JP4975993B2 - Sealed secondary battery - Google Patents

Sealed secondary battery Download PDF

Info

Publication number
JP4975993B2
JP4975993B2 JP2005274196A JP2005274196A JP4975993B2 JP 4975993 B2 JP4975993 B2 JP 4975993B2 JP 2005274196 A JP2005274196 A JP 2005274196A JP 2005274196 A JP2005274196 A JP 2005274196A JP 4975993 B2 JP4975993 B2 JP 4975993B2
Authority
JP
Japan
Prior art keywords
battery
diaphragm
current collecting
secondary battery
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005274196A
Other languages
Japanese (ja)
Other versions
JP2007087730A (en
Inventor
克典 鈴木
祐一 高塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vehicle Energy Japan Inc
Original Assignee
Hitachi Vehicle Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Vehicle Energy Ltd filed Critical Hitachi Vehicle Energy Ltd
Priority to JP2005274196A priority Critical patent/JP4975993B2/en
Publication of JP2007087730A publication Critical patent/JP2007087730A/en
Application granted granted Critical
Publication of JP4975993B2 publication Critical patent/JP4975993B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は密閉型二次電池に係り、特に、捲回電極群と底側が捲回電極群の軸芯に支持されたリング状の集電部材とを内蔵し、導電性ダイヤフラムを有する電池蓋が電池缶にかしめられた密閉型二次電池に関する。   The present invention relates to a sealed secondary battery, and in particular, a battery lid including a wound electrode group and a ring-shaped current collecting member whose bottom side is supported by an axis of the wound electrode group, and having a conductive diaphragm. The present invention relates to a sealed secondary battery caulked in a battery can.

従来、密閉型二次電池は家電製品に汎用されており、最近では、密閉型二次電池の中でも特にリチウム二次電池が数多く用いられている。また、リチウム二次電池はエネルギ密度が高いことから、大容量電池として、例えば、電気自動車(EV)やハイブリッド電気自動車(HEV)の車載電源としても実用化されている。大容量電池では、電池の内部抵抗を抑えるため、一般に、リング状の集電部材が用いられており、集電部材のリング外周(周縁部)に捲回電極群から導出されたリード片が接合されている(例えば、特許文献1参照)。   Conventionally, sealed secondary batteries have been widely used for home appliances, and recently, lithium secondary batteries are particularly used among sealed secondary batteries. Moreover, since the lithium secondary battery has a high energy density, it has been put to practical use as a large capacity battery, for example, as an in-vehicle power source for an electric vehicle (EV) or a hybrid electric vehicle (HEV). In large-capacity batteries, a ring-shaped current collecting member is generally used to suppress the internal resistance of the battery, and the lead piece led out from the wound electrode group is joined to the ring outer periphery (periphery) of the current collecting member (For example, refer to Patent Document 1).

また、上述したリチウム二次電池では、過充電等の異常状態に陥ると、正負極間の内部短絡が生じて電解液の分解によるガスが発生するため、電池内圧が上昇することがある。この問題を解決するため、本発明者らは、先に、防爆装置を内蔵した上蓋を備えた密閉円筒型リチウム二次電池を提案した(特許文献1参照)。この電池の構造について簡単に説明する。   Further, in the above-described lithium secondary battery, when an abnormal state such as overcharge occurs, an internal short circuit occurs between the positive and negative electrodes, and gas is generated due to decomposition of the electrolyte, which may increase the internal pressure of the battery. In order to solve this problem, the present inventors have previously proposed a sealed cylindrical lithium secondary battery having an upper lid with a built-in explosion-proof device (see Patent Document 1). The structure of this battery will be briefly described.

図4に示すように、密閉型二次電池50は、有底円筒状の電池缶41及び電池缶41を封口する電池蓋45を備えている。電池缶41内には捲回電極群42が収容されている。電極群42は軸芯には正極集電リング40の底部が支持(固定)されており、電池蓋45には、電極群42側に突出した反転部を有する皿状のダイヤフラム2が固定されている。ダイヤフラム2の中央部には、中央にダイヤフラム2側に突出した平面部を有する接続板46が電気的・機械的に接合されている。ダイヤフラム2の反転圧は、電池内圧が所定圧になったときに作動(ダイヤフラム2の反転部が電極群42と反対側に反転)するように抵抗溶接で設定されている。接続板46及び正極集電リング40間は、帯状の接続リード32で接続されている。図4に示すように、接続リード32は、リード板32a、32bの2個の部品で構成されており、両部品とも複数の短冊状のアルミニウム箔が重ね合わされ、それぞれの両端が超音波溶接されている。電池の組み立て時には、リード板32aの一端及び接続板46間、リード板32bの一端及び正極集電リング20間のそれぞれが予め超音波溶接で接続され、電池缶41に電極群42が収容され、電池缶41に段付け加工が施された後、リード板32a、32bの他端同士が超音波溶接される。   As shown in FIG. 4, the sealed secondary battery 50 includes a bottomed cylindrical battery can 41 and a battery lid 45 that seals the battery can 41. A wound electrode group 42 is accommodated in the battery can 41. The electrode group 42 is supported (fixed) at the bottom of the positive electrode current collecting ring 40 at the shaft core, and the plate-shaped diaphragm 2 having an inverted portion protruding toward the electrode group 42 is fixed to the battery lid 45. Yes. A connecting plate 46 having a flat portion projecting toward the diaphragm 2 at the center is electrically and mechanically joined to the center portion of the diaphragm 2. The reversing pressure of the diaphragm 2 is set by resistance welding so that it operates (the reversing part of the diaphragm 2 is reversed to the side opposite to the electrode group 42) when the battery internal pressure reaches a predetermined pressure. The connection plate 46 and the positive electrode current collector ring 40 are connected by a strip-shaped connection lead 32. As shown in FIG. 4, the connecting lead 32 is composed of two parts, lead plates 32a and 32b. Both parts are overlapped with a plurality of strip-shaped aluminum foils, and both ends are ultrasonically welded. ing. When the battery is assembled, one end of the lead plate 32a and the connection plate 46, one end of the lead plate 32b and the positive electrode current collecting ring 20 are connected in advance by ultrasonic welding, and the electrode group 42 is accommodated in the battery can 41, After the battery can 41 is stepped, the other ends of the lead plates 32a and 32b are ultrasonically welded.

特開2004−134204号公報JP 2004-134204 A

しかしながら、上記密閉型二次電池では、ダイヤフラムと正極集電リングとの間に接続板及び接続リードが介在し、接続リードが折り曲げられて電池缶内に収容されるため、接続板や折り曲げられた接続リードの厚さに相当する分、電池の長手方向の大きさが大きくなる。このため、電池体積が増加し体積効率が低下すると共に、電池缶や正極集電リング等を大きくした分の電池重量も増加する。EVやHEV用電源に使用される場合は、電池体積の増加は車内空間の減少につながり、電池重量の増加は燃費(燃料消費率)の低下につながる。また、ダイヤフラムと正極集電リングとの電気的接続のために、数回に及ぶ溶接工程が必要となり、電池のコスト高を招く。   However, in the sealed secondary battery, the connection plate and the connection lead are interposed between the diaphragm and the positive electrode current collection ring, and the connection lead is bent and accommodated in the battery can. The size of the battery in the longitudinal direction is increased by an amount corresponding to the thickness of the connection lead. For this reason, the battery volume is increased and the volume efficiency is lowered, and the battery weight corresponding to the increased size of the battery can and the positive electrode current collecting ring is also increased. When used for a power supply for EVs or HEVs, an increase in battery volume leads to a decrease in vehicle interior space, and an increase in battery weight leads to a decrease in fuel consumption (fuel consumption rate). In addition, several electrical welding steps are required for electrical connection between the diaphragm and the positive electrode current collector ring, resulting in high battery costs.

本発明は上記事案に鑑み、軽量化を図り体積効率を向上させることができる密閉型二次電池を提供することを課題とする。   An object of the present invention is to provide a sealed secondary battery capable of reducing the weight and improving the volume efficiency in view of the above case.

上記課題を解決するために、本発明は、捲回電極群と、前記捲回電極群の軸芯に底側を支持されたリング状の集電部材と、前記捲回電極群と前記集電部材とを内蔵する電池缶と、前記電池缶にかしめられ導電性ダイヤフラムを有する電池蓋と、前記集電部材の底部と前記導電性ダイヤフラムの反転部との間に介在する平板状の導電部材と、を備え、前記導電性ダイヤフラムはその反転部が前記集電部材のリング内に収容されており、かつ、前記導電部材は一面側が前記集電部材のリング内底部に接合され他面側が前記導電性ダイヤフラムの反転部に接合されていることを特徴とする密閉型二次電池であるIn order to solve the above-mentioned problems, the present invention provides a wound electrode group , a ring-shaped current collecting member supported on the bottom side by an axis of the wound electrode group, the wound electrode group, and the current collector. A battery can having a built-in member, a battery lid caulked on the battery can and having a conductive diaphragm, a flat conductive member interposed between a bottom portion of the current collecting member and an inverted portion of the conductive diaphragm, The conductive diaphragm has an inverted portion accommodated in the ring of the current collecting member, and the conductive member has one surface joined to the bottom of the current collecting member and the other surface is electrically conductive. It is a sealed secondary battery characterized by being joined to the reversal part of the conductive diaphragm .

本発明では、導電性ダイヤフラムの反転部が集電部材のリング内に収容されており、かつ、集電部材の底部と導電性ダイヤフラムの反転部との間に介在する平板状の導電部材が一面側を集電部材のリング内底部に接合され他面側を導電性ダイヤフラムの反転部に接合されているため、ダイヤフラム及び集電部材間の距離が減少し電池全体の体積効率を向上させることができると共に、従来使用された接続板や帯状の接続リードを平板状の導電部材の1部材で代替でき、電池缶を小さくすることができるので、電池の軽量化を図ることができる。 In the present invention, the inversion part of the conductive diaphragm is accommodated in the ring of the current collecting member, and the flat conductive member interposed between the bottom part of the current collecting member and the inversion part of the conductive diaphragm is one side. Since the side is joined to the inner bottom of the ring of the current collecting member and the other side is joined to the reversing part of the conductive diaphragm, the distance between the diaphragm and the current collecting member is reduced, and the volume efficiency of the entire battery can be improved. In addition, the conventionally used connection plate and strip-shaped connection lead can be replaced with one member of a flat plate-like conductive member, and the battery can can be made smaller, so that the weight of the battery can be reduced.

本発明において、集電部材の周縁部が捲回電極群と反対側に曲げられた端面を有しており、端面の上部にダイヤフラムの周縁部が対向するように位置していてもよい。このとき、集電部材の端面にブッシュが配置されており、ブッシュがダイヤフラムの周縁部と、集電部材の周縁部とで挟持されていてもよい。ダイヤフラムの反転部と導電部材とが摩擦攪拌接合で接合されていれば、摩擦熱以外の熱源が不要なため、接合作業を容易に行うことができる。また、電池缶にかしめられた電池蓋の開口を介してダイヤフラムの反転部と導電部材とが接合されれば、電池缶に電池蓋をかしめるときの外力がダイヤフラムと導電部材との接合部分に加わることを回避することができ、ダイヤフラムの反転圧を一定に維持できるため、電池の信頼性を向上させることができる。 In the present invention, the peripheral portion of the current collecting member may have an end surface bent to the opposite side to the wound electrode group, and the diaphragm may be positioned so that the peripheral portion of the diaphragm faces the upper portion of the end surface. At this time, a bush may be disposed on the end face of the current collecting member, and the bush may be sandwiched between the peripheral edge of the diaphragm and the peripheral edge of the current collecting member. If the inversion part of the diaphragm and the conductive member are joined by friction stir welding, a heat source other than frictional heat is unnecessary, so that the joining work can be easily performed. Also, if the reverse part of the diaphragm and the conductive member are joined through the opening of the battery lid crimped to the battery can, the external force when caulking the battery lid to the battery can is applied to the joint between the diaphragm and the conductive member. This can be avoided and the reversing pressure of the diaphragm can be kept constant, so that the reliability of the battery can be improved.

本発明によれば、導電性ダイヤフラムの反転部が集電部材のリング内に収容されており、かつ、集電部材の底部と導電性ダイヤフラムの反転部との間に介在する平板状の導電部材が一面側を集電部材のリング内底部に接合され他面側を導電性ダイヤフラムの反転部に接合されているため、ダイヤフラム及び集電部材間の距離が減少し電池全体の体積効率を向上させることができると共に、従来使用された接続板や帯状の接続リードを平板状の導電部材の1部材で代替できるので、電池の軽量化を図ることができる、という効果を得ることができる。 According to the present invention, the inversion portion of the conductive diaphragm is accommodated in the ring of the current collecting member, and the flat conductive member is interposed between the bottom portion of the current collecting member and the inversion portion of the conductive diaphragm. Since one side is joined to the inner bottom of the ring of the current collecting member and the other side is joined to the reversing part of the conductive diaphragm, the distance between the diaphragm and the current collecting member is reduced, improving the volume efficiency of the entire battery. In addition, since the conventionally used connection plate and strip-shaped connection lead can be replaced with one member of the flat plate-like conductive member, the effect of reducing the weight of the battery can be obtained.

以下、図面を参照して、本発明を密閉円筒型リチウムイオン二次電池に適用した実施の形態について説明する。   Embodiments in which the present invention is applied to a sealed cylindrical lithium ion secondary battery will be described below with reference to the drawings.

(構成)
図1に示すように、本実施形態の密閉円筒型リチウムイオン電池30は、捲回電極群12を備えている。捲回電極群12は、正極及び負極がポリエチレン製微多孔薄膜のセパレータを介してガラス入り樹脂製軸芯13の周りに捲回されており、負極外部端子を兼ねる有底円筒状の金属製電池缶11内に収容(内蔵)されている。
(Constitution)
As shown in FIG. 1, the sealed cylindrical lithium ion battery 30 of this embodiment includes a wound electrode group 12. The wound electrode group 12 has a bottomed cylindrical metal battery in which a positive electrode and a negative electrode are wound around a glass-filled resin shaft 13 through a polyethylene microporous thin film separator and also serve as a negative electrode external terminal. It is accommodated (built in) in the can 11.

捲回電極群12を構成する正極は、リチウムマンガン複合酸化物(LiMnO、LiMn)又はLiMnO、LiMnのリチウムサイト又はマンガンサイトを他の金属元素で置換又はドープしたリチウムマンガン遷移金属複合酸化物の粉末、導電材の炭素材料、結着剤のポリフッ化ビニリデン(以下、PVDFと略記する。)及び粘度調整溶媒としてn−メチルピロリドン(以下、NMPと略記する。)を混合し、コーネルデスパで均一となるように分散、混練して得た正極活物質合剤を正極集電体のアルミニウム箔の両面に略均一に塗布し、乾燥、プレス後、集電するための一部を残して帯状に裁断して得られたものである。集電するために残した部分には複数の正極タブが形成されている。なお、リチウムマンガン遷移金属複合酸化物は、化学式LiMn1−x、LiMn2−x(Mは、Mn、Fe、Co、Ni等から選ばれる1種以上の遷移金属)で表すことができる。 The positive electrode constituting the wound electrode group 12 is lithium manganese composite oxide (LiMnO 2 , LiMn 2 O 4 ) or lithium obtained by replacing or doping lithium sites or manganese sites of LiMnO 2 , LiMn 2 O 4 with other metal elements. Manganese transition metal complex oxide powder, conductive carbon material, binder polyvinylidene fluoride (hereinafter abbreviated as PVDF) and n-methylpyrrolidone (hereinafter abbreviated as NMP) as a viscosity adjusting solvent. A positive electrode active material mixture obtained by mixing, dispersing and kneading so as to be uniform in a Cornell despa is applied almost uniformly on both sides of the aluminum foil of the positive electrode current collector, dried, pressed, and then collected It was obtained by cutting it into a strip shape, leaving a part. A plurality of positive electrode tabs are formed in a portion left for current collection. Incidentally, the lithium manganese transition metal complex oxide has the formula LiMn 1-x M x O 2 , LiMn 2-x M x O 4 (M is Mn, Fe, Co, 1 or more transition metals selected from Ni, etc. ).

一方、負極は、黒鉛等の炭素材、結着剤のPVDF及び粘度調整溶媒のNMPを混合し、コーネルデスパで均一となるように分散、混練して得た負極活物質合剤を負極集電体の銅箔の両面に略均一に塗布し、乾燥、プレス後、集電するための一部を残して帯状に裁断して得られたものである。集電するために残した部分には複数の負極タブが形成されている。   On the other hand, for the negative electrode, a negative electrode active material mixture obtained by mixing a carbon material such as graphite, a binder PVDF, and a viscosity adjusting solvent NMP, and dispersing and kneading it uniformly in Cornell Despa. It was obtained by applying it almost uniformly on both sides of the copper foil of the body, cutting it into a strip shape after drying and pressing, leaving a part for current collection. A plurality of negative electrode tabs are formed in a portion left for current collection.

正極タブ及び負極タブは捲回電極群12の互いに反対側の両端面に位置するように配置されている。軸芯13の上端には集電用の正極集電リング20が固定されており、正極集電リング20の周縁部には正極タブが超音波溶接されている。図2に示すように、正極集電リング20は、周縁部が上側に曲げられて開口が形成されており、軸芯13に固定するための円筒状突起が下側(底側)の中央部に形成されている。この円筒状突起の中空部分は、正極集電リング20の底部上面(上蓋20側の面)まで貫通しており、軸芯13と同軸の中空部分が形成される。正極集電リング20の底部上面には、正極側の通電経路を構成する平板状でアルミニウム合金製の導電板3が摩擦攪拌溶接で機械的・電気的に接合されている。正極集電リング20の底部上面まで貫通した中空部分の上側が導電板3で塞がれている。正極集電リング20の上側に曲げられた周縁部の端面には、円環状でポリプロピレン樹脂製のブッシュ16が配設されている。   The positive electrode tab and the negative electrode tab are arranged so as to be located on both end surfaces on the opposite sides of the wound electrode group 12. A positive current collecting ring 20 for current collection is fixed to the upper end of the shaft core 13, and a positive electrode tab is ultrasonically welded to the peripheral edge of the positive current collecting ring 20. As shown in FIG. 2, the positive electrode current collecting ring 20 has a peripheral edge bent upward to form an opening, and a cylindrical protrusion for fixing to the shaft core 13 has a lower (bottom side) central portion. Is formed. The hollow portion of the cylindrical projection penetrates to the bottom upper surface (the surface on the upper lid 20 side) of the positive electrode current collecting ring 20, and a hollow portion coaxial with the shaft core 13 is formed. On the upper surface of the bottom of the positive electrode current collecting ring 20, a flat plate-shaped aluminum alloy conductive plate 3 that constitutes a current-carrying path on the positive electrode side is mechanically and electrically joined by friction stir welding. The upper side of the hollow portion that penetrates to the upper surface of the bottom of the positive electrode current collecting ring 20 is closed by the conductive plate 3. An annular, polypropylene resin bush 16 is disposed on the end surface of the peripheral edge bent upward of the positive electrode current collecting ring 20.

一方、図1に示すように、軸芯13の下端には集電用の負極集電リングが固定されており、負極集電リングの周縁部には負極タブが超音波溶接されている。負極集電リングには、負極リード板が固定されている。負極リード板は、正極集電リング20と軸芯13との同軸の中空部分に電極棒を挿入することで、電池缶11の内底面に抵抗溶接で接合されており、電池缶11と負極とが電気的に接続されている。 On the other hand, as shown in FIG. 1, a negative electrode current collecting ring for current collection is fixed to the lower end of the shaft core 13, and a negative electrode tab is ultrasonically welded to the peripheral portion of the negative electrode current collecting ring. A negative electrode lead plate is fixed to the negative electrode current collecting ring. The negative electrode lead plate is joined to the inner bottom surface of the battery can 11 by resistance welding by inserting an electrode rod into a coaxial hollow portion of the positive electrode current collecting ring 20 and the shaft core 13. Are electrically connected.

