JP4972752B2 - Geothermal power generation method and system - Google Patents

Geothermal power generation method and system Download PDF

Info

Publication number
JP4972752B2
JP4972752B2 JP2007092832A JP2007092832A JP4972752B2 JP 4972752 B2 JP4972752 B2 JP 4972752B2 JP 2007092832 A JP2007092832 A JP 2007092832A JP 2007092832 A JP2007092832 A JP 2007092832A JP 4972752 B2 JP4972752 B2 JP 4972752B2
Authority
JP
Japan
Prior art keywords
carbon dioxide
heat transfer
transfer medium
ground
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007092832A
Other languages
Japanese (ja)
Other versions
JP2008248837A (en
Inventor
久敏 伊藤
耕一 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Research Institute of Innovative Technology for Earth
Original Assignee
Central Research Institute of Electric Power Industry
Research Institute of Innovative Technology for Earth
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry, Research Institute of Innovative Technology for Earth filed Critical Central Research Institute of Electric Power Industry
Priority to JP2007092832A priority Critical patent/JP4972752B2/en
Publication of JP2008248837A publication Critical patent/JP2008248837A/en
Application granted granted Critical
Publication of JP4972752B2 publication Critical patent/JP4972752B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Description

本発明は、地熱発電方法並びにシステムに関する。さらに詳述すると、本発明は、二酸化炭素の大規模排出源と組み合わせて用いて好適な地熱発電方法並びにシステムに関する。   The present invention relates to a geothermal power generation method and system. More specifically, the present invention relates to a geothermal power generation method and system suitable for use in combination with a large-scale emission source of carbon dioxide.

本明細書において、高温岩体地盤とは、地下のマグマの熱により高温でありながら水分が少ない岩盤のことをいう。   In the present specification, the high-temperature rock ground means a rock having a low water content while being hot due to the heat of the underground magma.

従来の地熱発電方法としては、地下の高温岩体地盤に複数の坑井を掘削し、この複数の坑井のうちの一部の坑井から水を注入し、この水が高温岩体地盤の割れ目を通る間に地盤の熱により加熱されて生成される熱水や蒸気を別の坑井から回収して発電に利用する方法がある。この場合には、回収された熱水は坑井を通してまた高温岩体地盤へ送り込まれ、注入側の坑井と回収側の坑井とを通して地上と地下の高温岩体地盤との間で水を熱伝達の媒体とした循環系が形成されて地下の高温岩体地盤の熱を地上に取り出すことができる(非特許文献1)。   As a conventional geothermal power generation method, a plurality of wells are drilled in the underground hot rock ground, and water is injected from some wells of the plurality of wells. There is a method in which hot water or steam generated by heating by the ground heat while passing through the crack is recovered from another well and used for power generation. In this case, the recovered hot water is fed through the well and into the hot rock ground, and water is passed between the ground and underground hot rock ground through the injection well and the recovery well. A circulation system as a heat transfer medium is formed, and the heat of the underground hot rock ground can be taken out to the ground (Non-patent Document 1).

また、化石燃料の使用に伴って大気中の二酸化炭素(CO)等の温室効果ガスの濃度が増加することによる地球温暖化が懸念されている。そして、地球温暖化防止のための手段として二酸化炭素を地層中に固定化して貯留させるプロジェクトが国内外で進行している(非特許文献2)。諸外国並びにわが国においても、二酸化炭素地中貯留候補として石炭火力発電所やセメント工場など二酸化炭素の大規模排出源近傍で主として砂岩層である帯水層に二酸化炭素を貯留させる案即ち帯水層地中貯留が有望である。 In addition, there is concern about global warming due to an increase in the concentration of greenhouse gases such as carbon dioxide (CO 2 ) in the atmosphere accompanying the use of fossil fuels. And as a means for preventing global warming, a project to fix and store carbon dioxide in the formation is progressing in and outside Japan (Non-Patent Document 2). In other countries as well as in Japan, carbon dioxide is stored in aquifers that are mainly sandstone formations near large-scale sources of carbon dioxide, such as coal-fired power plants and cement plants, as carbon dioxide underground storage candidates. Underground storage is promising.

財団法人電力中央研究所:未利用地熱資源の開発に向けて−高温岩体発電への取り組み−,電中研レビュー,No.49,2003年3月.Central Research Institute of Electric Power Industry: Toward the development of unused geothermal resources -Efforts for high-temperature rock power generation-, Review of Denki Research Institute, No. 49, March 2003. Working Group III of the Intergovernmental Panel on Climate Change[Metz,B.et al.]:IPCC Special Report on Carbon Dioxide Capture and Storage,Cambridge University Press,Cambridge,United Kingdom and New York,NY,USA,442pp.Woking Group III of the Intergovernmental Panel on Climate Chang [Metz, B .; et al. ]: IPCC Special Report on Carbon Dioxide Capture and Storage, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 442pp.

しかしながら、非特許文献1の地熱発電方法では、坑井から熱伝達媒体として高温岩体地盤に注入した水の回収率が25%程度しかなく、発電効率が低いという問題がある。なお、水の回収率は、回収された蒸気・熱水の総重量を注入した水の総重量で除したものである。   However, the geothermal power generation method of Non-Patent Document 1 has a problem that the power generation efficiency is low because the recovery rate of water injected from the well into the high temperature rock ground as a heat transfer medium is only about 25%. The water recovery rate is obtained by dividing the total weight of recovered steam / hot water by the total weight of injected water.

また、地球温暖化防止の観点から効率的に二酸化炭素を地層中に固定化・貯留させる方法が必要とされている。   In addition, a method for efficiently fixing and storing carbon dioxide in the formation is required from the viewpoint of preventing global warming.

そこで、本発明は、熱伝達媒体の回収率が高く発電効率の高い高温岩体発電を行うと共に二酸化炭素を地層中に固定化・貯留させることができる地熱発電方法並びにシステムを提供することを目的とする。   SUMMARY OF THE INVENTION An object of the present invention is to provide a geothermal power generation method and system capable of performing high-temperature rock power generation with a high heat transfer medium recovery rate and high power generation efficiency, and capable of fixing and storing carbon dioxide in the formation. And

かかる目的を達成するため、請求項1記載の地熱発電方法は、高温岩体地盤に掘削された少なくとも一本の注入井に少なくとも二酸化炭素を含む熱伝達媒体を注入し、高温岩体地盤中の成分との反応によって高温岩体地盤中の地熱貯留層の縁辺部において熱伝達媒体に含まれる二酸化炭素の一部を固定化させシール機能を発揮させて熱伝達媒体の漏洩を防止しながら、高温岩体地盤に掘削された少なくとも一本の生産井から高温岩体地盤の熱によって加熱された熱伝達媒体を回収し、回収した熱伝達媒体を利用して発電を行い、発電に利用した後の熱伝達媒体を注入井から高温岩体地盤に再度注入するようにしている。 In order to achieve this object, the geothermal power generation method according to claim 1, injects a heat transfer medium containing at least carbon dioxide into at least one injection well drilled in the high temperature rock ground, The reaction with the components fixes the part of the carbon dioxide contained in the heat transfer medium at the edge of the geothermal reservoir in the high-temperature rock ground and exhibits a sealing function to prevent leakage of the heat transfer medium, After collecting the heat transfer medium heated by the heat of the high temperature rock ground from at least one production well excavated in the rock ground, generating electricity using the recovered heat transfer medium, The heat transfer medium is reinjected from the injection well into the hot rock ground.

また、請求項2記載の地熱発電システムは、高温岩体地盤に掘削された少なくとも一本の注入井及び少なくとも一本の生産井と、少なくとも二酸化炭素を含み高温岩体地盤中の成分との反応によって高温岩体地盤中の地熱貯留層の縁辺部において二酸化炭素の一部を固定化させて自身の漏洩を防止するシール機能を発揮すると共に高温岩体地盤の熱エネルギーを伝達する熱伝達媒体と、注入井に熱伝達媒体を注入する注入装置と、高温岩体地盤の熱によって加熱され生産井から回収される熱伝達媒体を利用して発電を行う発電機とを有し、発電に利用された後の熱伝達媒体を注入井から高温岩体地盤に再度注入するようにしている。 The geothermal power generation system according to claim 2 is a reaction between at least one injection well and at least one production well excavated in the high temperature rock ground and components in the high temperature rock ground including at least carbon dioxide. the heat transfer medium for transferring heat energy of the immobilized allowed to Rutotomoni HDR ground to exert a sealing function of preventing its leakage a part of the carbon dioxide in the edge portion of the geothermal reservoir hot Dry rock in the ground by And an injection device for injecting a heat transfer medium into the injection well, and a generator for generating electricity using the heat transfer medium heated by the heat of the hot rock ground and recovered from the production well, and used for power generation After that, the heat transfer medium is injected again from the injection well into the hot rock ground.

したがって、この地熱発電方法並びにシステムによると、発電機と地下の高温岩体地盤との間で二酸化炭素を含む媒体を熱伝達媒体とする循環系を形成することにより、地下の高温岩体地盤の熱が取り出されると共に二酸化炭素の一部が地層中に固定化される。   Therefore, according to this geothermal power generation method and system, by forming a circulation system using a medium containing carbon dioxide as a heat transfer medium between the generator and the underground high-temperature rock body ground, As heat is removed, some of the carbon dioxide is immobilized in the formation.

また、地層中に注入された二酸化炭素の一部が固定化することにより、高温岩体地盤中の地熱貯留層の縁辺部に固化層が形成される。   Moreover, when a part of carbon dioxide injected into the formation is fixed, a solidified layer is formed at the edge of the geothermal reservoir in the high temperature rock ground.

なお、本発明において、注入井とは、高温岩体発電において熱伝達媒体を地下の高温岩体地盤に到達させるための坑井をいう。また、生産井とは、高温岩体発電において地下の高温岩体地盤の熱によって加熱された熱伝熱媒体を地上に回収するための坑井をいう。   In addition, in this invention, an injection well means the well for making a heat transfer medium reach | attain an underground high temperature rock body ground in high temperature rock power generation. The production well is a well for recovering the heat transfer medium heated by the heat of the underground hot rock ground in the hot rock power generation to the ground.

本発明の地熱発電方法並びにシステムによれば、地下の高温岩体地盤の熱を取り出すと共に二酸化炭素の一部を地層中に固定化するようにしているので、新たに二酸化炭素を発生させることなく、さらに言えば二酸化炭素を地中貯留させながらエネルギーを生み出すことが可能であり、自然環境負荷軽減とエネルギー創出とを両立させることができる。   According to the geothermal power generation method and system of the present invention, the heat of the underground high-temperature rock body is taken out and a part of carbon dioxide is fixed in the formation, so that carbon dioxide is not newly generated. Furthermore, it is possible to generate energy while storing carbon dioxide underground, and it is possible to achieve both reduction of natural environmental load and energy generation.

しかも、地層中に注入された二酸化炭素の一部が固定化することにより、高温岩体地盤中の地熱貯留層の縁辺部に固化層が形成され、高温岩体地盤の熱エネルギーを取り出すために高温岩体地盤に注入する熱伝達媒体の漏洩を防止して熱伝達媒体の回収率を高めることが可能であるので、発電効率を向上させることができる。   In addition, a part of the carbon dioxide injected into the formation is fixed to form a solidified layer at the edge of the geothermal reservoir in the high-temperature rock ground to extract the thermal energy of the high-temperature rock ground Since it is possible to increase the recovery rate of the heat transfer medium by preventing leakage of the heat transfer medium injected into the high temperature rock ground, the power generation efficiency can be improved.

以下、本発明の構成を図面に示す最良の形態に基づいて詳細に説明する。   Hereinafter, the configuration of the present invention will be described in detail based on the best mode shown in the drawings.

図1に、本発明の地熱発電方法並びにシステムの実施形態を示す。この地熱発電方法は、高温岩体地盤に掘削された注入井1aに二酸化炭素を含む熱伝達媒体を注入し、高温岩体地盤中の成分との反応によって高温岩体地盤中の地熱貯留層14の縁辺部において二酸化炭素の一部を固定化させて熱伝達媒体の漏洩を防止しながら、高温岩体地盤に掘削された生産井1bから高温岩体地盤の熱によって加熱された熱伝達媒体を回収し、回収した熱伝達媒体を利用して発電を行い、発電に利用した後の熱伝達媒体を注入井1aから高温岩体地盤に再度注入するようにしている。   FIG. 1 shows an embodiment of a geothermal power generation method and system according to the present invention. In this geothermal power generation method, a heat transfer medium containing carbon dioxide is injected into an injection well 1a excavated in a high temperature rock ground, and a geothermal reservoir 14 in the high temperature rock ground is formed by reaction with components in the high temperature rock ground. The heat transfer medium heated by the heat of the high temperature rock ground from the production well 1b excavated in the high temperature rock ground is fixed while fixing a part of carbon dioxide at the edge of the water to prevent leakage of the heat transfer medium. The collected heat transfer medium is used for power generation, and the heat transfer medium used for power generation is injected again from the injection well 1a into the high-temperature rock ground.

上記地熱発電方法は、本発明の地熱発電システムとして実現される。本実施形態の地熱発電システムは、高温岩体地盤に掘削された注入井1a及び生産井1bと、注入井1aに熱伝達媒体としての水を注入する高圧ポンプ3と、注入井1aに熱伝達媒体としての二酸化炭素を含むガス10を注入するガスコンプレッサー4と、高温岩体地盤の熱によって加熱され生産井1bから回収される熱伝達媒体を熱水と蒸気とに分離するセパレータ5と、セパレータ5によって分離された蒸気を用いて発電を行う発電機6とを有し、セパレータ5によって分離された熱水を注入井1aから高温岩体地盤に再度注入するものである。   The geothermal power generation method is realized as a geothermal power generation system of the present invention. The geothermal power generation system of this embodiment includes an injection well 1a and a production well 1b excavated in a high-temperature rock ground, a high-pressure pump 3 for injecting water as a heat transfer medium into the injection well 1a, and heat transfer to the injection well 1a. A gas compressor 4 for injecting a gas 10 containing carbon dioxide as a medium; a separator 5 for separating a heat transfer medium recovered from the production well 1b heated by the heat of the high-temperature rock ground into hot water and steam; And a generator 6 that generates electricity using the steam separated by 5 and again injects hot water separated by the separator 5 from the injection well 1a into the high-temperature rock ground.

