JP4972891B2 - Fuel cell separator channel structure - Google Patents

Fuel cell separator channel structure Download PDF

Info

Publication number
JP4972891B2
JP4972891B2 JP2005228142A JP2005228142A JP4972891B2 JP 4972891 B2 JP4972891 B2 JP 4972891B2 JP 2005228142 A JP2005228142 A JP 2005228142A JP 2005228142 A JP2005228142 A JP 2005228142A JP 4972891 B2 JP4972891 B2 JP 4972891B2
Authority
JP
Japan
Prior art keywords
flow path
gas flow
gas
separator
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005228142A
Other languages
Japanese (ja)
Other versions
JP2007042551A (en
Inventor
英明 久米
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2005228142A priority Critical patent/JP4972891B2/en
Publication of JP2007042551A publication Critical patent/JP2007042551A/en
Application granted granted Critical
Publication of JP4972891B2 publication Critical patent/JP4972891B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

本発明は、燃料電池用セパレータの流路構造に関する。 The present invention relates to a flow path structure of a fuel cell separator.

特開2004−146039号公報、特開2004−134277号公報は、図16に示す閉塞流路を有する燃料電池のセパレータ流路構造を開示している。
閉塞流路の場合は、分配部1に連通する流路Aと合流部2に連通する流路Bがつながっていない構造上、図17に示す圧力分布となり、流路全体の圧力損失が大きくなる。また、流路Aと流路Bの圧力差も大きくなり、上流から下流のどの位置でも流路Aから流路Bへ拡散層を通る流れが生じる。このため、低加湿運転時では山下(セパレータのリブで押される部位)でも電解質膜が乾きすぎる状態となる。また、図18に示すように、流路Aの流速は下流にいくにしたがい低下し、最終的に0となる。このため、流路Aの下流部では、排水性が低下する。
特開2004−146039号公報 特開2004−134277号公報
Japanese Patent Application Laid-Open Nos. 2004-146039 and 2004-134277 disclose a separator flow path structure of a fuel cell having a closed flow path shown in FIG.
In the case of the closed channel, the pressure distribution shown in FIG. 17 is obtained due to the structure in which the channel A communicating with the distribution unit 1 and the channel B communicating with the merging unit 2 are not connected, and the pressure loss of the entire channel increases. . In addition, the pressure difference between the flow path A and the flow path B is increased, and a flow through the diffusion layer from the flow path A to the flow path B occurs at any position from upstream to downstream. For this reason, at the time of low humidification operation, the electrolyte membrane is too dry even at the bottom of the mountain (the portion pushed by the rib of the separator). Further, as shown in FIG. 18, the flow velocity of the flow path A decreases as it goes downstream, and finally becomes zero. For this reason, in the downstream part of the flow path A, drainage property falls.
JP 2004-146039 A JP 2004-134277 A

本発明が解決しようとする課題は、従来技術に存在したつぎの課題である。
(i)すべてのガスが拡散層内を通るため圧力損失が大きくなる。
(ii)流路上流部でも拡散層内を空気が移動するため、電解質膜が乾き抵抗損失が増大する。
(iii) 流路下流部では流速が低下し、排水性がわるくなり、水詰まりがおき、電池出力が低下する。
The problem to be solved by the present invention is the next problem existing in the prior art.
(I) Since all gases pass through the diffusion layer, the pressure loss increases.
(Ii) Since air moves in the diffusion layer also in the upstream portion of the flow path, the electrolyte membrane dries and resistance loss increases.
(iii) The flow velocity is reduced at the downstream part of the flow path, the drainage property becomes worse, the water is clogged, and the battery output is reduced.

本発明の目的は、ガスの圧力損失を少なくすることができ、上流部での電解質膜の乾きを抑制でき、下流部での排水性をよくすることができる、の何れか少なくとも一つを達成できる燃料電池のセパレータ流路構造を提供することにある。 An object of the present invention is to achieve at least one of the following: it is possible to reduce gas pressure loss, to suppress drying of the electrolyte membrane in the upstream portion, and to improve drainage in the downstream portion. and to provide a separator passage structure of the fuel cell can.

上記課題を解決する、そして上記目的を達成する、本発明は、つぎのとおりである。
(1) 酸化ガスを分配部から合流部に流通させる、互いに別のガス流路Aおよびガス流路Bを含む、複数の酸化ガス流路を備えた燃料電池のセパレータ流路構造であって、
前記ガス流路Bは、上流端が直接前記分配部に連通するとともに、下流端が直接前記合流部に連通しており、
前記ガス流路Aは、上流端が直接前記分配部に連通するとともに、下流端がガス流路Aとガス流路Bとの間にわたって延びる連通路を介して前記ガス流路Bの途中部位にある合流点に連通し、ガス流路Bの、前記合流点と前記合流部との間にある部分を介して、間接的に前記合流部に連通しており、
ガス流路Aは、ガス流路Bに直接合流せずに、前記連通路を介して合流しており、
前記連通路があることにより、ガス流通時に、ガス通路Aの圧力はガス通路Bの合流点より上流の圧力以上で、ガス流路Aとガス流路Bとの間にはガス流路Aの上流端で0でガス流路Aの下流端に向かって増大する差圧があり、該差圧によりガス流路Aからガス流路Bに拡散層を通る流れがあり、
前記ガス流路Aと前記ガス流路Bの前記合流点より上流側の部分とは互いに平行であり、前記分配部から前記連通路の前記ガス流路Aからの分岐点へのガス流路は前記ガス流路Aのみである、燃料電池のセパレータ流路構造。
(本発明の全実施例の共通構成、図1の構成と図2、図3の作用、効果に対応)
(2) 前記連通路は、前記ガス流路Aと該ガス流路Aの両側にあるガス流路Bとを連通する(1)記載の燃料電池のセパレータ流路構造。(本発明の実施例1、図4に対応)
(3) 前記連通路は、前記ガス流路Aと該ガス流路Aの片側にあるガス流路Bとを連通する(1)記載の燃料電池のセパレータ流路構造。(本発明の実施例2、図5と本発明の実施例3、図6に対応)
(4) 前記連通路は前記ガス流路Aに直交する流路からなる(1)記載の燃料電池のセパレータ流路構造。(本発明の実施例1〜3、図1、図4〜図6に対応)
(5) 前記連通路は前記ガス流路Aに斜交する流路からなる(1)記載の燃料電池のセパレータ流路構造。(本発明の実施例4、図7に対応)
(6) 前記連通路はクランク状流路からなる(1)記載の燃料電池のセパレータ流路構造。(本発明の実施例5、図8に対応)
(7) 燃料ガスを分配部から合流部に流通させる、互いに別のガス流路Cおよびガス流路Dを含む、複数の燃料ガス流路を備えた燃料電池のセパレータ流路構造であって、
前記ガス流路Dは、上流端が直接前記分配部に接続するとともに、下流端が直接前記合流部に連通しており、
前記ガス流路Cは、上流端が直接前記分配部に接続するとともに、下流端がガス流路Cとガス流路Dとの間にわたって延びる連通路を介して前記ガス流路Dの途中部位にある合流点に連通し、ガス流路Dの、前記合流点と前記合流部との間にある部分を介して、間接的に前記合流部に連通している、(1)記載の燃料電池のセパレータ流路構造。(本発明の実施例6、図9に対応)
(8) 燃料ガスを分配部から合流部に流通させる、互いに別のガス流路Cおよびガス流路Dを含む、複数の燃料ガス流路を備えた燃料電池のセパレータ流路構造であって、
前記ガス流路Cは、上流端が直接前記分配部に接続するとともに、下流端が直接前記合流部に連通しており、
前記ガス流路Dは、上流端が直接前記分配部に接続するとともに、下流端がガス流路Dとガス流路Cとの間にわたって延びる連通路を介して前記ガス流路Cの途中部位にある合流点に連通し、ガス流路Cの、前記合流点と前記合流部との間にある部分を介して、間接的に前記合流部に連通している、(1)記載の燃料電池のセパレータ流路構造。(本発明の実施例7、図10に対応)
(9) 燃料ガスを分配部から合流部に流通させる、互いに別のガス流路Cおよびガス流路Dを含む、複数の燃料ガス流路を備えた燃料電池のセパレータ流路構造であって、
前記ガス流路Dは、上流端が直接前記分配部に連通するとともに、下流端が直接前記合流部に連通しており、
前記ガス流路Cは、下流端が直接前記合流部に連通するとともに、上流端がガス流路Cとガス流路Dとの間にわたって延びる連通路を介して前記ガス流路Dの途中部位にある合流点に連通し、ガス流路Dの、前記合流点と前記分配部との間にある部分を介して、間接的に前記分配部に連通している、(1)記載の燃料電池のセパレータ流路構造。(本発明の実施例8、図11に対応)
(10) 燃料ガスを分配部から合流部に流通させる、互いに別のガス流路Cおよびガス流路Dを含む、複数の燃料ガス流路を備えた燃料電池のセパレータ流路構造であって、
前記ガス流路Cは、上流端が直接前記分配部に連通するとともに、下流端が直接前記合流部に連通しており、
前記ガス流路Dは、下流端が直接前記合流部に連通するとともに、上流端がガス流路Dとガス流路Cとの間にわたって延びる連通路を介して前記ガス流路Cの途中部位にある合流点に連通し、ガス流路Cの、前記合流点と前記分配部との間にある部分を介して、間接的に前記分配部に連通している、(1)記載の燃料電池のセパレータ流路構造。(本発明の実施例9、図12に対応)
The present invention for solving the above problems and achieving the above object is as follows.
(1) A separator flow path structure for a fuel cell having a plurality of oxidizing gas flow paths including a gas flow path A and a gas flow path B that are different from each other and that circulates the oxidizing gas from the distribution section to the merge section,
The gas flow path B has an upstream end directly communicating with the distributor, and a downstream end directly communicating with the junction.
The gas flow path A has an upstream end directly communicating with the distributor, and a downstream end connected to the gas flow path B through a communication path extending between the gas flow path A and the gas flow path B. Communicating with a certain merging point, and indirectly communicating with the merging portion through a portion of the gas flow path B between the merging point and the merging portion ,
The gas flow path A is not joined directly to the gas flow path B, but joined via the communication path,
Due to the presence of the communication passage, the pressure of the gas passage A is equal to or higher than the pressure upstream of the confluence of the gas passage B when the gas flows, and the gas passage A is interposed between the gas passage A and the gas passage B. There is a differential pressure increasing toward the downstream end of the gas flow path A at 0 at the upstream end, and there is a flow through the diffusion layer from the gas flow path A to the gas flow path B due to the differential pressure,
The gas flow path A and the upstream portion of the gas flow path B from the merge point are parallel to each other, and the gas flow path from the distributor to the branch point from the gas flow path A of the communication path is A separator channel structure of a fuel cell, which is only the gas channel A.
(Common configuration of all embodiments of the present invention, corresponding to the configuration of FIG. 1 and the operations and effects of FIGS. 2 and 3)
(2) The fuel cell separator channel structure according to (1), wherein the communication channel communicates the gas channel A with the gas channel B on both sides of the gas channel A. (Corresponding to Example 1 of the present invention, FIG. 4)
(3) The separator flow path structure of the fuel cell according to (1), wherein the communication path communicates the gas flow path A and the gas flow path B on one side of the gas flow path A. (Corresponding to the second embodiment of the present invention, FIG. 5 and the third embodiment of the present invention, FIG. 6)
(4) The separator flow path structure of the fuel cell according to (1), wherein the communication path includes a flow path orthogonal to the gas flow path A. (Corresponding to Embodiments 1 to 3 of the present invention, FIGS. 1 and 4 to 6)
(5) The fuel cell separator flow path structure according to (1), wherein the communication path includes a flow path obliquely intersecting the gas flow path A. (Corresponding to Example 4 of the present invention, FIG. 7)
(6) The separator flow path structure of the fuel cell according to (1), wherein the communication path includes a crank-shaped flow path. (Corresponding to Example 5 of the present invention, FIG. 8)
(7) A fuel cell separator flow path structure including a plurality of fuel gas flow paths including a gas flow path C and a gas flow path D different from each other, wherein the fuel gas is circulated from the distribution section to the merge section.
The gas flow path D has an upstream end directly connected to the distributor, and a downstream end directly communicated with the junction.
The gas flow path C has an upstream end directly connected to the distributor, and a downstream end connected to the gas flow path D through a communication path extending between the gas flow path C and the gas flow path D. The fuel cell according to (1), which communicates with a certain junction and indirectly communicates with the junction through a portion of the gas flow path D between the junction and the junction. Separator channel structure. (Corresponding to Example 6 of the present invention, FIG. 9)
(8) A separator flow path structure for a fuel cell having a plurality of fuel gas flow paths, including a gas flow path C and a gas flow path D, which are different from each other, and distributes the fuel gas from the distribution section to the merge section.
The gas flow path C has an upstream end directly connected to the distributor, and a downstream end directly communicated with the junction.
The gas flow path D has an upstream end directly connected to the distribution unit, and a downstream end connected to the middle portion of the gas flow path C via a communication path extending between the gas flow path D and the gas flow path C. The fuel cell according to (1), which communicates with a certain junction and indirectly communicates with the junction through a portion of the gas flow path C between the junction and the junction. Separator channel structure. (Corresponding to Example 7 of the present invention, FIG. 10)
(9) A fuel cell separator flow path structure including a plurality of fuel gas flow paths including a gas flow path C and a gas flow path D that are different from each other and distributes the fuel gas from the distribution section to the merge section.
The gas flow path D has an upstream end directly communicating with the distributor, and a downstream end directly communicating with the junction.
The gas flow path C has a downstream end directly communicating with the merging portion, and an upstream end connected to the middle portion of the gas flow path D via a communication path extending between the gas flow path C and the gas flow path D. The fuel cell according to (1), which communicates with a certain junction and indirectly communicates with the distributor via a portion of the gas flow path D between the junction and the distributor. Separator channel structure. (Corresponding to Example 8 of the present invention, FIG. 11)
(10) A separator flow path structure for a fuel cell including a plurality of fuel gas flow paths including a gas flow path C and a gas flow path D that are different from each other and distributes the fuel gas from the distribution section to the merge section.
The gas flow path C has an upstream end directly communicating with the distributor, and a downstream end directly communicating with the junction.
The gas flow path D has a downstream end directly communicating with the merging portion, and an upstream end connected to the middle portion of the gas flow path C via a communication path extending between the gas flow path D and the gas flow path C. The fuel cell according to (1), which communicates with a certain junction, and indirectly communicates with the distributor through a portion of the gas flow path C between the junction and the distributor. Separator channel structure. (Corresponding to Example 9 of the present invention, FIG. 12)

上記(1)〜(10)の燃料電池のセパレータ流路構造によれば、ガス流路Aとガス流路Bは連通路により連通されているので、ガス流路Aとガス流路Bの圧力差が従来(閉塞流路の場合)に比べて低減し、拡散層を通過するガスの圧力損失が低減する。
ガス流路Aとガス流路Bは何れも分配部に連通するので、上流部におけるガス流路Aとガス流路Bの圧力差は従来(閉塞流路の場合)に比べて低減し、上流部における拡散層を流通するガス量を低減させることができ、低加湿運転時における上流部の膜の乾燥とそれによる抵抗損失の増大(プロトンが膜中を移動しにくくなることによる抵抗損失)を抑制することができる。
ガス流路Aの下流端は連通路によってガス流路Bに連通しているので、ガス流路Aの下流端のガス流速が十分確保され、このガス流速によってガス流路Aの下流端の生成水も吹き飛ばすことができ、排水性がよくなり、水詰まりが抑制され、電池出力が向上する。
上記(2)〜(6)の燃料電池のセパレータ流路構造は、本発明でとり得る、連通路によるガス流路A、Bの連通の具体的構造例を示している。どの構造をとるかでガス流路A下流端部位でのガス流路Aとガス流路Bの圧力差を所望の圧力差に調整することができるとともに、ガス流路Aのガス流速を所望のガス流速に調整することができる。
上記(7)〜(9)の燃料電池のセパレータ流路構造は、本発明を、酸化ガス流路に適用するとともに、燃料ガス流路にも適用する場合を示している。
上記(7)は、燃料ガス流路C、Dに酸化ガス流路A、Bと類似のセパレータ流路構造を適用した場合を示す。
上記(8)は、燃料ガス流路D、Cに酸化ガス流路A、Bと類似のセパレータ流路構造を適用した場合(上記(7)で流路C、Dを逆にした場合)を示す。
上記(9)は、燃料ガス流路C、Dに酸化ガス流路A、Bと類似のセパレータ流路構造を適用するとともに、連通路を合流部に近い側に設けた場合(上記(7)では連通路は分配部に近い側い設けられているので、連通路を設ける部位が上記(7)と逆になっている)を示す。
上記(10)は、燃料ガス流路D、Cに酸化ガス流路A、Bと類似のセパレータ流路構造を適用するとともに、連通路を合流部に近い側に設けた場合(上記(8)では連通路は分配部に近い側い設けられているので、連通路を設ける部位が上記(8)と逆になっている)を示す。
According to the separator flow path structure of the fuel cell of the above (1) to (10), since the gas flow path A and the gas flow path B are communicated by the communication path, the pressure of the gas flow path A and the gas flow path B The difference is reduced as compared with the conventional case (in the case of a closed channel), and the pressure loss of the gas passing through the diffusion layer is reduced.
Since both the gas flow path A and the gas flow path B communicate with the distribution unit, the pressure difference between the gas flow path A and the gas flow path B in the upstream portion is reduced compared to the conventional case (in the case of a closed flow path), and the upstream The amount of gas flowing through the diffusion layer in the unit can be reduced, and the upstream membrane is dried and the resistance loss is increased during the low-humidification operation (resistance loss due to protons becoming difficult to move through the membrane). Can be suppressed.
Since the downstream end of the gas flow path A communicates with the gas flow path B through the communication path, a sufficient gas flow rate is secured at the downstream end of the gas flow path A, and the downstream end of the gas flow path A is generated by this gas flow rate. Water can be blown away, drainage is improved, water clogging is suppressed, and battery output is improved.
The fuel cell separator channel structure of the above (2) to (6) shows a specific structural example of the communication of the gas channels A and B by the communication channel, which can be taken in the present invention. The pressure difference between the gas flow path A and the gas flow path B at the downstream end portion of the gas flow path A can be adjusted to a desired pressure difference depending on which structure is used, and the gas flow rate in the gas flow path A can be set to a desired value. The gas flow rate can be adjusted.
The fuel cell separator channel structure of the above (7) to (9) shows a case where the present invention is applied to the oxidizing gas channel and also to the fuel gas channel.
The above (7) shows a case where a separator channel structure similar to the oxidizing gas channels A and B is applied to the fuel gas channels C and D.
The above (8) is a case where a separator channel structure similar to the oxidizing gas channels A and B is applied to the fuel gas channels D and C (when the channels C and D are reversed in the above (7)). Show.
The above (9) is a case where a separator channel structure similar to the oxidizing gas channels A and B is applied to the fuel gas channels C and D, and the communication channel is provided on the side close to the junction (the above (7) Then, since the communication path is provided on the side close to the distributing portion, the part where the communication path is provided is opposite to the above (7).
In (10) above, a separator channel structure similar to that of the oxidizing gas channels A and B is applied to the fuel gas channels D and C, and the communication channel is provided on the side close to the junction (the above (8) Then, since the communication path is provided on the side close to the distributing portion, the part where the communication path is provided is opposite to the above (8)).

以下に、本発明の燃料電池のセパレータ流路構造を、図1〜図15を参照して説明する。
本発明のセパレータ流路構造が適用され得る燃料電池は、たとえば固体高分子電解質型燃料電池(セル)10である。燃料電池10は、たとえば燃料電池自動車に搭載される。ただし、自動車以外に、たとえば家庭用などの定置型燃料電池用いられてもよい。
また、セパレータは図示例では、メタルセパレータの場合が示されているが、カーボンセパレータであってもよいし、導電性を付与された樹脂製セパレータであってもよい。
Hereinafter, the separator passage structure of a fuel cell of the present invention will be described with reference to FIGS. 1-15.
A fuel cell to which the separator channel structure of the present invention can be applied is, for example, a solid polymer electrolyte fuel cell (cell) 10. The fuel cell 10 is mounted on, for example, a fuel cell vehicle. However, other than automobiles, for example, stationary fuel cells for home use may be used.
In the illustrated example, the separator is a metal separator. However, the separator may be a carbon separator or a resin separator provided with conductivity.

固体高分子電解質型燃料電池(セル)10は、図13〜図15に示すように、膜−電極アッセンブリ(MEA:Membrane-Electrode Assembly )とセパレータ18との積層体、たとえば、MEAを一対のセパレータ18で挟んだものからなる。
膜−電極アッセンブリは、イオン交換膜からなる電解質膜11とこの電解質膜11の一面に配置された触媒層からなる電極(アノード、燃料極)14および電解質膜11の他面に配置された触媒層からなる電極(カソード、空気極)17とからなる。膜−電極アッセンブリとセパレータ18との間には、アノード側、カソード側にそれぞれガス拡散層(以下、単に、拡散層、GDL:Gas Diffusion Layer という)13、16が設けられる。
膜−電極アッセンブリとセパレータ18を重ねてセルモジュール19(1セルで1モジュールを構成する場合は、セル10とモジュール19は同じ)を構成し、セルモジュール19を積層してセル積層体とし、セル積層体のセル積層方向両端に、ターミナル20、インシュレータ21、エンドプレート22を配置し、両端のエンドプレート22をセル積層体の外側でセル積層方向に延びる締結部材(たとえば、テンションプレート24)にボルト・ナット25にて固定し、一端のエンドプレートに設けた調整ネジにてその内側に設けたバネを介してセル積層体にセル積層方向の締結荷重をかけ、燃料電池スタック23を構成する。
As shown in FIGS. 13 to 15, the solid polymer electrolyte fuel cell (cell) 10 includes a laminated body of a membrane-electrode assembly (MEA) and a separator 18, for example, MEA as a pair of separators. It consists of something sandwiched between 18.
The membrane-electrode assembly includes an electrolyte membrane 11 composed of an ion exchange membrane, an electrode (anode, fuel electrode) 14 composed of a catalyst layer disposed on one surface of the electrolyte membrane 11, and a catalyst layer disposed on the other surface of the electrolyte membrane 11. Electrode (cathode, air electrode) 17. Between the membrane-electrode assembly and the separator 18, gas diffusion layers (hereinafter simply referred to as a diffusion layer, GDL: Gas Diffusion Layer) 13, 16 are provided on the anode side and the cathode side, respectively.
A cell module 19 is formed by stacking the membrane-electrode assembly and the separator 18 (when one module is constituted by one cell, the cell 10 and the module 19 are the same), and the cell module 19 is laminated to form a cell laminate. Terminals 20, insulators 21, and end plates 22 are arranged at both ends of the stacked body in the cell stacking direction, and bolts are attached to fastening members (for example, tension plates 24) that extend the end plates 22 at both ends in the cell stacking direction outside the cell stacked body. A fuel cell stack 23 is configured by fixing with a nut 25 and applying a fastening load in the cell stacking direction to the cell stack through a spring provided on the inner side with an adjustment screw provided on one end plate.

セパレータ18のMEA対向面には、発電領域において、アノード14に燃料ガス(水素)を供給するための燃料ガス流路27が形成され、カソード17に酸化ガス(酸素、通常は空気)を供給するための酸化ガス流路28が形成されている。また、セパレータ18のMEA対向面と反対側面には冷媒(通常、冷却水)を流すための冷媒流路26も形成されている。
図示例では、燃料ガス流路27、酸化ガス流路28、冷媒流路26がストレート流路からなる場合を示しているが、それに限るものではなく、ターン部をもつ流路、たとえばサーペンタイン流路であってもよい。
また、セパレータ18には、非発電領域において、燃料ガスマニホールド30、酸化ガスマニホールド31、冷媒マニホールド29が形成されている。
A fuel gas flow path 27 for supplying fuel gas (hydrogen) to the anode 14 is formed on the MEA facing surface of the separator 18 in the power generation region, and oxidizing gas (oxygen, usually air) is supplied to the cathode 17. For this purpose, an oxidizing gas passage 28 is formed. In addition, a coolant channel 26 for flowing a coolant (usually cooling water) is also formed on the side surface of the separator 18 opposite to the MEA facing surface.
In the illustrated example, the fuel gas channel 27, the oxidant gas channel 28, and the refrigerant channel 26 are straight channels. However, the present invention is not limited thereto, and a channel having a turn portion, for example, a serpentine channel. It may be.
The separator 18 is formed with a fuel gas manifold 30, an oxidizing gas manifold 31, and a refrigerant manifold 29 in the non-power generation region.

燃料ガスマニホールド30は燃料ガス流路27と分配部34または合流部35(分配部34は、入口側ガスマニホールド30とガス流路27との間に位置して入口側ガスマニホールド30からのガス流れをガス流路27に分配する流路、および/または、入口側ガスマニホールド30であり、合流部35は出口側ガスマニホールド30とガス流路27との間に位置してガス流路27からのガス流れを出口側ガスマニホールド30に合流する流路、および/または、出口側ガスマニホールド30である)を介して連通している。
酸化ガスマニホールド31は酸化ガス流路28と分配部36または合流部37(分配部36は入口側ガスマニホールド31とガス流路28との間に位置して入口側ガスマニホールド31からのガス流れをガス流路28に分配する流路、および/または、入口側ガスマニホールド31であり、合流部37は出口側ガスマニホールド31とガス流路28との間に位置してガス流路28からのガス流れを出口側ガスマニホールド31に合流する流路、および/または、出口側ガスマニホールド31である)を介して連通している。
冷媒マニホールド29は冷媒流路26と分配部または合流部を介して連通している。
The fuel gas manifold 30 is disposed between the fuel gas flow path 27 and the distribution section 34 or the merging section 35 (the distribution section 34 is positioned between the inlet side gas manifold 30 and the gas flow path 27 and flows from the inlet side gas manifold 30. The gas flow path 27 and / or the inlet side gas manifold 30, and the merging portion 35 is located between the outlet side gas manifold 30 and the gas flow path 27 from the gas flow path 27. The gas flow communicates with the outlet gas manifold 30 and / or the outlet gas manifold 30).
The oxidant gas manifold 31 is located between the oxidant gas flow path 28 and the distribution part 36 or the merge part 37 (the distribution part 36 is located between the inlet side gas manifold 31 and the gas flow path 28 and allows the gas flow from the inlet side gas manifold 31 to flow. The flow path distributed to the gas flow path 28 and / or the inlet-side gas manifold 31, and the junction 37 is located between the outlet-side gas manifold 31 and the gas flow path 28 and gas from the gas flow path 28. The flow is joined to the outlet side gas manifold 31 and / or the outlet side gas manifold 31).
The refrigerant manifold 29 communicates with the refrigerant flow path 26 via a distribution part or a merging part.

燃料ガス、酸化ガス、冷媒は、セル内において互いにシールされている。各セルモジュール19のMEAを挟む2つのセパレータ18間は、第1のシール部材32によってシールされており、隣接するセルモジュール19同士の間は、第2のシール部材33によってシールされている。   The fuel gas, the oxidizing gas, and the refrigerant are sealed with each other in the cell. Between the two separators 18 sandwiching the MEA of each cell module 19 is sealed with a first seal member 32, and between adjacent cell modules 19 is sealed with a second seal member 33.

各セル10(1セルモジュールの場合は、セル10はセルモジュール19と同じになる)の、アノード14側では、水素を水素イオン(プロトン)と電子に変換する電離反応が行われ、水素イオンは電解質膜11中をカソード17側に移動し、カソード17側では酸素と水素イオンおよび電子(隣りのMEAのアノードで生成した電子がセパレータを通してくる、またはセル積層方向一端のセルのアノードで生成した電子が外部回路を通して他端のセルのカソードにくる)から水が生成され、次式にしたがって発電が行われる。
アノード側:H2 →2H+ +2e-
カソード側:2H+ +2e- +(1/2)O2 →H2
An ionization reaction that converts hydrogen into hydrogen ions (protons) and electrons is performed on the anode 14 side of each cell 10 (in the case of a one-cell module, the cell 10 is the same as the cell module 19). The electrolyte moves through the electrolyte membrane 11 to the cathode 17 side. On the cathode 17 side, oxygen, hydrogen ions, and electrons (electrons generated at the anode of the adjacent MEA pass through the separator, or electrons generated at the anode of the cell at one end in the cell stacking direction). From an external circuit to the cathode of the other cell), and water is generated according to the following equation.
Anode side: H 2 → 2H + + 2e
Cathode side: 2H + + 2e + (1/2) O 2 → H 2 O

図16に示すような行き詰まり流路の場合は、圧力分布が図17に示すようになり、流速分布が図18に示すようになって、(i)圧力損失の増大、(ii)流路上流部での電解質膜の乾きと抵抗損失の増大、(iii) 流路下流部での排水性の悪化と電池出力の低下が生じた。   In the case of a dead flow channel as shown in FIG. 16, the pressure distribution is as shown in FIG. 17, the flow velocity distribution is as shown in FIG. The electrolyte membrane dries in the area and the resistance loss increases, and (iii) the drainage deteriorates and the battery output decreases in the downstream part of the flow path.

〔燃料電池のセパレータ流路構造の、全実施例の共通構造〕−−−図1〜図3(図2、図3は作用)
これを解決するために、本発明の燃料電池のセパレータ流路構造の、全実施例の共通構造は、図1〜図3に示すように、酸化ガスを分配部36から合流部37に流通させる、互いに別のガス流路A(28A)およびガス流路B(28B)を含む、複数の酸化ガス流路28を備えた燃料電池のセパレータ流路構造からなる。
そして、ガス流路B(28B)は、その上流端が分配部36に連通するとともに、その下流端が直接合流部37に連通している。
また、ガス流路A(28A)は、その上流端が直接分配部36に連通するとともに、その下流端がガス流路A(28A)とガス流路B(28B)との間にわたって延びる連通路41を介してガス流路Bの途中部位にある合流点43に連通し、ガス流路B(28B)の、合流点43と合流部37との間にある部分を介して、間接的に合流部37に連通している。連通路41は、ガス流路A(28A)の下流端の分岐点から合流点43までにわたって延びる流路部分である。
したがって、ガス流路A(28A)もガス流路B(28B)も、行き詰まり流路ではない。また、ガス流路28は、入口の分配部36につながっている流路本数よりも、出口の合流部37につながっている流路本数の方が少なくなっている。
ガス流路A(28A)とガス流路B(28B)における酸化ガスの流れ方向は同方向であり、現セルの流路Aと流路Bの、セパレータを介して隣接するセルの流路部は燃料ガス流路であり、その燃料ガス流路における燃料ガスの流れ方向は、現セルのガス流路A(28A)とガス流路B(28B)における酸化ガスの流れ方向と逆(対向)方向である。
酸化ガス流れに関しては、ガス流路A(28A)の下流端まで流れて酸化ガスはガス流路A(28A)の下流端で連通路41に入り、連通路41を通ってガス流路B(28B)に合流点43で合流し、ガス流路B(28B)の合流点43から合流部37までの部分を通って、合流部37に流れる。
[A separator passage structure of a fuel cell, a common structure for all embodiments] --- 1-3 (FIG. 2, FIG. 3 is acting)
To solve this problem, a common structure of a fuel cell of the separator passage structure, all of the embodiments of the present invention, as shown in FIGS. 1 to 3, distribution to the junction unit 37 to the oxidizing gas from the distributor 36 The fuel cell separator channel structure includes a plurality of oxidizing gas channels 28 including gas channel A (28A) and gas channel B (28B) that are different from each other.
The upstream end of the gas flow path B (28B) communicates with the distributor 36, and the downstream end thereof directly communicates with the junction 37.
Further, the gas flow path A (28A) has an upstream end directly communicating with the distributor 36 and a downstream end extending between the gas flow path A (28A) and the gas flow path B (28B). 41, communicates with a confluence 43 in the middle of the gas flow path B through 41, and indirectly merges through a portion of the gas flow path B (28B) between the confluence 43 and the confluence 37. It communicates with the portion 37. The communication path 41 is a flow path portion extending from the branch point at the downstream end of the gas flow path A (28A) to the junction point 43.
Therefore, neither the gas flow path A (28A) nor the gas flow path B (28B) is a dead-end flow path. Further, in the gas flow path 28, the number of flow paths connected to the outlet merge section 37 is smaller than the number of flow paths connected to the distribution section 36 at the inlet.
The flow direction of the oxidizing gas in the gas flow path A (28A) and the gas flow path B (28B) is the same direction, and the flow path portion of the cell adjacent to the flow path A and the flow path B of the current cell via the separator. Is a fuel gas flow path, and the flow direction of the fuel gas in the fuel gas flow path is opposite (opposite) to the flow direction of the oxidizing gas in the gas flow path A (28A) and the gas flow path B (28B) of the current cell. Direction.
As for the oxidizing gas flow, the oxidizing gas flows to the downstream end of the gas flow path A (28A), enters the communication path 41 at the downstream end of the gas flow path A (28A), passes through the communication path 41, and passes through the gas flow path B ( 28B) at the junction 43, and flows to the junction 37 through the portion from the junction 43 to the junction 37 of the gas flow path B (28B).

燃料ガス流路27の流路構造は酸化ガス流路28の流路構造と独立に決めてもよい。
たとえば、互いに別のガス流路C(27C)およびガス流路D(27D)を含む、複数の燃料ガス流路27を備え、(i)ガス流路C(27C)およびガス流路D(27D)の上流端を燃料ガスの分配部34に直接連通させるとともに、ガス流路C(27C)およびガス流路D(27D)の下流端を燃料ガスの合流部35に直接連通させる構造をとってもよいし、あるいは(ii)後述する実施例6〜9のように、ガス流路27の、入口の分配部34につながっている流路本数と、出口の合流部35につながっている流路本数とを、異ならせてもよい。
また、本発明の燃料電池構造は、セパレータ面に沿って、ガス上流側での、セパレータガス流路間の拡散層を経由するガス流れが、ガス下流側での、セパレータガス流路間の拡散層を経由するガス流れより小とすることができる、ガス入口、出口の流路断面積、および/または拡散層気孔状態を有する。
The flow path structure of the fuel gas flow path 27 may be determined independently of the flow path structure of the oxidizing gas flow path 28.
For example, a plurality of fuel gas channels 27 including a gas channel C (27C) and a gas channel D (27D) that are different from each other are provided, and (i) the gas channel C (27C) and the gas channel D (27D). ) May be in direct communication with the fuel gas distributor 34, and the downstream ends of the gas flow path C (27C) and the gas flow path D (27D) may be directly connected to the fuel gas confluence 35. Or (ii) the number of flow paths connected to the inlet distribution section 34 and the number of flow paths connected to the merge section 35 of the outlet, as in Examples 6 to 9 described later. May be different.
Further, the fuel cell structure of the present invention is such that the gas flow passing through the diffusion layer between the separator gas flow paths on the gas upstream side along the separator surface is diffused between the separator gas flow paths on the gas downstream side. It has a gas inlet, outlet channel cross-sectional area, and / or diffusion layer pore state that can be smaller than the gas flow through the layer.

上記酸化ガス流路構造をとることにより、つぎの作用、効果が得られる。すなわち、本発明の燃料電池のセパレータ流路構造では、流路の圧力分布が図2に示すようになり、流路の流速分布が図3に示すようになる。
酸化ガスは、ガス流路A(28A)からガス流路B(28B)へ、ガス流路A(28A)の途中部位でリブ下(セパレータのリブで押されている部分)拡散層16を通って流れるとともに、連通路41を通って流れるので、酸化ガスの全量がリブ下拡散層16を通って流れていた図16の場合に比べて、酸化ガスの圧力損失が低減する。
ガス流路A(28A)もガス流路B(28B)も、上流端が直接分配部36に連通しているため、ガス流路A(28A)の上流端とガス流路B(28B)の上流端の圧力差は0であり、ガス流路A(28A)の上流端とガス流路B(28B)の上流端との間を拡散層16を通って抜ける酸化ガス量は少ない。その結果、低加湿運転時でも、拡散層16を通って抜ける酸化ガスによる膜11の乾きが抑制される。
酸化ガスは、ガス流路A(28A)からガス流路B(28B)へ、連通路41を通しても流れるので、ガス流路A(28A)の下流端でも流速があり(これに対し、行き詰まり流路の場合にはガス流路Aの下流端で流速は0)、ガス流路A(28A)の下流端の生成水を連通路41、ガス流路B(28B)の下流端部を通して、合流部37へ排出することができる。その結果、生成水による流路の閉塞と、電池出力の低下が抑制される。
By adopting the above-described oxidizing gas channel structure, the following action effects are obtained. That is, in the fuel cell separator passage structure of the present invention, the pressure distribution of the flow path is as shown in FIG. 2, the flow velocity distribution of the flow path as shown in FIG.
Oxidizing gas passes from the gas flow path A (28A) to the gas flow path B (28B) through the diffusion layer 16 below the rib (part pushed by the rib of the separator) in the middle of the gas flow path A (28A). In addition, the pressure loss of the oxidizing gas is reduced as compared with the case of FIG. 16 in which the entire amount of the oxidizing gas flows through the under-rib diffusion layer 16.
Since the upstream ends of both the gas flow path A (28A) and the gas flow path B (28B) communicate directly with the distributor 36, the upstream end of the gas flow path A (28A) and the gas flow path B (28B) The pressure difference at the upstream end is 0, and the amount of oxidizing gas that passes through the diffusion layer 16 between the upstream end of the gas flow path A (28A) and the upstream end of the gas flow path B (28B) is small. As a result, the drying of the film 11 by the oxidizing gas that passes through the diffusion layer 16 is suppressed even during the low humidification operation.
Since the oxidizing gas flows also from the gas flow path A (28A) to the gas flow path B (28B) through the communication path 41, there is also a flow velocity at the downstream end of the gas flow path A (28A) (as opposed to a deadlock flow). In the case of a channel, the flow velocity is 0 at the downstream end of the gas flow path A), and the generated water at the downstream end of the gas flow path A (28A) is joined through the communication path 41 and the downstream end of the gas flow path B (28B). It can be discharged to the part 37. As a result, the blockage of the flow path by the generated water and the decrease in battery output are suppressed.

図1の構造は、代表的構造であって、具体的には図4〜図12に示す種々の構造をとることができる。図4〜図12の構造の作用は図2、図3で説明したものに準じる。   The structure shown in FIG. 1 is a typical structure, and specifically, various structures shown in FIGS. The operation of the structure shown in FIGS. 4 to 12 is the same as that described with reference to FIGS.

〔実施例1〕−−−図4(イ)〜(ト)
本発明の実施例1では、図4(イ)〜(ト)に示すように、酸化ガス流路の連通路41は、ガス流路A(28A)と該ガス流路A(28A)の両側にあるガス流路B(28B)とを連通する。連通路41はガス流路A(28A)の下流端から両側に分岐して、ガス流路A(28A)の両側にあるガス流路B(28B)に合流点43にて合流する。
図4のガス流路A(28A)途中のA−A断面では、現セルの流路Aと流路Bの、セパレータを介して隣接するセルの流路部は燃料ガス流路27であり、現セルの流路Aと流路Bの間の部分は冷媒流路26である。
図4のガス流路A(28A)の下流端でのB−B断面では、現セルの流路Aの下流端と流路Bの間の部分は連通路41であり、現セルの流路Aの下流端と流路Bの、セパレータを介して隣接するセルの流路部は燃料ガス流路27であり、現セルの連通路41の、セパレータを介して隣接するセルの流路部は冷媒流路26である。
図4のガス流路A(28A)の下流端と合流部37との間の部位でのC−C断面では、現セルの流路Aの下流端を越えた部分aと流路Bとの間の部分b(流路Bと流路Bとの間の部分)はガス流路Aは無く、冷媒流路26である。また、現セルの流路Aの下流端を越えた部分aと流路Bの、セパレータ18を介して隣接するセルの流路部cは燃料ガス流路27であり、現セルの流路Aの下流端を越えた部分aと流路Bの間の部分bの、セパレータを介して隣接するセルの流路部dは冷媒流路26である。
[Example 1] --- FIGS. 4 (a) to (g)
In the first embodiment of the present invention, as shown in FIGS. 4A to 4G, the communication path 41 of the oxidizing gas flow path includes the gas flow path A (28A) and both sides of the gas flow path A (28A). The gas flow path B (28B) located in The communication path 41 branches from the downstream end of the gas flow path A (28A) to both sides, and merges at the merge point 43 with the gas flow path B (28B) on both sides of the gas flow path A (28A).
In the AA cross section in the middle of the gas flow path A (28A) of FIG. 4, the flow path portion of the cell adjacent to the flow path A and flow path B of the current cell via the separator is the fuel gas flow path 27. A portion between the flow path A and the flow path B of the current cell is a refrigerant flow path 26.
In the BB cross section at the downstream end of the gas flow path A (28A) in FIG. 4, the portion between the downstream end of the flow path A of the current cell and the flow path B is the communication path 41, and the flow path of the current cell. The flow path portion of the cell adjacent to the downstream end of A and the flow path B via the separator is the fuel gas flow path 27, and the flow path portion of the cell adjacent to the communication path 41 of the current cell via the separator is This is the refrigerant flow path 26.
In the CC cross section at the portion between the downstream end of the gas flow path A (28A) and the merging portion 37 in FIG. 4, the portion a and the flow path B beyond the downstream end of the flow path A of the current cell The portion b between them (the portion between the flow path B and the flow path B) is the refrigerant flow path 26 without the gas flow path A. Further, the flow path portion c of the cell adjacent to the portion a and the flow path B beyond the downstream end of the flow path A of the current cell via the separator 18 is the fuel gas flow path 27, and the flow path A of the current cell. The flow path part d of the cell adjacent to the part a between the part a and the flow path B beyond the downstream end via the separator is a refrigerant flow path 26.

〔実施例2〕−−−図5(イ)〜(ニ)
本発明の実施例2では、図5(イ)〜(ニ)に示すように、酸化ガス流路の連通路41は、ガス流路A(28A)と該ガス流路A(28A)の片側にあるガス流路B(28B)とを連通する。連通路41はガス流路A(28A)の下流端から片側のみに直角に折れ曲がって、ガス流路A(28A)の片側にあるガス流路B(28B)に合流点43にて合流する。ガス流路A(28A)の下流端からの、連通路41の折れ曲がりの方向は、すべてのガス流路A(28A)について同じ方向である。
図5のガス流路A(28A)途中のA−A断面では、現セルの流路Aと流路Bの、セパレータを介して隣接するセルの流路部は燃料ガス流路であり、現セルの流路Aと流路Bの間の部分は冷媒流路である。
図5のガス流路A(28A)の下流端でのB−B断面では、現セルの流路Aの下流端と片側の流路Bの間の部分は連通路41であり、現セルの流路Aの下流端と上記片側と反対側の流路Bの間の部分の冷媒流路であり、現セルの流路Aの下流端と流路Bの、セパレータを介して隣接するセルの流路部は燃料ガス流路である。
図5のガス流路A(28A)の下流端と合流部37との間の部位でのC−C断面では、現セルの流路Aの下流端を越えた部分aと流路Bとの間の部分b(流路Bと流路Bとの間の部分)はガス流路Aは無く、冷媒流路26である。また、現セルの流路Aの下流端を越えた部分aと流路Bの、セパレータ18を介して隣接するセルの流路部cは燃料ガス流路27であり、現セルの流路Aの下流端を越えた部分aと流路Bの間の部分bの、セパレータを介して隣接するセルの流路部dは冷媒流路26である。
[Example 2] --- FIGS. 5 (a) to (d)
In the second embodiment of the present invention, as shown in FIGS. 5 (a) to 5 (d), the communication path 41 of the oxidizing gas flow path is composed of the gas flow path A (28A) and one side of the gas flow path A (28A). The gas flow path B (28B) located in The communication path 41 is bent at a right angle only on one side from the downstream end of the gas flow path A (28A), and joins the gas flow path B (28B) on one side of the gas flow path A (28A) at the merge point 43. The direction of bending of the communication path 41 from the downstream end of the gas flow path A (28A) is the same direction for all the gas flow paths A (28A).
In the AA cross section in the middle of the gas flow path A (28A) in FIG. 5, the flow path portions of the cells adjacent to each other through the separator between the flow path A and the flow path B of the current cell are fuel gas flow paths. A portion between the channel A and the channel B of the cell is a refrigerant channel.
In the BB cross section at the downstream end of the gas flow path A (28A) in FIG. 5, the portion between the downstream end of the flow path A of the current cell and the flow path B on one side is a communication path 41, and It is a refrigerant flow path in a portion between the downstream end of flow path A and flow path B on the opposite side of the one side, and the downstream end of flow path A and the flow path B of the current cell The flow path part is a fuel gas flow path.
In the CC cross section at the portion between the downstream end of the gas flow path A (28A) and the merging portion 37 in FIG. 5, the portion a and the flow path B beyond the downstream end of the flow path A of the current cell The portion b between them (the portion between the flow path B and the flow path B) is the refrigerant flow path 26 without the gas flow path A. Further, the flow path portion c of the cell adjacent to the portion a and the flow path B beyond the downstream end of the flow path A of the current cell via the separator 18 is the fuel gas flow path 27, and the flow path A of the current cell. The flow path part d of the cell adjacent to the part a between the part a and the flow path B beyond the downstream end via the separator is a refrigerant flow path 26.

〔実施例3〕−−−図6(イ)〜(ニ)
本発明の実施例3では、図6(イ)〜(ニ)に示すように、酸化ガス流路の連通路41は、ガス流路A(28A)と該ガス流路A(28A)の片側にあるガス流路B(28B)とを連通する。連通路41はガス流路A(28A)の下流端から片側のみに直角に折れ曲がって、ガス流路A(28A)の片側にあるガス流路B(28B)に合流点43にて合流する。ガス流路A(28A)の下流端からの、連通路41の折れ曲がりの方向は、隣り合う2つのガス流路A(28A)同士では逆方向で、1つおきに見れば同じ方向である。
図6のガス流路A(28A)途中のA−A断面では、現セルの流路Aと流路Bの、セパレータを介して隣接するセルの流路部は燃料ガス流路であり、現セルの流路Aと流路Bの間の部分は冷媒流路である。
図6のガス流路A(28A)の下流端でのB−B断面では、現セルの流路Aの下流端と片側の流路Bの間の部分は連通路41であり、現セルの流路Aの下流端と上記片側と反対側の流路Bの間の部分の冷媒流路であり、現セルの流路Aの下流端と流路Bの、セパレータを介して隣接するセルの流路部は燃料ガス流路である。
図6のガス流路A(28A)の下流端と合流部37との間の部位でのC−C断面では、現セルの流路Aの下流端を越えた部分aと流路Bとの間の部分b(流路Bと流路Bとの間の部分)はガス流路Aは無く、冷媒流路26である。また、現セルの流路Aの下流端を越えた部分aと流路Bの、セパレータ18を介して隣接するセルの流路部cは燃料ガス流路27であり、現セルの流路Aの下流端を越えた部分aと流路Bの間の部分bの、セパレータを介して隣接するセルの流路部dは冷媒流路26である。
[Example 3] --- FIGS. 6 (a) to (d)
In Example 3 of the present invention, as shown in FIGS. 6 (a) to 6 (d), the communication path 41 of the oxidizing gas flow path is composed of the gas flow path A (28A) and one side of the gas flow path A (28A). The gas flow path B (28B) located in The communication path 41 is bent at a right angle only on one side from the downstream end of the gas flow path A (28A), and joins the gas flow path B (28B) on one side of the gas flow path A (28A) at the merge point 43. The direction of bending of the communication passage 41 from the downstream end of the gas flow path A (28A) is the reverse direction between the two adjacent gas flow paths A (28A), and the same direction when viewed every other.
In the AA cross section in the middle of the gas flow path A (28A) in FIG. 6, the flow path portions of the cells adjacent to each other through the separator between the flow path A and the flow path B of the current cell are fuel gas flow paths. A portion between the channel A and the channel B of the cell is a refrigerant channel.
In the BB cross section at the downstream end of the gas flow path A (28A) in FIG. 6, the portion between the downstream end of the flow path A of the current cell and the flow path B on one side is a communication path 41, and It is a refrigerant flow path in a portion between the downstream end of flow path A and flow path B on the opposite side of the one side, and the downstream end of flow path A and the flow path B of the current cell The flow path part is a fuel gas flow path.
In the CC cross section at the portion between the downstream end of the gas flow path A (28A) and the merging portion 37 in FIG. 6, the portion a and the flow path B beyond the downstream end of the flow path A of the current cell. The portion b between them (the portion between the flow path B and the flow path B) is the refrigerant flow path 26 without the gas flow path A. Further, the flow path portion c of the cell adjacent to the portion a and the flow path B beyond the downstream end of the flow path A of the current cell via the separator 18 is the fuel gas flow path 27, and the flow path A of the current cell. The flow path part d of the cell adjacent to the part a between the part a and the flow path B beyond the downstream end via the separator is a refrigerant flow path 26.

〔実施例4〕−−−図7(イ)〜(ハ)
本発明の実施例4では、図7(イ)〜(ハ)に示すように、酸化ガス流路の連通路41は、ガス流路A(28A)と該ガス流路A(28A)の片側(または両側)にあるガス流路B(28B)とを連通する。連通路41はガス流路A(28A)の下流端から片側(または両側)に斜めに(望ましくは、斜め上流側に)折れ曲がって、ガス流路A(28A)の片側(または両側)にあるガス流路B(28B)に合流点43にて合流する。ガス流路A(28A)の下流端から連通路41が片側のみに折れ曲がる場合、ガス流路A(28A)の下流端からの、連通路41の折れ曲がりの方向は、(i)すべてのガス流路A(28A)に対して同じ方向であるか、または、(ii)隣り合う2つのガス流路A(28A)同士では逆方向で、1つおきに見れば同じ方向である。
図7のガス流路A(28A)途中のA−A断面では、現セルの流路Aと流路Bの、セパレータを介して隣接するセルの流路部は燃料ガス流路であり、現セルの流路Aと流路Bの間の部分は冷媒流路である。
図7のガス流路A(28A)の下流端と合流部37との間の部位でのC−C断面では、現セルの流路Aの下流端を越えた部分aと流路Bとの間の部分b(流路Bと流路Bとの間の部分)はガス流路Aは無く、冷媒流路26である。また、現セルの流路Aの下流端を越えた部分aと流路Bの、セパレータ18を介して隣接するセルの流路部cは燃料ガス流路27であり、現セルの流路Aの下流端を越えた部分aと流路Bの間の部分bの、セパレータを介して隣接するセルの流路部dは冷媒流路26である。
[Embodiment 4] FIGS. 7A to 7C
In Example 4 of the present invention, as shown in FIGS. 7A to 7C, the communication path 41 of the oxidizing gas flow path is composed of the gas flow path A (28A) and one side of the gas flow path A (28A). The gas flow path B (28B) in (or both sides) is communicated. The communication passage 41 is bent obliquely (desirably, obliquely upstream) from the downstream end of the gas flow path A (28A) to one side (or both sides) of the gas flow path A (28A). The gas flow path B (28B) merges at the merge point 43. When the communication path 41 is bent only on one side from the downstream end of the gas flow path A (28A), the bending direction of the communication path 41 from the downstream end of the gas flow path A (28A) is (i) all gas flows. The direction is the same with respect to the path A (28A), or (ii) the two adjacent gas flow paths A (28A) are in the opposite direction, and the same direction when seen every other.
In the AA cross section in the middle of the gas flow path A (28A) in FIG. 7, the flow path portions of the cells adjacent to each other through the separator between the flow path A and the flow path B of the current cell are fuel gas flow paths. A portion between the channel A and the channel B of the cell is a refrigerant channel.
In the CC cross section at the portion between the downstream end of the gas flow path A (28A) and the merging portion 37 in FIG. 7, the portion a and the flow path B beyond the downstream end of the flow path A of the current cell The portion b between them (the portion between the flow path B and the flow path B) is the refrigerant flow path 26 without the gas flow path A. Further, the flow path portion c of the cell adjacent to the portion a and the flow path B beyond the downstream end of the flow path A of the current cell via the separator 18 is the fuel gas flow path 27, and the flow path A of the current cell. The flow path part d of the cell adjacent to the part a between the part a and the flow path B beyond the downstream end via the separator is a refrigerant flow path 26.

〔実施例5〕−−−図8(イ)〜(ハ)
本発明の実施例5では、図8(イ)〜(ハ)に示すように、酸化ガス流路の連通路41は、ガス流路A(28A)と該ガス流路A(28A)の片側(または両側)にあるガス流路B(28B)とを連通する。連通路41はガス流路A(28A)の下流端から片側(または両側)にクランク状に(望ましくは、クランク状に上流側に)折れ曲がって、ガス流路A(28A)の片側(または両側)にあるガス流路B(28B)に合流点43にて合流する。ガス流路A(28A)の下流端から連通路41が片側のみに折れ曲がる場合、ガス流路A(28A)の下流端からの、連通路41の折れ曲がりの方向は、(i)すべてのガス流路A(28A)に対して同じ方向であるか、または、(ii)隣り合う2つのガス流路A(28A)同士では逆方向で、1つおきに見れば同じ方向である。
図8のガス流路A(28A)途中のA−A断面では、現セルの流路Aと流路Bの、セパレータを介して隣接するセルの流路部は燃料ガス流路であり、現セルの流路Aと流路Bの間の部分は冷媒流路である。
図8のガス流路A(28A)の下流端と合流部37との間の部位でのC−C断面では、現セルの流路Aの下流端を越えた部分aと流路Bとの間の部分b(流路Bと流路Bとの間の部分)はガス流路Aは無く、冷媒流路26である。また、現セルの流路Aの下流端を越えた部分aと流路Bの、セパレータ18を介して隣接するセルの流路部cは燃料ガス流路27であり、現セルの流路Aの下流端を越えた部分aと流路Bの間の部分bの、セパレータを介して隣接するセルの流路部dは冷媒流路26である。
[Example 5] FIGS. 8 (a) to 8 (c)
In the fifth embodiment of the present invention, as shown in FIGS. 8A to 8C, the communicating path 41 of the oxidizing gas flow path is composed of the gas flow path A (28A) and one side of the gas flow path A (28A). The gas flow path B (28B) in (or both sides) is communicated. The communication path 41 is bent in a crank shape (preferably upstream in the crank shape) from one end (or both sides) of the gas flow path A (28A) to one side (or both sides) of the gas flow path A (28A). ) Joins the gas flow path B (28B) at the joining point 43. When the communication path 41 is bent only on one side from the downstream end of the gas flow path A (28A), the bending direction of the communication path 41 from the downstream end of the gas flow path A (28A) is (i) all gas flows. The direction is the same with respect to the path A (28A), or (ii) the two adjacent gas flow paths A (28A) are in the opposite direction, and the same direction when seen every other.
In the AA cross section in the middle of the gas flow path A (28A) in FIG. 8, the flow path portions of the cells adjacent to each other through the separator between the flow path A and the flow path B of the current cell are fuel gas flow paths. A portion between the channel A and the channel B of the cell is a refrigerant channel.
In the CC cross section at the portion between the downstream end of the gas flow path A (28A) and the merging portion 37 in FIG. 8, the portion a and the flow path B beyond the downstream end of the flow path A of the current cell The portion b between them (the portion between the flow path B and the flow path B) is the refrigerant flow path 26 without the gas flow path A. Further, the flow path portion c of the cell adjacent to the portion a and the flow path B beyond the downstream end of the flow path A of the current cell via the separator 18 is the fuel gas flow path 27, and the flow path A of the current cell. The flow path part d of the cell adjacent to the part a between the part a and the flow path B beyond the downstream end via the separator is a refrigerant flow path 26.

〔実施例6〕−−−図9(イ)〜(ホ)
本発明の実施例6は、酸化ガス流路28に図1、図4〜図8の何れかの構造(図9の(イ)の構造)をとったまま、あるいは、全酸化ガス流路28(流路A、流路B)が上流端で分配部に連通し下流端で合流部に連通する構造をとったまま、燃料ガス流路27に図9の(ロ)〜(ホ)の構造をとったセパレータ流路構造である。
本発明の実施例6の燃料電池のセパレータ流路構造は、燃料ガスを分配部34から合流部35に流通させる、互いに別のガス流路C(27C)およびガス流路D(27D)を含む、複数の燃料ガス流路27を備える。
ガス流路D(27D)は、上流端が直接分配部34に接続するとともに、下流端が直接前記合流部35に連通している。
ガス流路C(27C)は、上流端が直接分配部34に接続するとともに、下流端がガス流路C(27C)とガス流路D(27D)との間にわたって延びる連通路40を介してガス流路D(27D)の途中部位(ガス流路D(27D)の長さ方向の中央点とガス流路D(27D)の下流端との間にある部位)にある合流点42に連通し、ガス流路D(27D)の、合流点42と合流部35との間にある部分を介して、間接的に、合流部35に連通している。
酸化ガス流路28の酸化ガスの流れ方向と燃料ガス流路27の燃料ガスの流れ方向は、互いに逆で、対向流である。
[Embodiment 6] FIGS. 9 (a) to 9 (e)
In the sixth embodiment of the present invention, the oxidizing gas channel 28 is left in the structure of any of FIGS. 1 and 4 to 8 (the structure of FIG. 9 (A)) or the entire oxidizing gas channel 28. 9 (B) to (E) shown in FIG. 9 in the fuel gas flow path 27 with the structure (the flow path A and the flow path B) communicating with the distribution section at the upstream end and communicating with the merge section at the downstream end. It is the separator channel structure which took.
The separator flow path structure of the fuel cell according to the sixth embodiment of the present invention includes a gas flow path C (27C) and a gas flow path D (27D), which are different from each other, for allowing the fuel gas to flow from the distribution section 34 to the merge section 35. A plurality of fuel gas flow paths 27 are provided.
The gas flow path D (27D) has an upstream end directly connected to the distributor 34 and a downstream end directly connected to the junction 35.
The gas flow path C (27C) has an upstream end directly connected to the distribution section 34 and a downstream end via a communication path 40 extending between the gas flow path C (27C) and the gas flow path D (27D). Communicating with the junction 42 in the middle of the gas flow path D (27D) (the position between the central point in the length direction of the gas flow path D (27D) and the downstream end of the gas flow path D (27D)) However, the gas flow path D (27D) communicates indirectly with the merging portion 35 via a portion between the merging point 42 and the merging portion 35.
The flow direction of the oxidant gas in the oxidant gas flow path 28 and the flow direction of the fuel gas in the fuel gas flow path 27 are opposite to each other and are opposite flows.

この構造をとることにより、本発明の実施例6の燃料電池のセパレータ流路構造では、つぎの作用、効果が得られる。
本発明の実施例6の燃料電池のセパレータ流路構造では、流路の圧力分布が図2に示すようになり、流路の流速分布が図3に示すようになる。図2、図3は酸化ガス流路の場合を示すが、燃料ガス流路にも適用できる。
燃料ガスは、ガス流路C(27C)からガス流路D(27D)へ、ガス流路C(27C)の途中部位でリブ下(セパレータのリブで押されている部分)拡散層13を通って流れるとともに、連通路40を通って流れるので、燃料ガスの全量がリブ下拡散層13を通って流れていた図16の場合に比べて、燃料ガスの圧力損失が低減する。
ガス流路C(27C)もガス流路D(27D)も、上流端が直接分配部36に連通しているため、ガス流路C(27C)の上流端とガス流路D(27D)の上流端の圧力差は0であり、ガス流路C(27C)の上流端とガス流路D(27D)の上流端との間を拡散層16を通って抜ける燃料ガス量は少ない。その結果、低加湿運転時でも、拡散層16を通って抜ける燃料ガスによる膜11の乾きが抑制される。
燃料ガスは、ガス流路C(27C)からガス流路D(27D)へ、連通路40を通しても流れるので、ガス流路C(27C)の下流端でも流速があり(これに対し、行き詰まり流路の場合にはガス流路Cの下流端で流速は0)、ガス流路C(27C)の下流端の水(酸化ガス流路の水分が膜11を通して燃料ガス流路に移行してくる水)を連通路40、ガス流路D(27D)の下流端部を通して、合流部35へ排出することができる。その結果、水による流路の閉塞と、電池出力の低下が抑制される。
By adopting this structure, the following operation and effect can be obtained in the separator flow path structure of the fuel cell of Example 6 of the present invention.
In the separator channel structure of the fuel cell of Example 6 of the present invention, the pressure distribution in the channel is as shown in FIG. 2, and the flow velocity distribution in the channel is as shown in FIG. FIG. 2 and FIG. 3 show the case of an oxidizing gas channel, but the present invention can also be applied to a fuel gas channel.
The fuel gas passes from the gas flow path C (27C) to the gas flow path D (27D) through the diffusion layer 13 below the rib (part pushed by the separator rib) in the middle of the gas flow path C (27C). In addition, the pressure loss of the fuel gas is reduced as compared with the case of FIG. 16 in which the entire amount of the fuel gas flows through the under-rib diffusion layer 13.
Since the upstream ends of both the gas channel C (27C) and the gas channel D (27D) are in direct communication with the distributor 36, the upstream end of the gas channel C (27C) and the gas channel D (27D) The pressure difference at the upstream end is 0, and the amount of fuel gas that passes through the diffusion layer 16 between the upstream end of the gas flow path C (27C) and the upstream end of the gas flow path D (27D) is small. As a result, drying of the membrane 11 by the fuel gas that passes through the diffusion layer 16 is suppressed even during the low humidification operation.
Since the fuel gas flows also from the gas flow path C (27C) to the gas flow path D (27D) through the communication path 40, there is also a flow velocity at the downstream end of the gas flow path C (27C) (as opposed to a deadlock flow). In the case of a channel, the flow velocity is 0 at the downstream end of the gas channel C), and the water at the downstream end of the gas channel C (27C) (water in the oxidizing gas channel moves to the fuel gas channel through the membrane 11). Water) can be discharged to the merging portion 35 through the communication passage 40 and the downstream end of the gas flow path D (27D). As a result, the blockage of the flow path by water and the decrease in battery output are suppressed.

〔実施例7〕−−−図10(イ)〜(ホ)
本発明の実施例7は、酸化ガス流路28に図1、図4〜図8の何れかの構造(図10の(イ)の構造)をとったまま、あるいは、全酸化ガス流路28(流路A、流路B)が上流端で分配部に連通し下流端で合流部に連通する構造をとったまま、燃料ガス流路27に図10の(ロ)〜(ホ)の構造をとったセパレータ流路構造である。
本発明の実施例7の燃料電池のセパレータ流路構造は、燃料ガスを分配部34から合流部35に流通させる、互いに別のガス流路C(27C)およびガス流路D(27D)を含む、複数の燃料ガス流路27を備える。
ガス流路C(27C)は、上流端が直接分配部34に接続するとともに、下流端が直接前記合流部35に連通している。
ガス流路D(27D)は、上流端が直接分配部34に接続するとともに、下流端がガス流路D(27D)とガス流路C(27C)との間にわたって延びる連通路40を介してガス流路C(27C)の途中部位(ガス流路D(27D)の長さ方向の中央点とガス流路D(27D)の下流端との間にある部位)にある合流点42に連通し、ガス流路C(27C)の、合流点42と合流部35との間にある部分を介して、間接的に、合流部35に連通している。
酸化ガス流路28の酸化ガスの流れ方向と燃料ガス流路27の燃料ガスの流れ方向は、互いに逆で、対向流である。
この構造をとることにより、本発明の実施例7の燃料電池のセパレータ流路構造では、本発明の実施例6の作用、効果と類似の作用、効果が得られる。
[Example 7] FIGS. 10 (a) to 10 (e)
In the seventh embodiment of the present invention, the oxidizing gas flow channel 28 is left in the structure of any of FIGS. 1 and 4 to 8 (the structure of FIG. 10 (A)) or the total oxidizing gas flow channel 28. (B) to (E) shown in FIG. 10 in the fuel gas flow path 27 with the structure (the flow path A and the flow path B) communicating with the distribution section at the upstream end and communicating with the merge section at the downstream end. It is the separator channel structure which took.
The separator flow path structure of the fuel cell according to the seventh embodiment of the present invention includes the gas flow path C (27C) and the gas flow path D (27D) that are different from each other and that allows the fuel gas to flow from the distribution section 34 to the merge section 35. A plurality of fuel gas flow paths 27 are provided.
The gas flow path C (27 </ b> C) has an upstream end directly connected to the distributor 34 and a downstream end directly connected to the junction 35.
The gas flow path D (27D) has an upstream end directly connected to the distributor 34 and a downstream end via a communication path 40 extending between the gas flow path D (27D) and the gas flow path C (27C). Communicating with a confluence point 42 in the middle part of the gas flow path C (27C) (a part between the central point in the length direction of the gas flow path D (27D) and the downstream end of the gas flow path D (27D)) However, the gas flow path C (27C) communicates indirectly with the merging portion 35 via a portion between the merging point 42 and the merging portion 35.
The flow direction of the oxidant gas in the oxidant gas flow path 28 and the flow direction of the fuel gas in the fuel gas flow path 27 are opposite to each other and are opposite flows.
By adopting this structure, in the separator flow path structure of the fuel cell of Example 7 of the present invention, the operation and effect similar to those of Example 6 of the present invention can be obtained.

〔実施例8〕−−−図11(イ)〜(ホ)
本発明の実施例8は、酸化ガス流路28に図1、図4〜図8の何れかの構造(図11の(イ)の構造)をとったまま、あるいは、全酸化ガス流路28(流路A、流路B)が上流端で分配部に連通し下流端で合流部に連通する構造をとったまま、燃料ガス流路27に図11の(ロ)〜(ホ)の構造をとったセパレータ流路構造である。
本発明の実施例8の燃料電池のセパレータ流路構造は、燃料ガスを分配部34から合流部35に流通させる、互いに別のガス流路C(27C)およびガス流路D(27D)を含む、複数の燃料ガス流路27を備える。
ガス流路D(27D)は、上流端が直接分配部34に接続するとともに、下流端が直接前記合流部35に連通している。
ガス流路C(27C)は、下流端が直接合流部35に接続するとともに、上流端がガス流路C(27C)とガス流路D(27D)との間にわたって延びる連通路40を介してガス流路D(27D)の途中部位(ガス流路D(27D)の長さ方向の中央点とガス流路D(27D)の上流端との間にある部位)にある合流点42に連通し、ガス流路D(27D)の、合流点42と分配部34との間にある部分を介して、間接的に、分配部34に連通している。
酸化ガス流路28の酸化ガスの流れ方向と燃料ガス流路27の燃料ガスの流れ方向は、互いに逆で、対向流である。
この構造をとることにより、本発明の実施例8の燃料電池のセパレータ流路構造では、本発明の実施例6の作用、効果と類似の作用、効果が得られる。実施例6では、連通路40がガス流路C(27C)とガス流路D(27D)の下流側にあるのに対し、実施例8では、連通路40がガス流路C(27C)とガス流路D(27D)の上流側にあるが、燃料ガス流路の場合は酸化ガス流路に比べて生成水による流路閉塞のおそれが小さいので、連通路40をガス流路C(27C)とガス流路D(27D)の上流側に設けても問題は生じない。
[Embodiment 8] FIG. 11 (a) to (e)
In Example 8 of the present invention, the oxidizing gas flow path 28 is left in the structure of any of FIGS. 1 and 4 to 8 (the structure of FIG. 11 (A)), or the total oxidizing gas flow path 28. 11 (B) to (E) in FIG. 11 in the fuel gas flow path 27 with the structure (the flow path A and the flow path B) communicating with the distribution section at the upstream end and communicating with the merge section at the downstream end. It is the separator channel structure which took.
The separator flow path structure of the fuel cell according to the eighth embodiment of the present invention includes a gas flow path C (27C) and a gas flow path D (27D), which are different from each other, for allowing the fuel gas to flow from the distribution section 34 to the merge section 35. A plurality of fuel gas flow paths 27 are provided.
The gas flow path D (27D) has an upstream end directly connected to the distributor 34 and a downstream end directly connected to the junction 35.
The gas flow path C (27C) has a downstream end directly connected to the merge portion 35 and an upstream end via a communication path 40 extending between the gas flow path C (27C) and the gas flow path D (27D). Communicating to a junction 42 in the middle of the gas flow path D (27D) (the position between the central point in the length direction of the gas flow path D (27D) and the upstream end of the gas flow path D (27D)) In addition, the gas flow path D (27D) communicates indirectly with the distribution section 34 via a portion between the junction point 42 and the distribution section 34.
The flow direction of the oxidant gas in the oxidant gas flow path 28 and the flow direction of the fuel gas in the fuel gas flow path 27 are opposite to each other and are opposite flows.
By adopting this structure, in the fuel cell separator flow path structure of the eighth embodiment of the present invention, the operation and effect similar to those of the sixth embodiment of the present invention can be obtained. In the sixth embodiment, the communication path 40 is on the downstream side of the gas flow path C (27C) and the gas flow path D (27D), whereas in the eighth embodiment, the communication path 40 is connected to the gas flow path C (27C). Although it is on the upstream side of the gas flow path D (27D), in the case of the fuel gas flow path, there is less risk of blockage of the flow path due to the generated water as compared to the oxidizing gas flow path. ) And the upstream side of the gas flow path D (27D), no problem occurs.

〔実施例9〕−−−図12(イ)〜(ホ)
本発明の実施例9は、酸化ガス流路28に図1、図4〜図8の何れかの構造(図12の(イ)の構造)をとったまま、あるいは、全酸化ガス流路28(流路A、流路B)が上流端で分配部に連通し下流端で合流部に連通する構造をとったまま、燃料ガス流路27に図12の(ロ)〜(ホ)の構造をとったセパレータ流路構造である。
本発明の実施例9の燃料電池のセパレータ流路構造は、燃料ガスを分配部34から合流部35に流通させる、互いに別のガス流路C(27C)およびガス流路D(27D)を含む、複数の燃料ガス流路27を備える。
ガス流路C(27C)は、上流端が直接分配部34に接続するとともに、下流端が直接前記合流部35に連通している。
ガス流路D(27D)は、下流端が直接合流部35に接続するとともに、上流端がガス流路D(27D)とガス流路C(27C)との間にわたって延びる連通路40を介してガス流路C(27C)の途中部位(ガス流路D(27D)の長さ方向の中央点とガス流路D(27D)の下流端との間にある部位)にある合流点42に連通し、ガス流路C(27C)の、合流点42と分配部34との間にある部分を介して、間接的に、分配部34に連通している。
酸化ガス流路28の酸化ガスの流れ方向と燃料ガス流路27の燃料ガスの流れ方向は、互いに逆で、対向流である。
この構造をとることにより、本発明の実施例9の燃料電池のセパレータ流路構造では、本発明の実施例6の作用、効果と類似の作用、効果が得られる。実施例6では、連通路40がガス流路C(27C)とガス流路D(27D)の下流側にあるのに対し、実施例9では、連通路40がガス流路C(27C)とガス流路D(27D)の上流側にあるが、燃料ガス流路の場合は酸化ガス流路に比べて生成水による流路閉塞のおそれが小さいので、連通路40をガス流路C(27C)とガス流路D(27D)の上流側に設けても問題は生じない。
[Embodiment 9] FIGS. 12 (a) to 12 (e)
In the ninth embodiment of the present invention, the oxidizing gas flow channel 28 is left in the structure of any of FIGS. 1 and 4 to 8 (the structure of FIG. 12 (A)), or the total oxidizing gas flow channel 28. 12 (B) to (E) shown in FIG. 12 in the fuel gas flow path 27 with the structure (the flow path A and the flow path B) communicating with the distribution section at the upstream end and communicating with the merging section at the downstream end. It is the separator channel structure which took.
The separator flow path structure of the fuel cell according to the ninth embodiment of the present invention includes a gas flow path C (27C) and a gas flow path D (27D), which are different from each other, for allowing the fuel gas to flow from the distribution section 34 to the merge section 35. A plurality of fuel gas flow paths 27 are provided.
The gas flow path C (27 </ b> C) has an upstream end directly connected to the distributor 34 and a downstream end directly connected to the junction 35.
The gas flow path D (27D) has a downstream end directly connected to the merging portion 35 and an upstream end via a communication path 40 extending between the gas flow path D (27D) and the gas flow path C (27C). Communicating with a confluence point 42 in the middle part of the gas flow path C (27C) (a part between the central point in the length direction of the gas flow path D (27D) and the downstream end of the gas flow path D (27D)) The gas flow path C (27C) communicates indirectly with the distribution section 34 through a portion between the junction 42 and the distribution section 34.
The flow direction of the oxidant gas in the oxidant gas flow path 28 and the flow direction of the fuel gas in the fuel gas flow path 27 are opposite to each other and are opposite flows.
By adopting this structure, in the separator flow path structure of the fuel cell of Example 9 of the present invention, functions and effects similar to those of Example 6 of the present invention can be obtained. In the sixth embodiment, the communication path 40 is on the downstream side of the gas flow path C (27C) and the gas flow path D (27D), whereas in the ninth embodiment, the communication path 40 is connected to the gas flow path C (27C). Although it is on the upstream side of the gas flow path D (27D), in the case of the fuel gas flow path, there is less risk of blockage of the flow path due to the generated water as compared to the oxidizing gas flow path. ) And the upstream side of the gas flow path D (27D), no problem occurs.

本発明の燃料電池のセパレータ流路構造の全実施例の共通構成の正面図である。It is a front view of a common structure for all embodiments of the fuel cell separator passage structure of the present invention. 図1のセパレータ流路構造を適用した場合の燃料電池の、圧力/流路位置のグラフである。3 is a graph of pressure / flow path position of a fuel cell when the separator flow path structure of FIG. 1 is applied. 図1のセパレータ流路構造を適用した場合の燃料電池の、流速/流路位置のグラフである。2 is a graph of a flow rate / flow path position of a fuel cell when the separator flow path structure of FIG. 1 is applied. (イ)は本発明の実施例1の燃料電池のセパレータ流路構造の正面図である。(ロ)は(イ)のA−A断面図である。(ハ)は(イ)のB−B断面図である。(ニ)は(イ)のC−C断面図である。(ホ)は(イ)の流路A断面図である。(ヘ)は(イ)の流路B断面図である。(ト)は(イ)の流路Aと流路Bとの間の部位の断面図である。(A) is a front view of the separator flow path structure of the fuel cell of Example 1 of this invention. (B) is a cross-sectional view taken along the line AA in (A). (C) is a BB sectional view of (A). (D) is CC sectional drawing of (A). (E) is a cross-sectional view of the flow path A of (a). (F) is a cross-sectional view of the flow path B of (a). (G) is sectional drawing of the site | part between the flow path A and the flow path B of (b). (イ)は本発明の実施例2の燃料電池のセパレータ流路構造の正面図である。(ロ)は(イ)のA−A断面図である。(ハ)は(イ)のB−B断面図である。(ニ)は(イ)のC−C断面図である。(A) is a front view of the separator flow path structure of the fuel cell of Example 2 of this invention. (B) is a cross-sectional view taken along the line AA in (A). (C) is a BB sectional view of (A). (D) is CC sectional drawing of (A). (イ)は本発明の実施例3の燃料電池のセパレータ流路構造の正面図である。(ロ)は(イ)のA−A断面図である。(ハ)は(イ)のB−B断面図である。(ニ)は(イ)のC−C断面図である。(A) is a front view of the separator flow path structure of the fuel cell of Example 3 of this invention. (B) is a cross-sectional view taken along the line AA in (A). (C) is a BB sectional view of (A). (D) is CC sectional drawing of (A). (イ)は本発明の実施例4の燃料電池のセパレータ流路構造の正面図である。(ロ)は(イ)のA−A断面図である。(ハ)は(イ)のC−C断面図である。(A) is a front view of the separator flow path structure of the fuel cell of Example 4 of this invention. (B) is a cross-sectional view taken along the line AA in (A). (C) is CC sectional drawing of (A). (イ)は本発明の実施例5の燃料電池のセパレータ流路構造の正面図である。(ロ)は(イ)のA−A断面図である。(ハ)は(イ)のC−C断面図である。(A) is a front view of the separator flow path structure of the fuel cell of Example 5 of this invention. (B) is a cross-sectional view taken along the line AA in (A). (C) is CC sectional drawing of (A). (イ)は本発明の実施例6の燃料電池のセパレータ流路構造の酸化ガス流路構造の正面図である。(ロ)は本発明の実施例6の燃料電池のセパレータ流路構造の燃料ガス流路構造の正面図である。(ハ)は(イ)の流路Aでの断面図である。(ニ)は(イ)の流路Bでの断面図である。(ホ)は(イ)の流路Aと流路Bとの間の部位での断面図である。(A) is a front view of the oxidizing gas channel structure of the separator channel structure of the fuel cell of Example 6 of the present invention. (B) is a front view of the fuel gas channel structure of the separator channel structure of the fuel cell of Example 6 of the present invention. (C) is a cross-sectional view of the flow path A of (A). (D) is a cross-sectional view of the flow path B of (A). (E) is a cross-sectional view of the portion between the flow path A and the flow path B of (a). (イ)は本発明の実施例7の燃料電池のセパレータ流路構造の酸化ガス流路構造の正面図である。(ロ)は本発明の実施例7の燃料電池のセパレータ流路構造の燃料ガス流路構造の正面図である。(ハ)は(イ)の流路Aでの断面図である。(ニ)は(イ)の流路Bでの断面図である。(ホ)は(イ)の流路Aと流路Bとの間の部位での断面図である。(A) is a front view of the oxidizing gas channel structure of the separator channel structure of the fuel cell of Example 7 of the present invention. (B) is a front view of the fuel gas channel structure of the separator channel structure of the fuel cell of Example 7 of the present invention. (C) is a cross-sectional view of the flow path A of (A). (D) is a cross-sectional view of the flow path B of (A). (E) is a cross-sectional view of the portion between the flow path A and the flow path B of (a). (イ)は本発明の実施例8の燃料電池のセパレータ流路構造の酸化ガス流路構造の正面図である。(ロ)は本発明の実施例8の燃料電池のセパレータ流路構造の燃料ガス流路構造の正面図である。(ハ)は(イ)の流路Aでの断面図である。(ニ)は(イ)の流路Bでの断面図である。(ホ)は(イ)の流路Aと流路Bとの間の部位での断面図である。(A) is a front view of the oxidizing gas channel structure of the separator channel structure of the fuel cell of Example 8 of the present invention. (B) is a front view of the fuel gas channel structure of the separator channel structure of the fuel cell of Example 8 of the present invention. (C) is a cross-sectional view of the flow path A of (A). (D) is a cross-sectional view of the flow path B of (A). (E) is a cross-sectional view of the portion between the flow path A and the flow path B of (a). (イ)は本発明の実施例9の燃料電池のセパレータ流路構造の酸化ガス流路構造の正面図である。(ロ)は本発明の実施例9の燃料電池のセパレータ流路構造の燃料ガス流路構造の正面図である。(ハ)は(イ)の流路Aでの断面図である。(ニ)は(イ)の流路Bでの断面図である。(ホ)は(イ)の流路Aと流路Bとの間の部位での断面図である。(A) is a front view of the oxidizing gas channel structure of the separator channel structure of the fuel cell of Example 9 of the present invention. (B) is a front view of the fuel gas channel structure of the separator channel structure of the fuel cell of Example 9 of the present invention. (C) is a cross-sectional view of the flow path A of (A). (D) is a cross-sectional view of the flow path B of (A). (E) is a cross-sectional view of the portion between the flow path A and the flow path B of (a). 本発明の燃料電池のセパレータ流路構造が適用される燃料電池のスタックの側面図である。It is a side view of the stack of the fuel cell to which the separator channel structure of the fuel cell of the present invention is applied. 図13の一部拡大断面図である。It is a partially expanded sectional view of FIG. 図13のセパレータ部位での正面図である。It is a front view in the separator site | part of FIG. 従来の燃料電池のセパレータ流路構造の正面図である。It is a front view of the separator flow-path structure of the conventional fuel cell. 図16のセパレータ流路構造を適用した場合の燃料電池の、圧力/流路位置のグラフである。FIG. 17 is a graph of pressure / flow path position of a fuel cell when the separator flow path structure of FIG. 16 is applied. 図16のセパレータ流路構造を適用した場合の燃料電池の、流速/流路位置のグラフである。FIG. 17 is a graph of flow velocity / flow path position of a fuel cell when the separator flow path structure of FIG. 16 is applied.

10 (固体高分子電解質型)燃料電池(セル)
11 電解質膜
13、16 拡散層
14 アノード
17 カソード
18 セパレータ
19 モジュール
20 ターミナル
21 インシュレータ
22 エンドプレート
23 燃料電池スタック
24 締結部材(テンションプレート)
25 ボルト・ナット
26 冷媒流路(流体流路)
27 燃料ガス流路(流体流路)
27C、27D ガス流路(燃料ガス)
28 酸化ガス流路(流体流路)
28A、28B ガス流路(酸化ガス)
29 冷媒マニホールド(流体マニホールド)
30 燃料ガスマニホールド(流体マニホールド)
31 酸化ガスマニホールド(流体マニホールド)
32 ガスケット
33 接着剤
34 分配部(燃料ガス)
35 合流部(燃料ガス)
36 分配部(酸化ガス)
37 合流部(酸化ガス)
40 連通路(燃料ガス
41 連通路(酸化ガス)
42 合流点(燃料ガス)
43 合流点(酸化ガス)
10 (Solid polymer electrolyte type) Fuel cell (cell)
11 Electrolyte membranes 13 and 16 Diffusion layer 14 Anode 17 Cathode 18 Separator 19 Module 20 Terminal 21 Insulator 22 End plate 23 Fuel cell stack 24 Fastening member (tension plate)
25 Bolt / Nut 26 Refrigerant flow path (fluid flow path)
27 Fuel gas flow path (fluid flow path)
27C, 27D Gas flow path (fuel gas)
28 Oxidizing gas channel (fluid channel)
28A, 28B Gas flow path (oxidizing gas)
29 Refrigerant manifold (fluid manifold)
30 Fuel gas manifold (fluid manifold)
31 Oxidizing gas manifold (fluid manifold)
32 Gasket 33 Adhesive 34 Distribution part (fuel gas)
35 Junction (fuel gas)
36 Distribution section (oxidizing gas)
37 Junction (oxidizing gas)
40 communication path (fuel gas 41 communication path (oxidizing gas)
42 Junction (fuel gas)
43 Junction (oxidizing gas)

Claims (10)

酸化ガスを分配部から合流部に流通させる、互いに別のガス流路Aおよびガス流路Bを含む、複数の酸化ガス流路を備えた燃料電池のセパレータ流路構造であって、
前記ガス流路Bは、上流端が直接前記分配部に連通するとともに、下流端が直接前記合流部に連通しており、
前記ガス流路Aは、上流端が直接前記分配部に連通するとともに、下流端がガス流路Aとガス流路Bとの間にわたって延びる連通路を介して前記ガス流路Bの途中部位にある合流点に連通し、ガス流路Bの、前記合流点と前記合流部との間にある部分を介して、間接的に前記合流部に連通しており、
ガス流路Aは、ガス流路Bに直接合流せずに、前記連通路を介して合流しており、
前記連通路があることにより、ガス流通時に、ガス通路Aの圧力はガス通路Bの合流点より上流の圧力以上で、ガス流路Aとガス流路Bとの間にはガス流路Aの上流端で0でガス流路Aの下流端に向かって増大する差圧があり、該差圧によりガス流路Aからガス流路Bに拡散層を通る流れがあり、
前記ガス流路Aと前記ガス流路Bの前記合流点より上流側の部分とは互いに平行であり、前記分配部から前記連通路の前記ガス流路Aからの分岐点へのガス流路は前記ガス流路Aのみである、燃料電池のセパレータ流路構造。
A separator flow path structure for a fuel cell including a plurality of oxidizing gas flow paths including a gas flow path A and a gas flow path B that are different from each other and that circulates the oxidizing gas from the distribution section to the merging section,
The gas flow path B has an upstream end directly communicating with the distributor, and a downstream end directly communicating with the junction.
The gas flow path A has an upstream end directly communicating with the distributor, and a downstream end connected to the gas flow path B through a communication path extending between the gas flow path A and the gas flow path B. Communicating with a certain merging point, and indirectly communicating with the merging portion through a portion of the gas flow path B between the merging point and the merging portion ,
The gas flow path A is not joined directly to the gas flow path B, but joined via the communication path,
Due to the presence of the communication passage, the pressure of the gas passage A is equal to or higher than the pressure upstream of the confluence of the gas passage B when the gas flows, and the gas passage A is interposed between the gas passage A and the gas passage B. There is a differential pressure increasing toward the downstream end of the gas flow path A at 0 at the upstream end, and there is a flow through the diffusion layer from the gas flow path A to the gas flow path B due to the differential pressure,
The gas flow path A and the upstream portion of the gas flow path B from the merge point are parallel to each other, and the gas flow path from the distributor to the branch point from the gas flow path A of the communication path is A separator channel structure of a fuel cell, which is only the gas channel A.
前記連通路は、前記ガス流路Aと該ガス流路Aの両側にあるガス流路Bとを連通する請求項1記載の燃料電池のセパレータ流路構造。   The fuel cell separator channel structure according to claim 1, wherein the communication channel communicates the gas channel A with a gas channel B on both sides of the gas channel A. 前記連通路は、前記ガス流路Aと該ガス流路Aの片側にあるガス流路Bとを連通する請求項1記載の燃料電池のセパレータ流路構造。   The fuel cell separator channel structure according to claim 1, wherein the communication channel communicates the gas channel A and a gas channel B on one side of the gas channel A. 前記連通路は前記ガス流路Aに直交する流路からなる請求項1記載の燃料電池のセパレータ流路構造。   The fuel cell separator flow path structure according to claim 1, wherein the communication path is a flow path orthogonal to the gas flow path A. 前記連通路は前記ガス流路Aに斜交する流路からなる請求項1記載の燃料電池のセパレータ流路構造。   The fuel cell separator flow path structure according to claim 1, wherein the communication path includes a flow path obliquely intersecting the gas flow path A. 前記連通路はクランク状流路からなる請求項1記載の燃料電池のセパレータ流路構造。   The fuel cell separator channel structure according to claim 1, wherein the communication path comprises a crank-shaped channel. 燃料ガスを分配部から合流部に流通させる、互いに別のガス流路Cおよびガス流路Dを含む、複数の燃料ガス流路を備えた燃料電池のセパレータ流路構造であって、
前記ガス流路Dは、上流端が直接前記分配部に接続するとともに、下流端が直接前記合流部に連通しており、
前記ガス流路Cは、上流端が直接前記分配部に接続するとともに、下流端がガス流路Cとガス流路Dとの間にわたって延びる連通路を介して前記ガス流路Dの途中部位にある合流点に連通し、ガス流路Dの、前記合流点と前記合流部との間にある部分を介して、間接的に前記合流部に連通している、
請求項1記載の燃料電池のセパレータ流路構造。
A fuel cell separator flow path structure including a plurality of fuel gas flow paths including a gas flow path C and a gas flow path D that are different from each other and distributes fuel gas from a distribution section to a merge section,
The gas flow path D has an upstream end directly connected to the distributor, and a downstream end directly communicated with the junction.
The gas flow path C has an upstream end directly connected to the distributor, and a downstream end connected to the gas flow path D through a communication path extending between the gas flow path C and the gas flow path D. Communicating with a certain merging point, and indirectly communicating with the merging portion through a portion of the gas flow path D between the merging point and the merging portion.
The separator flow path structure of the fuel cell according to claim 1.
燃料ガスを分配部から合流部に流通させる、互いに別のガス流路Cおよびガス流路Dを含む、複数の燃料ガス流路を備えた燃料電池のセパレータ流路構造であって、
前記ガス流路Cは、上流端が直接前記分配部に接続するとともに、下流端が直接前記合流部に連通しており、
前記ガス流路Dは、上流端が直接前記分配部に接続するとともに、下流端がガス流路Dとガス流路Cとの間にわたって延びる連通路を介して前記ガス流路Cの途中部位にある合流点に連通し、ガス流路Cの、前記合流点と前記合流部との間にある部分を介して、間接的に前記合流部に連通している、
請求項1記載の燃料電池のセパレータ流路構造。
A fuel cell separator flow path structure including a plurality of fuel gas flow paths including a gas flow path C and a gas flow path D that are different from each other and distributes fuel gas from a distribution section to a merge section,
The gas flow path C has an upstream end directly connected to the distributor, and a downstream end directly communicated with the junction.
The gas flow path D has an upstream end directly connected to the distribution unit, and a downstream end connected to the middle portion of the gas flow path C via a communication path extending between the gas flow path D and the gas flow path C. Communicating with a certain merging point, and indirectly communicating with the merging portion through a portion of the gas flow path C between the merging point and the merging portion.
The separator flow path structure of the fuel cell according to claim 1.
燃料ガスを分配部から合流部に流通させる、互いに別のガス流路Cおよびガス流路Dを含む、複数の燃料ガス流路を備えた燃料電池のセパレータ流路構造であって、
前記ガス流路Dは、上流端が直接前記分配部に連通するとともに、下流端が直接前記合流部に連通しており、
前記ガス流路Cは、下流端が直接前記合流部に連通するとともに、上流端がガス流路Cとガス流路Dとの間にわたって延びる連通路を介して前記ガス流路Dの途中部位にある合流点に連通し、ガス流路Dの、前記合流点と前記分配部との間にある部分を介して、間接的に前記分配部に連通している、
請求項1記載の燃料電池のセパレータ流路構造。
A fuel cell separator flow path structure including a plurality of fuel gas flow paths including a gas flow path C and a gas flow path D that are different from each other and distributes fuel gas from a distribution section to a merge section,
The gas flow path D has an upstream end directly communicating with the distributor, and a downstream end directly communicating with the junction.
The gas flow path C has a downstream end directly communicating with the merging portion, and an upstream end connected to the middle portion of the gas flow path D via a communication path extending between the gas flow path C and the gas flow path D. Communicating with a certain confluence, and indirectly communicating with the distributor through a portion of the gas flow path D between the confluence and the distributor.
The separator flow path structure of the fuel cell according to claim 1.
燃料ガスを分配部から合流部に流通させる、互いに別のガス流路Cおよびガス流路Dを含む、複数の燃料ガス流路を備えた燃料電池のセパレータ流路構造であって、
前記ガス流路Cは、上流端が直接前記分配部に連通するとともに、下流端が直接前記合流部に連通しており、
前記ガス流路Dは、下流端が直接前記合流部に連通するとともに、上流端がガス流路Dとガス流路Cとの間にわたって延びる連通路を介して前記ガス流路Cの途中部位にある合流点に連通し、ガス流路Cの、前記合流点と前記分配部との間にある部分を介して、間接的に前記分配部に連通している、
請求項1記載の燃料電池のセパレータ流路構造。
A fuel cell separator flow path structure including a plurality of fuel gas flow paths including a gas flow path C and a gas flow path D that are different from each other and distributes fuel gas from a distribution section to a merge section,
The gas flow path C has an upstream end directly communicating with the distributor, and a downstream end directly communicating with the junction.
The gas flow path D has a downstream end directly communicating with the merging portion, and an upstream end connected to the middle portion of the gas flow path C via a communication path extending between the gas flow path D and the gas flow path C. Communicated with a certain junction, and indirectly communicated with the distributor through a portion of the gas flow path C between the junction and the distributor.
The separator flow path structure of the fuel cell according to claim 1.
JP2005228142A 2005-08-05 2005-08-05 Fuel cell separator channel structure Expired - Fee Related JP4972891B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005228142A JP4972891B2 (en) 2005-08-05 2005-08-05 Fuel cell separator channel structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005228142A JP4972891B2 (en) 2005-08-05 2005-08-05 Fuel cell separator channel structure

Publications (2)

Publication Number Publication Date
JP2007042551A JP2007042551A (en) 2007-02-15
JP4972891B2 true JP4972891B2 (en) 2012-07-11

Family

ID=37800337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005228142A Expired - Fee Related JP4972891B2 (en) 2005-08-05 2005-08-05 Fuel cell separator channel structure

Country Status (1)

Country Link
JP (1) JP4972891B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4523089B2 (en) * 1999-04-09 2010-08-11 本田技研工業株式会社 Fuel cell stack
JP3980194B2 (en) * 1998-09-10 2007-09-26 本田技研工業株式会社 Fuel cell
JP4590047B2 (en) * 1999-08-13 2010-12-01 本田技研工業株式会社 Fuel cell stack
JP4966507B2 (en) * 2004-08-26 2012-07-04 本田技研工業株式会社 Fuel cell

Also Published As

Publication number Publication date
JP2007042551A (en) 2007-02-15

Similar Documents

Publication Publication Date Title
KR100549683B1 (en) Solid polymer electrolyte fuel cell assembly, fuel cell stack, and method of supplying reaction gas in fuel cell
US7588851B2 (en) Fuel cell stack structure
KR100798451B1 (en) Fuel cell separator and fuel cell stack and reactant gas control method thereof
US10847816B2 (en) Fuel cell
JP5098128B2 (en) Fuel cell
WO2014136965A1 (en) Fuel cell, fluid distribution device for fuel cell, and vehicle provided with fuel cell
CA2456846C (en) Separator passage structure of fuel cell
JP2007200674A5 (en)
JP2006294503A (en) Fuel battery and gas separator for the same
JP2003068331A (en) Fuel cell separator
JP2001250568A (en) Collector panel for solid polymer fuel cell
JP4792699B2 (en) Fuel cell
JP2005056671A (en) Fuel cell
JP4650424B2 (en) Fuel cell
JP2006228507A (en) Fuel cell
JP4578997B2 (en) Fuel cell separator and fuel cell
WO2010067635A1 (en) Power generation cell for fuel battery
JP4972891B2 (en) Fuel cell separator channel structure
JP2004158369A (en) Fuel cell
JP2007250212A (en) Fuel cell
JP4340417B2 (en) Polymer electrolyte fuel cell
JP4245308B2 (en) Fuel cell
JP4992180B2 (en) Fuel cell separator
JP5910640B2 (en) Fuel cell
JP7048254B2 (en) Fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120313

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120326

R151 Written notification of patent or utility model registration

Ref document number: 4972891

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150420

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees