JP4976619B2 - Ground receiving device for insulated track circuit and train control device - Google Patents

Ground receiving device for insulated track circuit and train control device Download PDF

Info

Publication number
JP4976619B2
JP4976619B2 JP2001148397A JP2001148397A JP4976619B2 JP 4976619 B2 JP4976619 B2 JP 4976619B2 JP 2001148397 A JP2001148397 A JP 2001148397A JP 2001148397 A JP2001148397 A JP 2001148397A JP 4976619 B2 JP4976619 B2 JP 4976619B2
Authority
JP
Japan
Prior art keywords
track circuit
code modulation
modulation signal
signal
insulated track
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001148397A
Other languages
Japanese (ja)
Other versions
JP2002337686A (en
Inventor
伸一 保苅
孝仁 松木
龍太郎 幼方
幹博 永野
信彦 大江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
East Japan Railway Co
Original Assignee
East Japan Railway Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by East Japan Railway Co filed Critical East Japan Railway Co
Priority to JP2001148397A priority Critical patent/JP4976619B2/en
Publication of JP2002337686A publication Critical patent/JP2002337686A/en
Application granted granted Critical
Publication of JP4976619B2 publication Critical patent/JP4976619B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Train Traffic Observation, Control, And Security (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、有絶縁軌道回路用地上受信装置及び列車制御装置に関する。
【0002】
【従来の技術】
有絶縁軌道回路における列車制御信号(以下ATC信号)及び列車検知信号として、長い間、アナログ信号が用いられてきたが、最近、主として、ATC信号の多情報化の要請等から、デジタル信号が用いられつつある。
【0003】
有絶縁軌道回路方式では、軌道回路間の絶縁劣化や絶縁破壊を生じた場合、隣接軌道回路において、信号の漏れ(隣接漏れ)が発生する。アナログ信号伝送方式では、隣接する軌道回路において、異なる周波数の信号を用いて、このような隣接漏れに対処する必要があるが、デジタル信号伝送方式を用いた場合、電文に軌道回路識別情報を含ませることができるので、隣接する軌道回路間において、同一周波数の信号を用いることができる。
【0004】
しかし、デジタル信号を用いた場合に、隣接漏れを発生すると、電文が破壊されてしまう。このため、デジタル信号を、ATC信号のみならず、列車検知信号としても用いる一般的な使用態様では、列車検知系を構成する地上受信器において、列車検知リレーが落下してしまい、軌道回路に列車ありの誤検知を生じてしまう。
【0005】
このような誤検知を生じると、列車ありとされた軌道回路には、列車進入が禁止されてしまうので、列車の運転効率、稼働率が低下する。このような問題を回避するためには、隣接する軌道回路間の絶縁状態を監視し、電文破壊に結びつく絶縁劣化または絶縁破壊に至る前に、これを検出する必要のあるところ、現在、そのような検知手段は知られていない。
【0006】
【発明が解決しようとする課題】
そこで本発明の課題は、隣接する有絶縁軌道回路の間の絶縁状態を検出し、列車の運転効率、稼働率の向上に寄与し得る地上受信装置及びこの地上受信装置を含む列車制御装置を提供することである。
【0007】
【課題を解決するための手段】
上述した課題を解決するため、本発明に係る地上受信装置は、有絶縁軌道回路に接続して用いられるものであって、前記有絶縁軌道回路から、2つの周波数信号を2種の符号に対応させた符号変調信号が入力され、前記符号変調信号から、隣接する有絶縁軌道回路間の漏れを検出する機能を有する。
【0008】
本発明に係る地上受信装置には、2つの周波数信号を2種の符号に対応させた符号変調信号が入力される。2つの周波数信号を2種の符号に対応させた符号変調信号の代表例は、FSK(Frequency Shift Keying)変調信号またはMSK(Minimum Shift Keying)変調信号等である。この符号変調方式を用いることにより、一種の情報のみならず、多情報を、デジタル信号として同時に伝送することができる。例えば、車両検知信号のみならず、ATC信号等も伝送することができる。
【0009】
本発明に係る地上受信装置は、前記有絶縁軌道回路から、2つの周波数信号を2種の符号に対応させた符号変調信号が入力され、入力された前記符号変調信号から、隣接する有絶縁軌道回路間の漏れを検出する機能を有する。従って、隣接する有絶縁軌道回路の間の絶縁状態を検出し、列車の運転効率、稼働率の向上に寄与し得る。より具体的には、符号変調信号の電圧レベルの変動率を算出し、変動率から漏れを検出する。
【0010】
本発明に係る地上受信装置は、地上送信装置と組み合わされ、列車制御装置を構成する。この列車制御装置の代表的な用途は、車両検知である。この他、多情報伝送性に基づき、ATC信号伝送手段として用いることもできる。
【0011】
本発明の他の特徴及びそれによる作用効果は、添付図面を参照し、更に詳しく説明する。添付図面は単なる一例を示すに過ぎない。
【0012】
【発明の実施の形態】
図1は本発明に係る列車制御装置の構成を示す図である。図は、車両検知に適用され得る列車制御装置の例を示している。図において、2本一対として構成される軌道1は、絶縁物31、32により、複数の有絶縁の軌道回路1T、2T、3Tに順次に区画されている。列車2は、軌道1の上を矢印aで示す方向に走行し、軌道回路1T、2T、3Tの順に通過するものとする。
【0013】
次に、軌道回路2Tを注目するに、地上送信装置61は、軌道回路3Tとの境界に位置する絶縁物32の付近において、軌道回路2Tに接続され、地上受信装置62は、軌道回路1Tとの境界に位置する絶縁物31の付近において、軌道回路2Tに接続されている。
【0014】
地上送信装置61は、軌道回路2Tを介して、符号変調信号S11を送信する。地上送信装置61から送信される符号変調信号S11は、周波数信号f1、f2を2種の符号に対応させた信号であり、FSK変調信号またはMSK変調信号等、デジタル符号変調信号を広く用いることができる。実施例では、説明の容易さから、FSK変調信号を用いた場合を例にとって説明する。
【0015】
図2はFSK変調例を示す図である。まず、図2(a)に示す電文の符号化データ信号を、図2(b)に示す符号変調信号S11に符号変調する。電文には、例えば、軌道回路識別情報やATC情報が含まれる。
【0016】
図示の符号変調信号S11は、周波数信号f1、f2を2種の符号に対応させた信号である。具体的には、周波数信号f1を論理値「0」に対応させ、周波数信号f2を論理値「1」に対応させる。符号変調信号S11は、符号化データ信号「10010110」に対応する周波数信号f1、f2の時間的配列となる。この場合、周波数信号f1、f2は、次の式で与えられる。
【0017】
f1=fc−△f
f2=fc+△f
但し、fcは搬送波中心周波数、△fは偏移周波数である。一例をあげれば、搬送波中心周波数fcを1500Hzとし、偏移周波数△fを16Hzとした場合、周波数信号f1は1484Hzになり、周波数信号f2は1516Hzになる。
【0018】
軌道回路2Tのみならず、軌道回路1T、3Tにおいても、全く同じ周波数信号f1、f2を用いて符号変調を行う。デジタル信号伝送の場合、電文に軌道回路を識別するID情報を含ませることができるので、このような伝送方式を採用しても、隣接する軌道回路間で漏れが発生しても、安全性に問題はない。
【0019】
地上受信装置62は、軌道回路2Tに接続され、軌道回路2Tを介して、地上送信装置61から送信された符号変調信号S11が入力される。地上受信装置62は、漏れ検出部65を含む。図1の実施例では、地上受信装置62は、漏れ検出部65と共に、列車検知部63及びデータ解読部64を有する。
【0020】
列車検知部63は、符号変調信号S11を受信し、軌道回路2Tに列車2が存在しないときは、列車検知リレーを扛上させておき、列車2が進入したときに、列車検知リレーを落下させ、列車を検知する。符号変調信号S11には、自己の軌道回路2Tを識別するID情報が含まれているので、列車検知部63はID情報をもとにして、電文が自己当てのものかどうかを判断し、自己の属する軌道回路2T内における列車2の有無を判定することができる。
【0021】
データ解読部64は、符号変調信号S11に含まれる電文の内容を解読する。具体的には、符号変調信号S11を復号し解読する。前述したように、符号変調信号S11には、自己の軌道回路2Tを識別するID情報が含まれているので、データ解読部64はID情報をもとにして、自己の属する軌道回路2Tに与えられたデータを解読することができる。
【0022】
漏れ検出部65は、隣接する軌道回路2Tー3T(または2Tー1T)の間における符号変調信号の漏れを検出する。従って、隣接する軌道回路2Tー1T、または、2Tー3Tの間の絶縁物31または32の絶縁状態を検出し、列車2の運転効率、稼働率の向上に寄与し得る。
【0023】
隣接漏れがなければ、漏れ検出部65には、自己の軌道回路2Tに向けられた符号変調信号S11のみであるが、隣接漏れが生じた場合は、符号変調信号S11とともに、例えば、軌道回路3Tに流れる符号変調信号S12をも含むことになる。即ち、漏れ検出部65には、合成信号(S11+S12)が供給される。
【0024】
図3は軌道回路2Tと軌道回路3Tとの間の絶縁物32に絶縁劣化または絶縁破壊を生じ、軌道回路2T及び軌道回路3Tの間で隣接漏れを生じた場合を示す図である。隣接漏れは、軌道回路2T及び軌道回路3Tの両者で生じるが、説明の簡単化のため、軌道回路3Tから軌道回路2Tへの隣接漏れについて説明する。
【0025】
図4は漏れ検出部65の具体的な処理ブロックまたは回路ブロックを示す図である。図示実施例の漏れ検出部65は、サンプリング部651と変動率検出部652とを含む。これらは、回路を指示することもあるし、単なるステップを示すこともある。漏れ検出部65がコンピュータの一部を利用して構成されている場合には、後者に属する。
【0026】
サンプリング部651では、合成信号(S11+S12)の電圧レベルをN秒間サンプリングし、N秒間における最大値Smax及び最小値Sminを求め、サンプリング時間N(秒)内に得られた最大値Smax及び最小値Sminから、
変動率ζ=(Smax-Smin)/Smax
の関係式に従って、変動率ζを算出する。そして、変動率ζの大きさより、漏れを検出する。
【0027】
次に、図5、図6を参照して、変動率検出動作を更に詳しく説明する。まず、漏れ検出部65には、軌道回路2Tを介して送信されてくる図5(a)の符号変調信号S11、及び、軌道回路3Tから漏れてくる符号変調信号S12を含む合成信号(S11+S12)が入力される。
【0028】
符号変調信号S11を復号した場合、図5(b)に示す符号化データ信号が得られる。この符号化データ信号は、図2(a)に示した符号化データ信号と一致する。
【0029】
図5(c)は軌道回路3Tから軌道回路2Tに漏れた符号変調信号S12を示し、図5(d)は符号変調信号S12を復号して得られた漏れ符号化データ信号である。
【0030】
本発明では、軌道回路2Tのみならず、軌道回路1T、3Tにおいても、全く同じ周波数信号f1、f2を用いて符号変調を行うので、軌道回路3Tから軌道回路2Tに漏れた符号変調信号S12も、周波数信号f1、f2で符号変調した信号となる。
【0031】
軌道回路2Tの符号化データ信号(図5(b))と、軌道回路3Tから漏れた符号変調信号S12を復号した漏れ符号化データ信号(図5(d))との間には、時間軸で見て、HレベルとHレベルとの組み合わせ(HH)、HレベルとLレベルとの組み合わせ(HL)、LレベルとLレベルとの組み合わせ(LL)の組み合わせ態様が存在する。そこで、組み合わせ(HH)、(LL)、(HL)の態様毎に、変動率検出動作を説明する。
【0032】
まず、組み合わせ(HL)に相当する場合については、既に述べたように、Hレベルは周波数信号f2に対応し、Lレベルは周波数信号f1に対応する。従って、合成信号(S11+S12)をサンプリングして漏れを検出する場合において、サンプリングの時間的タイミングが、組み合わせ(HL)に相当する場合は、サンプリングされた信号には2つの周波数信号f1、f2を含むことになるから、受信レベルの大きさが2倍になる。従って、変動率検出部652では、大きな変動率ζを検出することができるので、漏れを検出することができる。
【0033】
次に、サンプリングの時間的タイミングが、組み合わせ(HH)または(LL)に相当する場合、サンプリング値には周波数信号f1またはf2の単一波のみが含まれることになる。例えば、組み合わせ(LL)であれば、軌道回路2Tの周波数信号f1に対して、軌道回路3Tから漏れた周波数信号f1が重なるようになる。この場合、軌道回路2Tの周波数信号f1と、軌道回路3Tから漏れた周波数信号f1とは、位相が異なる。組み合わせ(HH)の場合は、軌道回路2Tの周波数信号f2に対して、軌道回路3Tから漏れた周波数信号f2が重ね合わされる。
【0034】
2波が同一周波数fで、位相差δの場合、この2波を重ね合わせた合成波Fは、
F=sin(2πft)+sin(2πft+δ)
=2sin(2πft+δ/2)・cos(ーδ/2)
=2cos(δ/2)・sin(2πft+δ/2) (1)
となる。また、大きさ|F|は、周波数fの単一波の|2cos(δ/2)|倍になる。
【0035】
図6は式(1)をグラフ化して示す図である。図6において、横軸に位相差δ(×π)をとり、縦軸に合成波Fの単一波fに対する大きさ(絶対値)をとってある。
【0036】
図6に図示されているように、2波の重ね合わせの場合、その合成波Fの大きさは、位相差δの変化に対応して、正弦波に従って変化する。
【0037】
従って、組み合わせ(LL)または(HH)の場合も、周波数信号f1またはf2の合成波Fの変動率ζを検出することにより、漏れを検出することができる。
【0038】
実際的には、変動率ζの大きさにより、隣接漏れなし、隣接漏れランク1、2、3、..のようにランク分けすることにより、絶縁劣化の程度を判定し、電文破壊を起こす前の比較的軽い絶縁劣化段階で、絶縁物31、32を交換することができる。
【0039】
【発明の効果】
以上述べたように、本発明によれば、隣接する有絶縁軌道回路の間の絶縁状態を検出し、列車の運転効率、稼働率の向上に寄与し得る地上受信装置及びこの地上受信装置を含む列車制御装置を提供することができる。
【図面の簡単な説明】
【図1】本発明に係る列車制御装置の構成を示す図である。
【図2】FSK変調例を示す図である。
【図3】隣接する軌道回路間で隣接漏れを生じた場合を示す図である。
【図4】漏れ検出部の具体的な処理ブロックまたは回路ブロックを示す図である。
【図5】本発明に係る地上受信装置における隣接漏れ検出動作を説明する図である。
【図6】2波を重ね合わせた合成波と位相差との関係をグラフ化して示す図である。
【符号の説明】
61 地上送信装置
62 地上受信装置
S11、S12 符号変調信号
f1、f2 周波数信号
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a ground receiving device for an insulated track circuit and a train control device.
[0002]
[Prior art]
Analog signals have been used for a long time as train control signals (hereinafter referred to as ATC signals) and train detection signals in insulated track circuits. Recently, however, digital signals have been used mainly due to the demand for multi-information ATC signals. It is being
[0003]
In the insulated track circuit system, when insulation degradation or dielectric breakdown occurs between track circuits, signal leakage (adjacent leakage) occurs in the adjacent track circuit. In the analog signal transmission method, it is necessary to deal with such adjacent leakage by using signals of different frequencies in adjacent track circuits. However, when digital signal transmission method is used, track circuit identification information is included in the telegram. Therefore, signals having the same frequency can be used between adjacent track circuits.
[0004]
However, when a digital signal is used and an adjacent leakage occurs, the message is destroyed. For this reason, in a general usage mode in which a digital signal is used not only as an ATC signal but also as a train detection signal, the train detection relay falls in the ground receiver constituting the train detection system, and the train is connected to the track circuit. There will be some false detection.
[0005]
When such a false detection occurs, train operation is prohibited in the track circuit where there is a train, so that the operation efficiency and the operation rate of the train are lowered. In order to avoid such a problem, it is necessary to monitor the insulation state between adjacent track circuits and detect it before the insulation deterioration or breakdown leading to the message breakdown. There is no known detection means.
[0006]
[Problems to be solved by the invention]
Accordingly, an object of the present invention is to provide a ground receiving device that can detect an insulation state between adjacent insulated track circuits and contribute to an improvement in train operation efficiency and availability, and a train control device including the ground receiving device. It is to be.
[0007]
[Means for Solving the Problems]
In order to solve the above-described problem, the ground receiving apparatus according to the present invention is used by being connected to an insulated track circuit, and two frequency signals are supported by the two codes from the insulated track circuit. And a function of detecting leakage between adjacent insulated track circuits from the code modulation signal.
[0008]
The ground receiving apparatus according to the present invention receives a code-modulated signal in which two frequency signals are associated with two types of codes. A typical example of a code modulation signal in which two frequency signals correspond to two types of codes is an FSK (Frequency Shift Keying) modulation signal or an MSK (Minimum Shift Keying) modulation signal. By using this code modulation method, not only a kind of information but also multiple information can be transmitted simultaneously as a digital signal. For example, not only the vehicle detection signal but also an ATC signal can be transmitted.
[0009]
The ground receiving apparatus according to the present invention receives a code modulation signal in which two frequency signals correspond to two kinds of codes from the insulated track circuit, and an adjacent insulated track from the input code modulation signal. It has a function of detecting leakage between circuits. Therefore, an insulation state between adjacent insulated track circuits can be detected, which can contribute to improvement in train operation efficiency and availability. More specifically, the fluctuation rate of the voltage level of the code modulation signal is calculated, and leakage is detected from the fluctuation rate.
[0010]
The ground receiving apparatus according to the present invention is combined with a ground transmitting apparatus to constitute a train control apparatus. A typical application of this train control device is vehicle detection. In addition, it can also be used as ATC signal transmission means based on multi-information transmission.
[0011]
Other features of the present invention and the functions and effects thereof will be described in more detail with reference to the accompanying drawings. The accompanying drawings are merely examples.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a diagram showing a configuration of a train control device according to the present invention. The figure shows an example of a train control device that can be applied to vehicle detection. In the drawing, a track 1 configured as a pair of two is sequentially partitioned into a plurality of insulated track circuits 1T, 2T, and 3T by insulators 31 and 32. The train 2 travels on the track 1 in the direction indicated by the arrow a, and passes through the track circuits 1T, 2T, and 3T in this order.
[0013]
Next, paying attention to the track circuit 2T, the ground transmitter 61 is connected to the track circuit 2T in the vicinity of the insulator 32 located at the boundary with the track circuit 3T, and the ground receiver 62 is connected to the track circuit 1T. In the vicinity of the insulator 31 located at the boundary, the track circuit 2T is connected.
[0014]
The ground transmitter 61 transmits the code modulation signal S11 via the track circuit 2T. The code modulation signal S11 transmitted from the terrestrial transmitter 61 is a signal in which the frequency signals f1 and f2 are associated with two types of codes, and a digital code modulation signal such as an FSK modulation signal or an MSK modulation signal is widely used. it can. In the embodiment, for ease of explanation, a case where an FSK modulation signal is used will be described as an example.
[0015]
FIG. 2 is a diagram illustrating an example of FSK modulation. First, the encoded data signal of the message shown in FIG. 2A is code-modulated to a code modulation signal S11 shown in FIG. The electronic message includes, for example, track circuit identification information and ATC information.
[0016]
The illustrated code modulation signal S11 is a signal in which the frequency signals f1 and f2 are associated with two types of codes. Specifically, the frequency signal f1 is made to correspond to the logical value “0”, and the frequency signal f2 is made to correspond to the logical value “1”. The code modulation signal S11 is a temporal arrangement of the frequency signals f1 and f2 corresponding to the encoded data signal “10010110”. In this case, the frequency signals f1 and f2 are given by the following equations.
[0017]
f1 = fc−Δf
f2 = fc + Δf
However, fc is a carrier frequency and Δf is a shift frequency. As an example, when the carrier frequency fc is 1500 Hz and the shift frequency Δf is 16 Hz, the frequency signal f1 is 1484 Hz and the frequency signal f2 is 1516 Hz.
[0018]
Code modulation is performed not only on the track circuit 2T but also on the track circuits 1T and 3T using the same frequency signals f1 and f2. In the case of digital signal transmission, ID information for identifying a track circuit can be included in a message. Therefore, even if such a transmission method is adopted or a leak occurs between adjacent track circuits, safety is ensured. No problem.
[0019]
The ground receiving device 62 is connected to the track circuit 2T, and the code modulation signal S11 transmitted from the ground transmitting device 61 is input via the track circuit 2T. The ground receiving device 62 includes a leak detection unit 65. In the embodiment of FIG. 1, the ground receiving device 62 includes a train detection unit 63 and a data decoding unit 64 together with a leak detection unit 65.
[0020]
The train detection unit 63 receives the code modulation signal S11, and when the train 2 does not exist in the track circuit 2T, the train detection relay 63 is lifted, and when the train 2 enters, the train detection relay is dropped. Detect trains. Since the code modulation signal S11 includes ID information for identifying its own track circuit 2T, the train detection unit 63 determines whether or not the message is for itself based on the ID information. The presence or absence of the train 2 in the track circuit 2T to which can belong can be determined.
[0021]
The data decoding unit 64 decodes the contents of the electronic message included in the code modulation signal S11. Specifically, the code modulation signal S11 is decoded and decoded. As described above, since the code modulation signal S11 includes ID information for identifying the own track circuit 2T, the data decoding unit 64 provides the track circuit 2T to which it belongs based on the ID information. The received data can be decrypted.
[0022]
The leak detector 65 detects a leak of the code modulation signal between adjacent track circuits 2T-3T (or 2T-1T). Therefore, the insulation state of the insulator 31 or 32 between the adjacent track circuits 2T-1T or 2T-3T can be detected, which can contribute to the improvement of the operation efficiency and the operation rate of the train 2.
[0023]
If there is no adjacent leakage, the leakage detection unit 65 includes only the code modulation signal S11 directed to its own track circuit 2T. If adjacent leakage occurs, for example, the track circuit 3T together with the code modulation signal S11. The code-modulated signal S12 flowing through the signal is also included. That is, the combined signal (S11 + S12) is supplied to the leak detection unit 65.
[0024]
FIG. 3 is a diagram showing a case where insulation deterioration or dielectric breakdown occurs in the insulator 32 between the track circuit 2T and the track circuit 3T, and adjacent leakage occurs between the track circuit 2T and the track circuit 3T. Adjacent leakage occurs in both the track circuit 2T and the track circuit 3T. For simplicity of explanation, the adjacent leak from the track circuit 3T to the track circuit 2T will be described.
[0025]
FIG. 4 is a diagram showing a specific processing block or circuit block of the leak detection unit 65. The leak detection unit 65 in the illustrated embodiment includes a sampling unit 651 and a fluctuation rate detection unit 652. These may indicate the circuit or may simply indicate steps. When the leak detection unit 65 is configured by using a part of a computer, it belongs to the latter.
[0026]
The sampling unit 651 samples the voltage level of the combined signal (S11 + S12) for N seconds, obtains the maximum value Smax and the minimum value Smin in N seconds, and obtains the maximum value Smax and the minimum value Smin obtained within the sampling time N (seconds). From
Fluctuation rate ζ = (Smax-Smin) / Smax
The fluctuation rate ζ is calculated according to the relational expression. Then, leakage is detected from the magnitude of the fluctuation rate ζ.
[0027]
Next, the variation rate detection operation will be described in more detail with reference to FIGS. First, the leakage detection unit 65 includes a combined signal (S11 + S12) including the code modulation signal S11 of FIG. 5A transmitted via the track circuit 2T and the code modulation signal S12 leaking from the track circuit 3T. Is entered.
[0028]
When the code modulation signal S11 is decoded, an encoded data signal shown in FIG. 5B is obtained. This encoded data signal matches the encoded data signal shown in FIG.
[0029]
FIG. 5C shows the code modulation signal S12 leaked from the track circuit 3T to the track circuit 2T, and FIG. 5D shows a leak encoded data signal obtained by decoding the code modulation signal S12.
[0030]
In the present invention, since not only the track circuit 2T but also the track circuits 1T and 3T perform code modulation using the same frequency signals f1 and f2, the code modulation signal S12 leaked from the track circuit 3T to the track circuit 2T is also obtained. The signal is code-modulated with the frequency signals f1 and f2.
[0031]
There is a time axis between the encoded data signal of the track circuit 2T (FIG. 5B) and the leaked encoded data signal (FIG. 5D) obtained by decoding the code modulation signal S12 leaked from the track circuit 3T. , There are combinations of H level and H level (HH), H level and L level (HL), and L level and L level (LL). Therefore, the variation rate detection operation will be described for each combination (HH), (LL), and (HL).
[0032]
First, in the case corresponding to the combination (HL), as described above, the H level corresponds to the frequency signal f2, and the L level corresponds to the frequency signal f1. Accordingly, in the case of detecting leakage by sampling the composite signal (S11 + S12), if the sampling timing corresponds to the combination (HL), the sampled signal includes two frequency signals f1 and f2. Therefore, the size of the reception level is doubled. Accordingly, the fluctuation rate detection unit 652 can detect a large fluctuation rate ζ, and thus can detect a leak.
[0033]
Next, when the temporal timing of sampling corresponds to the combination (HH) or (LL), the sampling value includes only a single wave of the frequency signal f1 or f2. For example, in the case of the combination (LL), the frequency signal f1 leaked from the track circuit 3T overlaps the frequency signal f1 of the track circuit 2T. In this case, the phase of the frequency signal f1 of the track circuit 2T and the frequency signal f1 leaked from the track circuit 3T are different. In the case of the combination (HH), the frequency signal f2 leaked from the track circuit 3T is superimposed on the frequency signal f2 of the track circuit 2T.
[0034]
When two waves have the same frequency f and a phase difference δ, a combined wave F obtained by superimposing these two waves is
F = sin (2πft) + sin (2πft + δ)
= 2sin (2πft + δ / 2) ・ cos (ー δ / 2)
= 2cos (δ / 2) ・ sin (2πft + δ / 2) (1)
It becomes. Also, the magnitude | F | is | 2 cos (δ / 2) | times as large as a single wave having the frequency f.
[0035]
FIG. 6 is a graph showing Equation (1). In FIG. 6, the horizontal axis indicates the phase difference δ (× π), and the vertical axis indicates the magnitude (absolute value) of the combined wave F with respect to the single wave f.
[0036]
As shown in FIG. 6, in the case of superposition of two waves, the magnitude of the combined wave F changes according to a sine wave corresponding to the change of the phase difference δ.
[0037]
Therefore, also in the case of the combination (LL) or (HH), leakage can be detected by detecting the fluctuation rate ζ of the synthesized wave F of the frequency signal f1 or f2.
[0038]
Actually, there is no adjacent leakage, adjacent leakage ranks 1, 2, 3,. . By ranking as described above, the degree of insulation deterioration can be determined, and the insulators 31 and 32 can be exchanged at a relatively light insulation deterioration stage before the message breakdown occurs.
[0039]
【Effect of the invention】
As described above, according to the present invention, an insulation state between adjacent insulated track circuits is detected, and a ground receiving device that can contribute to an improvement in operation efficiency and availability of a train, and the ground receiving device are included. A train control device can be provided.
[Brief description of the drawings]
FIG. 1 is a diagram showing a configuration of a train control device according to the present invention.
FIG. 2 is a diagram illustrating an example of FSK modulation.
FIG. 3 is a diagram showing a case where adjacent leakage occurs between adjacent track circuits.
FIG. 4 is a diagram illustrating a specific processing block or circuit block of a leak detection unit.
FIG. 5 is a diagram for explaining an adjacent leakage detection operation in the ground receiving apparatus according to the present invention.
FIG. 6 is a graph showing the relationship between a composite wave obtained by superimposing two waves and a phase difference.
[Explanation of symbols]
61 Ground transmitter 62 Ground receiver S11, S12 Code modulation signal f1, f2 Frequency signal

Claims (2)

有絶縁軌道回路に接続して用いられる地上受信装置であって、
前記有絶縁軌道回路から、異なる2つの周波数信号を2種の符号に対応させ、前記2種の符号の組み合わせからなる電文を含む符号変調信号が入力され、
前記電文には軌道回路を識別するID情報が含まれており、
前記符号変調信号を構成する前記異なる2つの周波数信号と、隣接する有絶縁軌道回路から漏れた当該符号変調信号を構成する異なる2つの周波数信号との合成信号から、隣接する有絶縁軌道回路間の漏れを検出する機能を有しており、
前記合成信号の電圧レベルを所定時間サンプリングし、サンプリング時間内に得られた最大値及び最小値から、変動率=(最大値−最小値)/最大値の関係式に従って変動率を算出し、前記変動率の大きさより、隣接する有絶縁軌道回路間の前記漏れを検出する、
地上受信装置。
A terrestrial receiver used in connection with an insulated track circuit,
From the insulated track circuit, two different frequency signals are made to correspond to two kinds of codes, and a code modulation signal including a message composed of a combination of the two kinds of codes is inputted,
The message includes ID information for identifying the track circuit,
From the synthesized signal of the two different frequency signals constituting the code modulation signal and the two different frequency signals constituting the code modulation signal leaked from the adjacent insulated track circuit, between the adjacent insulated track circuits It has a function to detect leaks,
The voltage level of the synthesized signal is sampled for a predetermined time, and the fluctuation rate is calculated from the maximum value and the minimum value obtained within the sampling time according to the relational expression of fluctuation rate = (maximum value−minimum value) / maximum value The leakage between adjacent insulated track circuits is detected from the magnitude of the fluctuation rate.
Ground receiver.
地上送信装置と、地上受信装置とを含み、有絶縁軌道回路に接続して用いられる列車制御装置であって、
前記地上受信装置は、請求項1に記載されたものでなり、
前記地上送信装置は、異なる2つの周波数信号を2種の符号に対応させ、前記2種の符号の組み合わせからなる電文を含む符号変調信号を、前記有絶縁軌道回路に供給し、
前記電文には軌道回路を識別するID情報が含まれている、
列車制御装置。
A train control device that includes a ground transmitter and a ground receiver, and is used by being connected to an insulated track circuit,
The ground receiving device is the one described in claim 1,
The terrestrial transmission device associates two different frequency signals with two types of codes, and supplies a code modulation signal including a telegram composed of a combination of the two types of codes to the insulated track circuit,
The message includes ID information for identifying the track circuit,
Train control device.
JP2001148397A 2001-05-17 2001-05-17 Ground receiving device for insulated track circuit and train control device Expired - Lifetime JP4976619B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001148397A JP4976619B2 (en) 2001-05-17 2001-05-17 Ground receiving device for insulated track circuit and train control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001148397A JP4976619B2 (en) 2001-05-17 2001-05-17 Ground receiving device for insulated track circuit and train control device

Publications (2)

Publication Number Publication Date
JP2002337686A JP2002337686A (en) 2002-11-27
JP4976619B2 true JP4976619B2 (en) 2012-07-18

Family

ID=18993722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001148397A Expired - Lifetime JP4976619B2 (en) 2001-05-17 2001-05-17 Ground receiving device for insulated track circuit and train control device

Country Status (1)

Country Link
JP (1) JP4976619B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106585668A (en) * 2016-12-09 2017-04-26 交控科技股份有限公司 Method and device for holding track codes of track circuit fuzzy area
CN106740995A (en) * 2016-12-09 2017-05-31 交控科技股份有限公司 A kind of frequency locking processing method of adjacent rail signal leakage

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4975589B2 (en) * 2007-11-07 2012-07-11 独立行政法人鉄道建設・運輸施設整備支援機構 Non-insulated track circuit protector
JP5069085B2 (en) * 2007-11-07 2012-11-07 東海旅客鉄道株式会社 Insulation state determination method and insulation state determination device
IT1394803B1 (en) * 2009-07-14 2012-07-13 Sirti Spa METHOD AND APPARATUS FOR DETERMINING THE STATE OF EMPLOYMENT OF A TRACK CIRCUIT IN A RAILWAY LINE, THROUGH SEQUENTIAL DECODING
JP5364603B2 (en) * 2010-01-18 2013-12-11 株式会社日立製作所 Train detector
DK3150459T3 (en) 2015-09-30 2021-09-06 Alstom Transp Tech METHOD, CONTROL UNIT AND SYSTEM FOR DETECTING A LEAK IN A TRACK SIGNAL ON AT LEAST ONE RAILWAY TRACK

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5866370A (en) * 1981-10-16 1983-04-20 Oki Electric Ind Co Ltd Light emitting diode array
JP3246947B2 (en) * 1992-04-23 2002-01-15 日本信号株式会社 Communication device for train control
JP3291607B2 (en) * 1994-12-28 2002-06-10 日本信号株式会社 Train detection device
JP3537524B2 (en) * 1995-02-14 2004-06-14 東日本旅客鉄道株式会社 Train information transmission device
JP2000028671A (en) * 1998-07-07 2000-01-28 Toyo Commun Equip Co Ltd Insulation detector
JP2001219849A (en) * 2000-02-10 2001-08-14 Nippon Signal Co Ltd:The Ground transmitter, receiver, and transmitter-receiver for track circuit

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106585668A (en) * 2016-12-09 2017-04-26 交控科技股份有限公司 Method and device for holding track codes of track circuit fuzzy area
CN106740995A (en) * 2016-12-09 2017-05-31 交控科技股份有限公司 A kind of frequency locking processing method of adjacent rail signal leakage
CN106585668B (en) * 2016-12-09 2018-04-17 交控科技股份有限公司 The railway code keeping method and device of a kind of track circuit confusion region
CN106740995B (en) * 2016-12-09 2019-04-26 交控科技股份有限公司 A kind of frequency locking processing method of adjacent rail signal leakage

Also Published As

Publication number Publication date
JP2002337686A (en) 2002-11-27

Similar Documents

Publication Publication Date Title
US9423443B2 (en) System and method of detecting and locating intermittent and other faults
US4577333A (en) Composite shift keying communication system
JP3269635B2 (en) Wireless train control method and wireless train control system
WO2001086831A1 (en) Method for multi-phase data communications and control over an esp power cable
JP4976619B2 (en) Ground receiving device for insulated track circuit and train control device
GB2394631A (en) Signalling in a well
BRPI0810925A2 (en) method and device for detecting simultaneous dual transmission of am signals
JP4113646B2 (en) Train detector
JP3118068B2 (en) Train position detection device
JP2001219849A (en) Ground transmitter, receiver, and transmitter-receiver for track circuit
JP2011000976A (en) Rupture detector to be attached to train detection device for three-wire track circuit using digital telegram
RU2729838C2 (en) Method, controller and system for detecting leakage of track signal on at least one railway track
KR101431285B1 (en) Detection system and method for railway track circuits using bpsk modulated coding
US5317598A (en) Portable test receiver for remote monitoring system
JP5116790B2 (en) Intrusion detection system and sensor device thereof
BG62867B1 (en) Method and device for data transmission by radiobeacon
KR20000076389A (en) Method and system for controlling train by radio
US6377639B1 (en) Method, system, and apparatus for unambiguous phase synchronization
AU634261B2 (en) Fault location arrangement for digital transmission system
JP6947593B2 (en) Train control system
JP3362706B2 (en) Cross polarization interference canceller
JP3118067B2 (en) Train position detection device
CN103699022A (en) Wording-of-a-telegram control communication equipment
JPH10105855A (en) Wireless sensor
JP2006042173A (en) Ask communication apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120328

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120413

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4976619

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150420

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term