(1)坑井の掘削
本発明では、高温岩体発電を行う地域の地層2の地熱貯留層14に複数の坑井1a,1bを掘削する。ここで、本発明は二酸化炭素を利用して高温岩体発電を行うものであるので、石炭火力発電所やセメント工場等の二酸化炭素の大規模排出源の近傍に坑井を掘削し、二酸化炭素の大規模排出源から排出される二酸化炭素を用いることが好ましい。
(1) Excavation of a well In the present invention, a plurality of wells 1a and 1b are excavated in the geothermal reservoir 14 of the formation 2 in a region where high-temperature rock power generation is performed. Here, since the present invention performs high-temperature rock power generation using carbon dioxide, a well is drilled in the vicinity of a large-scale emission source of carbon dioxide such as a coal-fired power plant or a cement factory. It is preferable to use carbon dioxide emitted from a large-scale emission source.

本実施形態では、地層2に掘削される複数の坑井1a,1bのうち、坑井1aを注入井とし、坑井1bを生産井とする。なお、注入井も生産井も複数設けても良い。   In this embodiment, out of the plurality of wells 1a and 1b excavated in the formation 2, the well 1a is used as an injection well and the well 1b is used as a production well. A plurality of injection wells and production wells may be provided.

坑井1a,1bの掘削深度は、発電機6を機能させるために必要とされる温度が坑底の熱によって確保される深度であれば良く、具体的には、坑底の温度が概ね150℃以上となる深度であれば良い。   The excavation depth of the wells 1a and 1b may be any depth as long as the temperature required for the functioning of the generator 6 is secured by the heat of the bottom of the well. It is sufficient if the depth is higher than ℃.

なお、日本は火山列島であり、諸外国に比べて地下浅部で地熱発電が可能な高温状態となる地域が多い。地熱発電可能な地下の温度を150℃とし、現実的な坑井掘削可能な深度を3000mとすると、地温勾配50℃/km以上の地域で地熱発電が可能である。   Japan is a volcanic archipelago, and there are many areas where the geothermal power generation is possible in the shallower underground than in other countries. If the underground temperature at which geothermal power generation is possible is 150 ° C. and the depth at which a realistic well can be drilled is 3000 m, geothermal power generation is possible in an area having a geothermal gradient of 50 ° C./km or more.

また、坑底付近の地層は熱伝達媒体の地中貯留に適した地層であることが望ましく、例えば、間隙率が数%以上で浸透率が数十ミリダルシー以上であることが望ましい。   The formation near the bottom of the well is preferably a formation suitable for underground storage of the heat transfer medium. For example, the porosity is preferably several percent or more and the permeability is several tens of milliseas or more.

なお、帯水層地中貯留は間隙率及び浸透率の高い砂岩を一般に対象としているが、地層の間隙率や浸透率が小さい場合には坑井に高い水圧をかけることによって地層内に亀裂を発生させ、即ち水圧破砕を行って間隙率や浸透率を向上させ導通状態を改善して坑底付近で坑井間の導通を確保するようにしても良い。したがって、本発明は、砂岩地層に限らず、火山岩や花崗岩等の分布地域でも適用可能である。   In general, aquifer geological storage is intended for sandstone with high porosity and permeability, but when the porosity and permeability of the formation are small, cracks are formed in the formation by applying high water pressure to the wells. It may be generated, i.e., hydraulically crushed to improve the porosity and permeability and improve the conduction state to ensure conduction between the wells near the bottom of the well. Therefore, the present invention is applicable not only to sandstone formations but also to distribution areas such as volcanic rocks and granite.

また、地上の坑口から坑底付近までの坑井1a,1bの周囲は、熱伝達媒体の漏洩を防ぐために例えばセメンチングを施したケーシング26で覆われる。   Moreover, the surroundings of the wells 1a and 1b from the ground well opening to the vicinity of the well bottom are covered with, for example, a cemented casing 26 in order to prevent leakage of the heat transfer medium.

(2)二酸化炭素を含む熱伝達媒体の注入井への注入
本実施形態では、熱伝達媒体として、水11と、二酸化炭素排出源8から排出される二酸化炭素を含むガス10とを用いる。
(2) Injection of heat transfer medium containing carbon dioxide into injection well In this embodiment, water 11 and gas 10 containing carbon dioxide discharged from carbon dioxide discharge source 8 are used as the heat transfer medium.

また、本実施形態では、注入井1aに熱伝達媒体としての水11を注入する注入装置として高圧ポンプ3を用いる。そして、貯水槽7に溜められた水11を、配管を介して高圧ポンプ3に送り、高圧ポンプ3によって注入井1a内に圧入する。   In this embodiment, the high pressure pump 3 is used as an injection device for injecting water 11 as a heat transfer medium into the injection well 1a. Then, the water 11 stored in the water tank 7 is sent to the high-pressure pump 3 through the pipe, and is press-fitted into the injection well 1a by the high-pressure pump 3.

さらに、注入井1aに熱伝達媒体としてのガス10を注入する注入装置としてガスコンプレッサー4を用いる。そして、二酸化炭素排出源8から排出されるガス10を、配管を介してガスコンプレッサー4に送り、ガスコンプレッサー4によって圧縮して注入井1a内に圧入する。なお、貯水槽7と高圧ポンプ3との間の配管に、これらの間における水11の流通と遮断とを制御するためのバルブ20が設けられている。   Further, a gas compressor 4 is used as an injection device for injecting a gas 10 as a heat transfer medium into the injection well 1a. And the gas 10 discharged | emitted from the carbon dioxide discharge source 8 is sent to the gas compressor 4 via piping, is compressed by the gas compressor 4, and press-fits into the injection well 1a. In addition, the valve 20 for controlling distribution | circulation and interruption | blocking of the water 11 between these in the piping between the water storage tank 7 and the high pressure pump 3 is provided.

本実施形態の熱伝達媒体としてのガス10は少なくとも二酸化炭素を含むものであれば良く、二酸化炭素以外の成分を含むガスであっても構わない。好ましくは二酸化炭素濃度が高いガスである。なお、本発明における二酸化炭素排出源8としては石炭火力発電所やセメント工場が考えられ、石炭火力発電所の場合は排出されるガス10の主成分は窒素(N)と二酸化炭素であり、二酸化炭素の濃度は概ね15%程度である。 The gas 10 as the heat transfer medium of the present embodiment is not limited as long as it contains at least carbon dioxide, and may be a gas containing components other than carbon dioxide. A gas having a high carbon dioxide concentration is preferred. In addition, as the carbon dioxide emission source 8 in the present invention, a coal-fired power plant and a cement factory are conceivable. In the case of a coal-fired power plant, the main components of the discharged gas 10 are nitrogen (N 2 ) and carbon dioxide, The concentration of carbon dioxide is approximately 15%.

そして、本実施形態のように二酸化炭素排出源8から排出されるガス10をそのまま用いる場合には、ガス10から二酸化炭素を分離・回収する必要がないので、地熱発電システムの構成が簡単になると共にコストを抑えることができる。   And when using the gas 10 discharged | emitted from the carbon dioxide emission source 8 as it is like this embodiment, since it is not necessary to isolate | separate and collect | recover carbon dioxide from the gas 10, the structure of a geothermal power generation system becomes simple. At the same time, the cost can be reduced.

本実施形態では、熱伝達媒体として水11とガス10とを注入井1aに注入するために、高圧ポンプ3からの水11の排出配管とガスコンプレッサー4からのガス10の排出配管とが合流して注入井1aへの流入配管が設けられる。そして、高圧ポンプ3からの排出配管に高圧ポンプ3と配管の合流地点との間における水11の流通と遮断とを制御するためのバルブ21が設けられると共に、ガスコンプレッサー4からの排出配管にガスコンプレッサー4と配管の合流地点との間におけるガス10の流通と遮断とを制御するためのバルブ22が設けられる。さらに、配管の合流地点と注入井1aの坑口との間の配管にこれらの間における水11及びガス10の流通と遮断とを制御するためのバルブ23が設けられる。   In this embodiment, in order to inject water 11 and gas 10 into the injection well 1a as a heat transfer medium, the discharge pipe of water 11 from the high-pressure pump 3 and the discharge pipe of gas 10 from the gas compressor 4 merge. Inflow piping to the injection well 1a is provided. The discharge pipe from the high-pressure pump 3 is provided with a valve 21 for controlling the flow and blocking of the water 11 between the high-pressure pump 3 and the junction of the pipe, and the discharge pipe from the gas compressor 4 has a gas A valve 22 is provided for controlling the flow and blocking of the gas 10 between the compressor 4 and the junction of the pipes. Furthermore, the valve 23 for controlling distribution | circulation and interruption | blocking of the water 11 and the gas 10 between these is provided in the piping between the confluence | merging point of piping, and the wellhead of the injection well 1a.

そして、ガス10と水11とを注入井1aに注入する場合には、ガス10と水11とを交互に注入する。具体的には、高圧ポンプ3からの排出配管のバルブ21を閉じると共に、ガスコンプレッサー4からの排出配管のバルブ22並びに注入井1aへの注入配管のバルブ23を開け、二酸化炭素排出源8から排出されるガス10をガスコンプレッサー4によって圧縮して注入井1aに圧入する(図1において符号13で示す流体の流れ)。   When the gas 10 and the water 11 are injected into the injection well 1a, the gas 10 and the water 11 are alternately injected. Specifically, the valve 21 of the discharge pipe from the high-pressure pump 3 is closed, the valve 22 of the discharge pipe from the gas compressor 4 and the valve 23 of the injection pipe to the injection well 1a are opened, and the carbon dioxide discharge source 8 is discharged. The gas 10 to be compressed is compressed by the gas compressor 4 and pressed into the injection well 1a (fluid flow indicated by reference numeral 13 in FIG. 1).

続いて、注入井1aへの注入配管のバルブ23を閉じ、ガスコンプレッサー4からの排出配管のバルブ22を閉じると共に、貯水槽7からの排出配管のバルブ20並びに高圧ポンプ3からの排出配管のバルブ21を開け、次いで注入井1aへの注入配管のバルブ23を開けることにより、貯水槽7内の水11を高圧ポンプ3によって注入井1a内に圧入する(図1において符号13で示す流体の流れ)。これにより、注入井1aに先に注入されたガス10が地層2中の高温岩体地盤の地熱貯留層14に押し込められる。   Subsequently, the valve 23 of the injection pipe to the injection well 1 a is closed, the valve 22 of the discharge pipe from the gas compressor 4 is closed, the valve 20 of the discharge pipe from the water tank 7 and the valve of the discharge pipe from the high-pressure pump 3. 21 and then the valve 23 of the injection pipe to the injection well 1a is opened, so that the water 11 in the water tank 7 is pressed into the injection well 1a by the high-pressure pump 3 (the flow of the fluid indicated by reference numeral 13 in FIG. 1). ). As a result, the gas 10 previously injected into the injection well 1 a is pushed into the geothermal reservoir 14 of the high-temperature rock ground in the formation 2.

以降、同様にしてガス10と水11とを交互に注入井1aに注入する。なお、ガス10と水11との圧入の切り換えの間隔は、地熱貯留層14の想定される二酸化炭素貯留可能量や熱伝達媒体の回収率やガス/水比に対する水中の二酸化炭素飽和度などに基づいて適宜設定される。具体的には例えば、ガス/水比を1とした場合には1時間で30トンの水11の注入と1時間で30トンのガス10の注入とを切り換えて行うことなどが考えられる。なお、二酸化炭素貯留可能量は主に地熱貯留層14の体積及び空隙率から決まる。   Thereafter, similarly, the gas 10 and the water 11 are alternately injected into the injection well 1a. Note that the interval of switching the press-fitting between the gas 10 and the water 11 depends on the assumed carbon dioxide storable amount of the geothermal reservoir 14, the recovery rate of the heat transfer medium, the carbon dioxide saturation in water with respect to the gas / water ratio, and the like. It is set appropriately based on this. Specifically, for example, when the gas / water ratio is 1, it may be possible to switch between injection of 30 tons of water 11 in one hour and injection of 30 tons of gas 10 in one hour. The carbon dioxide storable amount is mainly determined from the volume and porosity of the geothermal reservoir 14.

なお、技術的に可能であれば、熱伝達媒体としての二酸化炭素を含むガス10と水11とを同時に注入するようにしても良い。   If technically possible, the gas 10 containing carbon dioxide as the heat transfer medium and the water 11 may be injected at the same time.

(3)地層中における二酸化炭素の固定化
注入井1aを通って地下の高温岩体地盤に注入されたガス10に含まれる二酸化炭素の一部は高温岩体地盤の割れ目を流動しながら地熱貯留層14を形成する。なお、ガス10に含まれる二酸化炭素は、地熱貯留層14内では超臨界状態若しくは水に溶けた状態(HCO やHCOやCO 2−)で存在する。
(3) Immobilization of carbon dioxide in the formation Geothermal storage while some of the carbon dioxide contained in the gas 10 injected into the underground hot rock ground through the injection well 1a flows through the cracks in the hot rock ground. Layer 14 is formed. Carbon dioxide contained in the gas 10 exists in the geothermal reservoir 14 in a supercritical state or a state dissolved in water (HCO 3 , H 2 CO 3 , CO 3 2− ).

また、二酸化炭素の他の一部は地層2中に元から存在するカルシウム(Ca)と化学式1,2,3に示す反応をすることによって炭酸塩(具体的には方解石)や粘土鉱物(具体的にはカオリナイト)として固定化される。なお、化学式3において、CaAlSiは斜長石であり、CaCOは方解石であり、AlSi(OH)はカオリナイトである。 In addition, carbon dioxide (specifically calcite) and clay minerals (specifically, other carbon dioxide reacts with calcium (Ca) originally present in the formation 2 by the chemical formulas 1, 2, and 3). In particular, it is fixed as kaolinite). In Chemical Formula 3, CaAl 2 Si 2 O 8 is plagioclase, CaCO 3 is calcite, and Al 2 Si 2 O 5 (OH) 4 is kaolinite.

(化1)CO+HO→HCO
(化2)HCO→H+HCO
(化3)CaAlSi+H+HCO +H
→CaCO+AlSi(OH)
(Chemical formula 1) CO 2 + H 2 O → H 2 CO 3
(Chemical Formula 2) H 2 CO 3 → H + + HCO 3
(Chemical Formula 3) CaAl 2 Si 2 O 8 + H + + HCO 3 + H 2 O
→ CaCO 3 + Al 2 Si 2 O 5 (OH) 4

なお、化学式3の左辺即ち斜長石が溶ける反応は、坑井(本実施形態では注入井1a,生産井1b)近傍で生じ易い。また、化学式3の右辺即ち炭酸塩や粘土鉱物として固定化する反応は、二酸化炭素を含んだ流体のカルシウム濃度の増加及び流速の低下のために坑井から離れるに従って即ち地熱貯留層14の縁辺部で進行し易い。   In addition, the reaction on which the left side of Chemical Formula 3, that is plagioclase, dissolves easily occurs in the vicinity of the well (injection well 1a, production well 1b in this embodiment). In addition, the reaction to be fixed as the right side of Formula 3, that is, carbonate or clay mineral, increases as the calcium concentration of the fluid containing carbon dioxide increases and the flow velocity decreases, that is, as the distance from the well is increased, that is, the edge of the geothermal reservoir 14 It is easy to proceed with.

二酸化炭素の一部は地熱貯留層14の上部で固定化してキャップロック15として機能する。すなわち、キャップロック15として二酸化炭素の地上への漏洩を防ぐ自己シール機能を発揮する。   A part of the carbon dioxide is fixed at the upper part of the geothermal reservoir 14 and functions as a cap lock 15. That is, the cap lock 15 exhibits a self-seal function that prevents leakage of carbon dioxide to the ground.

また、二酸化炭素の一部は地熱貯留層14の側方縁辺部で固定化して固定化層16を形成する。   A part of carbon dioxide is fixed at the side edge of the geothermal reservoir 14 to form the fixed layer 16.

このように、注入井1aから熱伝達媒体として注入される二酸化炭素の一部は地熱貯留層14の縁辺部で固定化し高温岩体地盤の割れ目を塞いで地熱貯留層14を密封する機能を発揮するので、注入井1aから注入される熱伝達媒体の地熱貯留層14からの漏洩を防いで通常の高温岩体発電よりも回収率を高めることができる。これにより、二酸化炭素を地層中に固定化・貯留させることができると共に発電効率を高めることができる。   In this way, a part of carbon dioxide injected from the injection well 1a as a heat transfer medium is fixed at the edge of the geothermal reservoir 14 and functions to seal the geothermal reservoir 14 by closing the cracks in the hot rock ground. As a result, the heat transfer medium injected from the injection well 1a can be prevented from leaking from the geothermal reservoir 14, and the recovery rate can be increased as compared with ordinary high-temperature rock power generation. Thereby, carbon dioxide can be fixed and stored in the formation, and the power generation efficiency can be increased.

(4)地層中における水の高温化
注入井1aから熱伝達媒体として注入される水11は、地熱貯留層14の高温岩体地盤の割れ目を通る間に岩体の熱によって加熱されて熱水になる。この熱水は、貯留や固定化に寄与しなかった二酸化炭素及びガス10に含まれる二酸化炭素以外の成分例えば窒素と共に生産井1bから回収される。
(4) High temperature of water in the formation Water 11 injected as a heat transfer medium from the injection well 1a is heated by the heat of the rock body while passing through the cracks of the high temperature rock ground of the geothermal reservoir 14, and is heated. become. This hot water is recovered from the production well 1b together with carbon dioxide that has not contributed to storage and immobilization and components other than carbon dioxide contained in the gas 10, such as nitrogen.

なお、帯水層地中貯留では二酸化炭素を地下に封じ込めて地上に漏れないようにすることが重要とされる。この点について、本発明では、地熱貯留層14の周囲にキャップロック15及び固定化層16が形成されるので、二酸化炭素は生産井1bを通って地上に回収されると考えられる。すなわち、地上に到達する二酸化炭素の管理を容易に行うことができるので、地上への二酸化炭素の漏洩即ち大気中への二酸化炭素の放出を防止して自然環境への負荷を抑制することができると共に帯水層地中貯留において想定される二酸化炭素漏洩対策のためのコストの低減を図ることができる。   In underground aquifer storage, it is important to contain carbon dioxide underground so that it does not leak to the ground. In this regard, in the present invention, since the cap lock 15 and the fixed layer 16 are formed around the geothermal reservoir 14, it is considered that carbon dioxide is recovered to the ground through the production well 1b. That is, since it is possible to easily manage the carbon dioxide that reaches the ground, it is possible to prevent leakage of carbon dioxide to the ground, that is, release of carbon dioxide into the atmosphere, thereby suppressing the load on the natural environment. At the same time, it is possible to reduce the cost for the carbon dioxide leakage countermeasure assumed in the underground aquifer storage.

(5)発電
そして、生産井1bから回収される熱伝達媒体である熱水、超臨界状態若しくは水に溶けた状態の二酸化炭素及び蒸気を利用して発電を行う。本実施形態では、セパレータ方式を用いて発電を行う。
(5) Electricity generation Electricity is generated using hot water, which is a heat transfer medium recovered from the production well 1b, carbon dioxide and steam in a supercritical state or a state dissolved in water. In the present embodiment, power generation is performed using a separator system.

本実施形態のように二酸化炭素排出源8から排出されるガス10を熱伝達媒体として高温岩体地盤に注入する場合には、窒素を主とする大量のガスが熱水と共に生産井1bから回収される(図1において符号17で示す流体)。   When the gas 10 discharged from the carbon dioxide emission source 8 is injected as a heat transfer medium into the high temperature rock ground as in the present embodiment, a large amount of nitrogen mainly is recovered from the production well 1b together with hot water. (Fluid indicated by reference numeral 17 in FIG. 1).

生産井1bから回収される流体17は、セパレータ5によって、窒素及び水蒸気を主成分とする蒸気18と、二酸化炭素を一部含む熱水19とに分離される。そして、分離した蒸気18を蒸気タービンを有する発電機6に送って発電を行う。なお、流体を気体と液体とに分離するセパレータ自体は周知の技術であるのでここでは詳細については省略する。本実施形態では、遠心式セパレータが用いられる。また、図1において符号24は、生産井1bの地上の坑口とセパレータ5との間の配管に設けられ、生産井1bを介して回収される熱伝達媒体17のセパレータ5への流入を制御するためのバルブをあらわす。   The fluid 17 recovered from the production well 1b is separated by the separator 5 into steam 18 mainly composed of nitrogen and water vapor and hot water 19 partially containing carbon dioxide. Then, the separated steam 18 is sent to the generator 6 having a steam turbine to generate power. In addition, since the separator itself which isolate | separates a fluid into gas and a liquid is a well-known technique, it abbreviate | omits for details here. In this embodiment, a centrifugal separator is used. Moreover, in FIG. 1, the code | symbol 24 is provided in piping between the ground well of the production well 1b, and the separator 5, and controls the inflow to the separator 5 of the heat transfer medium 17 collect | recovered via the production well 1b. It represents the valve for.

なお、二酸化炭素の一部は地熱貯留層14の縁辺部で固定化するので、注入井1aから地層2に注入されるガス10と比べて蒸気18の二酸化炭素濃度は低下している。そのため、排ガスに係る二酸化炭素濃度の環境基準値を超えていない場合には発電機6において発電に用いられた後の蒸気18はそのまま大気中に放出されるようにしても構わない。また、二酸化炭素濃度が環境基準値は超えていないものの大気中にそのまま放出することが好ましくない場合や環境基準値を超えている場合には、発電に用いられた後の蒸気18はガスコンプレッサー4に送られて注入井1aから地層2に再度注入されるようにしても良い。   In addition, since a part of carbon dioxide is fixed at the edge of the geothermal reservoir 14, the carbon dioxide concentration of the steam 18 is lower than the gas 10 injected from the injection well 1a into the formation 2. Therefore, when the environmental standard value of the carbon dioxide concentration related to the exhaust gas is not exceeded, the steam 18 after being used for power generation in the generator 6 may be directly released into the atmosphere. In addition, when the carbon dioxide concentration does not exceed the environmental standard value but it is not preferable to release it into the atmosphere as it is or when it exceeds the environmental standard value, the steam 18 used for power generation is converted into the gas compressor 4. May be sent to the formation 2 again from the injection well 1a.

一方、セパレータ5によって分離された熱水19は高圧ポンプ3に送られて注入井1aから地層2の高温岩体地盤に再度注入される。なお、図1において符号25は、セパレータ5と高圧ポンプ3との間の配管に設けられ、セパレータ5で分離された熱水19の高圧ポンプ3への流入を制御するためのバルブをあらわす。   On the other hand, the hot water 19 separated by the separator 5 is sent to the high-pressure pump 3 and is again injected from the injection well 1 a into the high-temperature rock body ground of the formation 2. In FIG. 1, reference numeral 25 denotes a valve that is provided in a pipe between the separator 5 and the high-pressure pump 3 and controls the inflow of hot water 19 separated by the separator 5 into the high-pressure pump 3.

そして、生産井1bから回収された熱水19が注入井1aから熱伝達媒体として注入される水として用いられる場合には、貯水槽7からの排出配管のバルブ20が閉じられて貯水槽7からの水11の供給が抑制される。すなわち、地熱発電システムの稼働初期においては貯水槽7から供給される水11のみが高圧ポンプ3によって注入井1aに注入され、セパレータ5からの熱水19の供給が開始された後はセパレータ5から供給される熱水19のみでは熱伝達媒体として注入する水の量が充分ではない場合に貯水槽7から水11が供給される。   When the hot water 19 recovered from the production well 1b is used as water injected as a heat transfer medium from the injection well 1a, the valve 20 of the discharge pipe from the water tank 7 is closed and the water tank 7 is closed. The supply of water 11 is suppressed. That is, in the initial operation of the geothermal power generation system, only the water 11 supplied from the water tank 7 is injected into the injection well 1a by the high-pressure pump 3, and after the supply of the hot water 19 from the separator 5 is started, from the separator 5 Water 11 is supplied from the water storage tank 7 when the amount of water to be injected as a heat transfer medium is not sufficient with only the supplied hot water 19.

以上述べた地熱発電システムによれば、注入井1aと生産井1bとを介して地上と地下の地熱貯留層14との間で水及び二酸化炭素を熱伝達媒体とする循環系が形成され、地下の高温岩体地盤の熱が地上に取り出される。さらに、熱伝達媒体に含まれる二酸化炭素のうちの一部が地熱貯留層14の周囲に固定化される。またさらに、地熱貯留層14の周囲に固定化した二酸化炭素がバリアとなって地熱貯留層14からの熱伝達媒体の漏洩が防止され熱伝達媒体の回収率が高まる。これにより、自然環境改善効果が発揮されると共に発電効率が高まる。   According to the geothermal power generation system described above, a circulation system using water and carbon dioxide as a heat transfer medium is formed between the ground and underground geothermal reservoirs 14 through the injection well 1a and the production well 1b. The heat from the hot rock ground is extracted to the ground. Furthermore, a part of the carbon dioxide contained in the heat transfer medium is fixed around the geothermal reservoir 14. Furthermore, carbon dioxide fixed around the geothermal reservoir 14 serves as a barrier to prevent the heat transfer medium from leaking from the geothermal reservoir 14 and increase the heat transfer medium recovery rate. Thereby, the natural environment improvement effect is exhibited and the power generation efficiency is increased.

なお、上述の形態は本発明の好適な形態の一例ではあるがこれに限定されるものではなく、本発明の要旨を逸脱しない範囲において種々変形実施可能である。例えば、本実施形態では、熱伝達媒体に含ませる二酸化炭素として石炭火力発電所等の二酸化炭素排出源8から排出されるガス10に含まれる二酸化炭素を用いる場合を前提とした例について説明したが、これに限られるものではなく、従来型の地熱発電所から放出される蒸気に含まれる二酸化炭素を用いるようにしても良い。従来型の地熱発電所では、地下に元々存在する熱水や蒸気を用いて発電を行い、発電後の熱水は冷却後に注入井に注入され、蒸気は大気中に放出されている。この蒸気には高濃度の二酸化炭素が一般に含まれているので、この蒸気を回収して注入井に注入するようにすれば、本実施形態の地熱発電システムと同様の作用並びに効果を発揮する発電システムを構成することができる。そして、既存の地熱発電所においては複数の坑井が既に採掘されているために本発明を容易に実施することができるという利点がある。   In addition, although the above-mentioned form is an example of the suitable form of this invention, it is not limited to this, A various deformation | transformation implementation is possible in the range which does not deviate from the summary of this invention. For example, in the present embodiment, an example has been described on the assumption that carbon dioxide contained in the gas 10 discharged from the carbon dioxide emission source 8 such as a coal-fired power plant is used as carbon dioxide contained in the heat transfer medium. However, the present invention is not limited to this, and carbon dioxide contained in steam discharged from a conventional geothermal power plant may be used. In a conventional geothermal power plant, electric power is generated using hot water or steam originally present in the basement, hot water after power generation is injected into an injection well after cooling, and steam is released into the atmosphere. Since this steam generally contains high-concentration carbon dioxide, if this steam is recovered and injected into the injection well, power generation that exhibits the same operations and effects as the geothermal power generation system of this embodiment is achieved. The system can be configured. And in the existing geothermal power plant, since several wells are already mined, there exists an advantage that this invention can be implemented easily.

また、本実施形態では、熱伝達媒体として水と二酸化炭素を含むガスとを用いる例について説明したが、これに限られるものではなく、分離・回収した二酸化炭素を用いるようにしても良い。具体的には、二酸化炭素排出源8から排出されたガス10を例えばアミン吸収法等の二酸化炭素の分離・回収技術を用いて100%若しくはほぼ100%の二酸化炭素(以下、100%二酸化炭素と呼ぶ)にしてから熱伝達媒体として注入井1aに注入するようにしても良い。この場合には、液体若しくは超臨界状態で二酸化炭素を注入井1aに注入する。また、ガスコンプレッサー4の代わりに高圧ポンプを用いる。   In this embodiment, an example in which water and a gas containing carbon dioxide are used as a heat transfer medium has been described. However, the present invention is not limited to this, and separated and recovered carbon dioxide may be used. Specifically, the gas 10 discharged from the carbon dioxide emission source 8 is made into 100% or almost 100% carbon dioxide (hereinafter referred to as 100% carbon dioxide) using a carbon dioxide separation / recovery technique such as an amine absorption method. May be injected into the injection well 1a as a heat transfer medium. In this case, carbon dioxide is injected into the injection well 1a in a liquid or supercritical state. A high pressure pump is used instead of the gas compressor 4.

そして、熱伝達媒体として100%二酸化炭素を用いる場合で、100%二酸化炭素だけで発電機6を機能させるために必要とされる熱伝達媒体が確保できる場合には、熱伝達媒体として水を注入しなくても良い。言い換えれば、熱伝達媒体として100%二酸化炭素を用いる場合には、二酸化炭素の供給不足即ち熱伝達媒体の供給不足による発電効率の低下を防止するために補助的に水を使うようにしても良い。なお、熱伝達媒体として100%二酸化炭素を用いる場合で必要な場合に水を注入する場合も、バルブ21及び22の操作によって二酸化炭素と水とを交互に若しくは同時に注入する。   If 100% carbon dioxide is used as the heat transfer medium and the heat transfer medium required for the functioning of the generator 6 can be secured with only 100% carbon dioxide, water is injected as the heat transfer medium. You don't have to. In other words, when 100% carbon dioxide is used as the heat transfer medium, water may be supplementarily used to prevent a decrease in power generation efficiency due to insufficient supply of carbon dioxide, that is, insufficient supply of heat transfer medium. . Note that when 100% carbon dioxide is used as the heat transfer medium and water is injected when necessary, carbon dioxide and water are injected alternately or simultaneously by the operation of the valves 21 and 22.

また、本実施形態では、生産井1bから回収される熱水及び蒸気を用いた高温岩体発電の方式としてセパレータ方式を用いる例について説明したが、これに限られるものではなく、バイナリー方式を用いるようにしても良い。具体的には、注入井1aに100%二酸化炭素を注入する場合には、生産井1bから回収される流体17は二酸化炭素を含む熱水が主である。そこで、この場合には、セパレータ5の代わりにバイナリーシステムを用い、バイナリー方式により熱交換することによって得られる低沸点媒体である二次媒体、具体的には例えばノルマルペンタン等の蒸気を用いて発電するようにしても良い。そして、この場合には、熱交換後の熱水19は、配管を介してバイナリーシステム5から高圧ポンプ3に送られて注入井1aから高温岩体地盤に再度注入される。なお、ガスを注入する方式においてバイナリー方式を用いた場合には、地層2内での窒素ガスによる圧力の増大によって二酸化炭素の貯留可能量が小さくなること、並びに、より高圧でのポンプ使用が必要となってコストが増大することが懸念される。しかしながら、これらの問題が解決される場合にはガスを注入する方式とバイナリー方式とを組み合わせても構わない。   Moreover, although this embodiment demonstrated the example which uses a separator system as a system of the high temperature rock body power generation using the hot water and steam collect | recovered from the production well 1b, it is not restricted to this, A binary system is used. You may do it. Specifically, when 100% carbon dioxide is injected into the injection well 1a, the fluid 17 recovered from the production well 1b is mainly hot water containing carbon dioxide. Therefore, in this case, a binary system is used instead of the separator 5, and a secondary medium, which is a low boiling point medium obtained by heat exchange by a binary system, specifically, steam such as normal pentane is used for power generation. You may make it do. In this case, the hot water 19 after the heat exchange is sent from the binary system 5 to the high-pressure pump 3 through a pipe and is again injected from the injection well 1a into the high-temperature rock ground. In addition, when the binary method is used in the method of injecting the gas, the amount of carbon dioxide that can be stored becomes smaller due to the increase of the pressure due to the nitrogen gas in the formation 2, and the use of a pump at a higher pressure is necessary. There is a concern that the cost will increase. However, when these problems are solved, the gas injection method and the binary method may be combined.

本発明の地熱発電システムの実施形態の一例を示す概略構成図である。It is a schematic structure figure showing an example of an embodiment of a geothermal power generation system of the present invention.

符号の説明Explanation of symbols

1a 注入井
1b 生産井
14 地熱貯留層
1a injection well 1b production well 14 geothermal reservoir

Claims (2)

高温岩体地盤に掘削された少なくとも一本の注入井に少なくとも二酸化炭素を含む熱伝達媒体を注入し、前記高温岩体地盤中の成分との反応によって前記高温岩体地盤中の地熱貯留層の縁辺部において前記熱伝達媒体に含まれる二酸化炭素の一部を固定化させシール機能を発揮させて前記熱伝達媒体の漏洩を防止しながら、前記高温岩体地盤に掘削された少なくとも一本の生産井から前記高温岩体地盤の熱によって加熱された前記熱伝達媒体を回収し、回収した前記熱伝達媒体を利用して発電を行い、前記発電に利用した後の前記熱伝達媒体を前記注入井から前記高温岩体地盤に再度注入することを特徴とする地熱発電方法。 A heat transfer medium containing at least carbon dioxide is injected into at least one injection well drilled in the hot rock ground, and the reaction of the components in the hot rock ground causes reaction of the geothermal reservoir in the hot rock ground. At least one production excavated in the high-temperature rock ground while immobilizing a part of carbon dioxide contained in the heat transfer medium at the edge and exhibiting a sealing function to prevent leakage of the heat transfer medium The heat transfer medium heated by the heat of the high-temperature rock body ground is recovered from a well, power is generated using the recovered heat transfer medium, and the heat transfer medium after being used for the power generation is used as the injection well. The geothermal power generation method is characterized by injecting again into the high temperature rock ground. 高温岩体地盤に掘削された少なくとも一本の注入井及び少なくとも一本の生産井と、少なくとも二酸化炭素を含み前記高温岩体地盤中の成分との反応によって前記高温岩体地盤中の地熱貯留層の縁辺部において前記二酸化炭素の一部を固定化させて自身の漏洩を防止するシール機能を発揮すると共に前記高温岩体地盤の熱エネルギーを伝達する熱伝達媒体と、前記注入井に前記熱伝達媒体を注入する注入装置と、前記高温岩体地盤の熱によって加熱され前記生産井から回収される前記熱伝達媒体を利用して発電を行う発電機とを有し、前記発電に利用された後の前記熱伝達媒体を前記注入井から前記高温岩体地盤に再度注入することを特徴とする地熱発電システム。 A geothermal reservoir in the hot rock ground by reaction of at least one injection well and at least one production well drilled in the hot rock ground with components in the hot rock ground including at least carbon dioxide a heat transfer medium for transferring heat energy the rewritable exert part by immobilized sealing function for preventing its leakage the HDR ground of the carbon dioxide in the edge portion of the heat to the injection well An injection device for injecting a transmission medium, and a generator that generates power using the heat transfer medium heated by the heat of the high-temperature rock body ground and recovered from the production well, were used for the power generation A later-described heat transfer medium is again injected from the injection well into the hot rock ground.
JP2007092832A 2007-03-30 2007-03-30 Geothermal power generation method and system Active JP4972752B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007092832A JP4972752B2 (en) 2007-03-30 2007-03-30 Geothermal power generation method and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007092832A JP4972752B2 (en) 2007-03-30 2007-03-30 Geothermal power generation method and system

Publications (2)

Publication Number Publication Date
JP2008248837A JP2008248837A (en) 2008-10-16
JP4972752B2 true JP4972752B2 (en) 2012-07-11

Family

ID=39974062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007092832A Active JP4972752B2 (en) 2007-03-30 2007-03-30 Geothermal power generation method and system

Country Status (1)

Country Link
JP (1) JP4972752B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103603639A (en) * 2013-11-23 2014-02-26 中国地质大学(武汉) Stratum deep high-salinity brine exploitation and heat utilization system

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8661818B2 (en) 2009-02-23 2014-03-04 Mitsubishi Heavy Industries, Ltd. Hot dry rock generation system
CA2753393C (en) 2009-03-13 2013-09-03 Regents Of The University Of Minnesota Carbon dioxide-based geothermal energy generation systems and methods related thereto
US8991510B2 (en) 2009-03-13 2015-03-31 Regents Of The University Of Minnesota Carbon dioxide-based geothermal energy generation systems and methods related thereto
CN101949368B (en) * 2010-08-24 2012-04-25 天津大学 Medium-low temperature geothermal power generation unit with absorbing temperature-increasing system
AU2013292325A1 (en) * 2012-07-20 2015-03-05 Heat Mining Company Llc Carbon dioxide-based geothermal energy generation systems and methods related thereto
KR101239777B1 (en) * 2012-10-17 2013-03-06 한국지질자원연구원 Geothermal power generation system using heat exchange of exhaust gas and molten salt
KR101240395B1 (en) 2012-10-17 2013-03-11 한국지질자원연구원 Geothermal power generation system and method using heat exchange of working fiuid and molten salt
KR101239773B1 (en) 2012-10-17 2013-03-06 한국지질자원연구원 Geothermal power generation system and method using heat exchange of working gas and molten salt
US9869167B2 (en) 2012-11-12 2018-01-16 Terracoh Inc. Carbon dioxide-based geothermal energy generation systems and methods related thereto
JP6153774B2 (en) * 2013-06-04 2017-06-28 大成建設株式会社 Geothermal power generation method and geothermal power generation system
JP6748580B2 (en) * 2014-06-13 2020-09-02 グリーンファイア・エナジー・インコーポレイテッドGreenfire Energy Inc Geothermal loop energy production system
US10995972B2 (en) 2014-06-20 2021-05-04 Lawrence Livermore National Security, Llc Multi-fluid renewable geo-energy systems and methods
JP6596494B2 (en) * 2015-06-19 2019-10-23 ジャパン・ニュー・エナジー株式会社 Geothermal power generation system, geothermal power generation apparatus, geothermal power generation method or medium transfer pipe, geothermal power generation apparatus and geothermal power generation method using the medium transfer pipe, and method of installing a medium transfer pipe in a crushing zone
WO2019010059A1 (en) * 2017-07-05 2019-01-10 Lawrence Livermore National Security, Llc Multi-fluid renewable geo-energy systems and methods
CN109185083A (en) * 2018-10-11 2019-01-11 西安热工研究院有限公司 A kind of supercritical carbon dioxide system for geothermal production of electricity and electricity-generating method
CN109915334B (en) * 2019-04-09 2023-12-19 陕西国诚恒业能源技术有限公司 Underground geothermal circulation efficient thermal and electric triple power supply device and process method
CN113864852B (en) * 2021-10-15 2022-10-18 鸿蒙能源(山东)有限公司 Distributed absorption energy storage electromagnetic induction heating cold and hot steam triple supply system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50158734A (en) * 1974-06-17 1975-12-22
IT1194628B (en) * 1980-03-21 1988-09-22 Giunio Guido Santi CLOSED CIRCUIT SYSTEM WITH GEOTHERMAL BOILER AND CARBON DIOXIDE TURBINE
JPH04234576A (en) * 1991-01-08 1992-08-24 Toshiba Corp Hot dry rock heat extractor
JP4749800B2 (en) * 2004-08-23 2011-08-17 三菱マテリアル株式会社 Formation method of underground impermeable layer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103603639A (en) * 2013-11-23 2014-02-26 中国地质大学(武汉) Stratum deep high-salinity brine exploitation and heat utilization system
CN103603639B (en) * 2013-11-23 2016-01-20 中国地质大学(武汉) A kind of exploitation of earth formation deep height bittern water and heat utilization system

Also Published As

Publication number Publication date
JP2008248837A (en) 2008-10-16

Similar Documents

Publication Publication Date Title
JP4972752B2 (en) Geothermal power generation method and system
US11598186B2 (en) Enhanced carbon dioxide-based geothermal energy generation systems and methods
US6668554B1 (en) Geothermal energy production with supercritical fluids
Brown A hot dry rock geothermal energy concept utilizing supercritical CO2 instead of water
US20110100002A1 (en) Process to obtain thermal and kinetic energy from a geothermal heat source using supercritical co2
CA2753393C (en) Carbon dioxide-based geothermal energy generation systems and methods related thereto
US20080112760A1 (en) Method of storage of sequestered greenhouse gasses in deep underground reservoirs
US20240167364A1 (en) System and method for permanent storage of carbon dioxide in shale reservoirs
CN105625998A (en) Reverse production method and production equipment for seafloor natural gas hydrate stable layer
US20160298425A1 (en) System and Method for Permanent Storage of Carbon Dioxide in Shale Reservoirs
WO2023287792A1 (en) Systems and methods for carbon dioxide sequestration injection
Koide et al. Subsurface CO2 disposal with enhanced gas recovery and biogeochemical carbon recycling
WO2016057765A1 (en) Thermally assisted oil production wells
JP2023024948A (en) System and method for permanently isolating carbon dioxide using renewable energy source
WO2020104327A1 (en) Geothermal energy system
US20230392485A1 (en) Extraction and integration of waste heat from enhanced geologic hydrogen production
WO2017025820A1 (en) System and method for permanent storage of carbon dioxide in shale reservoirs
CN116428032A (en) CCS-ASR (gas-air-compression energy-storage carbon fixation) method for ultra-deep underground space in ultra-large soft soil city
Joseph et al. Carbon sequestration: Capture, storage & utilization of CO2 emissions from anthropogenic sources
US20220056893A1 (en) Power generation from supercritical carbon dioxide
CN105019874A (en) Oil extraction method utilizing circulated heating cavity gases
US20230391616A1 (en) Hydrogen enhanced geothermal power production
Urych et al. The Concept of Geothermal Energy Production from Abandoned Coal Mine Converted into CO2 Reservoir
Pétursdóttir Feasibility of the application of the CarbFix method to geothermal power plants globally
Saar et al. How CCS can benefit from CO2-Plume Geothermal (CPG)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120316

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150420

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250