JP4976032B2 - Organic wastewater treatment method - Google Patents

Organic wastewater treatment method Download PDF

Info

Publication number
JP4976032B2
JP4976032B2 JP2006085818A JP2006085818A JP4976032B2 JP 4976032 B2 JP4976032 B2 JP 4976032B2 JP 2006085818 A JP2006085818 A JP 2006085818A JP 2006085818 A JP2006085818 A JP 2006085818A JP 4976032 B2 JP4976032 B2 JP 4976032B2
Authority
JP
Japan
Prior art keywords
sludge
tank
organic wastewater
gas
inorganic solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006085818A
Other languages
Japanese (ja)
Other versions
JP2007260496A (en
Inventor
睦明 今岡
修 濱本
隆之 丸本
知樹 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Zosen Environment Engineering Corp
Original Assignee
Mitsui Zosen Environment Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Zosen Environment Engineering Corp filed Critical Mitsui Zosen Environment Engineering Corp
Priority to JP2006085818A priority Critical patent/JP4976032B2/en
Publication of JP2007260496A publication Critical patent/JP2007260496A/en
Application granted granted Critical
Publication of JP4976032B2 publication Critical patent/JP4976032B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Treatment Of Biological Wastes In General (AREA)

Description

本発明は、有機性廃水の処理方法に関し、詳しくは公共下水、農業集落排水、し尿処理、産業廃水など一般の有機性廃水処理の分野に適用できる有機性廃水の処理方法に関する。   The present invention relates to a method for treating organic wastewater, and more particularly to a method for treating organic wastewater that can be applied to the field of general organic wastewater treatment such as public sewage, agricultural settlement drainage, human waste treatment, and industrial wastewater.

本発明者らは、好気性下で生物学的に処理する廃水処理技術においては、栄養細胞数(コロニーカウント)や硝化細菌数の増加に注目し、酸素消費速度や硝化速度を上昇させて処理活性を向上させて有機性廃水の高性能処理を実現する廃水処理技術の開発を行っている。   In the wastewater treatment technology for biological treatment under aerobic conditions, the inventors pay attention to an increase in the number of vegetative cells (colony count) and the number of nitrifying bacteria, and increase the oxygen consumption rate and the nitrification rate. We are developing wastewater treatment technology that improves activity and realizes high-performance treatment of organic wastewater.

かかる開発研究の結果、均一な固体微粒子と汚泥との接触混合によって有機性廃水の高性能処理を実現することを見いだした。   As a result of such development research, it was found that high-performance treatment of organic wastewater was achieved by contact mixing of uniform solid particulates and sludge.

従来、無機固形物粉末を凝集剤あるいは凝集助剤として水処理へ利用する技術が知られているが、汚泥の沈降性に着目するもので、栄養細胞数(コロニーカウント)や硝化細菌数の増加に着目した技術ではない。   Conventionally, technology that uses inorganic solid powder as a flocculant or coagulant for water treatment is known, but it focuses on sedimentation of sludge, increasing the number of vegetative cells (colony count) and the number of nitrifying bacteria. It is not a technology that focuses on.

また固定化微生物の担体としての利用技術も知られている。特許文献1には、粒径が1〜200μmの石炭燃焼灰(微生物固定化微粒子担体)を曝気槽に投入して微生物を付着(凝集)させる技術が提案されている。   Moreover, the utilization technique as a support | carrier of an immobilized microorganism is also known. Patent Document 1 proposes a technique in which coal combustion ash (microorganism-immobilized fine particle carrier) having a particle diameter of 1 to 200 μm is introduced into an aeration tank to attach (aggregate) microorganisms.

特許文献2には、粒径が、0.1〜1000μmである微生物固定化微粒子担体が開示されている。この技術では、微生物固定化微粒子担体として、石炭燃焼灰や汚泥燃焼灰等の燃焼灰、活性アルミナ、ゼオライト、酸化チタン、フェライト、各種炭素材(活性炭、木炭等)等や、それらの使用済み廃棄物が挙げられている。
特開平9−131178号公報 特開2005−230783号公報
Patent Document 2 discloses a microorganism-immobilized fine particle carrier having a particle size of 0.1 to 1000 μm. In this technology, as microbe-immobilized fine particle carriers, combustion ash such as coal combustion ash and sludge combustion ash, activated alumina, zeolite, titanium oxide, ferrite, various carbon materials (activated carbon, charcoal, etc.), etc., and spent disposal thereof Things are listed.
Japanese Patent Laid-Open No. 9-131178 Japanese Patent Laid-Open No. 2005-230783

しかしながら、上記特許文献1、2に記載の粒子は、石炭燃焼灰などの微粒子を使用しているが、粒径分布が広いために、栄養細胞数(コロニーカウント)や硝化細菌数の増加が十分でない欠点があった。   However, although the particles described in Patent Documents 1 and 2 use fine particles such as coal combustion ash, since the particle size distribution is wide, the increase in the number of vegetative cells (colony count) and the number of nitrifying bacteria is sufficient. There were no shortcomings.

そこで、本発明は、均一な微細粒子を用いて、栄養細胞数(コロニーカウント)や硝化細菌数を増加させ、酸素消費速度や硝化速度を上昇させて処理活性を向上させた有機性廃水の処理方法を提供することを課題とする。   Therefore, the present invention treats organic wastewater using uniform fine particles to increase the number of vegetative cells (colony count) and the number of nitrifying bacteria, and to increase the oxygen consumption rate and nitrification rate to improve the treatment activity. It is an object to provide a method.

また本発明の他の課題は、以下の記載によって明らかとなる。   Other problems of the present invention will become apparent from the following description.

本発明の上記課題は、以下の各発明によって解決される。   The above-described problems of the present invention are solved by the following inventions.

