JP2012042319A - Method and device for measuring load distribution of rolling bearing with strain sensor mounted on inner ring - Google Patents

Method and device for measuring load distribution of rolling bearing with strain sensor mounted on inner ring Download PDF

Info

Publication number
JP2012042319A
JP2012042319A JP2010183537A JP2010183537A JP2012042319A JP 2012042319 A JP2012042319 A JP 2012042319A JP 2010183537 A JP2010183537 A JP 2010183537A JP 2010183537 A JP2010183537 A JP 2010183537A JP 2012042319 A JP2012042319 A JP 2012042319A
Authority
JP
Japan
Prior art keywords
inner ring
strain sensor
rolling bearing
strain
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010183537A
Other languages
Japanese (ja)
Other versions
JP5638312B2 (en
Inventor
Takashi Nagatomo
貴史 永友
Yoshiaki Okamura
吉晃 岡村
Ken Takahashi
高橋  研
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Original Assignee
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute filed Critical Railway Technical Research Institute
Priority to JP2010183537A priority Critical patent/JP5638312B2/en
Publication of JP2012042319A publication Critical patent/JP2012042319A/en
Application granted granted Critical
Publication of JP5638312B2 publication Critical patent/JP5638312B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/52Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions
    • F16C19/522Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions related to load on the bearing, e.g. bearings with load sensors or means to protect the bearing against overload
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/24Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for radial load mainly
    • F16C19/26Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for radial load mainly with a single row of rollers

Abstract

PROBLEM TO BE SOLVED: To provide a method and device for measuring the load distribution of a rolling bearing with a strain sensor mounted on the inner ring thereof, capable of precisely determining the load distribution of the rolling bearing using a simple structured measuring device.SOLUTION: A small hole 2A is provided in the circumferential direction in the vicinity of the raceway surface of the inner ring 2 fixed to the rotational shaft of the rolling bearing with fixed outer ring and rotated inner ring. An optical fiber 3, to which a strain sensor part 4 is attached, is inserted into the small hole 2A. A recessed groove 2B is formed in the center side of the position where the strain sensor part is disposed in the inner ring 2. Rolling elements 5 are provided between the inner ring 2 and the outer ring which is disposed in the outside of the inner ring 2. The output signal is taken out from the strain sensor part 4 through the optical fiber 3. The optical fiber 3 is connected to a strain measuring device through a single rotary joint which is disposed in the axial direction of the rotational shaft and supported by the support fixed to the rotational shaft. Therefore, the strain is detected while the rolling bearing is rotated and the rolling elements 5 passes through the position of the strain sensor part 4.

Description

本発明は、外輪が固定され内輪が回転して使用される転がり軸受における、内輪へのひずみセンサ内蔵型転がり軸受の荷重分布測定方法及びその装置に係り、特に、転がり軸受の内輪内に光ファイバに装備されるひずみセンサ部を配置し、その位置を転動体が通過する際のひずみを検出することで、軸受全体の荷重分布を求めるようにしたものである。   The present invention relates to a load distribution measuring method and apparatus for a strain bearing with a built-in strain sensor in an inner ring in a rolling bearing that is used with an outer ring fixed and an inner ring rotated, and in particular, an optical fiber in the inner ring of the rolling bearing. The strain sensor part equipped in is arranged, and the load distribution of the entire bearing is obtained by detecting the strain when the rolling element passes through the position.

図7は従来の転がり軸受の荷重分布測定装置の転動体内への光ファイバ及びひずみセンサ部の取り付け部を示す図である。
この図において、101は回転軸、102は回転軸101に固定される転がり軸受の内輪、103は転がり軸受の転動体、104は転がり軸受の外輪、105は転がり軸受の転動体103内に形成される細穴、106はその細穴105に挿入される光ファイバ、107は光ファイバ106内に装備されるひずみセンサ部である。
FIG. 7 is a view showing an attachment portion of an optical fiber and a strain sensor part in a rolling body of a conventional load distribution measuring device for a rolling bearing.
In this figure, 101 is a rotating shaft, 102 is an inner ring of a rolling bearing fixed to the rotating shaft 101, 103 is a rolling element of the rolling bearing, 104 is an outer ring of the rolling bearing, and 105 is formed in the rolling element 103 of the rolling bearing. A thin hole 106, an optical fiber inserted into the thin hole 105, and a strain sensor 107 provided in the optical fiber 106.

このように、転がり軸受の転動体103の軸中心に、放電加工により細穴105を設ける。その細穴105にひずみセンサ部107を装備する光ファイバ106を挿入し接着することにより、転動体103に発生するひずみを検出し、軸受全体の荷重分布を求めるようにしたものが本願発明者らによって提案されている(下記特許文献1参照)。
また、本願発明者らによって、内輪へのひずみセンサ内蔵型転がり軸受の荷重分布測定方法及びその装置が提案されている(下記特許文献2参照)。
In this way, the narrow hole 105 is provided by electric discharge machining at the center of the rolling element 103 of the rolling bearing. The inventors of the present application have detected the strain generated in the rolling element 103 by inserting and bonding the optical fiber 106 equipped with the strain sensor portion 107 into the narrow hole 105 and obtaining the load distribution of the entire bearing. (See Patent Document 1 below).
Further, the inventors of the present application have proposed a load distribution measuring method and apparatus for a rolling bearing with a built-in strain sensor on the inner ring (see Patent Document 2 below).

図8は従来の内輪へのひずみセンサ内蔵型転がり軸受の荷重分布測定装置を示す図である。
この図において、201は回転軸、202は回転軸201に固定される転がり軸受の回転する内輪、202Aは内輪202の軸方向に形成される細穴、203はこの内輪202内の細穴202Aに挿入される光ファイバ、203′はロータリージョイント208とひずみ計測器209との間に配置される光ファイバ、204は光ファイバ203内に装備されるひずみセンサ部、205は自転と公転を行う転動体、206はハウジングに固定される外輪、207はロータリージョイント208の支持体、210はLANケーブル、211はパーソナルコンピュータ(PC)である。
FIG. 8 is a diagram showing a conventional load distribution measuring device for a rolling bearing with a built-in strain sensor on an inner ring.
In this figure, 201 is a rotating shaft, 202 is a rotating inner ring of a rolling bearing fixed to the rotating shaft 201, 202A is a narrow hole formed in the axial direction of the inner ring 202, and 203 is a narrow hole 202A in the inner ring 202. An optical fiber to be inserted, 203 ′ is an optical fiber disposed between the rotary joint 208 and the strain measuring instrument 209, 204 is a strain sensor unit provided in the optical fiber 203, and 205 is a rolling element that rotates and revolves. 206, an outer ring fixed to the housing, 207 a support for the rotary joint 208, 210 a LAN cable, and 211 a personal computer (PC).

ひずみセンサ部204は内輪202の軸方向に形成された細穴202A内の軸方向に配置され、光ファイバ203,203′によって、回転軸201に固定された支持体207に支持される単一のロータリージョイント208を介してひずみ計測器209に接続されている。このひずみ計測器209にはLANケーブル210などを介してPC211が接続されている。   The strain sensor unit 204 is arranged in the axial direction in a narrow hole 202A formed in the axial direction of the inner ring 202, and is supported by a single support 207 fixed to the rotating shaft 201 by optical fibers 203 and 203 ′. It is connected to the strain measuring instrument 209 via the rotary joint 208. A PC 211 is connected to the strain measuring instrument 209 via a LAN cable 210 or the like.

特開2007−183105号公報JP 2007-183105 A 特開2009−216664号公報JP 2009-216664 A

しかしながら、上記した特許文献1に開示された転がり軸受の荷重分布測定方法では、自転及び公転を行う転動体103内にひずみセンサ部107を配置するようにしており、転がり軸受を回転させて動的測定を行う場合、図示しないが、測定装置が複雑になる。特に、転動体103の自転と公転にそれぞれ対応するための第1光ファイバロータリージョイントと第2光ファイバロータリージョイントが必要になるといった問題があった。   However, in the rolling bearing load distribution measuring method disclosed in Patent Document 1 described above, the strain sensor unit 107 is arranged in the rolling element 103 that performs rotation and revolution, and the rolling bearing is rotated to dynamically When performing measurement, although not shown, the measurement apparatus becomes complicated. In particular, there has been a problem that a first optical fiber rotary joint and a second optical fiber rotary joint are required to cope with the rotation and revolution of the rolling element 103, respectively.

さらに、上記特許文献2によれば、転がり軸受の回転軸201に固定される内輪202の軌道面近傍に軸方向に細穴202Aを設け、この細穴202Aにひずみセンサ部204を配備する光ファイバ203を挿入するようにしているため、転がり軸受の荷重を十分に検出することができず、その荷重分布を精確に測定することができないといった問題があった。   Further, according to Patent Document 2, an optical fiber is provided in which a narrow hole 202A is provided in the axial direction in the vicinity of the raceway surface of the inner ring 202 fixed to the rotating shaft 201 of the rolling bearing, and the strain sensor unit 204 is provided in the narrow hole 202A. Since 203 is inserted, there is a problem that the load of the rolling bearing cannot be sufficiently detected and the load distribution cannot be measured accurately.

本発明は、上記状況に鑑みて、簡単な構成の測定装置で転がり軸受の荷重分布を精確に求めることができる、内輪へのひずみセンサ内蔵型転がり軸受の荷重分布測定方法及びその装置を提供することを目的とする。   In view of the above situation, the present invention provides a load distribution measuring method and apparatus for a rolling bearing with a built-in strain sensor in an inner ring, which can accurately determine the load distribution of the rolling bearing with a measuring device having a simple configuration. For the purpose.

本発明は、上記目的を達成するために、
〔1〕内輪へのひずみセンサ内蔵型転がり軸受の荷重分布測定方法において、外輪が固定され内輪が回転する転がり軸受であって、この転がり軸受の回転軸に固定される前記内輪の軌道面近傍に円周方向に細穴を設け、この細穴内にひずみセンサ部を装備する光ファイバを挿入し、かつ前記内輪のひずみセンサ部が配置される位置の中心側に切欠溝を形成し、前記内輪とこの内輪の外方に配置される前記外輪との間に転動体を備え、前記ひずみセンサ部からの出力信号を前記光ファイバで導出し、前記回転軸の軸方向に配置され、前記回転軸に固定される支持体に支持される単一のロータリージョイントを介してひずみ計測器に光ファイバを接続し、前記転がり軸受を回転させて前記ひずみセンサ部の位置を前記転動体が通過する際のひずみを検出することを特徴とする。
In order to achieve the above object, the present invention provides
[1] In a load distribution measuring method of a strain sensor built-in type rolling bearing to an inner ring, a rolling bearing in which an outer ring is fixed and an inner ring rotates, and is located near a raceway surface of the inner ring fixed to a rotating shaft of the rolling bearing. A narrow hole is provided in the circumferential direction, an optical fiber equipped with a strain sensor portion is inserted into the narrow hole, and a notch groove is formed on the center side of the position where the strain sensor portion of the inner ring is disposed. A rolling element is provided between the inner ring and the outer ring, and an output signal from the strain sensor unit is derived by the optical fiber, arranged in the axial direction of the rotating shaft, and connected to the rotating shaft. An optical fiber is connected to a strain measuring instrument through a single rotary joint supported by a fixed support, the rolling bearing is rotated, and the strain when the rolling element passes through the position of the strain sensor unit. And detecting.

〔2〕内輪へのひずみセンサ内蔵型転がり軸受の荷重分布測定装置において、外輪が固定され内輪が回転する転がり軸受であって、回転軸に固定される前記転がり軸受の内輪と、この内輪の円周方向に形成される細穴内に配置される光ファイバと、この光ファイバに装備されるひずみセンサ部と、前記内輪のひずみセンサ部が配置される位置の中心側に形成される切欠溝と、前記内輪とこの内輪の外方に配置される外輪との間に配置される転動体と、前記回転軸の軸方向に配置され、前記回転軸に固定される支持体に支持される単一のロータリージョイントと、このロータリージョイントを介して光ファイバにより接続されるひずみ計測器とを備え、前記転がり軸受を回転させて前記ひずみセンサ部の位置を前記転動体が通過する際のひずみを検出することを特徴とする。   [2] In a load distribution measuring apparatus for a rolling bearing with a built-in strain sensor on an inner ring, the rolling ring is a rolling bearing in which an outer ring is fixed and an inner ring rotates, and the inner ring of the rolling bearing fixed to a rotating shaft, An optical fiber disposed in a narrow hole formed in the circumferential direction, a strain sensor portion equipped in the optical fiber, a notch groove formed on the center side of the position where the strain sensor portion of the inner ring is disposed, A rolling element disposed between the inner ring and an outer ring disposed outside the inner ring, and a single member supported by a support body disposed in the axial direction of the rotating shaft and fixed to the rotating shaft. A rotary joint and a strain measuring instrument connected by an optical fiber via the rotary joint, and the strain when the rolling element passes through the position of the strain sensor by rotating the rolling bearing. And detecting.

〔3〕上記〔2〕記載の内輪へのひずみセンサ内蔵型転がり軸受の荷重分布測定装置において、前記ひずみセンサ部としてファイバ・ブラッグ・グレーティング方式の光ファイバひずみセンサ(FBGセンサ)を用いることを特徴とする。
〔4〕上記〔2〕記載の内輪へのひずみセンサ内蔵型転がり軸受の荷重分布測定装置において、前記光ファイバひずみセンサとしてファブリ・ペロー干渉型のひずみセンサを用いることを特徴とする。
[3] In the load distribution measuring apparatus for a rolling bearing with a built-in strain sensor to the inner ring described in [2] above, a fiber Bragg grating type optical fiber strain sensor (FBG sensor) is used as the strain sensor section. And
[4] In the load distribution measuring apparatus for a rolling bearing with a built-in strain sensor in the inner ring described in [2], a Fabry-Perot interference type strain sensor is used as the optical fiber strain sensor.

本発明によれば、簡単な構成の測定装置で、精確な転がり軸受の荷重分布を求めることができる。   According to the present invention, an accurate load distribution of a rolling bearing can be obtained with a measuring device having a simple configuration.

本発明の実施例を示す内輪へのひずみセンサ内蔵型転がり軸受の荷重分布測定装置におけるひずみセンサ部を装備した光ファイバの取り付け部を示す模式図である。It is a schematic diagram which shows the attachment part of the optical fiber equipped with the strain sensor part in the load distribution measuring apparatus of the strain sensor built-in type rolling bearing to the inner ring which shows the Example of this invention. 本発明の実施例を示す内輪へのひずみセンサ内蔵型転がり軸受の荷重分布測定装置の全体図である。1 is an overall view of a load distribution measuring apparatus for a rolling bearing with a built-in strain sensor on an inner ring, showing an embodiment of the present invention. 本発明の実施例を示す内輪へのひずみセンサ内蔵型転がり軸受の内輪の構成図である。It is a block diagram of the inner ring | wheel of the strain sensor built-in type rolling bearing to the inner ring | wheel which shows the Example of this invention. 本発明の内輪へのひずみセンサ内蔵型転がり軸受の荷重分布測定装置のファイバ・ブラッグ・グレーディング方式のひずみセンサ部の模式図である。It is a schematic diagram of the strain sensor part of the fiber Bragg grading method of the load distribution measuring device of the rolling bearing with built-in strain sensor to the inner ring of the present invention. 本発明の内輪へのひずみセンサ内蔵型転がり軸受の荷重分布測定装置のファブリ・ペロー干渉型のひずみセンサ部の模式図である。It is a schematic diagram of the strain sensor part of the Fabry-Perot interference type of the load distribution measuring device for the rolling bearing with a built-in strain sensor to the inner ring of the present invention. 本発明の内輪へのひずみセンサ内蔵型転がり軸受の荷重分布測定によるひずみ分布を示す図である。It is a figure which shows the strain distribution by the load distribution measurement of the strain sensor built-in type rolling bearing to the inner ring | wheel of this invention. 従来の転がり軸受の荷重分布測定装置の転動体内への光ファイバ及びひずみセンサ部の取り付け部を示す図である。It is a figure which shows the attachment part of the optical fiber in the rolling body of the conventional load distribution measuring apparatus of a rolling bearing, and a strain sensor part. 従来の内輪へのひずみセンサ内蔵型転がり軸受の荷重分布測定装置を示す図である。It is a figure which shows the load distribution measuring apparatus of the conventional strain bearing built-in type rolling bearing to an inner ring | wheel.

本発明の内輪へのひずみセンサ内蔵型転がり軸受の荷重分布測定方法は、外輪が固定され内輪が回転する転がり軸受であって、この転がり軸受の回転軸に固定される前記内輪の軌道面近傍に円周方向に細穴を設け、この細穴内にひずみセンサ部を装備する光ファイバを挿入し、かつ前記内輪のひずみセンサ部が配置される位置の中心側に切欠溝を形成し、前記内輪とこの内輪の外方に配置される前記外輪との間に転動体を備え、前記ひずみセンサ部からの出力信号を前記光ファイバで導出し、前記回転軸の軸方向に配置され、前記回転軸に固定される支持体に支持される単一のロータリージョイントを介してひずみ計測器に光ファイバを接続し、前記転がり軸受を回転させて前記ひずみセンサ部の位置を前記転動体が通過する際のひずみを検出する。   The load distribution measuring method of the strain sensor built-in type rolling bearing for the inner ring according to the present invention is a rolling bearing in which the outer ring is fixed and the inner ring rotates, and in the vicinity of the raceway surface of the inner ring fixed to the rotating shaft of the rolling bearing A narrow hole is provided in the circumferential direction, an optical fiber equipped with a strain sensor portion is inserted into the narrow hole, and a notch groove is formed on the center side of the position where the strain sensor portion of the inner ring is disposed. A rolling element is provided between the inner ring and the outer ring, and an output signal from the strain sensor unit is derived by the optical fiber, arranged in the axial direction of the rotating shaft, and connected to the rotating shaft. An optical fiber is connected to a strain measuring instrument through a single rotary joint supported by a fixed support, the rolling bearing is rotated, and the strain when the rolling element passes through the position of the strain sensor unit. Inspect To.

以下、本発明の実施の形態について詳細に説明する。
図1は本発明の実施例を示す内輪へのひずみセンサ内蔵型転がり軸受の荷重分布測定装置におけるひずみセンサ部を装備した光ファイバの取り付け部を示す模式図であり、図1(a)は全体構成図、図1(b)は図1(a)のA部拡大図、図2はその転がり軸受の荷重分布測定装置の全体図、図3はそのひずみセンサ内蔵型転がり軸受の内輪の構成図であり、図3(a)はその円周方向断面図〔図3(b)のC−C線断面図〕、図3(b)は図3(a)のB−B線断面図、図3(c)は図3(a)のD−D線断面図である。
Hereinafter, embodiments of the present invention will be described in detail.
FIG. 1 is a schematic view showing an optical fiber mounting portion equipped with a strain sensor portion in a load distribution measuring device for a rolling bearing with a built-in strain sensor on an inner ring showing an embodiment of the present invention. FIG. Configuration diagram, Fig. 1 (b) is an enlarged view of part A of Fig. 1 (a), Fig. 2 is an overall view of a load distribution measuring device for the rolling bearing, and Fig. 3 is a configuration diagram of an inner ring of the rolling bearing with a built-in strain sensor. FIG. 3A is a circumferential sectional view thereof (a sectional view taken along the line CC of FIG. 3B), and FIG. 3B is a sectional view taken along the line BB of FIG. 3 (c) is a cross-sectional view taken along the line DD of FIG. 3 (a).

これらの図において、1は回転軸、2は回転軸1に固定される転がり軸受の回転する内輪、2Aは内輪2の円周方向に形成される細穴、2A′はその細穴2Aから斜めに内輪側面に至る部分に設けられる、光ファイバを外に取り出すために形成される光ファイバ取り出し用細穴、2Bは内輪2の細穴2Aの内側に形成される切欠溝、3は内輪2内の細穴2Aに挿入される光ファイバ、3′はロータリージョイント11とひずみ計測器12の間に配置される光ファイバ、4はこの光ファイバ3内に装備されるひずみセンサ部、5は内輪の回転に伴い自転と公転を行う転動体、6はハウジング7に固定される外輪、8は荷重、9は転がり軸受の荷重分布、10はロータリージョイント11の支持体、13はLANケーブル、14はパーソナルコンピュータ(PC)を示している。   In these drawings, 1 is a rotating shaft, 2 is an inner ring that rotates on a rolling bearing fixed to the rotating shaft 1, 2A is a narrow hole formed in the circumferential direction of the inner ring 2, and 2A 'is oblique from the narrow hole 2A. 2B is a notch groove formed inside the narrow hole 2A of the inner ring 2 and 3 is an inner ring 2 inside. An optical fiber 3 'is inserted into the narrow hole 2A of the optical fiber 3' is an optical fiber disposed between the rotary joint 11 and the strain measuring instrument 12, 4 is a strain sensor section provided in the optical fiber 3, and 5 is an inner ring. Rolling elements that rotate and revolve with rotation, 6 is an outer ring fixed to the housing 7, 8 is a load, 9 is a load distribution of the rolling bearing, 10 is a support for the rotary joint 11, 13 is a LAN cable, and 14 is a personal Con It shows the Yuta (PC).

図2に示すように、ひずみセンサ部4は、内輪2の円周方向に形成された細穴2A内に円周方向に配置され、単一のロータリージョイント11を介して光ファイバ3,3′によってひずみ計測器12に接続されている。このひずみ計測器12にはLANケーブル13などを介してPC14が接続されている。
このように構成することにより、内輪2に配置されたひずみセンサ部4からの出力信号を光ファイバ3を介して出力し、この計測された内輪2のひずみからひずみ計測器12及びPC14により得られたひずみデータを適切に処理することにより転がり軸受の荷重を求め、その荷重分布9を求めることができる。
As shown in FIG. 2, the strain sensor unit 4 is disposed in the circumferential direction in the narrow hole 2 </ b> A formed in the circumferential direction of the inner ring 2, and is connected to the optical fibers 3, 3 ′ via a single rotary joint 11. Is connected to the strain measuring instrument 12. A PC 14 is connected to the strain measuring instrument 12 via a LAN cable 13 or the like.
With this configuration, an output signal from the strain sensor unit 4 disposed on the inner ring 2 is output via the optical fiber 3 and obtained from the measured strain of the inner ring 2 by the strain measuring instrument 12 and the PC 14. By appropriately processing the strain data, the load of the rolling bearing can be obtained, and the load distribution 9 can be obtained.

なお、ひずみセンサ部4は、内輪2に単列に単独に配置すれば足りるので、ここでは、次に示すようなファイバ・ブラッグ・グレーディング(FBG)方式とする。
図4は本発明の内輪へのひずみセンサ内蔵型転がり軸受の荷重分布測定装置のファイバ・ブラッグ・グレーディング方式のひずみセンサ部の模式図である。
図4(a)において、FBGセンサ21の取付端21bが、光ファイバ22の先端に光学的に接続されている。このFBGセンサ21のコア21aの中にはn個のブラッグ回折格子G1〜Gnが長手方向に適当な間隔で並ぶように構成されている。FBGセンサ21のコア21aの左端と光ファイバ22のコア22aの右端とは光学的に接続されている。このようなFBGセンサ21に、図4(b)に示すような広い帯域の波長の成分を有するレーザー光L1を光ファイバ22から入射させると、この入射レーザー光L1は、ブラッグ回折格子G1〜Gn各々の配置間隔値と屈折率値に応じて定まる所定の波長λ0 〔図4(c)参照〕を中心とした狭い帯域の波長λの成分を有するレーザー光として反射され、図4(a)に示す反射レーザー光L2として光ファイバ22へ戻ってくる。ここで、FBGセンサ21にひずみが発生すると、ブラッグ回折格子G1〜Gn各々の配置間隔値と屈折率値に変化が生じるので、反射レーザー光L2の波長帯域は、例えば、図4(c)において破線で示すように、帯域の中心波長であるブラッグ波長がλ0 からλ1 へと変化する。この変化を求めることにより、FBGセンサ21のひずみの値を計測することができる。
Note that the strain sensor unit 4 is only required to be arranged in a single row on the inner ring 2, and therefore, here, the fiber Bragg grading (FBG) system as described below is used.
FIG. 4 is a schematic diagram of a strain sensor unit of a fiber Bragg grading system of a load distribution measuring device for a rolling bearing with a built-in strain sensor in an inner ring according to the present invention.
In FIG. 4A, the attachment end 21 b of the FBG sensor 21 is optically connected to the tip of the optical fiber 22. In the core 21a of the FBG sensor 21, n Bragg diffraction gratings G1 to Gn are arranged at appropriate intervals in the longitudinal direction. The left end of the core 21a of the FBG sensor 21 and the right end of the core 22a of the optical fiber 22 are optically connected. When a laser beam L1 having a wide-band wavelength component as shown in FIG. 4B is incident on the FBG sensor 21 from the optical fiber 22, the incident laser beam L1 is transmitted to the Bragg diffraction gratings G1 to Gn. Reflected as a laser beam having a component of a wavelength λ in a narrow band centered on a predetermined wavelength λ 0 (see FIG. 4C) determined according to each arrangement interval value and refractive index value, FIG. It returns to the optical fiber 22 as reflected laser light L2 shown in FIG. Here, when distortion occurs in the FBG sensor 21, since the arrangement interval value and the refractive index value of each of the Bragg diffraction gratings G1 to Gn change, the wavelength band of the reflected laser light L2 is, for example, in FIG. As indicated by the broken line, the Bragg wavelength, which is the center wavelength of the band, changes from λ 0 to λ 1 . By obtaining this change, the strain value of the FBG sensor 21 can be measured.

また、本発明のひずみセンサ部として、ファブリ・ペロー干渉型のひずみセンサを用いるようにしてもよい。
図5は本発明の内輪へのひずみセンサ内蔵型転がり軸受の荷重分布測定装置のファブリ・ペロー干渉型のひずみセンサを用いたひずみセンサ部の模式図である。
ファブリ・ペロー干渉型のひずみセンサ31は、図5に示すように、略筒状のひずみ受け部材32を有している。このひずみ受け部材32の一端である取付端32aに光ファイバ30が挿入され、接着剤33などによって取り付けられている。略筒状のひずみ受け部材32は、外部のひずみに対応してひずみ変形可能な材料、例えば、合成樹脂によって形成されている。
Further, a Fabry-Perot interference type strain sensor may be used as the strain sensor section of the present invention.
FIG. 5 is a schematic diagram of a strain sensor unit using a Fabry-Perot interference type strain sensor of a load distribution measuring apparatus for a rolling bearing with a built-in strain sensor in an inner ring according to the present invention.
The Fabry-Perot interference type strain sensor 31 includes a substantially cylindrical strain receiving member 32 as shown in FIG. The optical fiber 30 is inserted into an attachment end 32 a which is one end of the strain receiving member 32 and attached by an adhesive 33 or the like. The substantially cylindrical strain receiving member 32 is formed of a material that can be deformed in accordance with an external strain, for example, a synthetic resin.

また、ファブリ・ペロー干渉型のひずみセンサ31の内部には、キャビティ長Eを挟んで、第1のミラー34と第2のミラー35が対向するように配置されている。第1のミラー34はハーフミラーであり、光ファイバ30から入射するレーザー光Lの一部を反射面34aで反射し、一部を通過させるようになっている。また、第2のミラー35は全反射ミラーであり、第1のミラー34を通過して入射したレーザー光を反射面35aで反射する。   Further, inside the Fabry-Perot interference type strain sensor 31, the first mirror 34 and the second mirror 35 are arranged to face each other with the cavity length E interposed therebetween. The first mirror 34 is a half mirror, and a part of the laser light L incident from the optical fiber 30 is reflected by the reflecting surface 34a and a part thereof is allowed to pass. The second mirror 35 is a total reflection mirror, and reflects the laser light incident through the first mirror 34 by the reflection surface 35a.

このような構成のファブリ・ペロー干渉型のひずみセンサ31において、ファブリ・ペロー干渉計の原理により、キャビティ長Eと、光反射による波長変調は比例する。このため、入射光と反射光の間の波長変調を検出することにより、キャビティ長Eを測定することができる。キャビティ長Eは、略筒状のひずみ受け部材32のひずみ変化に応じて変化するので、キャビティ長Eの変化を求めることにより、ひずみ値を計測することができる。   In the Fabry-Perot interferometric strain sensor 31 having such a configuration, the cavity length E is proportional to the wavelength modulation due to light reflection based on the principle of the Fabry-Perot interferometer. For this reason, the cavity length E can be measured by detecting the wavelength modulation between the incident light and the reflected light. Since the cavity length E changes according to the strain change of the substantially cylindrical strain receiving member 32, the strain value can be measured by obtaining the change of the cavity length E.

さらに、図示しないが、軸受を複列に配置し、その内輪のそれぞれに光ファイバひずみセンサとしてFBGセンサあるいはファブリ・ペロー干渉型のひずみセンサを配置することにより、複数本の光ファイバで複数箇所のひずみの計測を行うように構成することもできる。
図6は本発明の内輪へのひずみセンサ内蔵型転がり軸受の荷重分布測定装置によって測定されるひずみ分布を示す模式図であり、図6(a)は内輪1回転目のひずみ分布を示す図、図6(b)は内輪2回転目のひずみ分布を示す図、同様にある回転数まで順次回数を重ねて、図6(c)は全ての測定値を重ね合わせたひずみ分布を示す図、図6(d)はデータ処理を行って得られた転動体荷重分布を示す図である。なお、図6(a)〜図6(c)における横軸は角度(転動体位置)、縦軸はひずみを示し、図6(d)における横軸は角度(転動体位置)、縦軸は転動体荷重を示している。
Furthermore, although not shown in the drawing, the bearings are arranged in a double row, and an FBG sensor or a Fabry-Perot interference type strain sensor is arranged as an optical fiber strain sensor in each of the inner rings, so that a plurality of locations can be obtained with a plurality of optical fibers. It can also be configured to measure strain.
FIG. 6 is a schematic diagram showing a strain distribution measured by a load distribution measuring device for a rolling bearing with a built-in strain sensor on the inner ring of the present invention, and FIG. 6 (a) is a diagram showing a strain distribution at the first rotation of the inner ring, FIG. 6 (b) is a diagram showing the strain distribution of the second rotation of the inner ring, and similarly, the number of times is sequentially overlapped up to a certain number of revolutions, and FIG. 6 (c) is a diagram showing the strain distribution with all measured values superimposed. 6 (d) is a diagram showing a rolling element load distribution obtained by performing data processing. 6A to 6C, the horizontal axis indicates an angle (rolling element position), the vertical axis indicates strain, the horizontal axis in FIG. 6D indicates an angle (rolling element position), and the vertical axis indicates The rolling element load is shown.

これらの図に示すように、本発明によれば、転がり軸受の荷重分布を測定することができる。
なお、本発明は上記実施例に限定されるものではなく、本発明の趣旨に基づき種々の変形が可能であり、これらを本発明の範囲から排除するものではない。
As shown in these figures, according to the present invention, the load distribution of the rolling bearing can be measured.
In addition, this invention is not limited to the said Example, Based on the meaning of this invention, a various deformation | transformation is possible and these are not excluded from the scope of the present invention.

本発明の内輪へのひずみセンサ内蔵型転がり軸受の荷重分布測定方法及びその装置は、簡単な構成で精確な計測ができる転がり軸受の荷重分布測定のツールとして利用可能である。   INDUSTRIAL APPLICABILITY The load distribution measuring method and apparatus for a rolling bearing with a built-in strain sensor on the inner ring according to the present invention can be used as a load distribution measuring tool for a rolling bearing that can perform accurate measurement with a simple configuration.

1 回転軸
2 内輪
2A 細穴
2A′ 光ファイバ取り出し用細穴
2B 切欠溝
3,3′,22,30 光ファイバ
4 ひずみセンサ部
5 転動体
6 外輪
7 ハウジング
8 荷重
9 転がり軸受の荷重分布
10 ロータリージョイントの支持体
11 ロータリージョイント
12 ひずみ計測器
13 LANケーブル
14 パーソナルコンピュータ(PC)
21 FBGセンサ
21a FBGセンサのコア
21b FBGセンサの取付端
22a 光ファイバのコア
31 ファブリ・ペロー干渉型のひずみセンサ
32 ひずみ受け部材
32a ひずみ受け部材の取付端
33 接着剤
34 第1のミラー
34a 第1のミラーの反射面
35 第2のミラー
35a 第2のミラーの反射面
E キャビティ長
G1〜Gn n個のブラッグ回折格子
L レーザー光
L1 入射レーザー光
L2 反射レーザー光
DESCRIPTION OF SYMBOLS 1 Rotating shaft 2 Inner ring 2A Narrow hole 2A 'Thin hole for taking out optical fiber 2B Notch groove 3, 3', 22, 30 Optical fiber 4 Strain sensor part 5 Rolling element 6 Outer ring 7 Housing 8 Load 9 Rolling bearing load distribution 10 Rotary Joint support 11 Rotary joint 12 Strain measuring instrument 13 LAN cable 14 Personal computer (PC)
21 FBG sensor 21a FBG sensor core 21b FBG sensor mounting end 22a Optical fiber core 31 Fabry-Perot interference type strain sensor 32 Strain receiving member 32a Strain receiving member mounting end 33 Adhesive 34 First mirror 34a First Reflective surface of mirror 35 35 Second mirror 35a Reflective surface of second mirror E Cavity length G1 to Gn n Bragg gratings L laser beam L1 incident laser beam L2 reflected laser beam

Claims (4)

外輪が固定され内輪が回転する転がり軸受であって、該転がり軸受の回転軸に固定される前記内輪の軌道面近傍に円周方向に細穴を設け、該細穴内にひずみセンサ部を装備する光ファイバを挿入し、かつ前記内輪のひずみセンサ部が配置される位置の中心側に切欠溝を形成し、前記内輪と該内輪の外方に配置される前記外輪との間に転動体を備え、前記ひずみセンサ部からの出力信号を前記光ファイバで導出し、前記回転軸の軸方向に配置され、前記回転軸に固定される支持体に支持される単一のロータリージョイントを介してひずみ計測器に光ファイバを接続し、前記転がり軸受を回転させて前記ひずみセンサ部の位置を前記転動体が通過する際のひずみを検出することを特徴とする内輪へのひずみセンサ内蔵型転がり軸受の荷重分布測定方法。   A rolling bearing in which an outer ring is fixed and an inner ring rotates, and a narrow hole is provided in the circumferential direction in the vicinity of the raceway surface of the inner ring that is fixed to a rotating shaft of the rolling bearing, and a strain sensor unit is provided in the narrow hole. A notch groove is formed on the center side of the position where the optical fiber is inserted and the strain sensor portion of the inner ring is disposed, and a rolling element is provided between the inner ring and the outer ring disposed outside the inner ring. The output signal from the strain sensor unit is derived by the optical fiber, and the strain is measured through a single rotary joint that is arranged in the axial direction of the rotating shaft and supported by a support fixed to the rotating shaft. The load of the strain sensor built-in type rolling bearing to the inner ring is characterized in that an optical fiber is connected to the device, and the rolling bearing is rotated to detect strain when the rolling element passes through the position of the strain sensor section. Distribution measurement Law. 外輪が固定され内輪が回転する転がり軸受であって、
(a)回転軸に固定される前記転がり軸受の内輪と、
(b)該内輪の円周方向に形成される細穴内に配置される光ファイバと、
(c)該光ファイバに装備されるひずみセンサ部と、
(d)前記内輪のひずみセンサ部が配置される位置の中心側に形成される切欠溝と、
(e)前記内輪と該内輪の外方に配置される外輪との間に配置される転動体と、
(f)前記回転軸の軸方向に配置され、前記回転軸に固定される支持体に支持される単一のロータリージョイントと、
(g)該ロータリージョイントを介して光ファイバにより接続されるひずみ計測器とを備え、
(h)前記転がり軸受を回転させて前記ひずみセンサ部の位置を前記転動体が通過する際のひずみを検出することを特徴とする内輪へのひずみセンサ内蔵型転がり軸受の荷重分布測定装置。
A rolling bearing in which the outer ring is fixed and the inner ring rotates,
(A) an inner ring of the rolling bearing fixed to the rotating shaft;
(B) an optical fiber disposed in a narrow hole formed in the circumferential direction of the inner ring;
(C) a strain sensor unit provided in the optical fiber;
(D) a notch groove formed on the center side of the position where the strain sensor portion of the inner ring is disposed;
(E) a rolling element disposed between the inner ring and an outer ring disposed outside the inner ring;
(F) a single rotary joint that is arranged in the axial direction of the rotary shaft and supported by a support fixed to the rotary shaft;
(G) a strain measuring instrument connected by an optical fiber through the rotary joint;
(H) A load distribution measuring apparatus for a rolling bearing with a built-in strain sensor in an inner ring, wherein the rolling bearing is rotated to detect strain when the rolling element passes through the position of the strain sensor section.
請求項2記載の内輪へのひずみセンサ内蔵型転がり軸受の荷重分布測定装置において、前記ひずみセンサ部としてファイバ・ブラッグ・グレーティング方式の光ファイバひずみセンサ(FBGセンサ)を用いることを特徴とする内輪へのひずみセンサ内蔵型転がり軸受の荷重分布測定装置。   3. A load distribution measuring apparatus for a rolling bearing with a built-in strain sensor in an inner ring according to claim 2, wherein a fiber Bragg grating type optical fiber strain sensor (FBG sensor) is used as the strain sensor. Load distribution measuring device for rolling bearing with built-in strain sensor. 請求項2記載の内輪へのひずみセンサ内蔵型転がり軸受の荷重分布測定装置において、前記光ファイバひずみセンサとしてファブリ・ペロー干渉型のひずみセンサを用いることを特徴とする内輪へのひずみセンサ内蔵型転がり軸受の荷重分布測定装置。   3. A load distribution measuring apparatus for a rolling bearing with a built-in strain sensor in an inner ring according to claim 2, wherein a Fabry-Perot interference type strain sensor is used as the optical fiber strain sensor. Bearing load distribution measuring device.
JP2010183537A 2010-08-19 2010-08-19 Load distribution measuring method and apparatus for rolling bearing with built-in strain sensor on inner ring Expired - Fee Related JP5638312B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010183537A JP5638312B2 (en) 2010-08-19 2010-08-19 Load distribution measuring method and apparatus for rolling bearing with built-in strain sensor on inner ring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010183537A JP5638312B2 (en) 2010-08-19 2010-08-19 Load distribution measuring method and apparatus for rolling bearing with built-in strain sensor on inner ring

Publications (2)

Publication Number Publication Date
JP2012042319A true JP2012042319A (en) 2012-03-01
JP5638312B2 JP5638312B2 (en) 2014-12-10

Family

ID=45898820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010183537A Expired - Fee Related JP5638312B2 (en) 2010-08-19 2010-08-19 Load distribution measuring method and apparatus for rolling bearing with built-in strain sensor on inner ring

Country Status (1)

Country Link
JP (1) JP5638312B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110174045A (en) * 2019-06-24 2019-08-27 南京高速齿轮制造有限公司 Gear case planet wheel bearing inner race strain measurement system
CN112539221A (en) * 2019-09-23 2021-03-23 斯凯孚公司 Bearing and bearing unit with single sensing fiber for load sensing
CN114705341A (en) * 2022-05-12 2022-07-05 河南科技大学 Device and method for measuring friction torque of rolling bearing based on optical fiber sensing

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013222151A1 (en) * 2013-10-31 2015-04-30 Schaeffler Technologies Gmbh & Co. Kg Device for measuring force in the rolling bearing by means of a sensor layer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0961268A (en) * 1995-08-25 1997-03-07 Nippon Seiko Kk Load measuring apparatus for bearing
JP2006015822A (en) * 2004-06-30 2006-01-19 Hitachi Cable Ltd Sensor system for detecting tire distortion
JP2009216664A (en) * 2008-03-12 2009-09-24 Railway Technical Res Inst Load distribution measuring method as to inner ring for distortion sensor built-in type rolling bearing, and apparatus therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0961268A (en) * 1995-08-25 1997-03-07 Nippon Seiko Kk Load measuring apparatus for bearing
JP2006015822A (en) * 2004-06-30 2006-01-19 Hitachi Cable Ltd Sensor system for detecting tire distortion
JP2009216664A (en) * 2008-03-12 2009-09-24 Railway Technical Res Inst Load distribution measuring method as to inner ring for distortion sensor built-in type rolling bearing, and apparatus therefor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110174045A (en) * 2019-06-24 2019-08-27 南京高速齿轮制造有限公司 Gear case planet wheel bearing inner race strain measurement system
CN112539221A (en) * 2019-09-23 2021-03-23 斯凯孚公司 Bearing and bearing unit with single sensing fiber for load sensing
CN114705341A (en) * 2022-05-12 2022-07-05 河南科技大学 Device and method for measuring friction torque of rolling bearing based on optical fiber sensing
CN114705341B (en) * 2022-05-12 2024-02-02 河南科技大学 Rolling bearing friction moment measuring device and method based on optical fiber sensing

Also Published As

Publication number Publication date
JP5638312B2 (en) 2014-12-10

Similar Documents

Publication Publication Date Title
KR100760510B1 (en) Monitoring device for rotating body
JP5529384B2 (en) Optical rotary adapter and optical tomographic imaging apparatus using the same
US8042412B2 (en) Turbomachinery system fiberoptic multi-parameter sensing system and method
CN107883892B (en) Eccentricity calculation method, rotary encoder, robot arm, and robot apparatus
US20070286561A1 (en) Multi-core distributed temperature sensing fiber
JP4668227B2 (en) Strain detection device for rolling element of roller bearing
JP5638312B2 (en) Load distribution measuring method and apparatus for rolling bearing with built-in strain sensor on inner ring
JP2010502967A (en) Optical device for monitoring a rotatable shaft with a directional axis
JP6532061B2 (en) Optical measurement apparatus, optical measurement method and rotary machine
JP2009216665A (en) Load distribution measuring method as to outer ring for distortion sensor built-in type rolling bearing, and apparatus therefor
KR20050109191A (en) Monitoring device for rotating body
EP2802796B1 (en) Bearing seal with integrated sensor
JP2009216664A (en) Load distribution measuring method as to inner ring for distortion sensor built-in type rolling bearing, and apparatus therefor
JP2008076391A5 (en)
JP2011099802A (en) Axial runout measuring method and angle detector with self-calibration function having axial runout measuring function
JP5250286B2 (en) Tracking laser interferometer
CN108168467B (en) FP interferometric angular transducer
JP6523178B2 (en) Distortion sensor and method of manufacturing distortion sensor
JP2022537163A (en) Method and system for determining brake torque through detection performed by photonic sensors at fixed interfaces between brake caliper bodies and respective supports
JP5638313B2 (en) Load distribution measuring method and apparatus for rolling bearing with built-in strain sensor to outer ring
KR20180052962A (en) Measuring device using fiber bragg grating sensor
WO2014108170A1 (en) Fibreoptic sensor clip
Yildirim et al. A numerical algorithm to determine straightness error, surface roughness, and waviness measured using a fiber optic interferometer
WO2010132926A1 (en) Torque measuring device
JP2015529803A (en) System and method for measuring torque

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140722

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140827

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141021

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141022

LAPS Cancellation because of no payment of annual fees