JP5638312B2 - Load distribution measuring method and apparatus for rolling bearing with built-in strain sensor on inner ring - Google Patents

Load distribution measuring method and apparatus for rolling bearing with built-in strain sensor on inner ring Download PDF

Info

Publication number
JP5638312B2
JP5638312B2 JP2010183537A JP2010183537A JP5638312B2 JP 5638312 B2 JP5638312 B2 JP 5638312B2 JP 2010183537 A JP2010183537 A JP 2010183537A JP 2010183537 A JP2010183537 A JP 2010183537A JP 5638312 B2 JP5638312 B2 JP 5638312B2
Authority
JP
Japan
Prior art keywords
inner ring
strain sensor
strain
rolling bearing
load distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010183537A
Other languages
Japanese (ja)
Other versions
JP2012042319A (en
Inventor
貴史 永友
貴史 永友
吉晃 岡村
吉晃 岡村
高橋 研
高橋  研
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Original Assignee
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute filed Critical Railway Technical Research Institute
Priority to JP2010183537A priority Critical patent/JP5638312B2/en
Publication of JP2012042319A publication Critical patent/JP2012042319A/en
Application granted granted Critical
Publication of JP5638312B2 publication Critical patent/JP5638312B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/52Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions
    • F16C19/522Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions related to load on the bearing, e.g. bearings with load sensors or means to protect the bearing against overload
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/24Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for radial load mainly
    • F16C19/26Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for radial load mainly with a single row of rollers

Description

本発明は、外輪が固定され内輪が回転して使用される転がり軸受における、内輪へのひずみセンサ内蔵型転がり軸受の荷重分布測定方法及びその装置に係り、特に、転がり軸受の内輪内に光ファイバに装備されるひずみセンサ部を配置し、その位置を転動体が通過する際のひずみを検出することで、軸受全体の荷重分布を求めるようにしたものである。   The present invention relates to a load distribution measuring method and apparatus for a strain bearing with a built-in strain sensor in an inner ring in a rolling bearing that is used with an outer ring fixed and an inner ring rotated, and in particular, an optical fiber in the inner ring of the rolling bearing. The strain sensor part equipped in is arranged, and the load distribution of the entire bearing is obtained by detecting the strain when the rolling element passes through the position.

図7は従来の転がり軸受の荷重分布測定装置の転動体内への光ファイバ及びひずみセンサ部の取り付け部を示す図である。   FIG. 7 is a view showing an attachment portion of an optical fiber and a strain sensor part in a rolling body of a conventional load distribution measuring device for a rolling bearing.

この図において、101は回転軸、102は回転軸101に固定される転がり軸受の内輪、103は転がり軸受の転動体、104は転がり軸受の外輪、105は転がり軸受の転動体103内に形成される細穴、10はその細穴105に挿入される光ファイバ、10は光ファイバ10内に装備されるひずみセンサ部である。 In this figure, 101 is a rotating shaft, 102 is an inner ring of a rolling bearing fixed to the rotating shaft 101, 103 is a rolling element of the rolling bearing, 104 is an outer ring of the rolling bearing, and 105 is formed in the rolling element 103 of the rolling bearing. The thin holes 10 7 and 10 7 are optical fibers inserted into the thin holes 105, and 10 6 is a strain sensor section provided in the optical fiber 10 7 .

このように、転がり軸受の転動体103の軸中心に、放電加工により細穴105を設ける。その細穴105にひずみセンサ部10を装備する光ファイバ10を挿入し接着することにより、転動体103に発生するひずみを検出し、軸受全体の荷重分布を求めるようにしたものが本願発明者らによって提案されている(下記特許文献1参照)。 In this way, the narrow hole 105 is provided by electric discharge machining at the center of the rolling element 103 of the rolling bearing. By inserting the optical fiber 10 7 adhering to equip the sensor unit 106 strain in that the fine hole 105, rolling detect strain generated in the moving body 103, which was set to determine the load distribution of the whole bearing present invention (See Patent Document 1 below).

また、本願発明者らによって、内輪へのひずみセンサ内蔵型転がり軸受の荷重分布測定方法及びその装置が提案されている(下記特許文献2参照)。   Further, the inventors of the present application have proposed a load distribution measuring method and apparatus for a rolling bearing with a built-in strain sensor on the inner ring (see Patent Document 2 below).

図8は従来の内輪へのひずみセンサ内蔵型転がり軸受の荷重分布測定装置を示す図である。   FIG. 8 is a diagram showing a conventional load distribution measuring device for a rolling bearing with a built-in strain sensor on an inner ring.

この図において、201は回転軸、202は回転軸201に固定される転がり軸受の回転する内輪、202Aは内輪202の軸方向に形成される細穴、203はこの内輪202内の細穴202Aに挿入される光ファイバ、203′はロータリージョイント208とひずみ計測器209との間に配置される光ファイバ、204は光ファイバ203内に装備されるひずみセンサ部、205は自転と公転を行う転動体、206はハウジングに固定される外輪、207はロータリージョイント208の支持体、210はLANケーブル、211はパーソナルコンピュータ(PC)である。   In this figure, 201 is a rotating shaft, 202 is a rotating inner ring of a rolling bearing fixed to the rotating shaft 201, 202A is a narrow hole formed in the axial direction of the inner ring 202, and 203 is a narrow hole 202A in the inner ring 202. An optical fiber to be inserted, 203 ′ is an optical fiber disposed between the rotary joint 208 and the strain measuring instrument 209, 204 is a strain sensor unit provided in the optical fiber 203, and 205 is a rolling element that rotates and revolves. 206, an outer ring fixed to the housing, 207 a support for the rotary joint 208, 210 a LAN cable, and 211 a personal computer (PC).

ひずみセンサ部204は内輪202の軸方向に形成された細穴202A内の軸方向に配置され、光ファイバ203,203′によって、回転軸201に固定された支持体207に支持される単一のロータリージョイント208を介してひずみ計測器209に接続されている。このひずみ計測器209にはLANケーブル210などを介してPC211が接続されている。   The strain sensor unit 204 is arranged in the axial direction in a narrow hole 202A formed in the axial direction of the inner ring 202, and is supported by a single support 207 fixed to the rotating shaft 201 by optical fibers 203 and 203 ′. It is connected to the strain measuring instrument 209 via the rotary joint 208. A PC 211 is connected to the strain measuring instrument 209 via a LAN cable 210 or the like.

特開2007−183105号公報JP 2007-183105 A 特開2009−216664号公報JP 2009-216664 A

しかしながら、上記した特許文献1に開示された転がり軸受の荷重分布測定方法では、自転及び公転を行う転動体103内にひずみセンサ部107を配置するようにしており、転がり軸受を回転させて動的測定を行う場合、図示しないが、測定装置が複雑になる。特に、転動体103の自転と公転にそれぞれ対応するための第1光ファイバロータリージョイントと第2光ファイバロータリージョイントが必要になるといった問題があった。   However, in the rolling bearing load distribution measuring method disclosed in Patent Document 1 described above, the strain sensor unit 107 is arranged in the rolling element 103 that performs rotation and revolution, and the rolling bearing is rotated to dynamically When performing measurement, although not shown, the measurement apparatus becomes complicated. In particular, there has been a problem that a first optical fiber rotary joint and a second optical fiber rotary joint are required to cope with the rotation and revolution of the rolling element 103, respectively.

さらに、上記特許文献2によれば、転がり軸受の回転軸201に固定される内輪202の軌道面近傍に軸方向に細穴202Aを設け、この細穴202Aにひずみセンサ部204を配備する光ファイバ203を挿入するようにしているため、転がり軸受の荷重を十分に検出することができず、その荷重分布を精確に測定することができないといった問題があった。   Further, according to Patent Document 2, an optical fiber is provided in which a narrow hole 202A is provided in the axial direction in the vicinity of the raceway surface of the inner ring 202 fixed to the rotating shaft 201 of the rolling bearing, and the strain sensor unit 204 is provided in the narrow hole 202A. Since 203 is inserted, there is a problem that the load of the rolling bearing cannot be sufficiently detected and the load distribution cannot be measured accurately.

本発明は、上記状況に鑑みて、簡単な構成の測定装置で転がり軸受の荷重分布を精確に求めることができる、内輪へのひずみセンサ内蔵型転がり軸受の荷重分布測定方法及びその装置を提供することを目的とする。   In view of the above situation, the present invention provides a load distribution measuring method and apparatus for a rolling bearing with a built-in strain sensor in an inner ring, which can accurately determine the load distribution of the rolling bearing with a measuring device having a simple configuration. For the purpose.

本発明は、上記目的を達成するために、
〔1〕内輪へのひずみセンサ内蔵型転がり軸受の荷重分布測定方法において、外輪が固定され内輪が回転する転がり軸受であって、この転がり軸受の回転軸に固定される前記内輪のひずみセンサ部が配置される位置の中心側に、極力前記内輪の機械的強度を弱めずに前記内輪の円周方向のひずみを大きくし、前記ひずみセンサ部による精確な転がり軸受の荷重分布を求めるための切欠溝を、前記円周方向にわたって周回しないように形成し、切欠底に前記ひずみセンサ部が装備された光ファイバを挿入する円周方向の細溝を設け、前記内輪とこの内輪の外方に配置される前記外輪との間に転動体を備え、前記ひずみセンサ部からの出力信号を前記光ファイバで導出し、前記回転軸の軸方向に配置され、前記回転軸に固定される支持体に支持される単一のロータリージョイントを介してひずみ計測器に光ファイバを接続し、前記転がり軸受を回転させて前記ひずみセンサ部の位置を前記転動体が通過する際のひずみを検出することを特徴とする。
In order to achieve the above object, the present invention provides
[1] In a load distribution measuring method for a rolling bearing with a built-in strain sensor on an inner ring, a rolling bearing in which an outer ring is fixed and an inner ring rotates, and the inner ring strain sensor portion fixed to the rotating shaft of the rolling bearing includes: A notch groove for increasing the circumferential strain of the inner ring as much as possible without reducing the mechanical strength of the inner ring as much as possible, and for obtaining an accurate load distribution of the rolling bearing by the strain sensor at the center side of the position where it is arranged Is formed so as not to circulate over the circumferential direction, and provided with a narrow groove in the circumferential direction for inserting an optical fiber equipped with the strain sensor portion at the bottom of the notch, and is disposed outside the inner ring and the inner ring. A rolling element between the outer ring and the output signal from the strain sensor unit is derived by the optical fiber, and is arranged in the axial direction of the rotating shaft and supported by a support fixed to the rotating shaft. An optical fiber is connected to a strain measuring instrument through a single rotary joint, and the rolling bearing is rotated to detect strain when the rolling element passes through the position of the strain sensor unit. .

〔2〕内輪へのひずみセンサ内蔵型転がり軸受の荷重分布測定装置において、外輪が固定され内輪が回転する転がり軸受であって、回転軸に固定される前記転がり軸受の内輪と、この内輪の円周方向に形成される切欠溝を形成し、切欠底に細溝を設け、この細溝に挿入される光ファイバと、この光ファイバに装備されるひずみセンサ部と、前記内輪のひずみセンサ部が配置される位置の中心側に、前記円周方向にわたって周回しないように形成され極力前記内輪の機械的強度を弱めずに前記内輪の円周方向のひずみを大きくし、前記ひずみセンサ部による精確な転がり軸受の荷重分布を求めるための切欠溝と、前記内輪とこの内輪の外方に配置される外輪との間に配置される転動体と、前記回転軸の軸方向に配置され、前記回転軸に固定される支持体に支持される単一のロータリージョイントと、このロータリージョイントを介して光ファイバにより接続されるひずみ計測器とを備え、前記転がり軸受を回転させて前記ひずみセンサ部の位置を前記転動体が通過する際のひずみを検出することを特徴とする。 [2] In a load distribution measuring apparatus for a rolling bearing with a built-in strain sensor on an inner ring, the rolling ring is a rolling bearing in which an outer ring is fixed and an inner ring rotates, the inner ring of the rolling bearing fixed to a rotating shaft, and a circle of the inner ring A notch groove formed in the circumferential direction is formed, a narrow groove is provided at the bottom of the notch, an optical fiber inserted into the narrow groove, a strain sensor portion equipped in the optical fiber, and a strain sensor portion of the inner ring are provided. the center side of the position to be disposed, the formed so as not to lap over the circumferential direction, as much as possible to increase the strain of the inner ring in the circumferential direction without weakening the mechanical strength of the inner ring, precisely by the strain sensor unit A notch groove for determining a load distribution of the rolling bearing, a rolling element disposed between the inner ring and an outer ring disposed outside the inner ring, and an axial direction of the rotating shaft, and the rotation Fixed to shaft A single rotary joint supported by the supporting member and a strain measuring instrument connected by an optical fiber through the rotary joint, and the rolling bearing is rotated to position the strain sensor unit. It is characterized by detecting a strain when passing through.

〔3〕上記〔2〕記載の内輪へのひずみセンサ内蔵型転がり軸受の荷重分布測定装置において、前記ひずみセンサ部としてファイバ・ブラッグ・グレーティング方式の光ファイバひずみセンサ(FBGセンサ)を用いることを特徴とする。   [3] In the load distribution measuring apparatus for a rolling bearing with a built-in strain sensor to the inner ring described in [2] above, a fiber Bragg grating type optical fiber strain sensor (FBG sensor) is used as the strain sensor section. And

〔4〕上記〔2〕記載の内輪へのひずみセンサ内蔵型転がり軸受の荷重分布測定装置において、前記光ファイバひずみセンサとしてファブリ・ペロー干渉型のひずみセンサを用いることを特徴とする。   [4] In the load distribution measuring apparatus for a rolling bearing with a built-in strain sensor in the inner ring described in [2], a Fabry-Perot interference type strain sensor is used as the optical fiber strain sensor.

本発明によれば、簡単な構成の測定装置で、精確な転がり軸受の荷重分布を求めることができる。   According to the present invention, an accurate load distribution of a rolling bearing can be obtained with a measuring device having a simple configuration.

本発明の実施例を示す内輪へのひずみセンサ内蔵型転がり軸受の荷重分布測定装置におけるひずみセンサ部を装備した光ファイバの取り付け部を示す模式図である。It is a schematic diagram which shows the attachment part of the optical fiber equipped with the strain sensor part in the load distribution measuring apparatus of the strain sensor built-in type rolling bearing to the inner ring which shows the Example of this invention. 本発明の実施例を示す内輪へのひずみセンサ内蔵型転がり軸受の荷重分布測定装置の全体図である。1 is an overall view of a load distribution measuring apparatus for a rolling bearing with a built-in strain sensor on an inner ring, showing an embodiment of the present invention. 本発明の実施例を示す内輪へのひずみセンサ内蔵型転がり軸受の内輪の構成図である。It is a block diagram of the inner ring | wheel of the strain sensor built-in type rolling bearing to the inner ring | wheel which shows the Example of this invention. 本発明の内輪へのひずみセンサ内蔵型転がり軸受の荷重分布測定装置のファイバ・ブラッグ・グレーディング方式のひずみセンサ部の模式図である。It is a schematic diagram of the strain sensor part of the fiber Bragg grading method of the load distribution measuring device of the rolling bearing with built-in strain sensor to the inner ring of the present invention. 本発明の内輪へのひずみセンサ内蔵型転がり軸受の荷重分布測定装置のファブリ・ペロー干渉型のひずみセンサ部の模式図である。It is a schematic diagram of the strain sensor part of the Fabry-Perot interference type of the load distribution measuring device for the rolling bearing with a built-in strain sensor to the inner ring of the present invention. 本発明の内輪へのひずみセンサ内蔵型転がり軸受の荷重分布測定によるひずみ分布を示す図である。It is a figure which shows the strain distribution by the load distribution measurement of the strain sensor built-in type rolling bearing to the inner ring | wheel of this invention. 従来の転がり軸受の荷重分布測定装置の転動体内への光ファイバ及びひずみセンサ部の取り付け部を示す図である。It is a figure which shows the attachment part of the optical fiber in the rolling body of the conventional load distribution measuring apparatus of a rolling bearing, and a strain sensor part. 従来の内輪へのひずみセンサ内蔵型転がり軸受の荷重分布測定装置を示す図である。It is a figure which shows the load distribution measuring apparatus of the conventional strain bearing built-in type rolling bearing to an inner ring | wheel.

本発明の内輪へのひずみセンサ内蔵型転がり軸受の荷重分布測定方法は、外輪が固定され内輪が回転する転がり軸受であって、この転がり軸受の回転軸に固定される前記内輪のひずみセンサ部が配置される位置の中心側に、極力前記内輪の機械的強度を弱めずに前記内輪の円周方向のひずみを大きくし、前記ひずみセンサ部による精確な転がり軸受の荷重分布を求めるための切欠溝を、前記円周方向にわたって周回しないように形成し、切欠底に前記ひずみセンサ部が装備された光ファイバを挿入する円周方向の細溝を設け、前記内輪とこの内輪の外方に配置される前記外輪との間に転動体を備え、前記ひずみセンサ部からの出力信号を前記光ファイバで導出し、前記回転軸の軸方向に配置され、前記回転軸に固定される支持体に支持される単一のロータリージョイントを介してひずみ計測器に光ファイバを接続し、前記転がり軸受を回転させて前記ひずみセンサ部の位置を前記転動体が通過する際のひずみを検出する。 The load distribution measuring method for a strain bearing with a built-in strain sensor in an inner ring according to the present invention is a rolling bearing in which an outer ring is fixed and an inner ring rotates, and the inner ring strain sensor portion fixed to the rotating shaft of the rolling bearing includes: A notch groove for increasing the circumferential strain of the inner ring as much as possible without reducing the mechanical strength of the inner ring as much as possible, and for obtaining an accurate load distribution of the rolling bearing by the strain sensor at the center side of the position where it is arranged Is formed so as not to circulate over the circumferential direction, and provided with a narrow groove in the circumferential direction for inserting an optical fiber equipped with the strain sensor portion at the bottom of the notch, and is disposed outside the inner ring and the inner ring. A rolling element is provided between the outer ring and the output signal from the strain sensor unit is derived by the optical fiber, and is arranged in the axial direction of the rotating shaft and supported by a support fixed to the rotating shaft. Ru The optical fiber connected to a strain measuring instrument via the one rotary joint, wherein the position of the strain sensor portion by rotating the rolling bearing rolling elements strain detecting a as it passes through.

以下、本発明の実施の形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

図1は本発明の実施例を示す内輪へのひずみセンサ内蔵型転がり軸受の荷重分布測定装置におけるひずみセンサ部を装備した光ファイバの取り付け部を示す模式図であり、図1(a)は全体構成図、図1(b)は図1(a)のA部拡大図、図2はその転がり軸受の荷重分布測定装置の全体図、図3はそのひずみセンサ内蔵型転がり軸受の内輪の構成図であり、図3(a)はその円周方向断面図〔図3(b)のC−C線断面図〕、図3(b)は図3(a)のB−B線断面図、図3(c)は図3(a)のD−D線断面図である。   FIG. 1 is a schematic view showing an optical fiber mounting portion equipped with a strain sensor portion in a load distribution measuring device for a rolling bearing with a built-in strain sensor on an inner ring showing an embodiment of the present invention. FIG. Configuration diagram, Fig. 1 (b) is an enlarged view of part A of Fig. 1 (a), Fig. 2 is an overall view of a load distribution measuring device for the rolling bearing, and Fig. 3 is a configuration diagram of an inner ring of the rolling bearing with a built-in strain sensor. FIG. 3A is a circumferential sectional view thereof (a sectional view taken along the line CC of FIG. 3B), and FIG. 3B is a sectional view taken along the line BB of FIG. 3 (c) is a sectional view taken along the line DD of FIG. 3 (a).

これらの図において、1は回転軸、2は回転軸1に固定される転がり軸受の回転する内輪、2Bは内輪2の細溝2Aの内側に形成される、極力前記内輪の機械的強度を弱めず、しかも前記ひずみセンサ部による精確な転がり軸受の荷重分布を求めるための切欠溝、2Aは内輪2の円周方向に形成される細溝、2A′はその細溝2Aから斜めに内輪側面に至る部分に設けられる、光ファイバを外に取り出すために形成される光ファイバ取り出し用細穴、3は内輪2内の細2Aに挿入される光ファイバ、3′はロータリージョイント11とひずみ計測器12の間に配置される光ファイバ、4はこの光ファイバ3内に装備されるひずみセンサ部、5は内輪の回転に伴い自転と公転を行う転動体、6はハウジング7に固定される外輪、8は荷重、9は転がり軸受の荷重分布、10はロータリージョイント11の支持体、13はLANケーブル、14はパーソナルコンピュータ(PC)を示している。 In these drawings, 1 is a rotating shaft, 2 is an inner ring that rotates on a rolling bearing fixed to the rotating shaft 1, and 2B is formed inside the narrow groove 2A of the inner ring 2 to weaken the mechanical strength of the inner ring as much as possible. In addition, a notch groove for obtaining an accurate load distribution of the rolling bearing by the strain sensor section, 2A is a narrow groove formed in the circumferential direction of the inner ring 2, and 2A 'is inclined from the narrow groove 2A to the side surface of the inner ring. provided in a portion extending, an optical fiber dispensing small hole which is formed in order to take out the optical fiber to the outside, 3 denotes an optical fiber to be inserted into the narrow groove 2A in the inner ring 2, 3 'is rotary joint 11 and the strain measuring instrument 4 is a strain sensor unit provided in the optical fiber 3, 5 is a rolling element that rotates and revolves as the inner ring rotates, 6 is an outer ring fixed to the housing 7, 8 is load, 9 Load distribution of the rolling bearing, 10 the support of the rotary joint 11, 13 LAN cable, 14 shows a personal computer (PC).

図2に示すように、ひずみセンサ部4は、内輪2の円周方向に形成された細2A内に円周方向に配置され、単一のロータリージョイント11を介して光ファイバ3,3′によってひずみ計測器12に接続されている。このひずみ計測器12にはLANケーブル13などを介してPC14が接続されている。 As shown in FIG. 2, the strain sensor unit 4 is arranged in the circumferential direction in the narrow groove 2A formed in the circumferential direction of the inner ring 2, the optical fiber 3 and 3 via a single rotary joint 11 ' Is connected to the strain measuring instrument 12. A PC 14 is connected to the strain measuring instrument 12 via a LAN cable 13 or the like.

このように構成することにより、内輪2に配置されたひずみセンサ部4からの出力信号を光ファイバ3を介して出力し、この計測された内輪2のひずみからひずみ計測器12及びPC14により得られたひずみデータを適切に処理することにより転がり軸受の荷重を求め、その荷重分布9を求めることができる。   With this configuration, an output signal from the strain sensor unit 4 disposed on the inner ring 2 is output via the optical fiber 3 and obtained from the measured strain of the inner ring 2 by the strain measuring instrument 12 and the PC 14. By appropriately processing the strain data, the load of the rolling bearing can be obtained, and the load distribution 9 can be obtained.

なお、ひずみセンサ部4は、内輪2に単列に単独に配置すれば足りるので、ここでは、次に示すようなファイバ・ブラッグ・グレーディング(FBG)方式とする。   Note that the strain sensor unit 4 is only required to be arranged in a single row on the inner ring 2, and therefore, here, the fiber Bragg grading (FBG) system as described below is used.

図4は本発明の内輪へのひずみセンサ内蔵型転がり軸受の荷重分布測定装置のファイバ・ブラッグ・グレーディング方式のひずみセンサ部の模式図である。   FIG. 4 is a schematic diagram of a strain sensor unit of a fiber Bragg grading system of a load distribution measuring device for a rolling bearing with a built-in strain sensor in an inner ring according to the present invention.

図4(a)において、FBGセンサ21の取付端21bが、光ファイバ22の先端に光学的に接続されている。このFBGセンサ21のコア21aの中にはn個のブラッグ回折格子G1〜Gnが長手方向に適当な間隔で並ぶように構成されている。FBGセンサ21のコア21aの左端と光ファイバ22のコア22aの右端とは光学的に接続されている。このようなFBGセンサ21に、図4(b)に示すような広い帯域の波長の成分を有するレーザー光L1を光ファイバ22から入射させると、この入射レーザー光L1は、ブラッグ回折格子G1〜Gn各々の配置間隔値と屈折率値に応じて定まる所定の波長λ0 〔図4(c)参照〕を中心とした狭い帯域の波長λの成分を有するレーザー光として反射され、図4(a)に示す反射レーザー光L2として光ファイバ22へ戻ってくる。ここで、FBGセンサ21にひずみが発生すると、ブラッグ回折格子G1〜Gn各々の配置間隔値と屈折率値に変化が生じるので、反射レーザー光L2の波長帯域は、例えば、図4(c)において破線で示すように、帯域の中心波長であるブラッグ波長がλ0 からλ1 へと変化する。この変化を求めることにより、FBGセンサ21のひずみの値を計測することができる。 In FIG. 4A, the attachment end 21 b of the FBG sensor 21 is optically connected to the tip of the optical fiber 22. In the core 21a of the FBG sensor 21, n Bragg diffraction gratings G1 to Gn are arranged at appropriate intervals in the longitudinal direction. The left end of the core 21a of the FBG sensor 21 and the right end of the core 22a of the optical fiber 22 are optically connected. When a laser beam L1 having a wide-band wavelength component as shown in FIG. 4B is incident on the FBG sensor 21 from the optical fiber 22, the incident laser beam L1 is transmitted to the Bragg diffraction gratings G1 to Gn. Reflected as a laser beam having a component of a wavelength λ in a narrow band centered on a predetermined wavelength λ 0 (see FIG. 4C) determined according to each arrangement interval value and refractive index value, FIG. It returns to the optical fiber 22 as reflected laser light L2 shown in FIG. Here, when distortion occurs in the FBG sensor 21, since the arrangement interval value and the refractive index value of each of the Bragg diffraction gratings G1 to Gn change, the wavelength band of the reflected laser light L2 is, for example, in FIG. As indicated by the broken line, the Bragg wavelength, which is the center wavelength of the band, changes from λ 0 to λ 1 . By obtaining this change, the strain value of the FBG sensor 21 can be measured.

また、本発明のひずみセンサ部として、ファブリ・ペロー干渉型のひずみセンサを用いるようにしてもよい。   Further, a Fabry-Perot interference type strain sensor may be used as the strain sensor section of the present invention.

図5は本発明の内輪へのひずみセンサ内蔵型転がり軸受の荷重分布測定装置のファブリ・ペロー干渉型のひずみセンサを用いたひずみセンサ部の模式図である。   FIG. 5 is a schematic diagram of a strain sensor unit using a Fabry-Perot interference type strain sensor of a load distribution measuring apparatus for a rolling bearing with a built-in strain sensor in an inner ring according to the present invention.

ファブリ・ペロー干渉型のひずみセンサ31は、図5に示すように、略筒状のひずみ受け部材32を有している。このひずみ受け部材32の一端である取付端32aに光ファイバ30が挿入され、接着剤33などによって取り付けられている。略筒状のひずみ受け部材32は、外部のひずみに対応してひずみ変形可能な材料、例えば、合成樹脂によって形成されている。   The Fabry-Perot interference type strain sensor 31 includes a substantially cylindrical strain receiving member 32 as shown in FIG. The optical fiber 30 is inserted into an attachment end 32 a which is one end of the strain receiving member 32 and attached by an adhesive 33 or the like. The substantially cylindrical strain receiving member 32 is formed of a material that can be deformed in accordance with an external strain, for example, a synthetic resin.

また、ファブリ・ペロー干渉型のひずみセンサ31の内部には、キャビティ長Eを挟んで、第1のミラー34と第2のミラー35が対向するように配置されている。第1のミラー34はハーフミラーであり、光ファイバ30から入射するレーザー光Lの一部を反射面34aで反射し、一部を通過させるようになっている。また、第2のミラー35は全反射ミラーであり、第1のミラー34を通過して入射したレーザー光を反射面35aで反射する。   Further, inside the Fabry-Perot interference type strain sensor 31, the first mirror 34 and the second mirror 35 are arranged to face each other with the cavity length E interposed therebetween. The first mirror 34 is a half mirror, and a part of the laser light L incident from the optical fiber 30 is reflected by the reflecting surface 34a and a part thereof is allowed to pass. The second mirror 35 is a total reflection mirror, and reflects the laser light incident through the first mirror 34 by the reflection surface 35a.

このような構成のファブリ・ペロー干渉型のひずみセンサ31において、ファブリ・ペロー干渉計の原理により、キャビティ長Eと、光反射による波長変調は比例する。このため、入射光と反射光の間の波長変調を検出することにより、キャビティ長Eを測定することができる。キャビティ長Eは、略筒状のひずみ受け部材32のひずみ変化に応じて変化するので、キャビティ長Eの変化を求めることにより、ひずみ値を計測することができる。   In the Fabry-Perot interferometric strain sensor 31 having such a configuration, the cavity length E is proportional to the wavelength modulation due to light reflection based on the principle of the Fabry-Perot interferometer. For this reason, the cavity length E can be measured by detecting the wavelength modulation between the incident light and the reflected light. Since the cavity length E changes according to the strain change of the substantially cylindrical strain receiving member 32, the strain value can be measured by obtaining the change of the cavity length E.

さらに、図示しないが、軸受を複列に配置し、その内輪のそれぞれに光ファイバひずみセンサとしてFBGセンサあるいはファブリ・ペロー干渉型のひずみセンサを配置することにより、複数本の光ファイバで複数箇所のひずみの計測を行うように構成することもできる。   Furthermore, although not shown in the drawing, the bearings are arranged in a double row, and an FBG sensor or a Fabry-Perot interference type strain sensor is arranged as an optical fiber strain sensor in each of the inner rings, so that a plurality of locations can be obtained with a plurality of optical fibers. It can also be configured to measure strain.

図6は本発明の内輪へのひずみセンサ内蔵型転がり軸受の荷重分布測定装置によって測定されるひずみ分布を示す模式図であり、図6(a)は内輪1回転目のひずみ分布を示す図、図6(b)は内輪2回転目のひずみ分布を示す図、同様にある回転数まで順次回数を重ねて、図6(c)は全ての測定値を重ね合わせたひずみ分布を示す図、図6(d)はデータ処理を行って得られた転動体荷重分布を示す図である。なお、図6(a)〜図6(c)における横軸は角度(転動体位置)、縦軸はひずみを示し、図6(d)における横軸は角度(転動体位置)、縦軸は転動体荷重を示している。   FIG. 6 is a schematic diagram showing a strain distribution measured by a load distribution measuring device for a rolling bearing with a built-in strain sensor on the inner ring of the present invention, and FIG. 6 (a) is a diagram showing a strain distribution at the first rotation of the inner ring, FIG. 6 (b) is a diagram showing the strain distribution of the second rotation of the inner ring, and similarly, the number of times is sequentially overlapped up to a certain number of revolutions, and FIG. 6 (c) is a diagram showing the strain distribution with all measured values superimposed. 6 (d) is a diagram showing a rolling element load distribution obtained by performing data processing. 6A to 6C, the horizontal axis indicates an angle (rolling element position), the vertical axis indicates strain, the horizontal axis in FIG. 6D indicates an angle (rolling element position), and the vertical axis indicates The rolling element load is shown.

これらの図に示すように、本発明によれば、転がり軸受の荷重分布を測定することができる。   As shown in these figures, according to the present invention, the load distribution of the rolling bearing can be measured.

なお、本発明は上記実施例に限定されるものではなく、本発明の趣旨に基づき種々の変形が可能であり、これらを本発明の範囲から排除するものではない。   In addition, this invention is not limited to the said Example, Based on the meaning of this invention, a various deformation | transformation is possible and these are not excluded from the scope of the present invention.

本発明の内輪へのひずみセンサ内蔵型転がり軸受の荷重分布測定方法及びその装置は、簡単な構成で精確な計測ができる転がり軸受の荷重分布測定のツールとして利用可能である。   INDUSTRIAL APPLICABILITY The load distribution measuring method and apparatus for a rolling bearing with a built-in strain sensor on the inner ring according to the present invention can be used as a load distribution measuring tool for a rolling bearing that can perform accurate measurement with a simple configuration.

1 回転軸
2 内輪
2A 細溝
2A′ 光ファイバ取り出し用細穴
2B 切欠溝
3,3′,22,30 光ファイバ
4 ひずみセンサ部
5 転動体
6 外輪
7 ハウジング
8 荷重
9 転がり軸受の荷重分布
10 ロータリージョイントの支持体
11 ロータリージョイント
12 ひずみ計測器
13 LANケーブル
14 パーソナルコンピュータ(PC)
21 FBGセンサ
21a FBGセンサのコア
21b FBGセンサの取付端
22a 光ファイバのコア
31 ファブリ・ペロー干渉型のひずみセンサ
32 ひずみ受け部材
32a ひずみ受け部材の取付端
33 接着剤
34 第1のミラー
34a 第1のミラーの反射面
35 第2のミラー
35a 第2のミラーの反射面
E キャビティ長
G1〜Gn n個のブラッグ回折格子
L レーザー光
L1 入射レーザー光
L2 反射レーザー光
DESCRIPTION OF SYMBOLS 1 Rotating shaft 2 Inner ring 2A Narrow groove 2A 'Narrow hole for taking out optical fiber 2B Notch groove 3, 3', 22, 30 Optical fiber 4 Strain sensor part 5 Rolling element 6 Outer ring 7 Housing 8 Load 9 Rolling bearing load distribution 10 Rotary Joint support 11 Rotary joint 12 Strain measuring instrument 13 LAN cable 14 Personal computer (PC)
DESCRIPTION OF SYMBOLS 21 FBG sensor 21a FBG sensor core 21b FBG sensor mounting end 22a Optical fiber core 31 Fabry-Perot interference type strain sensor 32 Strain receiving member 32a Strain receiving member mounting end 33 Adhesive 34 First mirror 34a First Reflective surface of mirror 35 35 Second mirror 35a Reflective surface of second mirror E Cavity length G1 to Gn n Bragg gratings L laser beam L1 incident laser beam L2 reflected laser beam

Claims (4)

外輪が固定され内輪が回転する転がり軸受であって、該転がり軸受の回転軸に固定される前記内輪のひずみセンサ部が配置される位置の中心側に、極力前記内輪の機械的強度を弱めずに前記内輪の円周方向のひずみを大きくし、前記ひずみセンサ部による精確な転がり軸受の荷重分布を求めるための切欠溝を、前記円周方向にわたって周回しないように形成し、切欠底に前記ひずみセンサ部が装備された光ファイバを挿入する円周方向の細溝を設け、前記内輪と該内輪の外方に配置される前記外輪との間に転動体を備え、前記ひずみセンサ部からの出力信号を前記光ファイバで導出し、前記回転軸の軸方向に配置され、前記回転軸に固定される支持体に支持される単一のロータリージョイントを介してひずみ計測器に光ファイバを接続し、前記転がり軸受を回転させて前記ひずみセンサ部の位置を前記転動体が通過する際のひずみを検出することを特徴とする内輪へのひずみセンサ内蔵型転がり軸受の荷重分布測定方法。 A rolling bearing in which the outer ring is fixed and the inner ring rotates, and the mechanical strength of the inner ring is not reduced as much as possible at the center of the position where the strain sensor portion of the inner ring fixed to the rotating shaft of the rolling bearing is disposed. the inner ring of increasing the strain in the circumferential direction, a notch groove for determining the load distribution of precise rolling bearing by the strain sensor unit, said formed so as not to lap over the circumferential direction, the strain notch bottom A circumferential narrow groove for inserting an optical fiber equipped with a sensor unit is provided, and a rolling element is provided between the inner ring and the outer ring arranged outside the inner ring, and an output from the strain sensor unit A signal is derived by the optical fiber, and the optical fiber is connected to the strain measuring instrument via a single rotary joint that is arranged in the axial direction of the rotating shaft and supported by a support fixed to the rotating shaft. Previous Load distribution method for measuring strain sensor built-rolling to the inner ring, characterized by detecting the distortion of when the rolling elements the position of the strain sensor unit rotates the rolling passes. 外輪が固定され内輪が回転する転がり軸受であって、
(a)回転軸に固定される前記転がり軸受の内輪と、
(b)該内輪の円周方向に形成される切欠溝を形成し、切欠底に細溝を設け、該細溝に挿入される光ファイバと、
(c)該光ファイバに装備されるひずみセンサ部と、
(d)前記内輪のひずみセンサ部が配置される位置の中心側に、前記円周方向にわたって周回しないように形成され極力前記内輪の機械的強度を弱めずに前記内輪の円周方向のひずみを大きくし、前記ひずみセンサ部による精確な転がり軸受の荷重分布を求めるための切欠溝と、
(e)前記内輪と該内輪の外方に配置される外輪との間に配置される転動体と、
(f)前記回転軸の軸方向に配置され、前記回転軸に固定される支持体に支持される単一のロータリージョイントと、
(g)該ロータリージョイントを介して光ファイバにより接続されるひずみ計測器とを備え、
(h)前記転がり軸受を回転させて前記ひずみセンサ部の位置を前記転動体が通過する際のひずみを検出することを特徴とする内輪へのひずみセンサ内蔵型転がり軸受の荷重分布測定装置。
A rolling bearing in which the outer ring is fixed and the inner ring rotates,
(A) an inner ring of the rolling bearing fixed to the rotating shaft;
(B) forming a notch groove formed in the circumferential direction of the inner ring, providing a narrow groove at the bottom of the notch, and an optical fiber inserted into the narrow groove;
(C) a strain sensor unit provided in the optical fiber;
(D) toward the center of the position where the strain sensor portion of the inner ring is arranged, the so formed as not to lap over the circumferential direction, the strain of the inner ring in the circumferential direction without much as possible weakening the mechanical strength of the inner ring It was increased, and the notch groove for determining the load distribution of precise rolling bearing by the strain sensor unit,
(E) a rolling element disposed between the inner ring and an outer ring disposed outside the inner ring;
(F) a single rotary joint that is arranged in the axial direction of the rotary shaft and supported by a support fixed to the rotary shaft;
(G) a strain measuring instrument connected by an optical fiber through the rotary joint;
(H) A load distribution measuring apparatus for a rolling bearing with a built-in strain sensor in an inner ring, wherein the rolling bearing is rotated to detect strain when the rolling element passes through the position of the strain sensor section.
請求項2記載の内輪へのひずみセンサ内蔵型転がり軸受の荷重分布測定装置において、前記ひずみセンサ部としてファイバ・ブラッグ・グレーティング方式の光ファイバひずみセンサ(FBGセンサ)を用いることを特徴とする内輪へのひずみセンサ内蔵型転がり軸受の荷重分布測定装置。   3. A load distribution measuring apparatus for a rolling bearing with a built-in strain sensor in an inner ring according to claim 2, wherein a fiber Bragg grating type optical fiber strain sensor (FBG sensor) is used as the strain sensor. Load distribution measuring device for rolling bearing with built-in strain sensor. 請求項2記載の内輪へのひずみセンサ内蔵型転がり軸受の荷重分布測定装置において、前記光ファイバひずみセンサとしてファブリ・ペロー干渉型のひずみセンサを用いることを特徴とする内輪へのひずみセンサ内蔵型転がり軸受の荷重分布測定装置。   3. A load distribution measuring apparatus for a rolling bearing with a built-in strain sensor in an inner ring according to claim 2, wherein a Fabry-Perot interference type strain sensor is used as the optical fiber strain sensor. Bearing load distribution measuring device.
JP2010183537A 2010-08-19 2010-08-19 Load distribution measuring method and apparatus for rolling bearing with built-in strain sensor on inner ring Expired - Fee Related JP5638312B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010183537A JP5638312B2 (en) 2010-08-19 2010-08-19 Load distribution measuring method and apparatus for rolling bearing with built-in strain sensor on inner ring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010183537A JP5638312B2 (en) 2010-08-19 2010-08-19 Load distribution measuring method and apparatus for rolling bearing with built-in strain sensor on inner ring

Publications (2)

Publication Number Publication Date
JP2012042319A JP2012042319A (en) 2012-03-01
JP5638312B2 true JP5638312B2 (en) 2014-12-10

Family

ID=45898820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010183537A Expired - Fee Related JP5638312B2 (en) 2010-08-19 2010-08-19 Load distribution measuring method and apparatus for rolling bearing with built-in strain sensor on inner ring

Country Status (1)

Country Link
JP (1) JP5638312B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9733153B2 (en) * 2013-10-31 2017-08-15 Schaeffler Technologies AG & Co. KG Device for measuring force in the rolling bearing by means of a sensor layer

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110174045A (en) * 2019-06-24 2019-08-27 南京高速齿轮制造有限公司 Gear case planet wheel bearing inner race strain measurement system
DE102019214488A1 (en) * 2019-09-23 2021-03-25 Aktiebolaget Skf Bearings with a single optical measuring fiber for load detection and storage unit with combined bearings
CN114705341B (en) * 2022-05-12 2024-02-02 河南科技大学 Rolling bearing friction moment measuring device and method based on optical fiber sensing

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0961268A (en) * 1995-08-25 1997-03-07 Nippon Seiko Kk Load measuring apparatus for bearing
JP2006015822A (en) * 2004-06-30 2006-01-19 Hitachi Cable Ltd Sensor system for detecting tire distortion
JP2009216664A (en) * 2008-03-12 2009-09-24 Railway Technical Res Inst Load distribution measuring method as to inner ring for distortion sensor built-in type rolling bearing, and apparatus therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9733153B2 (en) * 2013-10-31 2017-08-15 Schaeffler Technologies AG & Co. KG Device for measuring force in the rolling bearing by means of a sensor layer

Also Published As

Publication number Publication date
JP2012042319A (en) 2012-03-01

Similar Documents

Publication Publication Date Title
US20100158434A1 (en) Method and device for dynamic measurement of the radial deformation of a rolling bearing ring
KR100760510B1 (en) Monitoring device for rotating body
JP5638312B2 (en) Load distribution measuring method and apparatus for rolling bearing with built-in strain sensor on inner ring
JP4668227B2 (en) Strain detection device for rolling element of roller bearing
CN106197353B (en) Measuring probe
US8314925B2 (en) Fiber-optic based thrust load measurement system
US20100162830A1 (en) Torque-measuring flange
JP2009216665A (en) Load distribution measuring method as to outer ring for distortion sensor built-in type rolling bearing, and apparatus therefor
Kissinger et al. Dynamic fiber-optic shape sensing using fiber segment interferometry
JP2010502967A (en) Optical device for monitoring a rotatable shaft with a directional axis
WO2015178975A2 (en) An optical sensor system and methods of use thereof
JP6532061B2 (en) Optical measurement apparatus, optical measurement method and rotary machine
JP2008076391A5 (en)
JP2009216664A (en) Load distribution measuring method as to inner ring for distortion sensor built-in type rolling bearing, and apparatus therefor
US6885457B1 (en) Rotary position measuring system
EP4127621B1 (en) Sensor assembly
SE504757C2 (en) Apparatus for sensing elastic deformation of a tool shaft in a machine tool
SE504757C3 (en) Device for sensing elastic deformation of a tool shaft in a machine tool
JP2022537163A (en) Method and system for determining brake torque through detection performed by photonic sensors at fixed interfaces between brake caliper bodies and respective supports
JP6523178B2 (en) Distortion sensor and method of manufacturing distortion sensor
JP5638313B2 (en) Load distribution measuring method and apparatus for rolling bearing with built-in strain sensor to outer ring
KR20180052962A (en) Measuring device using fiber bragg grating sensor
WO2014108170A1 (en) Fibreoptic sensor clip
JP2021514844A (en) Flatness rollers, systems for measuring flatness, and related rolling operation lines
Yildirim et al. A numerical algorithm to determine straightness error, surface roughness, and waviness measured using a fiber optic interferometer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140722

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140827

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141021

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141022

LAPS Cancellation because of no payment of annual fees