(請求項1)
有機性廃水を好気性下で生物学的に処理する気液接触槽を備えた気液接触工程と、該気液接触工程から送られる汚泥懸濁液を汚泥と処理水に固液分離する固液分離手段を備えた固液分離工程とを有する有機性廃水の処理方法において、
前記有機性廃水又は気液接触工程内の汚泥に、直接又は間接に、平均粒径(長径)10μm以下で、その分布が±5μm以内に70重量%以上ある無機固形物粉末を添加し共存する有機性廃水の処理方法であって、
前記固液分離工程で分離された汚泥の一部を汚泥馴養槽に導入し、該汚泥馴養槽内の余剰汚泥に、平均粒径(長径)10μm以下で、その分布が±5μm以内に70重量%以上ある無機固形物粉末を添加して平均時間が3時間〜10日の間共存させた後、前記気液接触槽に送ることを特徴とする有機性廃水の処理方法。
(Claim 1)
A gas-liquid contact process comprising a gas-liquid contact tank for biologically treating organic wastewater under aerobic conditions, and a solid-liquid separation of sludge suspension sent from the gas-liquid contact process into sludge and treated water. In a method for treating organic wastewater having a solid-liquid separation step equipped with a liquid separation means,
To the organic waste water or sludge in the gas-liquid contact process, an inorganic solid powder having an average particle diameter (major axis) of 10 μm or less and a distribution of 70 wt% or more within ± 5 μm is added or coexisted. a method of processing organic waste water that,
Part of the sludge separated in the solid-liquid separation step is introduced into a sludge acclimation tank, and the excess sludge in the sludge acclimation tank has an average particle size (major axis) of 10 μm or less, and the distribution is 70 weights within ± 5 μm. % Or more inorganic solid powder is added and the average time is allowed to coexist for 3 hours to 10 days, and then sent to the gas-liquid contact tank.

(請求項2)
有機性廃水に無機固形物粉末を添加し共存する際に、(1)有機性廃水を貯留する廃水槽を備え、該廃水槽に添加・共存する方法、又は(2)有機性廃水を気液接触槽に送る過程で添加し、共存させる方法を採用することを特徴とする請求項記載の有機性廃水の処理方法。
(Claim 2)
When adding inorganic solid powder to organic wastewater and coexisting, (1) A wastewater tank for storing organic wastewater is provided and added to the wastewater tank, or (2) Organic wastewater is gas-liquid It was added in the process of sending the contact tank, the method of treating organic waste water according to claim 1, characterized by using a method for coexistence.

(請求項3)
有機性廃水と無機固形物粉末を共存させる平均時間は、3時間〜10日の範囲であることを特徴とする請求項1又は2記載の有機性廃水の処理方法。
(Claim 3)
The method for treating organic wastewater according to claim 1 or 2, wherein the average time for coexistence of the organic wastewater and the inorganic solid powder is in the range of 3 hours to 10 days.

(請求項
汚泥馴養槽が、10℃〜60℃の範囲に温度調節されることを特徴とする請求項1〜3の何れかに記載の有機性廃水の処理方法。
(Claim 4 )
The method for treating organic wastewater according to any one of claims 1 to 3 , wherein the temperature of the sludge conditioned tank is adjusted to a range of 10 ° C to 60 ° C.

(請求項
汚泥馴養槽が、標準水素電極電位基準の酸化還元電位+0.1〜−0.1の範囲に好気度調節されることを特徴とする請求項1〜4の何れかに記載の有機性廃水の処理方法。
(Claim 5 )
The organic wastewater according to any one of claims 1 to 4, wherein the sludge acclimatization tank is adjusted to an aerobic degree within a range of redox potential +0.1 to -0.1 based on a standard hydrogen electrode potential. Processing method.

(請求項
汚泥馴養槽に、鉄化合物、マグネシウム化合物及びカルシウム化合物の中から選ばれる少なくとも1種を添加することを特徴とする請求項1〜5の何れかに記載の有機性廃水の処理方法。
(Claim 6 )
The method for treating organic wastewater according to any one of claims 1 to 5, wherein at least one selected from an iron compound, a magnesium compound and a calcium compound is added to a sludge acclimation tank.

(請求項
無機固形物粉末は、粘土質鉱物粉体又は貝殻粉末であることを特徴とする請求項1〜の何れかに記載の有機性廃水の処理方法。
(Claim 7 )
The method for treating organic wastewater according to any one of claims 1 to 6 , wherein the inorganic solid powder is a clay mineral powder or a shell powder.

(請求項
無機固形物粉末のアルミニウム元素含有量が15%以下であることを特徴とする請求項1〜の何れかに記載の有機性廃水の処理方法。
(Claim 8 )
The method for treating organic wastewater according to any one of claims 1 to 7 , wherein the inorganic element powder has an aluminum element content of 15% or less.

本発明によれば、均一な微細粒子を用いて、栄養細胞数(コロニーカウント)や硝化細菌数の増加させ、酸素消費速度や硝化速度を上昇させて処理活性を向上させた有機性廃水の処理方法を提供することができる。   According to the present invention, treatment of organic wastewater using uniform fine particles to increase the number of vegetative cells (colony count) and the number of nitrifying bacteria, and to increase the oxygen consumption rate and nitrification rate to improve the treatment activity. A method can be provided.

以下、本発明の実施の形態を説明する。   Embodiments of the present invention will be described below.

図1は本発明に係る有機性廃水の処理方法を実施する装置の一例を示す説明図であり、1は、有機性廃水を導入して好気性下で生物学的に処理する気液接触工程であり、気液接触槽(曝気槽)を備えている。2は気液接触工程1から送られる懸濁液を活性汚泥と処理水に固液分離する固液分離工程であり、例えば沈殿槽(沈殿池)や膜処理装置などの固液分離手段によって構成される。以下の説明では沈殿槽(沈殿池)を用いた例について説明する。   FIG. 1 is an explanatory view showing an example of an apparatus for carrying out a method for treating organic wastewater according to the present invention. 1 is a gas-liquid contact process in which organic wastewater is introduced and biologically treated under aerobic conditions. It is equipped with a gas-liquid contact tank (aeration tank). 2 is a solid-liquid separation step for solid-liquid separation of the suspension sent from the gas-liquid contact step 1 into activated sludge and treated water, and is constituted by solid-liquid separation means such as a sedimentation tank (precipitation basin) or a membrane treatment device, for example. Is done. In the following description, an example using a sedimentation tank (sedimentation basin) will be described.

固液分離工程2で沈降分離された汚泥は、そのほとんどが返送管3を介して気液接触工程1に返送され、一部は余剰汚泥として図示しない汚泥処理設備に送られる。   Most of the sludge settled and separated in the solid-liquid separation step 2 is returned to the gas-liquid contact step 1 through the return pipe 3, and a part thereof is sent to a sludge treatment facility (not shown) as surplus sludge.

気液接触工程1に返送される汚泥の一部(余剰汚泥ともいう)は、汚泥馴養槽4に送られる。   Part of the sludge (also referred to as surplus sludge) returned to the gas-liquid contact step 1 is sent to the sludge acclimatization tank 4.

本発明では、有機性廃水又は気液接触工程内の汚泥に、直接又は間接に、平均粒径(長径)10μm以下で、その分布が±5μm以内に70重量%以上ある無機固形物粉末を添加し共存させる処理を行う。   In the present invention, an inorganic solid powder having an average particle size (major axis) of 10 μm or less and a distribution of 70 wt% or more within ± 5 μm is added directly or indirectly to sludge in an organic waste water or gas-liquid contact process. And process to coexist.

有機性廃水に無機固形物粉末を添加・共存する際に、(1)有機性廃水を貯留する廃水槽を備え、該廃水槽に添加・共存する方法、又は(2)有機性廃水を気液接触槽に送る過程で添加し、共存させる方法を採用することができる。   When adding or coexisting inorganic solid powder to organic wastewater, (1) A method for adding and coexisting with a wastewater tank for storing organic wastewater, or (2) Gas-liquid for organic wastewater A method of adding and coexisting in the process of sending to the contact tank can be adopted.

前者の(1)の方法では廃水槽の容量として、廃水と無機固形物粉末との共存時間を確実に確保できるように設計することが好ましい。廃水と無機固形物粉末を共存させる平均時間は、3時間〜10日の範囲であることが廃水(原水)および汚泥の生物学的処理という効果を発揮させる上で好ましい。   In the former method (1), it is preferable that the capacity of the wastewater tank is designed so as to ensure the coexistence time of the wastewater and the inorganic solid powder. The average time for coexisting the waste water and the inorganic solid powder is preferably in the range of 3 hours to 10 days in order to exert the effect of biological treatment of the waste water (raw water) and sludge.

また廃水槽に曝気手段を採用すると、廃水と無機固形物粉末の接触を十分にすることができ、有機物の酸化分解を促進する上で好ましい。   In addition, when an aeration means is employed in the wastewater tank, the contact between the wastewater and the inorganic solid powder can be made sufficient, which is preferable in promoting the oxidative decomposition of the organic matter.

後者の(2)の方法では、有機性廃水を気液接触槽に送る過程にラインミキサーのような静的混合器を設けて廃水と無機固形物粉末を混合攪拌することもできる。   In the latter method (2), the waste water and the inorganic solid powder can be mixed and stirred by providing a static mixer such as a line mixer in the process of sending the organic waste water to the gas-liquid contact tank.

気液接触工程内の汚泥に、無機固形物粉末を添加・共存させるには、曝気槽に直接添加してもよいが、曝気槽に返送される汚泥を汚泥馴養槽に一旦受け入れ、その汚泥馴養槽に無機固形物粉末を添加し、その添加された汚泥を曝気槽に返送し、間接的に添加・共存させることもできる。   In order to add and coexist inorganic solid powder to the sludge in the gas-liquid contact process, it may be added directly to the aeration tank, but the sludge returned to the aeration tank is once accepted into the sludge acclimation tank, and the sludge acclimatization An inorganic solid powder can be added to the tank, and the added sludge can be returned to the aeration tank to indirectly add and coexist.

本発明に用いる無機固形物粉末は、平均粒径(長径)10μm以下で、その分布が±5μm以内に70重量%以上あるものが使用される。すなわち、「その分布が±5μm以内に70重量%以上あるもの」というのは、粒径が微細かつ均一であることを意味しており、±5μm以内のものが70重量%未満では、本発明による生物処理の処理効率が低下する粗大粒子が多くなり過ぎたり、あるいは逆に凝集性の極めて不良な微細すぎる粒子の割合が多くなり過ぎて、いずれも本発明の目的を達成できない。   The inorganic solid powder used in the present invention has an average particle size (major axis) of 10 μm or less and a distribution of 70% by weight or more within ± 5 μm. That is, “the distribution is 70% by weight or more within ± 5 μm” means that the particle size is fine and uniform, and those within ± 5 μm are less than 70% by weight. Too many coarse particles that reduce the treatment efficiency of biological treatment due to, or conversely, the proportion of too fine particles with extremely poor agglomeration properties increases, and none of the objects of the present invention can be achieved.

無機固形物粉末としては、粘板岩、火成岩、深成岩、堆積岩、人工鉱物から選ばれる鉱物性粉体、あるいはカキ殻、ホタテ貝、獣骨などのカルシウム粉末が好ましい。   As the inorganic solid powder, mineral powder selected from slate, igneous rock, plutonic rock, sedimentary rock and artificial mineral, or calcium powder such as oyster shell, scallop, and animal bone is preferable.

無機固形物粉末のアルミニウム元素含有量は15%以下であることが好ましい。15%を越えると、アルミニウムが菌の代謝を阻害する影響が大きくなるためである。   The content of aluminum element in the inorganic solid powder is preferably 15% or less. This is because if it exceeds 15%, the effect of aluminum that inhibits the metabolism of bacteria increases.

平均粒径(長径)10μm以下の無機固形物粉末を製造するには、粉砕機などを使用できるが、中でも米国特許第5839671号に記載の粉末化装置を使用することが好ましい。この装置の特徴は、10μm以下の微粉砕化を比較的狭い粒径範囲で粉末化できるという点にある。   In order to produce an inorganic solid powder having an average particle size (major axis) of 10 μm or less, a pulverizer or the like can be used. Among them, it is preferable to use a powdering apparatus described in US Pat. No. 5,839,671. A feature of this apparatus is that fine pulverization of 10 μm or less can be pulverized in a relatively narrow particle size range.

平均粒径(長径)10μm以下の無機固形物粉末を、粒度分布が±5m以内に70重量%であるようにするには、最終工程としてサイクロンなどを用いて調製できる。   An inorganic solid powder having an average particle size (major axis) of 10 μm or less can be prepared by using a cyclone or the like as the final step so that the particle size distribution is 70% by weight within ± 5 m.

有機性廃水に無機固形物粉末を添加する際の混合比は、有機物負荷に応じて1g/L〜1mg/L(1000ppm〜1ppm)の範囲が好ましく、より好ましくは十分な添加効果が得られる0.1g/L〜3mg/L(100ppm〜3ppm)の範囲である。   The mixing ratio when adding the inorganic solid powder to the organic wastewater is preferably in the range of 1 g / L to 1 mg / L (1000 ppm to 1 ppm), more preferably sufficient addition effect is obtained depending on the organic load. The range is from 1 g / L to 3 mg / L (100 ppm to 3 ppm).

次に、図2に基づいて、汚泥馴養槽の構成例を説明する。   Next, based on FIG. 2, the structural example of a sludge acclimatization tank is demonstrated.

無機固形物粉末は、汚泥馴養槽4の上方に設けられたホッパー400に貯留されており、調整弁401を開放して所定量汚泥馴養槽4に供給される。   The inorganic solid powder is stored in a hopper 400 provided above the sludge acclimatization tank 4 and is supplied to the sludge acclimatization tank 4 by opening the regulating valve 401.

汚泥馴養槽4で馴養対象となる汚泥は固液分離手段で沈降分離された汚泥のうち余剰汚泥として汚泥処理の対象となる汚泥が好ましい。この汚泥馴養槽4で処理されると、汚泥が減量するので、余剰汚泥を処理すると汚泥処理施設の負荷の軽減を図れるからである。   The sludge to be acclimatized in the sludge acclimatization tank 4 is preferably sludge to be subjected to sludge treatment as surplus sludge out of the sludge settled and separated by the solid-liquid separation means. This is because if the sludge is treated in the sludge acclimation tank 4, the sludge is reduced, and if the excess sludge is treated, the load on the sludge treatment facility can be reduced.

汚泥馴養槽4は、攪拌機402、pH計403、酸化還元電位計(ORP計)404を備えている。   The sludge acclimatization tank 4 includes a stirrer 402, a pH meter 403, and an oxidation-reduction potentiometer (ORP meter) 404.

405は温度調節装置であり、図示の例では温水供給管を用いた温度調節装置が用いられているが、温度調節できる構成であれば特に限定されない。汚泥馴養槽4内の温度は10℃〜60℃の範囲に温度調節されることが微粉体表面(生物膜)における生物学的な処理を効果的に行う上で好ましい。   Reference numeral 405 denotes a temperature adjusting device. In the illustrated example, a temperature adjusting device using a hot water supply pipe is used, but there is no particular limitation as long as the temperature can be adjusted. In order to effectively perform biological treatment on the surface of the fine powder (biofilm), it is preferable that the temperature in the sludge acclimation tank 4 is adjusted to a range of 10 ° C. to 60 ° C.

406は空気供給手段の一例であるブロアであり、汚泥馴養槽4内に空気を供給する配管407に接続されている。汚泥馴養槽4内に空気を供給することにより、好気性環境を形成できる。本発明において、汚泥馴養槽の好気度は、酸化還元電位によって規定される。   A blower 406 is an example of an air supply unit, and is connected to a pipe 407 that supplies air into the sludge acclimation tank 4. An aerobic environment can be formed by supplying air into the sludge acclimatization tank 4. In the present invention, the aerobic degree of the sludge acclimatization tank is defined by the oxidation-reduction potential.

好ましい好気度は、標準水素電極電位基準の酸化還元電位+0.1〜−0.1の範囲であり、かかる範囲に調節するにはブロア406の空気供給量を調整すればよい。   The preferred aerobic degree is in the range of redox potential +0.1 to -0.1 based on the standard hydrogen electrode potential. To adjust to this range, the air supply amount of the blower 406 may be adjusted.

汚泥馴養槽4内のpHは、特に限定されないが、好ましいpHは6〜9の範囲である。かかる範囲にあると、有機物の好気性生物学的処理を効果的に行う上で好ましい。   Although the pH in the sludge acclimatization tank 4 is not specifically limited, A preferable pH is the range of 6-9. When it is in such a range, it is preferable for performing an aerobic biological treatment of an organic substance effectively.

本発明においては、汚泥馴養槽4に鉄化合物、マグネシウム化合物及びカルシウム化合物の中から選ばれる少なくとも1種を添加することが汚泥の減量率を向上させる上で好ましい。これらの化合物は粉末で添加しても良いが流量制御などの運転の容易性を考慮すると液状の方が好ましい。   In the present invention, it is preferable to add at least one selected from iron compounds, magnesium compounds and calcium compounds to the sludge acclimation tank 4 in order to improve the sludge weight loss rate. These compounds may be added in the form of powder, but liquids are preferred in view of ease of operation such as flow rate control.

鉄化合物としては、塩化鉄などの水溶液が好ましい。マグネシウム化合物としては水酸化マグネシウムなどのような水酸化物水溶液が好ましい。カルシウム化合物としては、水酸化カルシウムのような水酸化物水溶液が好ましい。鉄化合物、マグネシウム化合物及びカルシウム化合物はそれらの1種を用いてもよいが、2種以上を組み合わせて使用することも好ましい。   As the iron compound, an aqueous solution such as iron chloride is preferable. As the magnesium compound, an aqueous hydroxide solution such as magnesium hydroxide is preferable. As the calcium compound, an aqueous hydroxide solution such as calcium hydroxide is preferable. One of those iron compounds, magnesium compounds and calcium compounds may be used, but it is also preferred to use a combination of two or more.

図示の例は、塩化鉄水溶液(20〜35%水溶液)と、水酸化マグネシウム水溶液(20〜40%水溶液)を併用した例であり、408は塩化鉄水溶液タンク、409は供給ポンプであり、410は水酸化マグネシウム水溶液タンク、411は攪拌機、412は供給ポンプである。   The illustrated example is an example in which an aqueous iron chloride solution (20-35% aqueous solution) and an aqueous magnesium hydroxide solution (20-40% aqueous solution) are used in combination, 408 is an iron chloride aqueous solution tank, 409 is a supply pump, 410 Is a magnesium hydroxide aqueous solution tank, 411 is a stirrer, and 412 is a supply pump.

鉄化合物水溶液、マグネシウム化合物水溶液及びカルシウム化合物水溶液の汚泥に対する配合比は1〜50ppmの範囲が好ましい。   The blending ratio of the iron compound aqueous solution, magnesium compound aqueous solution and calcium compound aqueous solution to sludge is preferably in the range of 1 to 50 ppm.

汚泥馴養槽4内の汚泥に無機固形物粉末を添加する際の混合比は、重量の割合としてMLSS当り数%〜数ppmの範囲が好ましく、より好ましくは0.1%〜10ppmの範囲である。   The mixing ratio when adding the inorganic solid powder to the sludge in the sludge acclimatization tank 4 is preferably in the range of several percent to several ppm per MLSS, and more preferably in the range of 0.1% to 10 ppm as a weight ratio. .

汚泥馴養槽4内で、汚泥と無機固形物粉末を共存させる平均時間は、3時間〜10日の範囲が、本発明の効果を発揮する上で好ましい。10日を過ぎると、有機性成分の分解が進み、活性度が低下する。   The average time for coexistence of sludge and inorganic solid powder in the sludge acclimatization tank 4 is preferably in the range of 3 hours to 10 days in order to exert the effects of the present invention. After 10 days, the decomposition of organic components proceeds and the activity decreases.

次に、図3を用いて本発明の処理方法を実施する好ましい装置の一例を説明する。   Next, an example of a preferable apparatus for carrying out the processing method of the present invention will be described with reference to FIG.

図3に示すように、無機固形物は粉砕機5に送られ粉砕された後、サイクロン6で極めて微細な粒子を除去して、平均粒径(長径)10μm以下で、粒度分布が±5μm以内に70重量%以上あるような無機固形物粉末(以下、必要により均一無機固形物粉末という)を得る。得られた均一無機固形物粉末は、ホッパー7に貯留される。ホッパー7内の均一無機固形物粉末は、調整弁8の開閉調整によって所定量汚泥馴養槽4に供給される。   As shown in FIG. 3, after the inorganic solid is sent to the pulverizer 5 and pulverized, extremely fine particles are removed by the cyclone 6, the average particle size (major axis) is 10 μm or less, and the particle size distribution is within ± 5 μm. To obtain an inorganic solid powder (hereinafter referred to as a uniform inorganic solid powder if necessary). The obtained uniform inorganic solid powder is stored in the hopper 7. The uniform inorganic solid powder in the hopper 7 is supplied to the sludge acclimatization tank 4 by a predetermined amount by adjusting the opening / closing of the regulating valve 8.

一方、下水などの有機廃水はスクリーン9で粗い夾雑物が分離除去され、最初沈殿池10に送られ固液分離され、砂などの重量物が分離除去される。その後廃水は曝気槽11に送られ、好気性下で微生物処理される。本発明では主に好気性硝化反応が促進される。   On the other hand, in organic wastewater such as sewage, coarse impurities are separated and removed by the screen 9, and are first sent to the sedimentation tank 10 for solid-liquid separation, and heavy substances such as sand are separated and removed. Thereafter, the waste water is sent to the aeration tank 11 and treated with microorganisms under aerobic conditions. In the present invention, the aerobic nitrification reaction is mainly promoted.

曝気槽11で処理された汚泥懸濁液は最終沈殿池12で固液分離され、清澄な処理水と汚泥に分離される。沈降した汚泥の大部分は返送管13を介して曝気槽11に返送され、一部は余剰汚泥として前記汚泥馴養槽4に送られ、またその余の余剰汚泥は図示しない汚泥処理施設に送られ処理される。   The sludge suspension treated in the aeration tank 11 is solid-liquid separated in the final sedimentation basin 12 and separated into clear treated water and sludge. Most of the settled sludge is returned to the aeration tank 11 via the return pipe 13, and a part thereof is sent to the sludge acclimatization tank 4 as surplus sludge, and the surplus sludge is sent to a sludge treatment facility (not shown). It is processed.

汚泥馴養槽4に送られた余剰汚泥は、ブロア406によって好気度調整されており、また温度調節装置405によって温度調節されている。   The surplus sludge sent to the sludge acclimatization tank 4 is aerobic adjusted by the blower 406 and temperature-controlled by the temperature adjusting device 405.

また塩化鉄水溶液タンク408から塩化鉄水溶液が供給され、水酸化マグネシウム水溶液タンク410から水酸化マグネシウム水溶液が供給される。   Also, an iron chloride aqueous solution is supplied from the iron chloride aqueous solution tank 408, and a magnesium hydroxide aqueous solution is supplied from the magnesium hydroxide aqueous solution tank 410.

汚泥馴養槽4における汚泥と無機固形物粉末を共存させる平均時間は、3時間〜10日の範囲であり、更に好ましくは10時間〜10日の範囲である。   The average time during which the sludge and the inorganic solid powder are allowed to coexist in the sludge acclimation tank 4 is in the range of 3 hours to 10 days, and more preferably in the range of 10 hours to 10 days.

以下に、本発明の実施例を説明するが、本発明はかかる実施例によって限定されない。   Examples of the present invention will be described below, but the present invention is not limited to such examples.

実施例1−4及び比較例1−3
MK市の原水処理場で、図3に示すプロセスにより、以下の条件で廃水処理を行った。
Example 1-4 and Comparative Example 1-3
Wastewater treatment was carried out at the raw water treatment plant in MK City under the following conditions by the process shown in FIG.

処理対象廃水は17m/Dの下水とし、その廃水性状は、BOD:170mg/L、COD:90mg/L、SS:170mg/L、T−N:34mg/L、T−P:4mg/Lであった。 The wastewater to be treated is sewage of 17 m 3 / D, and its wastewater state is BOD: 170 mg / L, COD: 90 mg / L, SS: 170 mg / L, TN: 34 mg / L, TP: 4 mg / L Met.

曝気槽は容量6mとし、曝気槽内汚泥濃度(MLSS)は約3000mg/Lとした。また汚泥馴養槽は容量1.5mとした。 The aeration tank had a capacity of 6 m 3 and the sludge concentration in the aeration tank (MLSS) was about 3000 mg / L. The sludge acclimatization tank had a capacity of 1.5 m 3 .

使用した無機固形物粉末の種類及びその配合比は表1に記載の通りであり、また粒径も表1に記載した。粒度分布は100粒子を実測して平均粒径±5μmの以内に何粒子があるかを算出し、その粒子存在割合を求め、表1に示した。   The types and blending ratios of the inorganic solid powders used are as shown in Table 1, and the particle sizes are also shown in Table 1. The particle size distribution is shown in Table 1 by actually measuring 100 particles, calculating how many particles are within an average particle size of ± 5 μm, and determining the particle existence ratio.

<評価>
栄養細胞数
汚泥サンプルをホモジナイザーで15000rpm、1分間分散させ、0.7%の生理食塩水で希釈した後、デンプンを含むニュートリエントロブロス寒天培地上に平板塗株し、32℃にて48時間培養後、生育した後、生育したコロニーを計数して栄養細胞数とした。
<Evaluation>
Number of vegetative cells Disperse the sludge sample with a homogenizer at 15000 rpm for 1 minute, dilute with 0.7% physiological saline, plate on a Nutrientro broth agar medium containing starch, and culture at 32 ° C for 48 hours Then, after growing, the number of grown colonies was counted as the number of vegetative cells.

栄養細胞数は汚泥中の有機成分(Vss)mg当りのカウント数で表し、その結果を表1に示した。   The number of vegetative cells is represented by the number of counts per mg of organic component (Vss) in the sludge, and the results are shown in Table 1.

amoA
リアルタイム定量PCRにより、アンモニア酸化細菌の機能遺伝子であるamoAの定量を行った。amoA(アンモニア酸化機能遺伝子)のコピー数については、汚泥(Vss)mg当りのamoAのコピー数で表し、その結果を表1に示した。
amoA
AmoA, which is a functional gene of ammonia-oxidizing bacteria, was quantified by real-time quantitative PCR. The copy number of amoA (ammonia oxidation functional gene) is expressed as the copy number of amoA per mg of sludge (Vss). The results are shown in Table 1.

廃水処理のための酸素消費速度
単位時間当り、汚泥(Vss)1gによって消費される酸素量(mg)を求め、その結果を表1に示した。
Oxygen consumption rate for wastewater treatment The amount of oxygen (mg) consumed by 1 g of sludge (Vss) per unit time was determined, and the results are shown in Table 1.

硝化速度
単位時間当り、汚泥(Vss)1gによって硝化される窒素量(mg)を求め、その結果を表1に示した。
Nitrification rate The amount of nitrogen (mg) nitrified by 1 g of sludge (Vss) per unit time was determined, and the results are shown in Table 1.

Figure 0004976032
Figure 0004976032

表1の結果から、無機固形物微粒子の粒径を小さくし、しかも均一に粒度分布にすることにより、栄養細胞数や硝化細菌数の増加がもたらされ、結果として酸素消費速度と硝化速度が向上した。即ち、粒径の微小化による菌体濃度の上昇によって処理活性が向上し、有機物処理や窒素処理に有効となることがわかる。   From the results shown in Table 1, by reducing the particle size of the inorganic solid fine particles and making the particle size distribution uniform, the number of vegetative cells and the number of nitrifying bacteria are increased. As a result, the oxygen consumption rate and the nitrification rate are reduced. Improved. That is, it can be seen that the treatment activity is improved by the increase in the bacterial cell concentration due to the reduction in particle size, which is effective for organic matter treatment and nitrogen treatment.

実施例5及び比較例4
実施例2で用いた粘板岩粉末(平均粒径8μm、粒度分布±5μm以内に70重量%)と比較例1で用いた粘板岩粉末(平均粒径20μm、粒度分布±5μm以内に50重量%)をそれぞれ固形物濃度2.8%濃縮汚泥5Lに0.3重量%添加して、空気注入による攪拌を行って、汚泥固形分の減量率を測定した。
Example 5 and Comparative Example 4
The slate powder used in Example 2 (average particle size of 8 μm, particle size distribution within 70% by weight within ± 5 μm) and the slate powder used in Comparative Example 1 (average particle size of 20 μm, particle size distribution within 50% by weight within ± 5 μm) In each case, 0.3% by weight was added to 5 L of concentrated sludge having a solid concentration of 2.8%, and stirring by air injection was performed to measure the rate of weight loss of sludge solids.

空気通気量は標準水素電極電位基準の酸化還元電位+0.1〜−0.1の範囲になるように調整した。   The air flow rate was adjusted so as to be in the range of redox potential +0.1 to -0.1 based on the standard hydrogen electrode potential.

また塩化鉄水溶液、水酸化マグネシウム水溶液、水酸化カルシウム水溶液及び塩化鉄水溶液と水酸化マグネシウム水溶液の混合溶液を表2の添加量となるように添加した。   Further, an aqueous solution of iron chloride, an aqueous solution of magnesium hydroxide, an aqueous solution of calcium hydroxide, and a mixed solution of an aqueous solution of iron chloride and an aqueous magnesium hydroxide solution were added so as to have the addition amounts shown in Table 2.

汚泥減量率の結果は表2に示す通りである。   The results of the sludge reduction rate are as shown in Table 2.

Figure 0004976032
Figure 0004976032

本発明に係る有機性廃水の処理方法を実施する装置の一例を示す説明図Explanatory drawing which shows an example of the apparatus which implements the processing method of the organic wastewater which concerns on this invention 汚泥馴養槽の構成例を示す図The figure which shows the structural example of a sludge acclimatization tank 本発明の処理方法を実施する好ましい装置の一例を示す図The figure which shows an example of the preferable apparatus which enforces the processing method of this invention

符号の説明Explanation of symbols

1:気液接触工程
2:固液分離工程
3:返送管
4:汚泥馴養槽
400:ホッパー
401:調整弁
402:攪拌機
403:pH計
404:酸化還元電位計(ORP計)
405:温度調節装置
406:ブロア
407:配管
408:塩化鉄水溶液タンク
409:供給ポンプ
410:水酸化マグネシウム水溶液タンク
411:攪拌機
412:供給ポンプ
5:粉砕機
6:サイクロン
7:ホッパー
8:調整弁
9:スクリーン
10:最初沈殿池
11:曝気槽
12:最終沈殿池
13:返送管
1: Gas-liquid contact process 2: Solid-liquid separation process 3: Return pipe 4: Sludge acclimatization tank 400: Hopper 401: Adjustment valve 402: Stirrer 403: pH meter 404: Redox potential meter (ORP meter)
405: Temperature controller 406: Blower 407: Piping 408: Iron chloride aqueous solution tank 409: Supply pump 410: Magnesium hydroxide aqueous solution tank 411: Stirrer 412: Supply pump 5: Crusher 6: Cyclone 7: Hopper 8: Regulating valve 9 : Screen 10: First sedimentation tank 11: Aeration tank 12: Final sedimentation tank 13: Return pipe

Claims (8)

有機性廃水を好気性下で生物学的に処理する気液接触槽を備えた気液接触工程と、該気液接触工程から送られる汚泥懸濁液を汚泥と処理水に固液分離する固液分離手段を備えた固液分離工程とを有する有機性廃水の処理方法において、
前記有機性廃水又は気液接触工程内の汚泥に、直接又は間接に、平均粒径(長径)10μm以下で、その分布が±5μm以内に70重量%以上ある無機固形物粉末を添加し共存する有機性廃水の処理方法であって、
前記固液分離工程で分離された汚泥の一部を汚泥馴養槽に導入し、該汚泥馴養槽内の余剰汚泥に、平均粒径(長径)10μm以下で、その分布が±5μm以内に70重量%以上ある無機固形物粉末を添加して平均時間が3時間〜10日の間共存させた後、前記気液接触槽に送ることを特徴とする有機性廃水の処理方法。
A gas-liquid contact process comprising a gas-liquid contact tank for biologically treating organic wastewater under aerobic conditions, and a solid-liquid separation of sludge suspension sent from the gas-liquid contact process into sludge and treated water. In a method for treating organic wastewater having a solid-liquid separation step equipped with a liquid separation means,
To the organic waste water or sludge in the gas-liquid contact process, an inorganic solid powder having an average particle diameter (major axis) of 10 μm or less and a distribution of 70 wt% or more within ± 5 μm is added or coexisted. a method of processing organic waste water that,
Part of the sludge separated in the solid-liquid separation step is introduced into a sludge acclimation tank, and the excess sludge in the sludge acclimation tank has an average particle size (major axis) of 10 μm or less, and the distribution is 70 weights within ± 5 μm. % Or more inorganic solid powder is added and the average time is allowed to coexist for 3 hours to 10 days, and then sent to the gas-liquid contact tank.
有機性廃水に無機固形物粉末を添加し共存する際に、(1)有機性廃水を貯留する廃水槽を備え、該廃水槽に添加・共存する方法、又は(2)有機性廃水を気液接触槽に送る過程で添加し、共存させる方法を採用することを特徴とする請求項記載の有機性廃水の処理方法。 When adding inorganic solid powder to organic wastewater and coexisting, (1) A wastewater tank for storing organic wastewater is provided and added to the wastewater tank, or (2) Organic wastewater is gas-liquid It was added in the process of sending the contact tank, the method of treating organic waste water according to claim 1, characterized by using a method for coexistence. 有機性廃水と無機固形物粉末を共存させる平均時間は、3時間〜10日の範囲であることを特徴とする請求項1又は2記載の有機性廃水の処理方法。   The method for treating organic wastewater according to claim 1 or 2, wherein the average time for coexistence of the organic wastewater and the inorganic solid powder is in the range of 3 hours to 10 days. 汚泥馴養槽が、10℃〜60℃の範囲に温度調節されることを特徴とする請求項1〜3の何れかに記載の有機性廃水の処理方法。 The method for treating organic wastewater according to any one of claims 1 to 3 , wherein the temperature of the sludge conditioned tank is adjusted to a range of 10 ° C to 60 ° C. 汚泥馴養槽が、標準水素電極電位基準の酸化還元電位+0.1〜−0.1の範囲に好気度調節されることを特徴とする請求項1〜4の何れかに記載の有機性廃水の処理方法。 The organic wastewater according to any one of claims 1 to 4, wherein the sludge acclimatization tank is adjusted to an aerobic degree within a range of redox potential +0.1 to -0.1 based on a standard hydrogen electrode potential. Processing method. 汚泥馴養槽に、鉄化合物、マグネシウム化合物及びカルシウム化合物の中から選ばれる少なくとも1種を添加することを特徴とする請求項1〜5の何れかに記載の有機性廃水の処理方法。 The method for treating organic wastewater according to any one of claims 1 to 5, wherein at least one selected from an iron compound, a magnesium compound and a calcium compound is added to a sludge acclimation tank. 無機固形物粉末は、粘土質鉱物粉体又は貝殻粉末であることを特徴とする請求項1〜の何れかに記載の有機性廃水の処理方法。 The method for treating organic wastewater according to any one of claims 1 to 6 , wherein the inorganic solid powder is a clay mineral powder or a shell powder. 無機固形物粉末のアルミニウム元素含有量が15%以下であることを特徴とする請求項1〜の何れかに記載の有機性廃水の処理方法。 The method for treating organic wastewater according to any one of claims 1 to 7 , wherein the inorganic element powder has an aluminum element content of 15% or less.
JP2006085818A 2006-03-27 2006-03-27 Organic wastewater treatment method Expired - Fee Related JP4976032B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006085818A JP4976032B2 (en) 2006-03-27 2006-03-27 Organic wastewater treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006085818A JP4976032B2 (en) 2006-03-27 2006-03-27 Organic wastewater treatment method

Publications (2)

Publication Number Publication Date
JP2007260496A JP2007260496A (en) 2007-10-11
JP4976032B2 true JP4976032B2 (en) 2012-07-18

Family

ID=38634022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006085818A Expired - Fee Related JP4976032B2 (en) 2006-03-27 2006-03-27 Organic wastewater treatment method

Country Status (1)

Country Link
JP (1) JP4976032B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008049283A (en) * 2006-08-25 2008-03-06 Japan Organo Co Ltd Water treatment apparatus

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61192389A (en) * 1985-02-22 1986-08-26 Ebara Infilco Co Ltd Biological treatment of water
JPS6249997A (en) * 1985-08-27 1987-03-04 Tohoku Electric Power Co Inc Activated sludge treatment by coal ash
JPH0773706B2 (en) * 1987-03-17 1995-08-09 新日本製鐵株式会社 Wastewater treatment method
JP2946163B2 (en) * 1993-07-21 1999-09-06 新日本製鐵株式会社 Wastewater treatment method
JP3203291B2 (en) * 1994-08-05 2001-08-27 東洋瓦斯機工株式会社 Removal method of ammonia nitrogen from raw water for tap water
JP2978404B2 (en) * 1994-10-24 1999-11-15 富士車輌株式会社 Wastewater purification equipment
JPH09131178A (en) * 1995-11-13 1997-05-20 Sumitomo Chem Co Ltd Aggregative granulation of microorganism
JP3913129B2 (en) * 2002-07-04 2007-05-09 日本碍子株式会社 Treatment performance monitoring system for biological treatment equipment
JP2005230783A (en) * 2004-02-23 2005-09-02 Sumitomo Heavy Ind Ltd Biological wastewater treatment apparatus and biological wastewater treatment method

Also Published As

Publication number Publication date
JP2007260496A (en) 2007-10-11

Similar Documents

Publication Publication Date Title
Wang et al. Characteristics of aerobic granule and nitrogen and phosphorus removal in a SBR
Othman et al. Livestock wastewater treatment using aerobic granular sludge
CN102485668A (en) Wastewater pretreatment method and application thereof
Wiszniowski et al. The effect of landfill leachate composition on organics and nitrogen removal in an activated sludge system with bentonite additive
JP2935619B2 (en) Bottom sediment / water quality improvement method and improver set used in the method
Xin et al. Rapid formation of aerobic granular sludge and its mechanism in a continuous-flow bioreactor
JP4925208B2 (en) Aerobic granule formation method, water treatment method and water treatment apparatus
Czarnota et al. Powdered keramsite as unconventional method of AGS technology support in GSBR reactor with minimum-optimum OLR
Wang et al. A control strategy for promoting the stability of denitrifying granular sludge in upflow sludge blankets
JP4976032B2 (en) Organic wastewater treatment method
CN106457093A (en) Side stream treatment for overflow
CN106673303A (en) Multi-effect and energy-saving bio-contact oxidation process
CN105541040B (en) A kind of method and its device that short-cut nitrification and denitrification is realized in artificial swamp
WO2020095999A1 (en) Water treating agent, method for producing water treating agent, method for treating water of interest using water treating agent, and kit for production of water treating agent
Yang et al. Development of an advanced biological treatment system applied to the removal of nitrogen and phosphorus using the sludge ceramics
Ali et al. Enhanced short-cut nitrification in an airlift reactor by CaCO 3 attachment on biomass under high bicarbonate condition
Pan et al. Adding waste iron shavings in a pilot-scale two-stage SBRs to develop aerobic granular sludge treating real wastewater
CN103880184B (en) A kind of without the ultra-clean sewage water treatment method of sludge organism ball and system
Simelane et al. The fate, behaviour and effect of WO3 nanoparticles on the functionality of an aerobic treatment unit
KR100292432B1 (en) Modified oxidation ditch for organic wastewater treatment
CN103373768A (en) Method for reducing biological slime in circulating water system
KR20020018925A (en) A wastewater treatment methods
CN112062199A (en) Sediment-water interface nutritive salt targeted blocking method
JP6490774B1 (en) Method of treating organic wastewater and method of producing immobilized microorganism preparation
JP2004041981A (en) Organic waste water treatment method and its system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080402

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110517

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110719

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120313

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120412

R150 Certificate of patent or registration of utility model

Ref document number: 4976032

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150420

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees