JP4975519B2 - Rotating body measuring apparatus and measuring method - Google Patents

Rotating body measuring apparatus and measuring method Download PDF

Info

Publication number
JP4975519B2
JP4975519B2 JP2007127782A JP2007127782A JP4975519B2 JP 4975519 B2 JP4975519 B2 JP 4975519B2 JP 2007127782 A JP2007127782 A JP 2007127782A JP 2007127782 A JP2007127782 A JP 2007127782A JP 4975519 B2 JP4975519 B2 JP 4975519B2
Authority
JP
Japan
Prior art keywords
fbg sensor
optical fiber
rotating body
optical
rotating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007127782A
Other languages
Japanese (ja)
Other versions
JP2008281507A (en
Inventor
敬弘 荒川
富男 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Inspection and Instrumentation Co Ltd
Original Assignee
IHI Inspection and Instrumentation Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Inspection and Instrumentation Co Ltd filed Critical IHI Inspection and Instrumentation Co Ltd
Priority to JP2007127782A priority Critical patent/JP4975519B2/en
Publication of JP2008281507A publication Critical patent/JP2008281507A/en
Application granted granted Critical
Publication of JP4975519B2 publication Critical patent/JP4975519B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Optical Transform (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a measuring device and a measuring technique of a rotor capable of measuring physical quantities of a rotor preferably. <P>SOLUTION: The measuring device of a rotor includes a rotating section 2 with a measured rotor, a fixed supporting section 3 supporting the rotating section 2 rotatably, an optical fiber 5 a FBG sensor section 4 is formed as a measuring means of the rotor, a rotary joint 6 connecting the optical fiber 5 between the rotating section 2 and the fixed supporting section 3 so as to elongate the optical fiber 5 from the rotor to the fixed supporting section 3, a luminous source 7 emitting light to the optical fiber 5 continuously, an optical circulator 8 separating reflected light from the FBG sensor section 4, and a signal processing section 12 computing physical quantities of the rotor by processing the signal of reflected light. <P>COPYRIGHT: (C)2009,JPO&amp;INPIT

Description

本発明は、計測対象の回転体について歪みや温度等の物理量を計測する回転体の計測装置及び計測方法に関するものである。   The present invention relates to a rotating body measuring apparatus and measuring method for measuring physical quantities such as strain and temperature of a rotating body to be measured.

一般に、ホイール等の回転体について歪みや温度を計測する際には、固定支持部に回転可能に支持される回転部に対して計測対象の回転体を配置し、回転部により回転体を回転させると同時に、歪みゲージを用いて歪みを計測し、若しくは熱電対の電気的センサを用いて温度を計測するようにしている。   In general, when measuring strain and temperature of a rotating body such as a wheel, the rotating body to be measured is arranged with respect to the rotating part that is rotatably supported by the fixed support part, and the rotating body is rotated by the rotating part. At the same time, strain is measured using a strain gauge, or temperature is measured using an electric sensor of a thermocouple.

この時、固定支持部と回転部の間にはスリップリングやテレメータが備えられ、回転体の信号を回転部から固定支持部へ伝達するようにしている。   At this time, a slip ring and a telemeter are provided between the fixed support portion and the rotating portion so as to transmit a signal of the rotating body from the rotating portion to the fixed support portion.

ここで、スリップリングは、電極部に摺動面を設けて構成され、ノイズが発生し易い。又、電極部の摺動面には回転による発熱が発生するため、計測に使用できる周波数に制約を生じるという問題がある。更に、回転体の計測点数が多い場合には、電極部の摺動面が大きくなり、試験機が大型化するという問題がある。   Here, the slip ring is configured by providing a sliding surface on the electrode portion, and noise is easily generated. Further, since heat is generated by rotation on the sliding surface of the electrode part, there is a problem that a frequency that can be used for measurement is restricted. Further, when the number of measurement points of the rotating body is large, there is a problem that the sliding surface of the electrode portion becomes large and the testing machine becomes large.

一方、テレメータは、無線信号により回転部から計測手段へ送信するように構成され、回転部に電池等の電源を設置するため、回転部に電源用スペースが必要になると共に、計測時間に時間的な制約を受けるという問題がある。又、回転体の計測点数が多い場合には、センサ数が増加し、信号の伝送速度に制約を生じて高速なデータ転送が行えないという問題がある。   On the other hand, the telemeter is configured to transmit a radio signal from the rotating unit to the measuring means, and since a power source such as a battery is installed in the rotating unit, a power source space is required in the rotating unit and time is required for measurement time. There is a problem of being subject to various restrictions. Further, when the number of measurement points of the rotating body is large, the number of sensors increases, and there is a problem that high-speed data transfer cannot be performed due to restrictions on the signal transmission speed.

このため、回転体の計測点数が多い場合には、センサから計測手段まで高速なデータ転送を為し得る光ファイバを使用することが考えられている。   For this reason, when the number of measurement points of the rotating body is large, it is considered to use an optical fiber capable of performing high-speed data transfer from the sensor to the measurement means.

一例としては、回転体に光ファイバ及び光ファイバセンサを配置し、光ファイバにより回転体から固定側の計測部まで情報信号を伝達すると共に、回転体と固定支持部の間の隙間にレンズ等を設けて光を伝送し、光信号の伝達を回転体の所定位置でパルス的に行うものがある(例えば、特許文献1参照)。   As an example, an optical fiber and an optical fiber sensor are arranged on a rotating body, an information signal is transmitted from the rotating body to a fixed-side measuring unit through the optical fiber, and a lens or the like is provided in a gap between the rotating body and the fixed support section. There is one that transmits light and transmits an optical signal in a pulse manner at a predetermined position of a rotating body (for example, see Patent Document 1).

又、他例としては、パルス光源を用いると共に回転体に光ファイバ及び光ファイバセンサを配置し、光ファイバにより回転体から固定側の計測部まで情報信号を伝達すると共に、回転体と固定支持部の間の隙間にレンズ等を設けて光を伝送するものがある(例えば、特許文献2参照)。
特開2005−164326号公報 特開2006−84292号公報
As another example, a pulse light source is used and an optical fiber and an optical fiber sensor are arranged on the rotating body, and an information signal is transmitted from the rotating body to the measuring unit on the fixed side by the optical fiber. In some cases, a lens or the like is provided in a gap between the two to transmit light (see, for example, Patent Document 2).
JP-A-2005-164326 JP 2006-84292 A

しかしながら、特許文献1の例では、光信号の伝達を回転体の所定位置でパルス的に行うため、自動車の車輪のように1回転の間に接地荷重や横荷重を受ける場合には、物理量を計測できず、又、物理量の変化を連続的に計測することができないという問題があった。更に、特許文献2の例では、パルス光源を使用するため、同様に物理量を連続的に計測することができないという問題があった。   However, in the example of Patent Document 1, since transmission of an optical signal is performed in a pulse manner at a predetermined position of a rotating body, when receiving a grounding load or a lateral load during one rotation like a car wheel, a physical quantity is set. There was a problem that it was not possible to measure and changes in physical quantities could not be measured continuously. Furthermore, in the example of Patent Document 2, since a pulse light source is used, there is a problem that a physical quantity cannot be continuously measured.

又、光ファイバとして一般的に使用されるシングルモード光ファイバは、コア径が約10μmと非常に小さいため、光ファイバを接続する際には、接続による損失を低減するように調芯機能を有する専用のコネクタを使用するか、若しくは光ファイバ端部同士を融着で接続する必要があり、引用文献1、2の如くレンズ等を介して光ファイバの接続を行う場合には、調芯機能がなく、光伝送路の構成が非常に難しいという問題があった。   In addition, since a single mode optical fiber generally used as an optical fiber has a very small core diameter of about 10 μm, it has a centering function so as to reduce loss due to connection when connecting optical fibers. It is necessary to use a dedicated connector or to connect the end portions of the optical fibers by fusion. When connecting optical fibers through lenses or the like as in References 1 and 2, the alignment function is In addition, there is a problem that the configuration of the optical transmission line is very difficult.

更に、光源に光通信機器の計測用の光源を使用した場合には、光源の光強度が10dBm(10mW)程度であり、反射光の帯域が非常に狭く且つ光強度が小さくなるため、レンズによりビーム径の大きな平行光にする際には光が減衰し、室内灯等の雑音レベルが大きくなって計測及び信号処理に適さない信号となるという問題があった。又、密封されていないレンズによる光伝送では、レンズの汚れ等により光伝送損失が増大し、信号の減衰と雑音増加が生じるという問題があった。   Furthermore, when a light source for measurement of an optical communication device is used as the light source, the light intensity of the light source is about 10 dBm (10 mW), the reflected light band is very narrow, and the light intensity is small. When collimated light having a large beam diameter is used, the light is attenuated, resulting in a problem that the noise level of a room lamp or the like increases, resulting in a signal unsuitable for measurement and signal processing. In addition, in optical transmission using a lens that is not sealed, there is a problem in that optical transmission loss increases due to contamination of the lens and the like, resulting in signal attenuation and noise increase.

本発明は上述の実情に鑑みてなしたもので、回転体の物理量を好適に計測し得る回転体の計測装置及び計測方法を提供することを目的としている。   The present invention has been made in view of the above circumstances, and an object thereof is to provide a measuring device and a measuring method for a rotating body that can suitably measure a physical quantity of the rotating body.

本発明は、計測対象の回転体を配する回転部と、該回転部を回転可能に支持する固定支持部と、前記回転体に発生するひずみを計測する手段としてFBGセンサを用いる回転体の計測装置において、
複数のFBGセンサ部が形成された光ファイバと、
前記回転体から固定支持部へ光ファイバを延在するよう回転部と固定支持部の間で光ファイバ内の信号を送受信するロータリジョイントと、
前記回転部の歪み変化を生じない回転部の軸心部位に取り付けられ且つ光ファイバに形成される回転補償用のFBGセンサ部と、
前記回転部の外に置かれ、前記ロータリジョイントを介して回転部に配置されたFBGセンサに連続的に光を出力する広帯域光源と、
前記固定支持部のロータリジョイントと前記広帯域光源との間に位置して光ファイバの途中に配置された光サーキュレータと、
該光サーキュレータを介して前記FBGセンサからの反射光が導かれる光スプリッタと、
該光スプリッタの各波長帯域の出力側に位置するよう光ファイバの回路後段に配置される、前記FBGセンサが検知したひずみ量を求めるための光学フィルタと、
該光学フィルタからの光強度信号を電気信号に変換する1組の光電変換器とを備え、
前記回転体を計測する際には、FBGセンサ部の信号から、ロータリジョイントの一回転の間に生じる光伝送損失変動による、見かけ上の歪み変化を求め、更に回転補償用のFBGセンサ部の信号から、ロータリジョイントの一回転の間における、見かけ上の歪み変化を求め、FBGセンサ部の信号における見かけ上の歪み変化を、回転補償用のFBGセンサ部の信号における見かけ上の歪み変化で補正演算し、ロータリジョイントの光伝送損失の影響を除去して歪み計測補償を行うように構成されたことを特徴とする回転体の計測装置、に係るものである。
The present invention relates to a rotating unit that includes a rotating body to be measured, a fixed support unit that rotatably supports the rotating unit, and measurement of the rotating body that uses an FBG sensor as a means for measuring strain generated in the rotating body. In the device
An optical fiber in which a plurality of FBG sensor parts are formed;
A rotary joint for transmitting and receiving signals in the optical fiber between the rotating part and the fixed support part so as to extend the optical fiber from the rotating body to the fixed support part;
FBG sensor part for rotation compensation attached to the axial center part of the rotating part that does not cause distortion change of the rotating part and formed on the optical fiber,
A broadband light source that is placed outside the rotating unit and outputs light continuously to the FBG sensor disposed in the rotating unit via the rotary joint;
An optical circulator located between the rotary joint of the fixed support portion and the broadband light source and disposed in the middle of the optical fiber;
An optical splitter through which reflected light from the FBG sensor is guided through the optical circulator;
An optical filter for determining the amount of strain detected by the FBG sensor, which is arranged at the rear stage of the circuit of the optical fiber so as to be positioned on the output side of each wavelength band of the optical splitter;
A set of photoelectric converters that convert light intensity signals from the optical filter into electrical signals;
When measuring the rotating body, the FBG sensor unit signal is used to determine the apparent distortion change due to the optical transmission loss variation that occurs during one rotation of the rotary joint, and further the FBG sensor unit signal for rotation compensation From this, the apparent distortion change during one rotation of the rotary joint is obtained, and the apparent distortion change in the FBG sensor signal is corrected with the apparent distortion change in the FBG sensor signal for rotation compensation. In addition, the present invention relates to a rotating body measuring apparatus configured to remove the influence of optical transmission loss of a rotary joint and perform distortion measurement compensation.

本発明は、計測対象の回転体を配する回転部と、該回転部を回転可能に支持する固定支持部と、前記回転体に発生するひずみを計測する手段としてFBGセンサを用いる回転体の計測方法において、
複数のFBGセンサ部が形成された光ファイバと、
前記回転体から固定支持部へ光ファイバを延在するよう回転部と固定支持部の間で光ファイバ内の信号を送受信するロータリジョイントと、
前記回転部の歪み変化を生じない回転部の軸心部位に取り付けられ且つ光ファイバに形成される回転補償用のFBGセンサ部と、
前記回転部の外に置かれ、前記ロータリジョイントを介して回転部に配置されたFBGセンサに連続的に光を出力する広帯域光源と、
前記固定支持部のロータリジョイントと前記広帯域光源との間に位置して光ファイバの途中に配置された光サーキュレータと、
該光サーキュレータを介して前記FBGセンサからの反射光が導かれる光スプリッタと、
該光スプリッタの各波長帯域の出力側に位置するよう光ファイバの回路後段に配置される、前記FBGセンサが検知したひずみ量を求めるための光学フィルタと、
該光学フィルタからの光強度信号を電気信号に変換する1組の光電変換器とを備え、
前記回転体を計測する際には、FBGセンサ部の信号から、ロータリジョイントの一回転の間に生じる光伝送損失変動による、見かけ上の歪み変化を求め、更に回転補償用のFBGセンサ部の信号から、ロータリジョイントの一回転の間における、見かけ上の歪み変化を求め、FBGセンサ部の信号における見かけ上の歪み変化を、回転補償用のFBGセンサ部の信号における見かけ上の歪み変化で補正演算し、ロータリジョイントの光伝送損失の影響を除去して歪み計測補償を行うことを特徴とする回転体の計測方法、に係るものである。
The present invention relates to a rotating unit that includes a rotating body to be measured, a fixed support unit that rotatably supports the rotating unit, and measurement of the rotating body that uses an FBG sensor as a means for measuring strain generated in the rotating body. In the method
An optical fiber in which a plurality of FBG sensor parts are formed;
A rotary joint for transmitting and receiving signals in the optical fiber between the rotating part and the fixed support part so as to extend the optical fiber from the rotating body to the fixed support part;
FBG sensor part for rotation compensation attached to the axial center part of the rotating part that does not cause distortion change of the rotating part and formed on the optical fiber,
A broadband light source that is placed outside the rotating unit and outputs light continuously to the FBG sensor disposed in the rotating unit via the rotary joint;
An optical circulator located between the rotary joint of the fixed support portion and the broadband light source and disposed in the middle of the optical fiber;
An optical splitter through which reflected light from the FBG sensor is guided through the optical circulator;
An optical filter for determining the amount of strain detected by the FBG sensor, which is arranged at the rear stage of the circuit of the optical fiber so as to be positioned on the output side of each wavelength band of the optical splitter;
A set of photoelectric converters that convert light intensity signals from the optical filter into electrical signals;
When measuring the rotating body, the FBG sensor unit signal is used to determine the apparent distortion change due to the optical transmission loss variation that occurs during one rotation of the rotary joint, and further the FBG sensor unit signal for rotation compensation From this, the apparent distortion change during one rotation of the rotary joint is obtained, and the apparent distortion change in the FBG sensor signal is corrected with the apparent distortion change in the FBG sensor signal for rotation compensation. In addition, the present invention relates to a rotating body measuring method, wherein distortion measurement compensation is performed by removing the influence of optical transmission loss of a rotary joint .

上記した本発明の回転体の計測装置及び計測方法によれば、FBGセンサ部及び光ファイバを用いて計測対象の回転体を計測すると共に、回転部と固定支持部の間にロータリジョイントを介して光ファイバを接続するので、回転体を連続的に計測し、回転体が1回転する間に物理量の変化がある場合であっても、回転体の物理量を好適に計測することができる。又、回転部と固定支持部の間にロータリジョイントを配して光ファイバを接続するので、光伝送路の構成を容易にすると共に光源やレンズによる制約を低減し、回転体の物理量を好適に計測することができる。更に、レンズの汚れ等による光伝送損失を防止することができる。更に又、FBGセンサ部と補償FBGセンサ部を用いてロータリジョイントによるノイズを低減するので、回転体の物理量を一層好適に計測することができるという種々の優れた効果を奏し得る。   According to the measuring device and the measuring method of the rotating body of the present invention described above, the rotating body to be measured is measured using the FBG sensor unit and the optical fiber, and a rotary joint is interposed between the rotating unit and the fixed support unit. Since the optical fiber is connected, the rotating body is continuously measured, and the physical quantity of the rotating body can be suitably measured even when the physical quantity changes during one rotation of the rotating body. In addition, since a rotary joint is arranged between the rotating part and the fixed support part to connect the optical fiber, the configuration of the optical transmission path is facilitated and the restrictions due to the light source and the lens are reduced, and the physical quantity of the rotating body is suitably set. It can be measured. Furthermore, it is possible to prevent optical transmission loss due to dirt on the lens. Furthermore, since the noise caused by the rotary joint is reduced by using the FBG sensor unit and the compensation FBG sensor unit, various excellent effects can be obtained that the physical quantity of the rotating body can be measured more suitably.

以下、本発明の実施例を添付図面を参照して説明する。
図1〜図8は本発明の回転体の計測装置及び計測方法を実施する形態例である。
Embodiments of the present invention will be described below with reference to the accompanying drawings.
FIGS. 1-8 is an example which implements the measuring device and measuring method of the rotary body of this invention.

回転体の計測装置は、計測対象の回転体1を配する回転部2と、回転部2を回転可能に支持する固定支持部3と、回転体1の計測手段としてFBGセンサ部4が形成されたシングルモードの光ファイバ5と、光ファイバ5を回転体1から回転部2を介して固定支持部3へ延在させるよう回転部2と固定支持部3の間で光ファイバ5を接続するロータリジョイント6と、固定支持部3から光ファイバ5へ光を出力する光源7と、ロータリジョイント6と光源7の間に配置される光サーキュレータ8と、光サーキュレータ8から光スプリッタ9、光学フィルタ10、光電変換器11を介して接続される信号処理部12とを備えている。   The rotating body measuring apparatus includes a rotating unit 2 that arranges a rotating body 1 to be measured, a fixed support unit 3 that rotatably supports the rotating unit 2, and an FBG sensor unit 4 as a measuring unit for the rotating body 1. A single-mode optical fiber 5 and a rotary that connects the optical fiber 5 between the rotating portion 2 and the fixed support portion 3 so as to extend the optical fiber 5 from the rotating body 1 to the fixed support portion 3 via the rotating portion 2. A joint 6, a light source 7 that outputs light from the fixed support 3 to the optical fiber 5, an optical circulator 8 disposed between the rotary joint 6 and the light source 7, an optical splitter 9 to an optical splitter 9, an optical filter 10, And a signal processing unit 12 connected via a photoelectric converter 11.

図3に示す如く、回転部2は、ロッド状の回転部本体14と、回転部本体14の先端に配置されたディスク状の取付部材15とを備え、取付部材15に計測対象の回転体1をボルト等(図示せず)で締結し得るようにしている。又、回転部本体14には、回転体1の中心孔1aから取付部材15の貫通孔15aを介してロータリジョイント6の固定部6a(図2参照)まで回転部本体14の長手方向に沿って延在する軸心空間2aが形成されている。ここで、図3では、計測対象の回転体1がロードホイールになっており、回転体1の軸心空間2aは、ロードホイールの軸穴(中心孔1a)に連なるようになっている。又、計測対象の回転体1は、ロードホイールに限定されるものではなく、車両ハブ等でも良いし、歪み等の物理量を計測する必要があるものならば特に制限されるものではない。   As shown in FIG. 3, the rotating unit 2 includes a rod-shaped rotating unit main body 14 and a disk-shaped mounting member 15 disposed at the tip of the rotating unit main body 14, and the rotating member 1 to be measured is mounted on the mounting member 15. Can be fastened with a bolt or the like (not shown). Further, the rotating part body 14 extends along the longitudinal direction of the rotating part body 14 from the center hole 1a of the rotating body 1 through the through hole 15a of the mounting member 15 to the fixing part 6a (see FIG. 2) of the rotary joint 6. An extending axial space 2a is formed. Here, in FIG. 3, the rotating body 1 to be measured is a road wheel, and the axial center space 2a of the rotating body 1 is connected to the shaft hole (center hole 1a) of the road wheel. The rotating body 1 to be measured is not limited to a road wheel, but may be a vehicle hub or the like, and is not particularly limited as long as it is necessary to measure a physical quantity such as distortion.

図2、図3に示す如く、固定支持部3は、回転体1との間に位置するベアリング等の回転支持構造(図示せず)と、動力モータ等の駆動手段(図示せず)とを備え、回転部2及び回転体1を軸転させるようになっている。ここで、固定支持部3は、ロータリジョイント6の固定部6aから、光サーキュレータ8、光源7、光スプリッタ9、光学フィルタ10、光電変換器11、信号処理部12までを1つのユニットにしても良いし、図2に示す如く、光サーキュレータ8から、光源7、光スプリッタ9、光学フィルタ10、光電変換器11、信号処理部12までのユニットと、ロータリジョイント6の固定部6aのユニットとに分けても良いし、更に、信号処理部12を他のPC等に備えるようにしても良い。   As shown in FIGS. 2 and 3, the fixed support portion 3 includes a rotation support structure (not shown) such as a bearing positioned between the rotary body 1 and a drive means (not shown) such as a power motor. The rotating part 2 and the rotating body 1 are axially rotated. Here, the fixed support unit 3 includes the fixed unit 6a of the rotary joint 6, the optical circulator 8, the light source 7, the optical splitter 9, the optical filter 10, the photoelectric converter 11, and the signal processing unit 12 as one unit. As shown in FIG. 2, the unit from the optical circulator 8 to the light source 7, the optical splitter 9, the optical filter 10, the photoelectric converter 11, the signal processing unit 12, and the unit of the fixing unit 6 a of the rotary joint 6. The signal processing unit 12 may be provided in another PC or the like.

図1〜図3に示す如く、光ファイバ5は、光源7から光サーキュレータ8へ入射光を導波する第一の光ファイバ部5aと、光サーキュレータ8からロータリジョイント6の固定部6aに接続されて入射光及び反射光の連絡用の導波路となる第二の光ファイバ部5bと、ロータリジョイント6のロータ部6bから回転部2の軸心空間2a、取付部材15の貫通孔15a、回転体1の中心孔1aを介し回転体1の表面まで延在して入射光及び反射光の導波路となる第三の光ファイバ部5cと、光サーキュレータ8から信号処理部12への方向に延在する第四の光ファイバ部5dとを備えている。又、光ファイバ5は、曲がる部分5rを、屈曲による破損を防止するように大きな曲率半径で配置すると共に、全体の長さを、光信号強度の減衰を小さくするように可能な限り最小の長さにしている。更に、第三の光ファイバ部5cは、端部の接続部分を、回転体1及び回転部2の回転軸と同軸に配置し、軸転により信号を連続的に伝送するようになっている。又、第四の光ファイバ部5dは、光サーキュレータ8から光電変換器11までを接続している。なお、図1、図2では、光電変換器11と信号処理部12の間を電気信号配線13で接続している。   As shown in FIGS. 1 to 3, the optical fiber 5 is connected to the first optical fiber portion 5 a that guides incident light from the light source 7 to the optical circulator 8, and the optical circulator 8 to the fixed portion 6 a of the rotary joint 6. A second optical fiber portion 5b serving as a waveguide for communication of incident light and reflected light, an axial space 2a of the rotating portion 2 from the rotor portion 6b of the rotary joint 6, a through hole 15a of the mounting member 15, and a rotating body. A third optical fiber portion 5c that extends to the surface of the rotator 1 through one central hole 1a and serves as a waveguide for incident light and reflected light, and extends in the direction from the optical circulator 8 to the signal processing portion 12 And a fourth optical fiber portion 5d. Further, the optical fiber 5 has the bent portion 5r arranged with a large radius of curvature so as to prevent breakage due to bending, and the entire length is minimized as much as possible so as to reduce the attenuation of the optical signal intensity. I am doing it. Further, the third optical fiber portion 5c has an end connecting portion disposed coaxially with the rotating shafts of the rotating body 1 and the rotating portion 2, and continuously transmits signals by axial rotation. The fourth optical fiber portion 5d connects the optical circulator 8 to the photoelectric converter 11. 1 and 2, the photoelectric converter 11 and the signal processing unit 12 are connected by an electric signal wiring 13.

又、光ファイバ5の第三の光ファイバ部5cには、1本の光ファイバ5に連なって形成される複数のFBG(ファイバブラッググレーティング)センサ部4が備えられており(図では3つ)、複数のFBGセンサ部4は、回転体1の計測部位に配置されるよう、図3、図4に示す如く、回転体1の径方向で外周側から順に、第一FBGセンサ部4a、第二FBGセンサ部4b、第三FBGセンサ部4cで構成され、且つ回転体1の表面に密接するように接着剤、固定テープ等の固定手段により固定されている。又、全てのFBGセンサ部4a,4b,4cは、1200〜1600nmの帯域内、好ましくは1530〜1565nmの帯域内で夫々異なるブラッグ波長に設定されている。ここで、FBGセンサ部4は、光ファイバ5のコア部分に光軸方向に沿って一定の間隔で回折格子を形成しており、検査対象の歪みや温度変化により反射波長を変化させ、検査対象の歪み等を検出するようになっている。なお、FBGセンサ部4を形成する個数は特に限定されるものではなく、計測対象の大きさや種類によっては1又は2個でも良いし、4個以上でも良い。   Further, the third optical fiber portion 5c of the optical fiber 5 is provided with a plurality of FBG (fiber Bragg grating) sensor portions 4 that are formed continuously with one optical fiber 5 (three in the figure). As shown in FIGS. 3 and 4, the plurality of FBG sensor units 4 are arranged in order from the outer peripheral side in the radial direction of the rotating body 1 so as to be arranged at the measurement site of the rotating body 1. The second FBG sensor unit 4b and the third FBG sensor unit 4c are fixed by fixing means such as an adhesive or a fixing tape so as to be in close contact with the surface of the rotating body 1. Further, all the FBG sensor units 4a, 4b, and 4c are set to different Bragg wavelengths in the band of 1200 to 1600 nm, preferably in the band of 1530 to 1565 nm. Here, the FBG sensor unit 4 has a diffraction grating formed at regular intervals along the optical axis direction in the core portion of the optical fiber 5, and changes the reflection wavelength due to distortion or temperature change of the inspection object, thereby inspecting the inspection object. The distortion etc. are detected. Note that the number of FBG sensor units 4 to be formed is not particularly limited, and may be one or two or four or more depending on the size and type of the measurement target.

更に、光ファイバ5の第三の光ファイバ部5cには、複数のFBGセンサ部4と同じ1本の光ファイバ5に1つ以上の補償FBGセンサ部16が備えられており、補償FBGセンサ部16は、FBGセンサ部4とロータリジョイント6の間で光ファイバ5の歪みの影響を受けないよう、回転部2の軸心空間2aの中途位置に配置され、且つ軸心空間2a内に図5に示す如くパイプ17を介して接着剤等の充填剤18により固定されている。又、補償FBGセンサ部16は、第一FBGセンサ部4a、第二FBGセンサ部4b、第三FBGセンサ部4cと同様に1200〜1600nmの帯域内、好ましくは1530〜1565nmの帯域内に設定されている。更に、補償FBGセンサ部16は、軸心空間2a内の軸心に位置して固定されると共にパイプ17や充填剤18で補強され、回転体1の回転時に歪み、ブレ、振動等のノイズ原因を生じないようにしている。   Further, the third optical fiber portion 5c of the optical fiber 5 includes one or more compensation FBG sensor portions 16 in the same optical fiber 5 as the plurality of FBG sensor portions 4, and the compensation FBG sensor portion. 16 is arranged in the middle position of the axial space 2a of the rotating portion 2 so as not to be affected by the distortion of the optical fiber 5 between the FBG sensor portion 4 and the rotary joint 6, and in the axial space 2a, FIG. As shown in FIG. 2, the material is fixed by a filler 18 such as an adhesive via a pipe 17. The compensation FBG sensor unit 16 is set in a band of 1200 to 1600 nm, preferably in a band of 1530 to 1565 nm, like the first FBG sensor unit 4a, the second FBG sensor unit 4b, and the third FBG sensor unit 4c. ing. Further, the compensation FBG sensor unit 16 is positioned and fixed at the axial center in the axial space 2a and is reinforced by the pipe 17 and the filler 18, and causes noise such as distortion, blurring and vibration when the rotating body 1 rotates. Is not generated.

ここで、光ファイバ5は、図6に示す如く、回転体1の回転に伴って回転するように、第三の光ファイバ部5cを回転体1の外周面で軸方向に沿って配置し、メンテナンスを容易にするようにしても良い。この時、第三の光ファイバ部5cは、回転部2の軸心の後方空間2bに補償FBGセンサ部16を配置し、補償FBGセンサ部16から連絡穴2cを介して回転体1の外周面に沿って延在し、更に取付部材15の貫通孔15bを通過して回転体1に至り、回転体1の計測部位に所定のFBGセンサ部4を配置するようになっている。   Here, as shown in FIG. 6, the optical fiber 5 is arranged along the axial direction on the outer peripheral surface of the rotating body 1 so that the third optical fiber portion 5 c rotates as the rotating body 1 rotates. Maintenance may be facilitated. At this time, the third optical fiber portion 5c has the compensation FBG sensor portion 16 disposed in the space 2b behind the axis of the rotating portion 2, and the outer peripheral surface of the rotating body 1 from the compensating FBG sensor portion 16 through the communication hole 2c. , Further passes through the through hole 15b of the attachment member 15 to reach the rotating body 1, and a predetermined FBG sensor unit 4 is arranged at a measurement site of the rotating body 1.

一方、図1、図2に示す如く、ロータリジョイント6は、第二の光ファイバ部5bの端部を接続する固定部6aを備えると共に、固定部6aに対して回転する構造を有し且つ第三の光ファイバ部5cの端部を接続するロータ部6bを備えている。又、固定部6aとロータ部6bの間の空間には、不活性ガスや清浄な空気等の気体や、グリセリン等の液体を封入して外気から遮断される密封構造を備え、光伝送路を形成している。ここで、固定部6aとロータ部6bの間の空間に封入される気体や液体は、光信号強度の減衰を抑制するならば特に制限されるものではない。   On the other hand, as shown in FIGS. 1 and 2, the rotary joint 6 includes a fixing portion 6a that connects the end of the second optical fiber portion 5b, and has a structure that rotates with respect to the fixing portion 6a. A rotor portion 6b is provided for connecting the end portions of the three optical fiber portions 5c. The space between the fixed portion 6a and the rotor portion 6b is provided with a sealing structure that is sealed from outside air by filling a gas such as inert gas or clean air, or a liquid such as glycerin, and has an optical transmission path. Forming. Here, the gas or liquid sealed in the space between the fixed portion 6a and the rotor portion 6b is not particularly limited as long as attenuation of the optical signal intensity is suppressed.

光源7は、光ファイバ5の第一の光ファイバ部5aへ光を連続的に出力する広帯域のものが適用されている。   As the light source 7, a broadband light source that continuously outputs light to the first optical fiber portion 5a of the optical fiber 5 is applied.

光サーキュレータ8は、光ファイバ5の入射光又は反射光による導波の方向を制御するように構成されており、具体的には、光源7からの入射光を第一の光ファイバ部5aから第二の光ファイバ部5bへ導波すると共に、FBGセンサ部4からの反射光を第二の光ファイバ部5bから第四の光ファイバ部5dを介して光スプリッタ9へ導波するようになっている。   The optical circulator 8 is configured to control the direction of the guided light by the incident light or reflected light of the optical fiber 5, and specifically, the incident light from the light source 7 is transmitted from the first optical fiber portion 5a to the second optical fiber. In addition to being guided to the second optical fiber portion 5b, the reflected light from the FBG sensor portion 4 is guided from the second optical fiber portion 5b to the optical splitter 9 via the fourth optical fiber portion 5d. Yes.

光スプリッタ9は、第一FBGセンサ部4a、第二FBGセンサ部4b、第三FBGセンサ部4c、補償FBGセンサ部16からの、夫々異なるブラッグ波長を含んだ反射光を、夫々のブラッグ波長帯域に分割して光学フィルタ10に送るように構成されている。ここで、FBGセンサ部4及び補償FBGセンサ部16が他の個数で構成される場合には、光スプリッタ9も、FBGセンサ部4及び補償FBGセンサ部16に対応してブラッグ波長帯域を分割することが好ましい。   The optical splitter 9 reflects reflected light including different Bragg wavelengths from the first FBG sensor unit 4a, the second FBG sensor unit 4b, the third FBG sensor unit 4c, and the compensation FBG sensor unit 16 in each Bragg wavelength band. And is sent to the optical filter 10. Here, when the FBG sensor unit 4 and the compensation FBG sensor unit 16 are configured with other numbers, the optical splitter 9 also divides the Bragg wavelength band corresponding to the FBG sensor unit 4 and the compensation FBG sensor unit 16. It is preferable.

光学フィルタ10は、第一FBGセンサ部4a、第二FBGセンサ部4b、第三FBGセンサ部4c、補償FBGセンサ部16に対応するように、第一フィルタ10a、第二フィルタ10b、第三フィルタ10c、補償用フィルタ10dを備えて構成されており、夫々の光学フィルタ10a,10b,10c,10dは、光スプリッタ9により分割されたブラッグ波長帯域の反射光を、夫々2つの光(光強度信号)に分割するようになっている。   The optical filter 10 includes a first filter 10a, a second filter 10b, a third filter so as to correspond to the first FBG sensor unit 4a, the second FBG sensor unit 4b, the third FBG sensor unit 4c, and the compensation FBG sensor unit 16. 10c and a compensation filter 10d. Each of the optical filters 10a, 10b, 10c, and 10d converts the reflected light of the Bragg wavelength band divided by the optical splitter 9 into two lights (light intensity signals). ).

光電変換器11は、第一フィルタ10a、第二フィルタ10b、第三フィルタ10c、補償用フィルタ10dに対応して光強度信号を受けるように、一組の第一光電変換部11a、一組の第二光電変換部11b、一組の第三光電変換部11c、一組の補償用光電変換部11dで構成されており、夫々の一組の光電変換部11a,11b,11c,11dは2台で構成され、2つの光強度信号を夫々の電気信号に変換するようになっている。   The photoelectric converter 11 includes a set of first photoelectric conversion units 11a, a set of so as to receive a light intensity signal corresponding to the first filter 10a, the second filter 10b, the third filter 10c, and the compensation filter 10d. A second photoelectric conversion unit 11b, a set of third photoelectric conversion units 11c, and a set of compensation photoelectric conversion units 11d are configured, and each set of photoelectric conversion units 11a, 11b, 11c, and 11d includes two units. The two light intensity signals are converted into respective electric signals.

信号処理部12は、光電変換器11の全ての光電変換部11a,11b,11c,11dからの電気信号を受けるように構成されており、内部には、電気信号を処理するように制御プログラムを備えている。   The signal processing unit 12 is configured to receive electrical signals from all the photoelectric conversion units 11a, 11b, 11c, and 11d of the photoelectric converter 11, and internally has a control program for processing the electrical signals. I have.

以下本発明の回転体の計測装置及び計測方法を実施する形態例の作用を説明する。   The operation of the embodiment for carrying out the measuring device and the measuring method of the rotating body of the present invention will be described below.

計測対象の回転体1について、歪み、温度、加速度、AE(アコースティック・エミッション)等の物理量を計測する際には、初めに、準備段階として、回転体1の取付部材15に回転体1を配置し、回転体1の表面に、FBGセンサ部4の第一FBGセンサ部4a、第二FBGセンサ部4b、第三FBGセンサ部4cを回転体1の径方向に沿って接着剤等の固定手段により固定する。   When measuring physical quantities such as strain, temperature, acceleration, AE (acoustic emission), etc. for the rotating object 1 to be measured, the rotating object 1 is first placed on the mounting member 15 of the rotating object 1 as a preparation stage. Then, the first FBG sensor unit 4a, the second FBG sensor unit 4b, and the third FBG sensor unit 4c of the FBG sensor unit 4 are fixed on the surface of the rotating body 1 along the radial direction of the rotating body 1, such as an adhesive. To fix.

次に、回転部2を介して回転体1を回転させると同時に計測を開始する。ここで、計測時には、広帯域の光源7から計測光を光ファイバ5の第一の光ファイバ部5aへ連続的に照射し(ステップS1)、計測光(入射光)を光サーキュレータ8により第二の光ファイバ部5bへ透過し(ステップS2)、続いて第二の光ファイバ部5bからロータリジョイント6の固定部6aへ入射させ(ステップS3)、更にロータリジョイント6の伝送光路を介してロータ部6bから軸転状態の第三の光ファイバ部5cへ入射させ(ステップS4)、回転体1の計測部位から物理量の信号を発するように、FBGセンサ部4の第一FBGセンサ部4a、第二FBGセンサ部4b、第三FBGセンサ部4cで、異なるブラッグ波長の反射光を発生させると共に、補償用センサ部で他のブラッグ波長の反射光を発生させる(ステップS5)。   Next, measurement is started simultaneously with the rotation of the rotating body 1 via the rotating unit 2. Here, at the time of measurement, the measurement light (incident light) is continuously emitted from the broadband light source 7 to the first optical fiber portion 5a of the optical fiber 5 (step S1) by the optical circulator 8. The light passes through the optical fiber portion 5b (step S2), and then enters from the second optical fiber portion 5b into the fixed portion 6a of the rotary joint 6 (step S3), and further through the transmission optical path of the rotary joint 6 the rotor portion 6b. The first FBG sensor unit 4a and the second FBG of the FBG sensor unit 4 are caused to be incident on the third optical fiber unit 5c in an axially rotated state (step S4) and a physical quantity signal is emitted from the measurement part of the rotating body 1. The sensor unit 4b and the third FBG sensor unit 4c generate reflected light with different Bragg wavelengths, and the compensation sensor unit generates reflected light with another Bragg wavelength (step S5).

FBGセンサ部4及び補償FBGセンサ部16によりブラッグ波長の反射光を発生させた後には、反射光が、光ファイバ5の第三の光ファイバ部5cを通じてロータリジョイント6のロータ部6bへ入射し(ステップS6)、続いてロータリジョイント6の伝送光路を介して固定部6aから第二の光ファイバ部5bへ入射し(ステップS7)、更に光サーキュレータ8により反射光を分離して第四の光ファイバ部5dへ入射し(ステップS8)、次に光スプリッタ9に入射し、第一FBGセンサ部4a、第二FBGセンサ部4b、第三FBGセンサ部4c、補償FBGセンサ部16に対応する夫々のブラッグ波長帯域の光に分割され(ステップS9)、続いて分割された光は、夫々、光学フィルタ10の第一フィルタ10a、第二フィルタ10b、第三フィルタ10c、補償用フィルタ10dに入射し、夫々の光学フィルタ10a,10b,10c,10dより2つの光に分割されて出力され(ステップS10、S11)、更に出力された光は、夫々、一組の第一光電変換部11a、一組の第二光電変換部11b、一組の第三光電変換部11c、一組の補償用光電変換部11dに入射して2つの出力信号(電気信号)に変換され(ステップS12)、変換された全ての出力信号(電気信号)は信号処理部12に入力される。ここで、図7、図8のAはフローが連続的につながることを示している。   After the reflected light having the Bragg wavelength is generated by the FBG sensor unit 4 and the compensation FBG sensor unit 16, the reflected light enters the rotor unit 6 b of the rotary joint 6 through the third optical fiber unit 5 c of the optical fiber 5 ( Step S6), then, enters the second optical fiber portion 5b from the fixed portion 6a via the transmission optical path of the rotary joint 6 (Step S7), and further, the reflected light is separated by the optical circulator 8 and the fourth optical fiber. Is incident on the unit 5d (step S8), then is incident on the optical splitter 9, and corresponds to the first FBG sensor unit 4a, the second FBG sensor unit 4b, the third FBG sensor unit 4c, and the compensation FBG sensor unit 16, respectively. The light is divided into light of the Bragg wavelength band (step S9), and the divided light is then divided into the first filter 10a, the second filter 10b, and the third filter 10c of the optical filter 10, respectively. The light enters the compensation filter 10d, is divided into two light beams from the respective optical filters 10a, 10b, 10c, and 10d (steps S10 and S11). The light is incident on the photoelectric conversion unit 11a, the set of second photoelectric conversion units 11b, the set of third photoelectric conversion units 11c, and the set of compensation photoelectric conversion units 11d, and is converted into two output signals (electric signals) ( In step S12), all the converted output signals (electrical signals) are input to the signal processing unit 12. Here, A in FIGS. 7 and 8 indicates that the flows are continuously connected.

信号処理部12では、光ファイバ5の歪みの影響を受けない補償フィルタ部からの反射光により、補償用光電変換部11d等を介して電気信号を取得し、所定の制御プログラムによって演算し、ロータリジョイント6が一回転する際に生じる一回転当たりの光伝送損失変化のノイズ(図9参照)を、みかけ上のブラッグ波長変化として検出する(ステップS13)。ここで、ロータリジョイント6のノイズは、回転部2と固定支持部3の相対する光ファイバ5(第二の光ファイバ部5bと第三の光ファイバ部5c)の芯ズレ等に起因するものであり、ロータリジョイント6のノイズを周波数解析すると、図10のスペクトルに示す如く、次数整数にピークを有し、ロータリジョイント6の一回転当たりにノイズがあることが明らかである。   The signal processing unit 12 acquires an electrical signal via the compensation photoelectric conversion unit 11d and the like by the reflected light from the compensation filter unit that is not affected by the distortion of the optical fiber 5, and calculates it according to a predetermined control program. The noise (see FIG. 9) of the optical transmission loss change per rotation that occurs when the joint 6 makes one rotation is detected as an apparent Bragg wavelength change (step S13). Here, the noise of the rotary joint 6 is caused by misalignment of the optical fibers 5 (second optical fiber portion 5b and third optical fiber portion 5c) of the rotating portion 2 and the fixed support portion 3 facing each other. When the frequency of the noise of the rotary joint 6 is analyzed, it is clear that there is a peak in the order integer as shown in the spectrum of FIG.

次に、信号処理部12では、第一FBGセンサ部4a、第二FBGセンサ部4b、第三FBGセンサ部4cの計測部位の反射光により、光電変換器11等を介して夫々2つの電気信号を取得し、所定の制御プログラムによって演算処理し、回転体1の物理量を演算する(ステップS14)。ここで、回転体1の物理量の変化(歪みや温度変化等)は、第一FBGセンサ部4a、第二FBGセンサ部4b、第三FBGセンサ部4cに、歪みとしてブラッグ波長の変化を及ぼし、ブラッグ波長の変化からの電気信号により適宜比較若しくは関数処理して算出される。なお、図11は、回転体1を回転させながら荷重を与えた際に、回転体1に発生する歪み波形を示している。   Next, in the signal processing unit 12, two electric signals are respectively transmitted via the photoelectric converter 11 and the like by the reflected light of the measurement parts of the first FBG sensor unit 4a, the second FBG sensor unit 4b, and the third FBG sensor unit 4c. Is calculated and processed by a predetermined control program to calculate the physical quantity of the rotating body 1 (step S14). Here, a change in physical quantity (strain, temperature change, etc.) of the rotating body 1 causes a change in Bragg wavelength as strain on the first FBG sensor unit 4a, the second FBG sensor unit 4b, and the third FBG sensor unit 4c. It is calculated by appropriate comparison or function processing according to the electrical signal from the change of the Bragg wavelength. FIG. 11 shows a distortion waveform generated in the rotating body 1 when a load is applied while rotating the rotating body 1.

続いて、信号処理部12では、所定の制御プログラムによって、ステップS13の補償FBGセンサ部16からのみかけ上のブラッグ波長変化により、ステッププS14の第一FBGセンサ部4a、第二FBGセンサ部4b、第三FBGセンサ部4cからのブラッグ波長を、適宜補正して演算を行い、回転体1の物理量の変化に対してロータリジョイント6のノイズを除去し(ステップS15)、回転体1の物理量の計測を終了する。ここで、回転体1の物理量の変化が大きい場合には、ロータリジョイント6のノイズによる影響が少なく、ステップS13、S15を不要にすることが可能である。一方で、回転体1の物理量の変化が小さい場合や、光ファイバ5での微小な信号変化を検出する場合には、ロータリジョイント6のノイズによる影響が大きく、ステップS13、S15が必須となる。   Subsequently, in the signal processing unit 12, the first FBG sensor unit 4a, the second FBG sensor unit 4b, and the second FBG sensor unit 4b in step S14 are generated by the apparent Bragg wavelength change from the compensation FBG sensor unit 16 in step S13 according to a predetermined control program. The Bragg wavelength from the third FBG sensor unit 4c is appropriately corrected for calculation, and the noise of the rotary joint 6 is removed with respect to the change in the physical quantity of the rotating body 1 (step S15), and the physical quantity of the rotating body 1 is measured Exit. Here, when the change in the physical quantity of the rotating body 1 is large, the influence of noise on the rotary joint 6 is small, and steps S13 and S15 can be eliminated. On the other hand, when the change in the physical quantity of the rotating body 1 is small or when a small signal change in the optical fiber 5 is detected, the influence of the noise of the rotary joint 6 is large, and steps S13 and S15 are essential.

而して、このように実施の形態例によれば、FBGセンサ部4及び光ファイバ5を用いて計測対象の回転体1を計測すると共に、回転部2と固定支持部3の間にロータリジョイント6を介して光ファイバ5を接続するので、回転体1を連続的に計測し、回転体1が1回転する間に接地荷重や横荷重による物理量の変化がある場合であっても、回転体1の物理量や変化を好適に計測することができる。又、回転部2と固定支持部3の間にロータリジョイント6を配して光ファイバ5を接続するので、光伝送路の構成を容易にすると共に光源7やレンズによる制約を低減し、回転体1の物理量を好適に計測することができる。更に、レンズの汚れ等による光伝送損失を防止することができる。   Thus, according to the embodiment, the rotary body 1 to be measured is measured using the FBG sensor unit 4 and the optical fiber 5, and the rotary joint is interposed between the rotary unit 2 and the fixed support unit 3. 6, the rotating body 1 is continuously measured, and even if there is a change in physical quantity due to ground load or lateral load during one rotation of the rotating body 1, the rotating body It is possible to suitably measure the physical quantity or change of 1. Further, since the rotary joint 6 is arranged between the rotating part 2 and the fixed support part 3 and the optical fiber 5 is connected, the configuration of the optical transmission path is facilitated and the restrictions due to the light source 7 and the lens are reduced. One physical quantity can be suitably measured. Furthermore, it is possible to prevent optical transmission loss due to dirt on the lens.

実施の形態例において、1本の光ファイバ5に形成される複数のFBGセンサ部4と、複数のFBGセンサ部4の異なるブラッグ波長を含んだ反射光を夫々のFBGセンサ部4のブラッグ波長帯域に分割する光スプリッタ9とを備えると、回転体1に対して複数のFBGセンサ部4を配置し得るので、回転体1の複数の計測部位を計測し、回転体1の径方向や全面に関して物理量や変化を好適に計測することができる。又、光スプリッタ9により複数のFBGセンサ部4に応じて異なるブラッグ波長に分割するので、個々のFBGセンサ部4で好適に回転体1の物理量や変化を好適に計測することができる。   In the embodiment, the plurality of FBG sensor units 4 formed in one optical fiber 5 and the reflected light including the different Bragg wavelengths of the plurality of FBG sensor units 4 are transmitted to the Bragg wavelength bands of the respective FBG sensor units 4. Since the plurality of FBG sensor units 4 can be arranged with respect to the rotating body 1 when the optical splitter 9 is divided into two, the plurality of measurement parts of the rotating body 1 are measured, and the radial direction and the entire surface of the rotating body 1 are measured. Physical quantities and changes can be suitably measured. In addition, since the optical splitter 9 divides the wavelength into different Bragg wavelengths according to the plurality of FBG sensor units 4, it is possible to suitably measure the physical quantity and change of the rotating body 1 by each FBG sensor unit 4.

実施の形態例において、1又は複数のFBGセンサ部4の反射光が夫々入射する光学フィルタ10と、光学フィルタ10からの光(光強度信号)を電気信号に変換する光電変換器11とを備え、信号処理部12は、光電変換器11からの出力の電気信号を計測して信号処理するように構成されると、FBGセンサ部4及び光ファイバ5からのブラッグ波長を好適に処理し得るので、回転体1の物理量や変化を好適に計測することができる。   In the embodiment, an optical filter 10 on which reflected light of one or a plurality of FBG sensor units 4 is incident and a photoelectric converter 11 that converts light (light intensity signal) from the optical filter 10 into an electric signal are provided. When the signal processing unit 12 is configured to measure and process the electrical signal output from the photoelectric converter 11, it can suitably process the Bragg wavelength from the FBG sensor unit 4 and the optical fiber 5. The physical quantity and change of the rotating body 1 can be suitably measured.

実施の形態例において、FBGセンサ部4及び補償FBGセンサ部16は固定手段により固定されると、FBGセンサ部4や補償FBGセンサ部16が回転部2の回転によるブレや振動等のノイズ原因を防止し、回転体1の物理量や変化を好適に計測することができる。又、固定手段を接着剤等にすると、FBGセンサ部4を回転体1に固定した場合や、補償FBGセンサ部16を回転部2の内部空間に固定した場合に、隙間を完全に無くしてガタ等を防止することができる。更に、FBGセンサ部4は回転体1の計測部位に取り付けられると、回転体1の計測部位に対して物理量や変化を好適に計測することができる。   In the embodiment, when the FBG sensor unit 4 and the compensation FBG sensor unit 16 are fixed by the fixing means, the FBG sensor unit 4 and the compensation FBG sensor unit 16 cause noise such as blurring and vibration due to the rotation of the rotating unit 2. The physical quantity and change of the rotating body 1 can be suitably measured. If the fixing means is an adhesive or the like, when the FBG sensor unit 4 is fixed to the rotating body 1 or the compensation FBG sensor unit 16 is fixed to the internal space of the rotating unit 2, the gap is completely eliminated. Etc. can be prevented. Furthermore, when the FBG sensor unit 4 is attached to the measurement part of the rotating body 1, it can suitably measure physical quantities and changes with respect to the measurement part of the rotating body 1.

実施の形態例において、光ファイバ5は、光源7から光サーキュレータ8へ入射光を導波する第一の光ファイバ部5aと、光サーキュレータ8からロータリジョイント6の固定部6aに接続されて入射光及び反射光の連絡用の導波路となる第二の光ファイバ部5bと、ロータリジョイント6のロータ部6bからFBGセンサ部4に接続されてFBGセンサ部4への入射光と反射光の導波路となる第三の光ファイバ部5cと、光サーキュレータ8から信号処理部12への方向に延在する第四の光ファイバ部5dとを備えると、高速なデータ転送を行うと共に、FBGセンサ部4及び補償FBGセンサ部16からの大量の信号を容易且つ好適に送信し得るので、回転体1の物理量や変化を好適に計測することができる。   In the embodiment, the optical fiber 5 is connected to the first optical fiber portion 5 a that guides incident light from the light source 7 to the optical circulator 8, and the incident light is connected from the optical circulator 8 to the fixed portion 6 a of the rotary joint 6. And a second optical fiber portion 5b serving as a waveguide for communicating reflected light and a waveguide for incident light and reflected light connected to the FBG sensor portion 4 from the rotor portion 6b of the rotary joint 6 to the FBG sensor portion 4. The third optical fiber portion 5c and the fourth optical fiber portion 5d extending in the direction from the optical circulator 8 to the signal processing portion 12 perform high-speed data transfer and the FBG sensor portion 4 And since a lot of signals from compensation FBG sensor part 16 can be transmitted easily and suitably, the physical quantity and change of rotating body 1 can be measured suitably.

又、光ファイバ5は、回転体1の回転に伴って回転するように配置されると、回転体1からの送信を容易にし、回転体1の物理量や変化を好適に計測することができる。   Further, when the optical fiber 5 is arranged so as to rotate with the rotation of the rotating body 1, transmission from the rotating body 1 can be facilitated, and a physical quantity and a change of the rotating body 1 can be suitably measured.

更に、回転部2と固定支持部3に配索された光ファイバ5の接続部分は回転体1の回転軸と同軸に配置されると、光ファイバ5の軸転によってガタやブレ等によるノイズを低減すると共に、全体の長さを最小にして光信号強度の減衰を小さくし、回転体1の物理量や変化を好適に計測することができる。   Further, when the connecting portion of the optical fiber 5 routed between the rotating portion 2 and the fixed support portion 3 is arranged coaxially with the rotating shaft of the rotating body 1, noise due to backlash or blurring is caused by the rotation of the optical fiber 5. It is possible to reduce the attenuation of the optical signal intensity by minimizing the overall length and reduce the attenuation of the optical signal intensity, and to suitably measure the physical quantity and change of the rotating body 1.

実施の形態例において、ロータリジョイント6は、固定部6aとロータ部6bの空間に気体又は液体を封入し、ダストの侵入を防止するように構成されると、固定部6aとロータ部6bの間の光伝送路を最適な状態にし、回転体1の物理量や変化を好適に計測することができる。   In the embodiment, when the rotary joint 6 is configured to enclose gas or liquid in the space between the fixed portion 6a and the rotor portion 6b and prevent dust from entering, the rotary joint 6 is arranged between the fixed portion 6a and the rotor portion 6b. It is possible to appropriately measure the physical quantity and change of the rotating body 1 by optimizing the optical transmission path.

実施の形態例において、FBGセンサ部4とロータリジョイント6の間で光ファイバ5の歪みの影響を受けないように光ファイバ5に形成される補償FBGセンサ部16を備え、信号処理部12は、FBGセンサ部4からの反射光の信号、及び補償用センサ部からの反射光の信号により、ロータリジョイント6で生じるノイズを除去するように構成されると、回転体1の物理量の変化が小さい場合や、光ファイバ5での微小な信号変化を検出する場合であっても、雑音を大幅に抑制するので、回転体1の物理量や変化を一層好適に計測することができる。又、信号処理部12は、補償FBGセンサ部16により、ロータリジョイント6の1回転する間に生じるロータリジョイント6の光伝送損失変化によるみかけ上のブラッグ波長変化を検出し、FBGセンサ部4のブラッグ波長の補正を行うように構成されると、ロータリジョイント6の回転に対応するノイズを適切に除去するので、回転体1の物理量や変化を最適に計測することができる。   In the embodiment, the compensation FBG sensor unit 16 is formed on the optical fiber 5 so as not to be affected by the distortion of the optical fiber 5 between the FBG sensor unit 4 and the rotary joint 6, and the signal processing unit 12 includes: When the change in the physical quantity of the rotating body 1 is small when the noise generated in the rotary joint 6 is removed by the reflected light signal from the FBG sensor unit 4 and the reflected light signal from the compensation sensor unit Even when a minute signal change in the optical fiber 5 is detected, the noise is greatly suppressed, so that the physical quantity and change of the rotating body 1 can be measured more suitably. Further, the signal processing unit 12 detects an apparent Bragg wavelength change due to a change in optical transmission loss of the rotary joint 6 that occurs during one rotation of the rotary joint 6 by the compensation FBG sensor unit 16, and the Bragg wavelength of the FBG sensor unit 4. When configured to correct the wavelength, noise corresponding to the rotation of the rotary joint 6 is appropriately removed, so that the physical quantity and change of the rotating body 1 can be optimally measured.

実施の形態例において、FBGセンサ部4のブラッグ波長が1200〜1600nmであると、長距離光通信用の光ファイバを使用することが可能であり、光ファイバ5全体が長くとも光ファイバそのもの伝送損失が低くなり、回転体1の物理量や変化を最適に計測することができる。又、ブラッグ波長は、光ファイバ5の伝送損失が特に小さい特性等から1530〜1565nmの帯域内が特に好ましい。   In the embodiment, when the Bragg wavelength of the FBG sensor unit 4 is 1200 to 1600 nm, it is possible to use an optical fiber for long-distance optical communication, and even if the entire optical fiber 5 is long, the transmission loss of the optical fiber itself is long. The physical quantity and change of the rotating body 1 can be optimally measured. The Bragg wavelength is particularly preferably in the band of 1530 to 1565 nm because of the characteristic that the transmission loss of the optical fiber 5 is particularly small.

尚、本発明の回転体の計測装置及び計測方法は、上述の形態例にのみ限定されるものではなく、回転体の物理量や変化を計測し得るならば他の光学系の部材を追加しても良いこと、信号処理部の処理は回転体の物理量や変化を算出するものならば、特に限定されるものではないこと、図7、図8のフローチャートは、回転体の物理量や変化を計測し得るならばステップの削除や追加があっても良いこと、その他、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   In addition, the measuring device and measuring method of the rotating body of the present invention are not limited to the above-described embodiments, and other optical system members may be added as long as the physical quantity and change of the rotating body can be measured. The processing of the signal processing unit is not particularly limited as long as it calculates the physical quantity and change of the rotating body. The flowcharts of FIGS. 7 and 8 measure the physical quantity and change of the rotating body. Of course, if necessary, steps may be deleted or added, and various changes may be made without departing from the scope of the present invention.

本発明を実施する形態例の全体構成を示す概念図である。It is a conceptual diagram which shows the whole structure of the example which implements this invention. 回転部と固定支持部で区分けした状態を示す概念図である。It is a conceptual diagram which shows the state divided by the rotation part and the fixed support part. 回転体を配置した回転部及び光ファイバの状態の一例を示す断面図である。It is sectional drawing which shows an example of the state of the rotation part which has arrange | positioned the rotary body, and an optical fiber. 図3のIV−IV方向の矢視図である。FIG. 4 is an arrow view in the IV-IV direction of FIG. 3. 補償FBGセンサ部を固定した状態を示す概念図である。It is a conceptual diagram which shows the state which fixed the compensation FBG sensor part. 回転体を配置した回転部及び光ファイバの状態の他例を示す断面図である。It is sectional drawing which shows the other example of the state of the rotation part which has arrange | positioned the rotary body, and an optical fiber. 回転体の計測のステップを示す前半のフローである。It is the first half flow which shows the measurement step of a rotating body. 回転体の計測のステップを示す後半のフローである。It is the latter half flow which shows the step of measurement of a rotary body. ロータリジョイントの一回転で発生するノイズを示すものである。This shows noise generated by one rotation of the rotary joint. ロータリジョイントのノイズの周波数解析(横軸回転次数)を示すものある。The frequency analysis (horizontal axis rotation order) of the noise of a rotary joint is shown. 回転体を回転させながら荷重を与えた際に、回転体に発生する歪み波形を示すものである。It shows a distortion waveform generated in a rotating body when a load is applied while rotating the rotating body.

符号の説明Explanation of symbols

1 回転体
2 回転部
3 固定支持部
4 FBGセンサ部
5 光ファイバ
5a 第一の光ファイバ部
5b 第二の光ファイバ部
5c 第三の光ファイバ部
5d 第四の光ファイバ部
6 ロータリジョイント
6a 固定部
6b ロータ部
7 光源
8 光サーキュレータ
9 光スプリッタ
10 光学フィルタ
11 光電変換器
12 信号処理部
16 補償FBGセンサ部
DESCRIPTION OF SYMBOLS 1 Rotating body 2 Rotating part 3 Fixed support part 4 FBG sensor part 5 Optical fiber 5a First optical fiber part 5b Second optical fiber part 5c Third optical fiber part 5d Fourth optical fiber part 6 Rotary joint 6a Fixed Unit 6b rotor unit 7 light source 8 optical circulator 9 optical splitter 10 optical filter 11 photoelectric converter 12 signal processing unit 16 compensation FBG sensor unit

Claims (2)

計測対象の回転体を配する回転部と、該回転部を回転可能に支持する固定支持部と、前記回転体に発生するひずみを計測する手段としてFBGセンサを用いる回転体の計測装置において、
複数のFBGセンサ部が形成された光ファイバと、
前記回転体から固定支持部へ光ファイバを延在するよう回転部と固定支持部の間で光ファイバ内の信号を送受信するロータリジョイントと、
前記回転部の歪み変化を生じない回転部の軸心部位に取り付けられ且つ光ファイバに形成される回転補償用のFBGセンサ部と、
前記回転部の外に置かれ、前記ロータリジョイントを介して回転部に配置されたFBGセンサに連続的に光を出力する広帯域光源と、
前記固定支持部のロータリジョイントと前記広帯域光源との間に位置して光ファイバの途中に配置された光サーキュレータと、
該光サーキュレータを介して前記FBGセンサからの反射光が導かれる光スプリッタと、
該光スプリッタの各波長帯域の出力側に位置するよう光ファイバの回路後段に配置される、前記FBGセンサが検知したひずみ量を求めるための光学フィルタと、
該光学フィルタからの光強度信号を電気信号に変換する1組の光電変換器とを備え、
前記回転体を計測する際には、FBGセンサ部の信号から、ロータリジョイントの一回転の間に生じる光伝送損失変動による、見かけ上の歪み変化を求め、更に回転補償用のFBGセンサ部の信号から、ロータリジョイントの一回転の間における、見かけ上の歪み変化を求め、FBGセンサ部の信号における見かけ上の歪み変化を、回転補償用のFBGセンサ部の信号における見かけ上の歪み変化で補正演算し、ロータリジョイントの光伝送損失の影響を除去して歪み計測補償を行うように構成されたことを特徴とする回転体の計測装置。
In the rotating unit that arranges the rotating body to be measured, the fixed support unit that rotatably supports the rotating unit, and the rotating body measuring device that uses the FBG sensor as means for measuring the strain generated in the rotating body,
An optical fiber in which a plurality of FBG sensor parts are formed;
A rotary joint for transmitting and receiving signals in the optical fiber between the rotating part and the fixed support part so as to extend the optical fiber from the rotating body to the fixed support part;
FBG sensor part for rotation compensation attached to the axial center part of the rotating part that does not cause distortion change of the rotating part and formed on the optical fiber,
A broadband light source that is placed outside the rotating unit and outputs light continuously to the FBG sensor disposed in the rotating unit via the rotary joint;
An optical circulator located between the rotary joint of the fixed support portion and the broadband light source and disposed in the middle of the optical fiber;
An optical splitter through which reflected light from the FBG sensor is guided through the optical circulator;
An optical filter for determining the amount of strain detected by the FBG sensor, which is arranged at the rear stage of the circuit of the optical fiber so as to be positioned on the output side of each wavelength band of the optical splitter;
A set of photoelectric converters that convert light intensity signals from the optical filter into electrical signals;
When measuring the rotating body, the FBG sensor unit signal is used to determine the apparent distortion change due to the optical transmission loss variation that occurs during one rotation of the rotary joint, and further the FBG sensor unit signal for rotation compensation From this, the apparent distortion change during one rotation of the rotary joint is obtained, and the apparent distortion change in the FBG sensor signal is corrected with the apparent distortion change in the FBG sensor signal for rotation compensation. And a rotating body measuring apparatus configured to perform distortion measurement compensation by removing the influence of the optical transmission loss of the rotary joint .
計測対象の回転体を配する回転部と、該回転部を回転可能に支持する固定支持部と、前記回転体に発生するひずみを計測する手段としてFBGセンサを用いる回転体の計測方法において、
複数のFBGセンサ部が形成された光ファイバと、
前記回転体から固定支持部へ光ファイバを延在するよう回転部と固定支持部の間で光ファイバ内の信号を送受信するロータリジョイントと、
前記回転部の歪み変化を生じない回転部の軸心部位に取り付けられ且つ光ファイバに形成される回転補償用のFBGセンサ部と、
前記回転部の外に置かれ、前記ロータリジョイントを介して回転部に配置されたFBGセンサに連続的に光を出力する広帯域光源と、
前記固定支持部のロータリジョイントと前記広帯域光源との間に位置して光ファイバの途中に配置された光サーキュレータと、
該光サーキュレータを介して前記FBGセンサからの反射光が導かれる光スプリッタと、
該光スプリッタの各波長帯域の出力側に位置するよう光ファイバの回路後段に配置される、前記FBGセンサが検知したひずみ量を求めるための光学フィルタと、
該光学フィルタからの光強度信号を電気信号に変換する1組の光電変換器とを備え、
前記回転体を計測する際には、FBGセンサ部の信号から、ロータリジョイントの一回転の間に生じる光伝送損失変動による、見かけ上の歪み変化を求め、更に回転補償用のFBGセンサ部の信号から、ロータリジョイントの一回転の間における、見かけ上の歪み変化を求め、FBGセンサ部の信号における見かけ上の歪み変化を、回転補償用のFBGセンサ部の信号における見かけ上の歪み変化で補正演算し、ロータリジョイントの光伝送損失の影響を除去して歪み計測補償を行うことを特徴とする回転体の計測方法。
In a measuring method for a rotating body using a FBG sensor as a means for measuring a rotating part that arranges a rotating object to be measured, a fixed support part that rotatably supports the rotating part, and a strain generated in the rotating body,
An optical fiber in which a plurality of FBG sensor parts are formed;
A rotary joint for transmitting and receiving signals in the optical fiber between the rotating part and the fixed support part so as to extend the optical fiber from the rotating body to the fixed support part;
FBG sensor part for rotation compensation attached to the axial center part of the rotating part that does not cause distortion change of the rotating part and formed on the optical fiber,
A broadband light source that is placed outside the rotating unit and outputs light continuously to the FBG sensor disposed in the rotating unit via the rotary joint;
An optical circulator located between the rotary joint of the fixed support portion and the broadband light source and disposed in the middle of the optical fiber;
An optical splitter through which reflected light from the FBG sensor is guided through the optical circulator;
An optical filter for determining the amount of strain detected by the FBG sensor, which is arranged at the rear stage of the circuit of the optical fiber so as to be positioned on the output side of each wavelength band of the optical splitter;
A set of photoelectric converters that convert light intensity signals from the optical filter into electrical signals;
When measuring the rotating body, the FBG sensor unit signal is used to determine the apparent distortion change due to the optical transmission loss variation that occurs during one rotation of the rotary joint, and further the FBG sensor unit signal for rotation compensation From this, the apparent distortion change during one rotation of the rotary joint is obtained, and the apparent distortion change in the FBG sensor signal is corrected with the apparent distortion change in the FBG sensor signal for rotation compensation. And a method for measuring a rotating body, wherein distortion measurement compensation is performed by removing the influence of optical transmission loss of a rotary joint .
JP2007127782A 2007-05-14 2007-05-14 Rotating body measuring apparatus and measuring method Active JP4975519B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007127782A JP4975519B2 (en) 2007-05-14 2007-05-14 Rotating body measuring apparatus and measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007127782A JP4975519B2 (en) 2007-05-14 2007-05-14 Rotating body measuring apparatus and measuring method

Publications (2)

Publication Number Publication Date
JP2008281507A JP2008281507A (en) 2008-11-20
JP4975519B2 true JP4975519B2 (en) 2012-07-11

Family

ID=40142436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007127782A Active JP4975519B2 (en) 2007-05-14 2007-05-14 Rotating body measuring apparatus and measuring method

Country Status (1)

Country Link
JP (1) JP4975519B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012230193A (en) * 2011-04-25 2012-11-22 Society Of Japanese Aerospace Co Light rotary joint and rotor strain measuring device
US8792753B2 (en) * 2011-06-30 2014-07-29 General Electric Company Method and system for a fiber optic sensor
KR101316644B1 (en) 2011-11-30 2013-10-10 한국철도기술연구원 Monitoring system and method for railway car axle using fiber bragg grating sensor
DE102014100653B4 (en) 2014-01-21 2016-01-21 fos4X GmbH Rail Measuring System
KR102100498B1 (en) * 2019-06-21 2020-04-13 엘림광통신 주식회사 High speed rotation tester for optical image smart remote management system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0443845Y2 (en) * 1987-12-10 1992-10-16
JP2001183114A (en) * 1999-12-22 2001-07-06 Mitsubishi Heavy Ind Ltd Strain measuring instrument for rotary body
JP2002071386A (en) * 2000-08-28 2002-03-08 Mitsubishi Cable Ind Ltd Method and device for measuring strain or the like, and laser light source
JP4284115B2 (en) * 2003-03-26 2009-06-24 京セラ株式会社 FBG sensing device
JP4344401B2 (en) * 2003-12-01 2009-10-14 川崎重工業株式会社 Rotating body measurement system
JP2006084292A (en) * 2004-09-15 2006-03-30 Kansai Electric Power Co Inc:The Rotor physical quantity measuring method, and rotor physical quantity measuring device

Also Published As

Publication number Publication date
JP2008281507A (en) 2008-11-20

Similar Documents

Publication Publication Date Title
EP1759168B1 (en) Monitoring device for rotating body
JP4975519B2 (en) Rotating body measuring apparatus and measuring method
JP5377311B2 (en) Optical device for monitoring a rotatable shaft with a directional axis
WO2010029935A1 (en) Rotating light fiber unit and optical coherence tomogram generating device
WO2014101754A1 (en) Multi-core optical fibre, sensing device adopting multi-core optical fibre and running method therefor
CN103411550A (en) Inner surface stress and temperature monitoring method of internal combustion engine main bearing based on fiber bragg grating
US9518894B2 (en) Device for measuring vibration amplitudes of the blade tips in a turbomachine
JP2001183114A (en) Strain measuring instrument for rotary body
JP4938431B2 (en) Optical fiber temperature / strain measurement method
JP5524239B2 (en) Device for measuring the twist of a rotating shaft
JP5638312B2 (en) Load distribution measuring method and apparatus for rolling bearing with built-in strain sensor on inner ring
WO2009144962A1 (en) Measuring system
US20180267077A1 (en) Fiber-Optic Accelerometer
CN114018451A (en) High-resolution driving shaft torque sensing system based on moire fringe principle
JP2006064423A (en) Measurement device for rotator torque
JP2007132793A (en) Measuring device
JP4344401B2 (en) Rotating body measurement system
EP1614240B1 (en) Optical system and method for monitoring variable in rotating member
CN217520625U (en) High-resolution driving shaft torque sensing system based on moire fringe principle
RU2685439C1 (en) Onboard distributed control and leaks diagnostics system based on technologies of photonics
CN114088123B (en) Sensing device and sensing method based on Brillouin optical time domain analysis
JP2004037298A (en) Face measuring system and arrangement method of face measuring optical fiber
CN102798486A (en) System and method for online automatic calibration of attenuation parameter of detection optical cable
JP2022146438A (en) Abnormality diagnosis apparatus and abnormality diagnostic method of rolling bearing
JP5901916B2 (en) Optical spectrum measurement device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111007

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120119

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120411

R150 Certificate of patent or registration of utility model

Ref document number: 4975519

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150420

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250