用することが取り扱い上、好ましく、例えば、炭酸塩、重炭酸塩、カルボン酸塩等が好ましい。
【0016】
この場合、担体に含浸させる全セシウム量の好ましくは5〜95%、更に好ましくは10〜80%を、リチウム化合物と同時に前処理工程で含浸加熱処理を行い、担体にリチウムとともにセシウムも沈着担持させる。従って、この前処理工程で担体に担持されるセシウムの含有量は、好ましくは50〜1800ppm、更に好ましくは75〜1375ppmである。なお、前処理工程でのセシウムの担持量が多すぎると、後述する本処理工程でのセシウム担持量を少なくすることになり、選択性が低下するので、あまり好ましくない。本発明の方法を採用することで、本処理工程のみで全セシウムを含浸させる方法と比較して、より高い選択性を有する触媒を得ることができる。
【0017】
(触媒の調製、本処理工程)
本処理工程は、前記の前処理工程でリチウムとセシウムを担持させた多孔性担体に、銀化合物及びセシウム化合物を含有する溶液を含浸させ加熱処理させる工程である。
【0018】
本処理工程で、銀を担体に沈着担持させるために有利に使用される銀化合物としては、例えばアミン化合物と溶媒中で可溶な錯体を形成し、そして500℃以下、好ましくは300℃以下、より好ましくは260℃以下の温度で分解して銀を析出するものがある。その例としては、酸化銀、硝酸銀、炭酸銀、あるいは、酢酸銀、シュウ酸銀などの各種カルボン酸銀を挙げることができるが、シュウ酸銀が特に好ましい。錯体形成剤としてのアミン化合物は、上記銀化合物を溶媒中で可溶化し得るものが用いられる。かかるアミン化合物としては、例えばピリジン、アセトニトリル、アンモニア、1〜6個の炭素を有するアミン類などが挙げられる。中でもアンモニア、ピリジン、ブチルアミンなどのモノアミン、エタノールアミンなどのアルカノールアミン、エチレンジアミン、1,3−プロパンジアミンの如きポリアミンが好ましい。特にエチレンジアミン及び/又は1,3−プロパンジアミンの使用、特にその混合使用が最適である。
【0019】
銀化合物の含浸方法としては、銀化合物をアミン化合物との水溶液の形として用いることが最も現実的であるが、アルコールなどを加えた水溶液としても用い得る。最終的には触媒成分として5〜30重量%の銀が担持されるように含浸液中の銀濃度は決定される。また、含浸の後、要すれば減圧、加熱、スプレー吹き付けなどを併せて行うこともできる。アミンは銀化合物を錯化するに必要な量(通常アミノ基2個が銀1原子に対応する)で加えられる。この場合アミン化合物は、上記必要量より5〜30%過剰に加えるのが、反応性の面から好ましい。
【0020】
本処理工程で使用されるセシウム化合物は、前記の前処理工程の説明で掲げたものを使用すればよい。セシウム化合物は銀化合物水溶液中に溶解し、銀と同時に担体上に担持すればよい。この本処理工程で担体に担持されるセシウムの含有量は好ましくは200〜2000ppm、更に好ましくは225〜1525ppmである。本処理工程でのセシウムの担持量が少なければ、選択性が低下し、逆に多すぎる(即ち全セシウム量が多くなる)と活性、選択性が低下する。
なお、本発明ではリチウム化合物を前処理工程で含浸させることを特徴の一つとしているが、本処理工程でリチウム化合物の一部を含浸させることを排除するものではない。
【0021】
含浸後の加熱処理は、銀が担体上に析出するのに必要な温度と時間を測定して実施する。担体上に銀ができるだけ均一に、微細な粒子で存在するように析出する条件を選ぶことが最も好ましい。一般的に加熱処理は、高温、長時間となるほど、析出した銀粒子の凝集を促進するので好ましくない。好ましい加熱処理は、130℃〜300℃で、加熱した空気(又は窒素などの不活性ガス)又は、過熱水蒸気を使用して、5分から30分の短時間行われる。好ましい上記熱処理は、触媒調製工程の時間短縮という観点からも望ましく、他に過熱水蒸気を使用すると、担体上の銀の分布が均一になり触媒性能も向上するので特に好ましい。
【0022】
(反応方法)
本発明の触媒を用いてエチレンをエチレンオキシドに転換する反応は、慣用操作で実施できる。反応圧力は通常0.1〜3.6MPa(0〜35kg/cm2 G)であり、反応温度は通常180〜350℃、好ましくは200〜300℃である。反応原料ガスの組成は、一般に、エチレンが1〜40容量%、分子状酸素が1〜20容量%の混合ガスが用いられ、また、一般に希釈剤、例えばメタンや窒素等の不活性ガスを一定割合、例えば1〜70容量%で存在させることができる。分子状酸素含有ガスとしては、通常、空気あるいは工業用酸素が用いられる。更に、反応改変剤として、例えばハロゲン化炭化水素を0.1〜50ppm程度、反応原料ガスに加えることにより触媒中のホットスポットの形成を防止でき、且つ触媒の性能、殊に触媒選択性を大幅に改善させることができる。
【0023】
【実施例】
以下に実施例を挙げて本発明を具体的に説明するが、本発明はこれらの実施例により限定されるものではない。なお、実施例等に用いた担体の物性を以下の表−1に示す。
【0024】
【表1】

Figure 0003794070
【0025】
実施例1
(1)担体の前処理
α−アルミナ担体A(表面積1.04m2/g、吸水率32.3%、平均細孔径1.4μm、シリカ3%、8φ×3φ×8mmのリング状)50gを炭酸リチウム(Li2CO3)0.94gと炭酸セシウム(Cs2CO3)0.087gが溶解した水溶液100mlに浸漬させ、余分な液を切り、次いで、これを150℃の過熱水蒸気にて15分間、2m/秒の流速で加熱し、リチウムとセシウム成分を含浸させた担体を調製した。
【0026】
(2)シュウ酸銀の調製
硝酸銀(AgNO3 )228gとシュウ酸カリウム(K224・H2O)135gを各々1リットルの水に溶解した後、水溶液中で60℃に加温しながら徐々に混合し、シュウ酸銀の白色沈殿を得た。濾過後、蒸留水により沈殿を洗浄した。
【0027】
(3)銀アミン錯体溶液の調製
(2)で得たシュウ酸銀(AgC24、含水率19.47%)の一部(12.3g)を、エチレンジアミン3.42g、プロパンジアミン0.94g、及び水4.54gよりなるアミン混合水溶液に徐々に添加して溶解させ、銀アミン錯体溶液を調製した。この銀アミン錯体溶液に、攪拌しながら塩化セシウム(CsCl)1.14重量%と硝酸セシウム(CsNO3)1.98重量%を含有する混合水溶液1mlを添加した。該混合液に、更に、水酸化バリウム八水和物(Ba(OH)2 ・8H2O)の0.66重量%水溶液1mlを添加した。
【0028】
(4)銀触媒の調製
(1)で調製したリチウムとセシウムが含浸されたα−アルミナ担体50gを、(3)で得たセシウム及びバリウムを含有するこの銀アミン錯体溶液に、エバポレーター中で減圧下、40℃の加温中で含浸した。この含浸担体を200℃の過熱水蒸気にて15分間、2m/秒の流速で加熱し、触媒を得た。該触媒における銀(Ag)、セシウム(Cs)、リチウム(Li)及びバリウム(Ba)の担持率は12%、595ppm、500ppm、50ppmであった。
【0029】
(5)エチレンの酸化反応
上記方法で調製した触媒を、6〜10メッシュに砕き、その3mlを内径7.5mmのSUS製反応管に充填し、反応ガス(エチレン30%、酸素8.5%、塩化ビニル1.5ppm、二酸化炭素6.0%、残り窒素)を、GHSV4300hr-1、圧力0.8MPa(7kg/cm2G)で流し、反応を行った。反応を開始して1週間経過後の、酸素転化率が40%になるときの反応温度T40(℃)と酸素転化率が40%となるときのエチレン基準の酸化エチレンの選択率S40(%)を表−2に示す。
【0030】
実施例2
リチウムの担持量が300ppmとなるように前処理工程での炭酸リチウムの含浸量を変更した以外は実施例1と同様の方法で触媒を調製し反応を行った。反応結果を表−2に示す。
【0031】
実施例3
リチウムの担持量が700ppmとなるように前処理工程での炭酸リチウムの含浸量を変更した以外は実施例1と同様の方法で触媒を調製し反応を行った。反応結果を表−2に示す。
【0032】
実施例4、5
前処理工程と本処理工程で担持させるセシウムの量を表−2に示すように変更した以外は実施例1と同様の方法で触媒を調製し反応を行った。反応結果を表−2に示す。
【0033】
比較例1、2
担体にリチウムを担持せず、かつ、前処理工程ではセシウムを担持させず、本処理工程で担持させるセシウムの量を表−2に示すように変更した以外は実施例1と同様の方法で触媒を調製し反応を行った。反応結果を表−2に示す。
【0034】
比較例3
前処理工程と本処理工程で担持させるセシウムの量を表−2に示すように変更した以外は比較例1と同様の方法で触媒を調製し反応を行った。反応結果を表−2に示す。
【0035】
比較例4
リチウムの担持量が500ppmとなるように本処理工程で硝酸リチウムを含浸させた以外は比較例1と同様の方法で触媒を調製し反応を行った。反応結果を表−2に示す。なお、硝酸リチウムの代わりに炭酸リチウムの使用を試みたが、銀アミン錯体溶液中への炭酸リチウムの溶解度が低く、リチウムを500ppm相当担持させることができなかった。
【0036】
比較例5
リチウム原子の担持量が500ppmとなるように本処理工程で硝酸リチウムを含浸させた以外は比較例3と同様の方法で触媒を調製し反応を行った。反応結果を表−2に示す。
【0037】
【表2】
Figure 0003794070
【0038】
実施例6〜16
担体の種類、セシウムの担持段階と担持量を表−3に示すように変更した以外は実施例1と同様の方法で触媒を調製し反応を行った。反応結果を表−3に示す。
【0039】
【表3】
Figure 0003794070
【0040】
実施例17
セシウムの担持段階と担持量を表−4に示すように変更し、かつ、銀アミン錯体溶液中に、更に過レニウム酸アンモニウムを添加した以外は実施例1と同様の方法で触媒を調製し反応を行った。該触媒における銀(Ag)、セシウム(Cs)、リチウム(Li)及びレニウム(Re)の担持率は12%、870ppm、500ppm、370ppmであった.反応結果を表−4に示す。
本実施例の触媒ではレニウム成分添加の影響で反応温度がT40が高くなっているが、選択率(S40)の顕著な向上が認められる。
【0041】
実施例18
担体Aの代わりに担体Iを用い、本処理工程で用いる銀アミン錯体溶液中に、所定量の硝酸セシウム(CsNO3)、タングステン酸リチウム(Li2WO4)及び硝酸リチウム(LiNO3)を添加した以外は、実施例1と同様の方法で調製し、反応を行った。Ag、Cs、W及びLiの担持率は、20%、937ppm、468ppm、667ppmであった。反応結果を表−4に示す。
【0042】
【表4】
Figure 0003794070
【0043】
【発明の効果】
本発明の触媒を用いることにより、従来の触媒と比較して温和な条件下で高い選択率でエチレンオキシドを製造することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an improved silver catalyst for producing ethylene oxide by vapor phase catalytic oxidation of ethylene with molecular oxygen and a method for producing the same.
Ethylene oxide is added to active hydrogen compounds for production of nonionic surfactants, and water is added to form ethylene glycol, which is used for polyester and polyurethane polymer raw materials, engine antifreeze, etc. .
[0002]
[Prior art]
A catalyst used when industrially producing ethylene oxide by vapor-phase catalytic oxidation of ethylene with molecular oxygen is a silver catalyst. In order to efficiently produce ethylene oxide, there is a strong demand for improvement of this silver catalyst, and the appearance of a catalyst with higher selectivity and longer life is desired. For this reason, various methods have been proposed in the past, but the combination of silver as the main active ingredient and alkali metal as the reaction accelerator, optimization of the blending ratio, improvement of the carrier supporting these, etc. The main thing.
[0003]
For example, JP-A-49-30286 states that high selectivity can be obtained by a catalyst in which a specific amount of potassium, rubidium and / or cesium is deposited simultaneously with silver on a porous carrier. Japanese Patent Application Laid-Open No. 53-1191 states that the activity and selectivity are improved by a catalyst containing silver and a specific amount of sodium, potassium, rubidium or cesium. Japanese Patent Publication No. 60-1054 describes the effect of a combination of two or more alkali metals such as sodium, potassium, rubidium, and cesium.
[0004]
Further, among the alkali metals that are reaction accelerators, the combined use of cesium and lithium is also known. Japanese Patent Publication No. 62-35813 and Japanese Patent Application Laid-Open No. 55-127144 disclose a cesium component and a lithium component as silver. A catalyst impregnated at the same time is shown. JP-A-4-317741 discloses a method of impregnating a porous carrier having specific physical properties with an alkali metal, or a method of impregnating with a silver at the same time. It is stated that the method is preferable as a method for improving the catalyst performance.
[0005]
[Problems to be solved by the invention]
As described above, for ethylene oxide production catalysts, various proposals have been made even when the reaction accelerator is an alkali metal, but it has not yet reached a sufficiently satisfactory level. Efforts to improve catalyst performance are ongoing.
An object of the present invention is to provide a catalyst for producing ethylene oxide, which has a higher selectivity and superior activity than conventional catalysts, and has a long life.
[0006]
[Means for Solving the Problems]
As a result of diligent research to solve the above problems, the present inventors have achieved a high selectivity for ethylene oxide by using a catalyst in which silver and cesium are supported on a porous carrier that has been pretreated with lithium and cesium. As a result, the present invention was completed. That is, the present invention relates to an oxidation of ethylene characterized in that a porous carrier is impregnated with a solution containing a lithium compound and a cesium compound and then heat-treated, and then impregnated with a silver compound and a cesium compound and heat-treated. Thus, it exists in a catalyst for producing ethylene oxide.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the catalyst of the present invention will be described in detail.
(Porous carrier)
The catalyst of the present invention is a catalyst in which silver is supported as a catalyst main component on a porous carrier. Examples of the porous carrier include porous refractories such as alumina, silicon carbide, titania, zirconia, and magnesia, and those having a main component of α-alumina are particularly suitable. In addition, the porous carrier may contain a silica component with an upper limit of usually about 10%.
[0008]
In the present invention, various physical properties of the porous carrier may greatly affect the catalytic activity. The surface area of the porous carrier is usually 0.1 to 10 m 2 / g, preferably 0.6 to 5 m 2 / g, more preferably 0.8 to 2 m 2 / g. Further, in view of facilitating the impregnation operation of the catalyst component while maintaining the surface area, the carrier preferably has a water absorption rate of 20 to 50%, more preferably 25 to 45%.
[0009]
(Catalyst composition)
The catalyst of the present invention preferably contains 5 to 30% by weight, more preferably 8 to 20% by weight of silver based on the total catalyst weight.
The catalyst of the present invention contains lithium and cesium as essential components in addition to silver. The content of such components in the catalyst is preferably 100 to 2000 ppm of lithium and 250 to 2000 ppm of cesium, more preferably 200 to 1000 ppm of lithium and 300 to 1600 ppm of cesium, based on the total catalyst weight. . Outside this range, it is difficult to obtain an effect as a sufficient catalyst more than a known silver catalyst. Moreover, as a content rate of a cesium and lithium, the weight ratio (Li / Cs) becomes like this. Preferably it is 0.05-8, More preferably, it is 0.1-4.
[0010]
Furthermore, the catalyst of the present invention does not exclude the inclusion of alkali metal components other than lithium and cesium, and sodium, potassium, rubidium, cesium and the like are usually used as metal atoms within a range that does not impair the characteristics of the catalyst of the present invention. You may contain about 10-10000 ppm.
[0011]
In addition, other components that can act as a promoter component may be contained in an amount of about 10 to 10,000 ppm as long as the characteristics of the catalyst of the present invention are not impaired. Alkaline earth metals such as beryllium, calcium, strontium, barium, and magnesium Group 11 metals such as copper and gold, Group 12 elements such as zinc, cadmium and mercury, Group 13 elements such as boron, gallium, indium and thallium, Group 14 elements such as germanium, tin and lead, Phosphorus, Arsenic and Antimony Group 15 elements such as bismuth, Group 4 elements such as titanium, zirconium and hafnium, Group 5 elements such as silicon, vanadium, niobium and tantalum, Group 6 metals such as chromium, molybdenum and tungsten, Group 7 metals such as rhenium, Scandium yttrium, samarium, cerium, lanthanum, neodymium, praseodymium Rare earth metal europium, and the like. The above optional components may be supported on the support in any of the pretreatment step and the main treatment step described later, but a method of simultaneous impregnation with the silver component in the main treatment step is preferably employed.
[0012]
(Catalyst preparation, pretreatment process)
The catalyst of the present invention is prepared by pretreating a porous carrier with a solution containing a lithium compound and a cesium compound, then impregnating a solution containing a silver compound and a cesium compound, and heat-treating. Hereinafter, the first step of pretreatment with a solution containing a lithium compound in a porous carrier is referred to as “pretreatment step”, and the step of impregnating the pretreated silver compound and cesium compound and then heat treatment is referred to as “main treatment. “Process” will be described by defining each.
[0013]
The pretreatment of the present invention is a treatment of depositing lithium and cesium on a porous carrier, and impregnating a porous carrier with a solution containing a lithium compound and a cesium compound, and drying this. Examples of the impregnation method include a method of immersing a porous carrier in a solution containing a lithium compound and a cesium compound, or a method of spraying a solution containing a lithium compound and a cesium compound on the porous carrier. In addition, this process may be performed with the solution containing both a lithium compound and a cesium compound, and the process with a lithium compound containing solution and the process of a cesium compound containing solution may be performed separately. Examples of the drying treatment include, after the impregnation treatment, separation of the porous carrier, the excess lithium compound, and the cesium compound-containing solution, followed by drying under reduced pressure or heat treatment. The heat treatment is preferably a method using air, an inert gas such as nitrogen, or superheated steam at 100 to 300 ° C, more preferably 130 to 200 ° C. Particularly preferred is a method using superheated steam.
[0014]
The lithium compound used in the pretreatment step of the present invention is not particularly limited, but the solubility in water is relatively low from the viewpoint that re-elution of the lithium component once supported on the carrier hardly occurs in this treatment step. A lithium salt of carboxylic acid such as lithium carbonate, lithium bicarbonate or lithium oxalate or lithium acetate is preferable, and lithium carbonate or lithium bicarbonate is particularly preferable. Moreover, as a solvent, if it is inactive with respect to the lithium compound to be used and its solubility is high, it can be used without particular limitation, and examples thereof include a low-boiling organic solvent and water.
[0015]
Moreover, the kind of cesium compound used by this invention does not have limitation in particular, A cesium nitrate, a hydroxide, a halide, carbonate, bicarbonate, carboxylate etc. are illustrated. In addition, it is preferable on handling that the same anion salt as the lithium compound used in this case is used, for example, carbonate, bicarbonate, carboxylate, etc. are preferable.
[0016]
In this case, preferably 5 to 95%, more preferably 10 to 80% of the total amount of cesium to be impregnated on the carrier is impregnated and heated in the pretreatment step simultaneously with the lithium compound, and cesium is deposited and supported on the carrier together with lithium. . Therefore, the content of cesium supported on the carrier in this pretreatment step is preferably 50 to 1800 ppm, more preferably 75 to 1375 ppm. If the amount of cesium supported in the pretreatment step is too large, the amount of cesium supported in the main treatment step, which will be described later, is decreased, and the selectivity is lowered, which is not preferable. By adopting the method of the present invention, a catalyst having higher selectivity can be obtained as compared with the method of impregnating all cesium only by this treatment step.
[0017]
(Catalyst preparation, main treatment step)
This treatment step is a step of impregnating a porous carrier carrying lithium and cesium in the pretreatment step with a solution containing a silver compound and a cesium compound and heat-treating it.
[0018]
In the present treatment step, as a silver compound that is advantageously used for depositing and supporting silver on a carrier, for example, a complex soluble in an amine compound and a solvent is formed, and 500 ° C. or lower, preferably 300 ° C. or lower, More preferably, there is one that decomposes at a temperature of 260 ° C. or lower to precipitate silver. Examples thereof include silver carboxylate such as silver oxide, silver nitrate, silver carbonate, or silver acetate and silver oxalate. Silver oxalate is particularly preferable. As the amine compound as the complex forming agent, those capable of solubilizing the silver compound in a solvent are used. Examples of such amine compounds include pyridine, acetonitrile, ammonia, and amines having 1 to 6 carbons. Of these, monoamines such as ammonia, pyridine and butylamine, alkanolamines such as ethanolamine, and polyamines such as ethylenediamine and 1,3-propanediamine are preferred. In particular, the use of ethylenediamine and / or 1,3-propanediamine, especially the mixed use thereof, is optimal.
[0019]
As the impregnation method of the silver compound, it is most realistic to use the silver compound in the form of an aqueous solution with an amine compound, but it can also be used as an aqueous solution to which alcohol or the like is added. Finally, the silver concentration in the impregnating solution is determined so that 5 to 30% by weight of silver is supported as a catalyst component. Further, after impregnation, if necessary, decompression, heating, spraying, etc. can be performed together. The amine is added in the amount necessary to complex the silver compound (usually two amino groups correspond to one silver atom). In this case, the amine compound is preferably added in an amount of 5 to 30% in excess of the above required amount from the viewpoint of reactivity.
[0020]
As the cesium compound used in the present treatment step, those listed in the description of the pretreatment step may be used. The cesium compound may be dissolved in the aqueous silver compound solution and supported on the carrier simultaneously with the silver. The content of cesium supported on the carrier in this treatment step is preferably 200 to 2000 ppm, more preferably 225 to 1525 ppm. If the amount of cesium supported in this treatment step is small, the selectivity is lowered. Conversely, if the amount is too large (that is, the total amount of cesium is increased), the activity and selectivity are lowered.
In the present invention, one of the characteristics is that the lithium compound is impregnated in the pretreatment step. However, impregnation of a part of the lithium compound in the treatment step is not excluded.
[0021]
The heat treatment after impregnation is carried out by measuring the temperature and time required for silver to deposit on the support. Most preferably, conditions are selected so that silver is present on the support as uniformly as possible and in fine particles. In general, the heat treatment is not preferable as the temperature and the time are increased, since the aggregation of the precipitated silver particles is promoted. Preferable heat treatment is performed at 130 ° C. to 300 ° C. for a short time of 5 to 30 minutes using heated air (or an inert gas such as nitrogen) or superheated steam. The preferable heat treatment is also desirable from the viewpoint of shortening the time of the catalyst preparation step, and the use of superheated steam is particularly preferable because the distribution of silver on the support becomes uniform and the catalyst performance is improved.
[0022]
(Reaction method)
The reaction for converting ethylene to ethylene oxide using the catalyst of the present invention can be carried out by a conventional operation. The reaction pressure is usually 0.1 to 3.6 MPa (0 to 35 kg / cm 2 G), and the reaction temperature is usually 180 to 350 ° C., preferably 200 to 300 ° C. The composition of the reaction raw material gas is generally a mixed gas of 1 to 40% by volume of ethylene and 1 to 20% by volume of molecular oxygen. In general, a diluent, for example, an inert gas such as methane or nitrogen is constant. It can be present in proportions, for example 1 to 70% by volume. As the molecular oxygen-containing gas, air or industrial oxygen is usually used. Furthermore, as a reaction modifier, for example, by adding about 0.1 to 50 ppm of halogenated hydrocarbon to the reaction raw material gas, the formation of hot spots in the catalyst can be prevented, and the performance of the catalyst, especially the catalyst selectivity is greatly increased. Can be improved.
[0023]
【Example】
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples. In addition, the physical property of the support | carrier used for the Example etc. is shown in the following Table-1.
[0024]
[Table 1]
Figure 0003794070
[0025]
Example 1
(1) Pretreatment of carrier α-alumina carrier A (surface area 1.04 m 2 / g, water absorption 32.3%, average pore diameter 1.4 μm, silica 3%, 8φ × 3φ × 8 mm ring shape) 50 g It is immersed in 100 ml of an aqueous solution in which 0.94 g of lithium carbonate (Li 2 CO 3 ) and 0.087 g of cesium carbonate (Cs 2 CO 3 ) are dissolved, and the excess liquid is drained. Heating was performed for 2 minutes at a flow rate of 2 m / sec to prepare a carrier impregnated with lithium and cesium components.
[0026]
(2) Preparation of silver oxalate 228 g of silver nitrate (AgNO 3 ) and 135 g of potassium oxalate (K 2 C 2 O 4 .H 2 O) were each dissolved in 1 liter of water and heated to 60 ° C. in an aqueous solution. The mixture was gradually mixed to obtain a white precipitate of silver oxalate. After filtration, the precipitate was washed with distilled water.
[0027]
(3) Preparation of silver amine complex solution A part (12.3 g) of silver oxalate (AgC 2 O 4 , water content 19.47%) obtained in (2) was added to ethylenediamine 3.42 g and propanediamine 0. A silver amine complex solution was prepared by gradually adding and dissolving it in an amine mixed aqueous solution consisting of 94 g and 4.54 g of water. To this silver amine complex solution, 1 ml of a mixed aqueous solution containing 1.14% by weight of cesium chloride (CsCl) and 1.98% by weight of cesium nitrate (CsNO 3 ) was added with stirring. Further, 1 ml of a 0.66% by weight aqueous solution of barium hydroxide octahydrate (Ba (OH) 2 .8H 2 O) was added to the mixture.
[0028]
(4) Preparation of silver catalyst 50 g of the α-alumina carrier impregnated with lithium and cesium prepared in (1) was reduced in the evaporator to this silver amine complex solution containing cesium and barium obtained in (3). The impregnation was carried out under heating at 40 ° C. The impregnated support was heated with superheated steam at 200 ° C. for 15 minutes at a flow rate of 2 m / second to obtain a catalyst. The supported rates of silver (Ag), cesium (Cs), lithium (Li) and barium (Ba) in the catalyst were 12%, 595 ppm, 500 ppm and 50 ppm.
[0029]
(5) Oxidation reaction of ethylene The catalyst prepared by the above method is crushed into 6 to 10 mesh, 3 ml of the catalyst is filled in a SUS reaction tube having an inner diameter of 7.5 mm, and reaction gas (ethylene 30%, oxygen 8.5%). , 1.5 ppm of vinyl chloride, 6.0% carbon dioxide, remaining nitrogen) was allowed to flow at GHSV 4300 hr −1 , pressure 0.8 MPa (7 kg / cm 2 G). One week after the start of the reaction, the reaction temperature T 40 (° C.) when the oxygen conversion rate becomes 40% and the ethylene-based ethylene oxide selectivity S 40 (when the oxygen conversion rate becomes 40%) %) Is shown in Table-2.
[0030]
Example 2
A catalyst was prepared and reacted in the same manner as in Example 1 except that the amount of impregnation of lithium carbonate in the pretreatment step was changed so that the amount of lithium supported was 300 ppm. The reaction results are shown in Table-2.
[0031]
Example 3
A catalyst was prepared and reacted in the same manner as in Example 1 except that the amount of impregnation of lithium carbonate in the pretreatment step was changed so that the amount of lithium supported was 700 ppm. The reaction results are shown in Table-2.
[0032]
Examples 4 and 5
A catalyst was prepared and reacted in the same manner as in Example 1 except that the amount of cesium supported in the pretreatment step and the main treatment step was changed as shown in Table-2. The reaction results are shown in Table-2.
[0033]
Comparative Examples 1 and 2
A catalyst was prepared in the same manner as in Example 1 except that lithium was not supported on the carrier, cesium was not supported in the pretreatment step, and the amount of cesium supported in this treatment step was changed as shown in Table 2. Was prepared and reacted. The reaction results are shown in Table-2.
[0034]
Comparative Example 3
A catalyst was prepared and reacted in the same manner as in Comparative Example 1 except that the amount of cesium supported in the pretreatment step and the main treatment step was changed as shown in Table-2. The reaction results are shown in Table-2.
[0035]
Comparative Example 4
A catalyst was prepared and reacted in the same manner as in Comparative Example 1 except that lithium nitrate was impregnated in this treatment step so that the supported amount of lithium was 500 ppm. The reaction results are shown in Table-2. Although use of lithium carbonate instead of lithium nitrate was attempted, the solubility of lithium carbonate in the silver amine complex solution was low, and lithium could not be supported in an amount equivalent to 500 ppm.
[0036]
Comparative Example 5
A catalyst was prepared and reacted in the same manner as in Comparative Example 3 except that lithium nitrate was impregnated in this treatment step so that the supported amount of lithium atoms was 500 ppm. The reaction results are shown in Table-2.
[0037]
[Table 2]
Figure 0003794070
[0038]
Examples 6-16
A catalyst was prepared and reacted in the same manner as in Example 1 except that the type of support, the stage of supporting cesium and the amount supported were changed as shown in Table 3. The reaction results are shown in Table-3.
[0039]
[Table 3]
Figure 0003794070
[0040]
Example 17
The catalyst was prepared and reacted in the same manner as in Example 1 except that the cesium loading stage and loading were changed as shown in Table 4 and that ammonium perrhenate was further added to the silver amine complex solution. Went. The supported rates of silver (Ag), cesium (Cs), lithium (Li) and rhenium (Re) in the catalyst were 12%, 870 ppm, 500 ppm and 370 ppm. The reaction results are shown in Table-4.
In the catalyst of this example, the reaction temperature T 40 is high due to the effect of the rhenium component addition, but a remarkable improvement in the selectivity (S 40 ) is observed.
[0041]
Example 18
A carrier I is used instead of the carrier A, and predetermined amounts of cesium nitrate (CsNO 3 ), lithium tungstate (Li 2 WO 4 ) and lithium nitrate (LiNO 3 ) are added to the silver amine complex solution used in this treatment step. Except that, it was prepared and reacted in the same manner as in Example 1. The loadings of Ag, Cs, W and Li were 20%, 937 ppm, 468 ppm and 667 ppm. The reaction results are shown in Table-4.
[0042]
[Table 4]
Figure 0003794070
[0043]
【The invention's effect】
By using the catalyst of the present invention, ethylene oxide can be produced with high selectivity under mild conditions as compared with conventional catalysts.

Claims (14)

多孔性担体にリチウム化合物とセシウム化合物を含有する溶液を含浸後、加熱処理し、次いで、銀化合物及びセシウム化合物を含有する溶液を含浸させ、加熱処理してなることを特徴とするエチレンを酸化してエチレンオキシドを製造するための触媒。  The porous carrier is impregnated with a solution containing a lithium compound and a cesium compound, and then heat-treated, and then impregnated with a solution containing a silver compound and a cesium compound, and heat-treated to oxidize ethylene. To produce ethylene oxide. 銀を5〜30重量%含有することを特徴とする請求項1に記載の触媒。  The catalyst according to claim 1, containing 5 to 30% by weight of silver. リチウムを100〜2000ppm及びセシウム250〜2000ppm含有することを特徴とする請求項1又は2に記載の触媒。  The catalyst according to claim 1 or 2, comprising 100 to 2000 ppm of lithium and 250 to 2000 ppm of cesium. セシウムとリチウムの重量比(Li/Cs)が0.1〜4であることを特徴とする請求項1ないし3のいずれかに記載の触媒。  The catalyst according to any one of claims 1 to 3, wherein a weight ratio of cesium to lithium (Li / Cs) is 0.1 to 4. 多孔性担体に含浸させる全セシウムの10〜80%をリチウム化合物と同時に含浸させることを特徴とする請求項1ないし4のいずれかに記載の触媒。  The catalyst according to any one of claims 1 to 4, wherein 10 to 80% of the total cesium impregnated in the porous carrier is impregnated simultaneously with the lithium compound. 多孔性担体の表面積が0.6〜5m/gであることを特徴とする請求項1ないし5のいずれかに記載の触媒。The catalyst according to any one of claims 1 to 5, wherein the porous carrier has a surface area of 0.6 to 5 m 2 / g. 多孔性担体の主成分がα−アルミナであることを特徴とする請求項1ないし6のいずれかに記載の触媒。  The catalyst according to any one of claims 1 to 6, wherein the main component of the porous carrier is α-alumina. リチウム化合物が炭酸リチウム又は重炭酸リチウムであることを特徴とする請求項1ないし7のいずれかに記載の触媒。  The catalyst according to any one of claims 1 to 7, wherein the lithium compound is lithium carbonate or lithium bicarbonate. リチウム化合物がカルボン酸のリチウム塩であることを特徴とする請求項1ないし7のいずれかに記載の触媒。  The catalyst according to any one of claims 1 to 7, wherein the lithium compound is a lithium salt of carboxylic acid. リチウム化合物とセシウム化合物を含有する溶液を含浸後、過熱水蒸気を用いて加熱処理することを特徴とする請求項1ないし9のいずれかに記載の触媒。  The catalyst according to any one of claims 1 to 9, wherein the catalyst is impregnated with a solution containing a lithium compound and a cesium compound, and then heated using superheated steam. 銀化合物、セシウム化合物及び錯体形成剤としてのアミン化合物を含有する溶液を用いて、銀化合物及びセシウム化合物を含浸させることを特徴とする請求項1ないし10のいずれかに記載の触媒。  The catalyst according to any one of claims 1 to 10, wherein the silver compound and the cesium compound are impregnated using a solution containing a silver compound, a cesium compound and an amine compound as a complex forming agent. 銀化合物及びセシウム化合物を含浸させ加熱処理する際に、過熱水蒸気を用いることを特徴とする請求項1ないし11のいずれかに記載の触媒。  The catalyst according to any one of claims 1 to 11, wherein superheated steam is used when the silver compound and the cesium compound are impregnated and heat-treated. エチレンを請求項1ないし12のいずれかに記載の触媒の存在下、分子状酸素により気相接触酸化することを特徴とするエチレンオキシドの製造方法。  A method for producing ethylene oxide, characterized in that ethylene is subjected to gas phase catalytic oxidation with molecular oxygen in the presence of the catalyst according to any one of claims 1 to 12. 多孔性担体にリチウム化合物とセシウム化合物を含有する溶液を含浸後、加熱処理し、次いで、銀化合物及びセシウム化合物を含有する溶液を含浸させ、加熱処理することを特徴とする、エチレンを酸化してエチレンオキシドを製造するための触媒の製造方法。After impregnation with a solution containing a lithium compound to the porous carrier and cesium compounds, heat treatment, and then the solution containing the silver compound and a cesium compound is impregnated with, characterized by heat treatment, to oxidize the ethylene A method for producing a catalyst for producing ethylene oxide.
JP24606296A 1995-09-25 1996-09-18 Catalyst for ethylene oxide production Expired - Lifetime JP3794070B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24606296A JP3794070B2 (en) 1995-09-25 1996-09-18 Catalyst for ethylene oxide production

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP24605595 1995-09-25
JP7-246055 1995-09-25
JP24606296A JP3794070B2 (en) 1995-09-25 1996-09-18 Catalyst for ethylene oxide production

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005225345A Division JP4206404B2 (en) 1995-09-25 2005-08-03 Catalyst for ethylene oxide production

Publications (2)

Publication Number Publication Date
JPH09150058A JPH09150058A (en) 1997-06-10
JP3794070B2 true JP3794070B2 (en) 2006-07-05

Family

ID=26537546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24606296A Expired - Lifetime JP3794070B2 (en) 1995-09-25 1996-09-18 Catalyst for ethylene oxide production

Country Status (1)

Country Link
JP (1) JP3794070B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4206404B2 (en) * 1995-09-25 2009-01-14 三菱化学株式会社 Catalyst for ethylene oxide production
JP4210255B2 (en) * 1997-12-25 2009-01-14 株式会社日本触媒 Silver catalyst for producing ethylene oxide and method for producing ethylene oxide
JP3767251B2 (en) * 1999-06-24 2006-04-19 三菱化学株式会社 Catalyst for producing ethylene oxide and method for producing ethylene oxide
JP3767279B2 (en) * 1999-10-05 2006-04-19 三菱化学株式会社 Catalyst for producing ethylene oxide and method for producing ethylene oxide
JP3789261B2 (en) * 1999-10-05 2006-06-21 三菱化学株式会社 Catalyst for producing ethylene oxide and method for producing ethylene oxide
CN102000571A (en) * 2006-04-10 2011-04-06 三菱化学株式会社 Catalyst for manufacturing ethylene oxide and its manufacturing method and manufacturing method for ethylene oxide
WO2010113963A1 (en) * 2009-03-31 2010-10-07 株式会社日本触媒 Catalyst for ethylene oxide production and method for producing ethylene oxide
JP5570277B2 (en) * 2010-03-31 2014-08-13 株式会社日本触媒 Catalyst for producing ethylene oxide and method for producing ethylene oxide
JP5797143B2 (en) * 2012-03-26 2015-10-21 株式会社日本触媒 A catalyst for producing ethylene oxide and a method for producing ethylene oxide using the same.
JP7269174B2 (en) * 2017-01-05 2023-05-08 サイエンティフィック・デザイン・カンパニー・インコーポレーテッド Carrier, catalyst, method for producing them, and method for producing ethylene oxide

Also Published As

Publication number Publication date
JPH09150058A (en) 1997-06-10

Similar Documents

Publication Publication Date Title
US5705661A (en) Catalyst for production of ethylene oxide
EP0874688B1 (en) Process for preparing epoxidation catalysts
JP3573361B2 (en) Ethylene oxide catalyst and production method
JP3832848B2 (en) Epoxidation catalyst and epoxidation method
JPH08224477A (en) Preparation of catalyst for ethylene oxide
JP4206404B2 (en) Catalyst for ethylene oxide production
JP3794070B2 (en) Catalyst for ethylene oxide production
WO1995005896A1 (en) Ethylene oxide catalyst
EP2679305A1 (en) Catalyst for producing ethylene oxide, process for producing the catalyst and process for producing ethylene oxide
AU678844B2 (en) Epoxidation catalyst
CN110357837A (en) A kind of ethylene epoxidizing method
JP3233652B2 (en) Silver catalyst for ethylene oxide production
JP3789261B2 (en) Catalyst for producing ethylene oxide and method for producing ethylene oxide
EP0789693B1 (en) Process for preparing ethylene oxide catalysts
JP3767251B2 (en) Catalyst for producing ethylene oxide and method for producing ethylene oxide
JP3794215B2 (en) Catalyst for producing ethylene oxide and method for producing ethylene oxide
JP3767279B2 (en) Catalyst for producing ethylene oxide and method for producing ethylene oxide
JP3263967B2 (en) Catalyst for ethylene oxide production
JP2637795B2 (en) Catalyst for ethylene oxide production
JP2701240B2 (en) Catalyst for ethylene oxide production
JP4051995B2 (en) Olefin oxide production catalyst and process for producing olefin oxide using the catalyst
JPH06343864A (en) Catalyst for production of ethylene oxide and its production
JPH06296867A (en) Catalyst for manufacturing ethylene oxide
JP2007301554A (en) Catalyst for manufacturing ethylene oxide and its manufacturing method and manufacturing method for ethylene oxide
JPS6327978B2 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050803

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20050803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060404

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090421

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100421

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100421

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110421

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130421

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140421

Year of fee payment: 8

EXPY Cancellation because of completion of term