上蓋15は、鉄製でニッケルメッキが施された円盤状の上蓋キャップを有している。上蓋キャップの中央部には上方に向けて突出した円筒状の突起が形成されており、突起の上面には電池内部で発生したガスを排出するための開口部5が形成されている。上蓋キャップの周縁部はダイヤフラム2の周縁部でかしめられている。ダイヤフラム2は、アルミニウム合金製で下方(捲回電極群12側)に突出した反転部を有する皿状に形成されている。ダイヤフラム2の反転部は正極集電リング20に形成された開口内(正極集電リング20のリング内)に収容されている。皿状の底部は平面状でありダイヤフラム2の中央部を形成している。ダイヤフラム2の中央部と周縁部との間には、薄肉化されており電池内圧が所定圧に達すると開裂する開裂溝8が形成されている。   The upper lid 15 has a disk-shaped upper lid cap made of iron and nickel-plated. A cylindrical protrusion protruding upward is formed at the center of the upper lid cap, and an opening 5 for discharging gas generated inside the battery is formed on the upper surface of the protrusion. The peripheral edge of the upper lid cap is caulked by the peripheral edge of the diaphragm 2. The diaphragm 2 is made of an aluminum alloy and is formed in a dish shape having an inversion portion protruding downward (on the wound electrode group 12 side). The inversion part of the diaphragm 2 is accommodated in an opening formed in the positive electrode current collector ring 20 (in the ring of the positive electrode current collector ring 20). The dish-shaped bottom is flat and forms the center of the diaphragm 2. Between the center part and the peripheral part of the diaphragm 2, a cleavage groove 8 is formed which is thinned and is cleaved when the battery internal pressure reaches a predetermined pressure.

ダイヤフラム2の中央部の底面は、正極集電リング20の底部上面に接合された導電板3の上面に摩擦攪拌溶接で接合されている。この接合により、正極集電リング20に配設されたブッシュ16は、ダイヤフラム2と正極集電リング20とで狭持される。ダイヤフラム2と導電板3との接合強度は、リチウムイオン電池30の内圧が所定圧になったときにダイヤフラム2が作動(反転部が上蓋キャップ側に反転)するように、摩擦攪拌溶接で調整されている。 The bottom surface of the center portion of the diaphragm 2 is joined to the upper surface of the conductive plate 3 joined to the upper surface of the bottom portion of the positive electrode current collecting ring 20 by friction stir welding. By this joining, the bush 16 disposed on the positive electrode current collecting ring 20 is sandwiched between the diaphragm 2 and the positive electrode current collecting ring 20. The bonding strength between the diaphragm 2 and the conductive plate 3 is adjusted by friction stir welding so that when the internal pressure of the lithium ion battery 30 reaches a predetermined pressure, the diaphragm 2 is activated (the reversing part is reversed to the upper lid cap side). ing.

上蓋15の周縁部は、ガスケット14を介して電池缶11にかしめられており、リチウムイオン二次電池30内が密閉されている。また、電池缶11内には、非水電解液が注液されている。非水電解液には、エチレンカーボネート、ジメチルカーボネート等の有機溶媒に6フッ化リン酸リチウムや4フッ化ホウ酸リチウムを1モル/リットル程度溶解したものが用いられている。   The peripheral edge of the upper lid 15 is caulked to the battery can 11 via the gasket 14, and the inside of the lithium ion secondary battery 30 is sealed. Further, a non-aqueous electrolyte is injected into the battery can 11. As the non-aqueous electrolyte, a solution obtained by dissolving lithium hexafluorophosphate or lithium tetrafluoroborate in an organic solvent such as ethylene carbonate or dimethyl carbonate in an amount of about 1 mol / liter is used.

リチウムイオン二次電池30は、以下の手順で組み立てられる。すなわち、捲回電極群12を作製し、正極集電リング20、負極集電リングに正負極タブをそれぞれ接続した後、捲回電極群12を電池缶11に収容する。負極側を電池缶11の内底面に固定した後、正極集電リング20の底部上面に導電板3を摩擦攪拌溶接で接合する。捲回電極群12より上方の電池缶11に上蓋15を載せるための段付け部を形成する段付け加工を施し、非水電解液を注液した後、段付け部に上蓋15を載せ、電池缶11と上蓋15とをかしめる。その後、上蓋キャップに形成された開口部5から溶接用の回転ツール(溶接治具)を差込み、ダイヤフラム2の上面に回転ツールを圧接しながら回転させることで、ダイヤフラム2と導電板3とを摩擦攪拌溶接で接合する。   The lithium ion secondary battery 30 is assembled in the following procedure. That is, the wound electrode group 12 is prepared, and positive and negative electrode tabs are respectively connected to the positive electrode current collecting ring 20 and the negative electrode current collecting ring, and then the wound electrode group 12 is accommodated in the battery can 11. After fixing the negative electrode side to the inner bottom surface of the battery can 11, the conductive plate 3 is joined to the upper surface of the bottom of the positive electrode current collecting ring 20 by friction stir welding. A stepping process for forming a stepped portion for placing the upper lid 15 on the battery can 11 above the wound electrode group 12 is performed, and after pouring a non-aqueous electrolyte, the upper lid 15 is placed on the stepped portion, and the battery The can 11 and the upper lid 15 are caulked. Thereafter, a rotating tool (welding jig) for welding is inserted from the opening 5 formed in the upper lid cap, and the diaphragm 2 and the conductive plate 3 are rubbed by rotating while rotating the rotating tool against the upper surface of the diaphragm 2. Join by stir welding.

次に、本実施形態のリチウムイオン二次電池30の使用時及び電池異常時の動作について説明する。   Next, operations when the lithium ion secondary battery 30 of the present embodiment is used and when the battery is abnormal will be described.

本実施形態のリチウムイオン二次電池30は、電池使用時(通常時)には、正極から集電された電位が正極集電リング20、導電板3、ダイヤフラム2を順に通じて正極外部端子の上蓋15に導かれる。このとき、ダイヤフラム2の反転部は、正極集電リング20側に突出した状態が維持される。一方、負極から集電された電位が負極集電リング、負極リード板を通じて負極外部端子の電池缶11に導かれる。これにより、通常時の通電経路を確保することができる。   In the lithium ion secondary battery 30 of the present embodiment, when the battery is used (normal time), the potential collected from the positive electrode passes through the positive electrode current collecting ring 20, the conductive plate 3, and the diaphragm 2 in this order. Guided to the upper lid 15. At this time, the inverted portion of the diaphragm 2 is maintained in a state of protruding toward the positive electrode current collecting ring 20 side. On the other hand, the potential collected from the negative electrode is guided to the battery can 11 of the negative electrode external terminal through the negative electrode current collecting ring and the negative electrode lead plate. As a result, a normal energization path can be secured.

また、リチウムイオン二次電池30では、ダイヤフラム2の反転圧と開裂溝8の開裂圧とが設定されている。通常、反転圧は大気圧より大きく(例えば、1.5MPa)、開裂圧は反転圧より大きい値に設定されている(例えば、2MPa)。過充電、外力による変形、異物突き刺し等の電池異常が発生すると、正負極間の短絡等により発熱するため、非水電解液の気化や分解が生じて電池内圧が上昇する。リチウムイオン二次電池30の容量が大きくなるほど、電池内圧は熱暴走を伴って急激に上昇する。電池内圧が、ダイヤフラム2の反転圧に達すると、ダイヤフラム2の反転部が上蓋キャップ側に反転することで、ダイヤフラム2及び導電板3の接合が破断し通電経路が切断されるため、電流が遮断される。非水電解液の分解反応等が加速度的に進行し、更に電池内圧が上昇すると、ダイヤフラム2の反転圧より高い開裂圧に設定された開裂溝8が開裂する。これにより、電池内のガスが開裂した開裂溝8及び上蓋キャップに形成された開口部5を通じて電池外に放出されるので、電池内圧が低減する。反転圧が大気圧より大きいため、一旦ダイヤフラム2の反転部が反転すると、再度、ダイヤフラム2の中央部の底面と、導電板3の上面とが接触することはなく、異常発生後の電池の再使用が防止される。   In the lithium ion secondary battery 30, the reversal pressure of the diaphragm 2 and the cleavage pressure of the cleavage groove 8 are set. Usually, the reverse pressure is larger than atmospheric pressure (for example, 1.5 MPa), and the cleavage pressure is set to a value larger than the reverse pressure (for example, 2 MPa). When a battery abnormality such as overcharge, deformation due to external force, or foreign object puncture occurs, heat is generated due to a short circuit between the positive and negative electrodes. As the capacity of the lithium ion secondary battery 30 increases, the battery internal pressure rapidly increases with thermal runaway. When the internal pressure of the battery reaches the reversal pressure of the diaphragm 2, the reversing portion of the diaphragm 2 is reversed to the upper lid cap side, so that the connection between the diaphragm 2 and the conductive plate 3 is broken and the current-carrying path is cut off. Is done. When the decomposition reaction of the nonaqueous electrolyte proceeds at an accelerated rate and the internal pressure of the battery further increases, the cleavage groove 8 set to a cleavage pressure higher than the reverse pressure of the diaphragm 2 is broken. Thereby, since the gas in the battery is released to the outside of the battery through the cleavage groove 8 and the opening 5 formed in the upper lid cap, the internal pressure of the battery is reduced. Since the reversal pressure is greater than the atmospheric pressure, once the reversing portion of the diaphragm 2 is reversed, the bottom surface of the central portion of the diaphragm 2 and the top surface of the conductive plate 3 do not come into contact again. Use is prevented.

(作用等)
次に、本実施形態のリチウムイオン二次電池30の作用等について説明する。
(Action etc.)
Next, the operation and the like of the lithium ion secondary battery 30 of the present embodiment will be described.

従来リチウムイオン二次電池では、図3に示すように、電池蓋45を構成するダイヤフラム2の中央部の底面に、接続板46の上側に台形状に突出した平面部が接合されている。接続板46及びダイヤフラム2間には電池内圧の上昇時に、接続板46とダイヤフラム2とを離間させるためのスプリッタ48が挟持されている。捲回電極群42の上側に配置された正極集電リング40と接続板46との間は、帯状の接続リード32で接続されている。接続リード32は、図4に示すように、例えば、幅6mm、長さ30mm、厚さ0.1mmのアルミニウム箔の6枚が重ね合わされ両端が超音波溶接された2部品(リード片32a、32b)で構成されており、折り曲げられ(畳まれ)て電池缶41内に収容されている。このリチウムイオン二次電池50では、台形状の突出部を有する接続板46、折り曲げられた接続リード32及びスプリッタ48が正極集電リング40内に収容されるため、ダイヤフラム2は正極集電リング40の上側に配置される。すなわち、接続板46の突出部の大きさ分と、折り曲げられた接続リード32の厚さ分(リード片32a、32bの厚さの2倍分)とで電池の長手方向の長さを大きくする必要がある。このため、電池体積が大きくなり体積効率が低下し、正極集電リング40の周縁部の高さや電池缶41が大きくなることで電池重量も大きくなる。また、電池作製時には、正極集電リング40、接続板46、接続リード32、ダイヤフラム2等を溶接で接合するため、溶接の工数が増え(一般的には7回にも及ぶ)、コスト高を招く。本実施形態は、これらの問題を解決することができるリチウムイオン二次電池である。   In the conventional lithium ion secondary battery, as shown in FIG. 3, a flat portion protruding in a trapezoidal shape is joined to the upper side of the connection plate 46 on the bottom surface of the central portion of the diaphragm 2 constituting the battery lid 45. A splitter 48 is interposed between the connection plate 46 and the diaphragm 2 for separating the connection plate 46 and the diaphragm 2 when the battery internal pressure increases. A positive electrode current collecting ring 40 disposed on the upper side of the wound electrode group 42 and the connection plate 46 are connected by a strip-shaped connection lead 32. As shown in FIG. 4, the connection lead 32 has two parts (lead pieces 32a and 32b) in which, for example, six pieces of aluminum foil having a width of 6 mm, a length of 30 mm, and a thickness of 0.1 mm are superposed and ultrasonic welded at both ends. ) And is folded (folded) and accommodated in the battery can 41. In the lithium ion secondary battery 50, the connection plate 46 having a trapezoidal protrusion, the bent connection lead 32, and the splitter 48 are accommodated in the positive electrode current collection ring 40, so that the diaphragm 2 is provided with the positive electrode current collection ring 40. It is arranged on the upper side. That is, the length in the longitudinal direction of the battery is increased by the size of the protruding portion of the connection plate 46 and the thickness of the bent connection lead 32 (twice the thickness of the lead pieces 32a and 32b). There is a need. For this reason, the battery volume is increased, the volume efficiency is lowered, and the height of the peripheral edge of the positive electrode current collecting ring 40 and the battery can 41 are increased, thereby increasing the battery weight. In addition, since the positive electrode current collecting ring 40, the connection plate 46, the connection lead 32, the diaphragm 2 and the like are joined by welding at the time of manufacturing the battery, the number of welding processes increases (generally 7 times), which increases the cost. Invite. The present embodiment is a lithium ion secondary battery that can solve these problems.

本実施形態のリチウムイオン二次電池30では、ダイヤフラム2の反転部が正極集電リング20内に収容されている。このため、ダイヤフラム2の反転部と正極集電リング20の底部との距離が小さくなる。また、本実施形態のリチウムイオン二次電池30では、ダイヤフラム2と正極集電リング20との接続に平板状の導電板3が使用されている。このため、従来使用された接続板46と接続リード32との2部材を1部材で代替することができる。従って、上蓋15と正極集電リング20との距離が小さくなることから、電池体積を小さくし体積効率を向上させることができ、上蓋側に曲げられた正極集電リング20の周縁部の高さや電池缶11の長さを小さくすることができるので、電池の軽量化を図ることができる。また、導電板3の1部材で代替することで、溶接回数を減少させることができ、コスト低減を図ることができる。   In the lithium ion secondary battery 30 of this embodiment, the inversion part of the diaphragm 2 is accommodated in the positive electrode current collection ring 20. For this reason, the distance between the inversion part of the diaphragm 2 and the bottom part of the positive electrode current collection ring 20 becomes small. Further, in the lithium ion secondary battery 30 of the present embodiment, the flat conductive plate 3 is used for the connection between the diaphragm 2 and the positive electrode current collecting ring 20. For this reason, the two members of the connection plate 46 and the connection lead 32 used conventionally can be replaced with one member. Therefore, since the distance between the upper lid 15 and the positive electrode current collecting ring 20 is reduced, the battery volume can be reduced and the volume efficiency can be improved, and the height of the peripheral edge portion of the positive current collecting ring 20 bent toward the upper lid side Since the length of the battery can 11 can be reduced, the weight of the battery can be reduced. Moreover, by substituting with one member of the conductive plate 3, the number of weldings can be reduced, and the cost can be reduced.

また、本実施形態のリチウムイオン二次電池30では、正極集電リング20及び導電板3間、ダイヤフラム2の反転部及び導電板3間がそれぞれ摩擦攪拌溶接で接合されている。摩擦攪拌溶接では、溶接治具を2部材の溶接部分に圧接し回転させて摩擦熱を発生させることで、2部材の材料を軟化溶融させて混合攪拌し接合させるため、摩擦熱以外の熱源を必要としない。このため、溶接部分以外の部分で材料の軟化等が発生せず、溶接精度を高めることができ、溶接作業を容易に行うことができる。   In the lithium ion secondary battery 30 of the present embodiment, the positive electrode current collector ring 20 and the conductive plate 3 are joined to each other by friction stir welding between the reversing portion of the diaphragm 2 and the conductive plate 3. In friction stir welding, the welding jig is pressed against the welded part of the two members and rotated to generate frictional heat, so that the materials of the two members are softened and melted, mixed, stirred and joined. do not need. For this reason, material softening or the like does not occur in portions other than the welded portion, the welding accuracy can be increased, and the welding operation can be easily performed.

更に、本実施形態のリチウムイオン二次電池30では、電池缶11に電池蓋15をかしめた後に開口部5を介してダイヤフラム2の反転部及び導電板3間が溶接される。ダイヤフラム2及び導電板3間を接合してから、電池缶11に上蓋15をかしめると、外力が上蓋15に作用し接合部分が破断するおそれがある。ダイヤフラム2及び導電板3間の接合前に、電池缶11に上蓋15をかしめることで、接合部分の破断を回避することができる。従って、ダイヤフラム2の反転圧を一定に維持することができるので、電池異常時に確実に作動することから、電池の信頼性を向上させることができる。   Furthermore, in the lithium ion secondary battery 30 of the present embodiment, the battery lid 15 is caulked to the battery can 11 and the reverse portion of the diaphragm 2 and the conductive plate 3 are welded through the opening 5. If the upper lid 15 is crimped to the battery can 11 after the diaphragm 2 and the conductive plate 3 are joined, an external force may act on the upper lid 15 and the joint portion may be broken. By joining the upper lid 15 to the battery can 11 before joining between the diaphragm 2 and the conductive plate 3, breakage of the joined portion can be avoided. Therefore, since the reverse pressure of the diaphragm 2 can be maintained constant, the battery can be reliably operated when the battery is abnormal, so that the reliability of the battery can be improved.

また更に、本実施形態のリチウムイオン二次電池30では、ダイヤフラム2と正極集電リング20との間にポリプロピレン樹脂製のブッシュ16が介在している。このため、電池組立時に一時的に大きな荷重が上蓋15に作用しても樹脂製のブッシュ16の変形によりダイヤフラム2に形成された開裂溝8の破損を防止することができる。このため、電池作製の歩留りを向上させることができ、電池組立作業中の安全性も確保することができる。 Furthermore, in the lithium ion secondary battery 30 of the present embodiment, a bush 16 made of polypropylene resin is interposed between the diaphragm 2 and the positive electrode current collecting ring 20. For this reason, even if a large load temporarily acts on the upper lid 15 during battery assembly, the breakage of the cleavage groove 8 formed in the diaphragm 2 due to the deformation of the resin bush 16 can be prevented. For this reason, the yield of battery manufacture can be improved and the safety | security during battery assembly work can also be ensured.

更にまた、本実施形態のリチウムイオン二次電池30では、正極集電リング20の底部上面まで貫通した中空部分が導電板3で塞がれている。このため、電池異常時に発生したガスの圧力が軸芯13の中空部分に作用することなく、ダイヤフラム2に作用するので、電池内圧の上昇により反転部を確実に反転させることができる。   Furthermore, in the lithium ion secondary battery 30 of the present embodiment, the hollow portion penetrating to the upper surface of the bottom of the positive electrode current collecting ring 20 is closed with the conductive plate 3. For this reason, since the pressure of the gas generated at the time of battery abnormality does not act on the hollow portion of the shaft core 13 but acts on the diaphragm 2, the reversing portion can be reliably reversed by the increase of the battery internal pressure.

なお、本実施形態のリチウムイオン二次電池30では、ダイヤフラム2の反転圧をダイヤフラム2及び導電板3間の溶接強度で設定する例を示したが、本発明はこれに限定されるものではなく、例えば、ダイヤフラム2の厚さや強度を変えることで設定してもよい。   In the lithium ion secondary battery 30 of the present embodiment, the example in which the reverse pressure of the diaphragm 2 is set by the welding strength between the diaphragm 2 and the conductive plate 3 is shown, but the present invention is not limited to this. For example, it may be set by changing the thickness or strength of the diaphragm 2.

また、本実施形態のリチウムイオン二次電池30では、平板状の導電板3を例示したが、本発明は導電板3の形状に制限されるものではない。例えば、円形状、角形等とすることができる。更に、本実施形態では、導電板3と正極集電リング20とを別部材として説明したが、両者を一体成形してもよい。このようにすれば、部材数を減少させることができ、部品管理を容易にすることができる。   Further, in the lithium ion secondary battery 30 of the present embodiment, the flat conductive plate 3 is exemplified, but the present invention is not limited to the shape of the conductive plate 3. For example, it can be a circular shape, a square shape, or the like. Further, in the present embodiment, the conductive plate 3 and the positive electrode current collector ring 20 are described as separate members, but both may be integrally formed. If it does in this way, the number of members can be reduced and parts management can be made easy.

更に、本実施形態のリチウムイオン二次電池30では、ダイヤフラム2、導電板3の材質にアルミニウム合金を用いた例を示したが、本発明はこれに限定されるものではなく、アルミニウム、ニッケル合金、導電性プラスチック等の他の導電性材料を使用するようにしてもよい。   Furthermore, in the lithium ion secondary battery 30 of this embodiment, the example which used the aluminum alloy for the material of the diaphragm 2 and the electrically-conductive board 3 was shown, However, This invention is not limited to this, Aluminum, nickel alloy Other conductive materials such as conductive plastics may be used.

また更に、本実施形態では、正極活物質にリチウムマンガン複合酸化物やリチウムマンガン遷移金属複合酸化物を例示したが、本発明はこれらに限定されるものではない。本実施形態以外で使用することができる正極活物質としては、例えば、リチウムニッケル複合酸化物(LiNiO)やリチウムコバルト複合酸化物(LiCoO)等を用いてもよい。また、本実施形態では、負極活物質に黒鉛を例示したが、本発明はこれに限定されるものではなく、例えば、非晶質炭素等の炭素材を使用することができる。 Furthermore, in this embodiment, lithium manganese composite oxide and lithium manganese transition metal composite oxide are exemplified as the positive electrode active material, but the present invention is not limited to these. As the positive electrode active material that can be used in other embodiments, for example, lithium nickel composite oxide (LiNiO 2 ), lithium cobalt composite oxide (LiCoO 2 ), or the like may be used. In the present embodiment, graphite is exemplified as the negative electrode active material, but the present invention is not limited to this, and for example, a carbon material such as amorphous carbon can be used.

更にまた、本実施形態のリチウムイオン二次電池30では、非水電解液に、エチレンカーボネート等の混合溶媒に6フッ化リン酸リチウムを1モル/リットル程度溶解させたものを例示したが、本発明で用いることのできる非水電解液には特に制限はない。有機溶媒やリチウム塩としては、通常リチウムイオン二次電池に使用されるものであればよく、例えば、カーボネート系、スルホラン系、エーテル系、ラクトン系等の有機溶剤を単体または混合して用いた溶媒中にリチウム塩を溶解させたものを用いることができる。また、有機溶媒の混合比やリチウム塩の含有量にも特に制限されるものではない。   Furthermore, in the lithium ion secondary battery 30 of the present embodiment, an example in which about 1 mol / liter of lithium hexafluorophosphate is dissolved in a nonaqueous electrolytic solution in a mixed solvent such as ethylene carbonate is illustrated. There is no restriction | limiting in particular in the nonaqueous electrolyte solution which can be used by invention. Any organic solvent or lithium salt may be used as long as it is usually used for lithium ion secondary batteries. For example, a solvent using a single organic solvent or a mixture of organic solvents such as carbonates, sulfolanes, ethers, and lactones. What dissolved lithium salt in it can be used. Further, the mixing ratio of the organic solvent and the content of the lithium salt are not particularly limited.

また更に、本実施形態では、円筒型リチウムイオン二次電池30を例示したが、本発明はこれに限定されるものではない。例えば、角型、多角形状としてもよく、密閉型の二次電池に適用することができる。また、電池容量、サイズ等についても特に制限されるものではない。更に、本実施形態では、捲回電極群12の正極を正極集電リング20に接続し上蓋15を正極外部端子とした例を示したが、負極を上蓋15側に接続するようにしてもよい。   Furthermore, in the present embodiment, the cylindrical lithium ion secondary battery 30 is exemplified, but the present invention is not limited to this. For example, it may have a rectangular shape or a polygonal shape, and can be applied to a sealed secondary battery. Also, the battery capacity, size, etc. are not particularly limited. Furthermore, in the present embodiment, an example in which the positive electrode of the wound electrode group 12 is connected to the positive electrode current collecting ring 20 and the upper lid 15 is used as the positive electrode external terminal has been described, but the negative electrode may be connected to the upper lid 15 side. .

次に、本実施形態に従い作製したリチウムイオン二次電池30の実施例について説明する。なお、比較のために作製した比較例のリチウムイオン二次電池についても併記する。なお、捲回電極群は同一寸法で作製したものを使用し、電池容量はすべて6Ahとした。 Next, examples of the lithium ion secondary battery 30 manufactured according to the present embodiment will be described. In addition, it describes together about the lithium ion secondary battery of the comparative example produced for the comparison. In addition, the wound electrode group used what was produced with the same dimension, and all battery capacity was 6 Ah.

(実施例1) 実施例1では、ダイヤフラム2の底部を正極集電リング20のリング内に収容し、電池缶11と上蓋15とをかしめた後に、ダイヤフラム2と正極集電リング20とを導電版3を介して接続した(図1参照)。 (Example 1) In Example 1, after the bottom part of the diaphragm 2 is accommodated in the ring of the positive electrode current collection ring 20 and the battery can 11 and the upper cover 15 are caulked, the diaphragm 2 and the positive electrode current collection ring 20 are electrically conductive. Connection was made via plate 3 (see FIG. 1).

(比較例1) 比較例1では、ダイヤフラム2と正極集電リングとの接続に接続板46、接続リード32を用いた(図4参照)。 (Comparative example 1) In the comparative example 1, the connection board 46 and the connection lead 32 were used for the connection of the diaphragm 2 and a positive electrode current collection ring (refer FIG. 4).

<試験> 実施例1及び比較例1の電池について、電池高さ及び体積を測定した。また、電池作製時に、集電リングと上蓋との接続に要した溶接回数を比較した。電池高さ、体積及び溶接回数の測定結果を下表1に示す。 <Test> The battery height and volume of the batteries of Example 1 and Comparative Example 1 were measured. In addition, the number of weldings required for connecting the current collecting ring and the upper lid during battery preparation was compared. The measurement results of battery height, volume and number of weldings are shown in Table 1 below.

Figure 0004975993
Figure 0004975993

表1に示すように、接続板や接続リードを用いた比較例1のリチウムイオン二次電池では、電池高さ125mm、体積507853mmであった。これに対して、ダイヤフラム2及び正極集電リング20間を導電板3を介して接続し、ダイヤフラム2の底部を正極集電リング20のリング内に収容した実施例1のリチウムイオン二次電池30では、電池高さ123.8mm、体積502978mmを示し、いずれも減少させることができた。また、溶接回数についても、比較例1では5回を要したのに対して、実施例1では2回であった。従って、実施例1の電池では、比較例1の従来の電池と比べて、電池体積を減少させ体積効率を向上させることができることが明らかとなった。また、溶接回数も減少させることができ電池作製の工数低減を図ることができた。 As shown in Table 1, in the lithium ion secondary battery of Comparative Example 1 using the connection plate and the connection lead, the battery height was 125 mm and the volume was 507853 mm 2 . In contrast, the lithium ion secondary battery 30 of Example 1 in which the diaphragm 2 and the positive electrode current collector ring 20 are connected via the conductive plate 3 and the bottom of the diaphragm 2 is accommodated in the ring of the positive electrode current collector ring 20. Shows a battery height of 123.8 mm and a volume of 502978 mm 2 , all of which could be reduced. Also, the number of weldings was 5 in Comparative Example 1, whereas it was 2 in Example 1. Therefore, it was clarified that the battery of Example 1 can reduce the battery volume and improve the volume efficiency as compared with the conventional battery of Comparative Example 1. In addition, the number of weldings can be reduced, and the number of battery manufacturing steps can be reduced.

本発明は軽量化を図り体積効率を向上させることができる密閉型二次電池を提供するため、密閉型二次電池の製造、販売に寄与するので、産業上の利用可能性を有する。   The present invention contributes to the manufacture and sale of sealed secondary batteries in order to provide a sealed secondary battery capable of reducing the weight and improving the volumetric efficiency, and thus has industrial applicability.

本発明を適用した実施形態の密閉円筒型リチウムイオン二次電池を示す断面図である。It is sectional drawing which shows the sealed cylindrical lithium ion secondary battery of embodiment to which this invention is applied. 実施形態の密閉円筒型リチウムイオン二次電池の正極集電リングと導電板との接合部分を示す断面図である。It is sectional drawing which shows the junction part of the positive electrode current collection ring and conductive plate of the sealed cylindrical lithium ion secondary battery of embodiment. 従来の密閉円筒型リチウムイオン二次電池を示す断面図である。It is sectional drawing which shows the conventional sealed cylindrical lithium ion secondary battery. 従来の密閉円筒型リチウムイオン二次電池に使用される接続リードを示す断面図である。It is sectional drawing which shows the connection lead used for the conventional sealed cylindrical lithium ion secondary battery.

符号の説明Explanation of symbols

2 導電性ダイヤフラム
3 導電板(導電部材)
11 電池缶
12 捲回電極群
13 軸芯
15 電池蓋
20 正極集電リング(集電部材)
30 密閉円筒型リチウムイオン二次電池(密閉型二次電池)
2 Conductive diaphragm 3 Conductive plate (conductive member)
DESCRIPTION OF SYMBOLS 11 Battery can 12 Winding electrode group 13 Shaft core 15 Battery cover 20 Positive electrode current collection ring (current collection member)
30 Sealed cylindrical lithium ion secondary battery (sealed secondary battery)

Claims (5)

捲回電極群と
前記捲回電極群の軸芯に底側を支持されたリング状の集電部材と、
前記捲回電極群と前記集電部材とを内蔵する電池缶と、
前記電池缶にかしめられ導電性ダイヤフラムを有する電池蓋と、
前記集電部材の底部と前記導電性ダイヤフラムの反転部との間に介在する平板状の導電部材と、
を備え、
前記導電性ダイヤフラムはその反転部が前記集電部材のリング内に収容されており、かつ、前記導電部材は一面側が前記集電部材のリング内底部に接合され他面側が前記導電性ダイヤフラムの反転部に接合されていることを特徴とする密閉型二次電池。
A wound electrode group ;
A ring-shaped current collecting member supported on the bottom side by the axis of the wound electrode group;
A battery can containing the wound electrode group and the current collecting member;
A battery lid caulked on the battery can and having a conductive diaphragm;
A flat conductive member interposed between the bottom of the current collecting member and the inverted portion of the conductive diaphragm;
With
The conductive diaphragm has its reversal portion housed in the ring of the current collecting member, and the conductive member has one surface joined to the bottom of the current collecting member and the other surface is the reversal of the conductive diaphragm. A sealed secondary battery, wherein the sealed secondary battery is bonded to a portion .
前記集電部材は、周縁部が前記捲回電極群と反対側に曲げられた端面を有しており、The current collecting member has an end surface whose peripheral portion is bent to the opposite side to the wound electrode group, 前記端面の上部には、前記ダイヤフラムの周縁部が対向するように位置していることを特徴とする請求項1に記載の密閉型二次電池。2. The sealed secondary battery according to claim 1, wherein an upper portion of the end surface is positioned such that a peripheral edge portion of the diaphragm is opposed to the end surface. 前記端面にはブッシュが配置されており、A bush is disposed on the end face, 前記ブッシュは、前記ダイヤフラムの周縁部と、前記集電部材の周縁部とで挟持されていることを特徴とする請求項2に記載の密閉型二次電池。The sealed secondary battery according to claim 2, wherein the bush is sandwiched between a peripheral portion of the diaphragm and a peripheral portion of the current collecting member. 前記ダイヤフラムの反転部と前記導電部材とが摩擦攪拌接合で接合されていることを特徴とする請求項1に記載の密閉型二次電池。 The sealed secondary battery according to claim 1, wherein the inversion portion of the diaphragm and the conductive member are joined by friction stir welding. 前記電池缶にかしめられた電池蓋の開口を介して前記ダイヤフラムの反転部と前記導電部材とが接合されたことを特徴とする請求項に記載の密閉型二次電池。 The sealed secondary battery according to claim 4 , wherein an inversion portion of the diaphragm and the conductive member are joined through an opening of a battery lid that is caulked to the battery can.
JP2005274196A 2005-09-21 2005-09-21 Sealed secondary battery Expired - Fee Related JP4975993B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005274196A JP4975993B2 (en) 2005-09-21 2005-09-21 Sealed secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005274196A JP4975993B2 (en) 2005-09-21 2005-09-21 Sealed secondary battery

Publications (2)

Publication Number Publication Date
JP2007087730A JP2007087730A (en) 2007-04-05
JP4975993B2 true JP4975993B2 (en) 2012-07-11

Family

ID=37974504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005274196A Expired - Fee Related JP4975993B2 (en) 2005-09-21 2005-09-21 Sealed secondary battery

Country Status (1)

Country Link
JP (1) JP4975993B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5152098B2 (en) 2009-05-15 2013-02-27 トヨタ自動車株式会社 Sealed secondary battery

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3154279B2 (en) * 1998-11-13 2001-04-09 松下電器産業株式会社 Rechargeable battery
JP3786074B2 (en) * 2002-10-10 2006-06-14 新神戸電機株式会社 Sealed battery
JP4590856B2 (en) * 2003-11-14 2010-12-01 新神戸電機株式会社 Sealed battery

Also Published As

Publication number Publication date
JP2007087730A (en) 2007-04-05

Similar Documents

Publication Publication Date Title
JP5032737B2 (en) Electrochemical element
JP5774752B2 (en) Battery and battery pack
JP4416770B2 (en) Assembled battery
JP5171401B2 (en) Lithium secondary battery
JP5103489B2 (en) Sealed battery
JP6173730B2 (en) battery
JP2009032640A (en) Sealed battery and its manufacturing method
JP5137516B2 (en) Sealed battery
JP4798967B2 (en) Electrochemical element
JP4934994B2 (en) Sealed cylindrical secondary battery
US8337572B2 (en) Battery and method for producing the same
JP5433164B2 (en) Lithium ion secondary battery
JP5231089B2 (en) Sealed secondary battery
JP3786074B2 (en) Sealed battery
JP5334429B2 (en) Lithium secondary battery
CN111902968A (en) Battery and method for manufacturing same
JP4590856B2 (en) Sealed battery
JP4975993B2 (en) Sealed secondary battery
JP2009289714A (en) Lithium-ion secondary battery and method of manufacturing the same
JP4688605B2 (en) Cylindrical secondary battery
JP4459559B2 (en) Sealed battery
JP4691919B2 (en) Welding method for metal parts
JP2012190739A (en) Secondary battery
WO2019049377A1 (en) Battery and battery pack
JP2009176452A (en) Winding type lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120327

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120412

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150420

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees