JP4972242B2 - Method for producing roadbed materials from concrete waste - Google Patents

Method for producing roadbed materials from concrete waste Download PDF

Info

Publication number
JP4972242B2
JP4972242B2 JP2006317881A JP2006317881A JP4972242B2 JP 4972242 B2 JP4972242 B2 JP 4972242B2 JP 2006317881 A JP2006317881 A JP 2006317881A JP 2006317881 A JP2006317881 A JP 2006317881A JP 4972242 B2 JP4972242 B2 JP 4972242B2
Authority
JP
Japan
Prior art keywords
blast furnace
slag
concrete waste
furnace slow
concrete
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006317881A
Other languages
Japanese (ja)
Other versions
JP2008127968A (en
Inventor
克則 高橋
宏一 戸澤
弘周 守安
光治 香川
卓也 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Maeda Road Construction Co Ltd
Original Assignee
JFE Steel Corp
Maeda Road Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp, Maeda Road Construction Co Ltd filed Critical JFE Steel Corp
Priority to JP2006317881A priority Critical patent/JP4972242B2/en
Publication of JP2008127968A publication Critical patent/JP2008127968A/en
Application granted granted Critical
Publication of JP4972242B2 publication Critical patent/JP4972242B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0075Uses not provided for elsewhere in C04B2111/00 for road construction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Road Paving Structures (AREA)
  • Processing Of Solid Wastes (AREA)

Description

本発明は、建設廃材などとして発生するコンクリート廃材から路盤材や土工材を製造するための方法に関するものである。   The present invention relates to a method for producing a roadbed material and an earthwork material from concrete waste generated as construction waste.

従来、建設廃材などとして発生するコンクリート廃材を、路盤材や埋め戻し材などの土工材料として利用することが広く行われている。
ところで、セメントには、その製造工程で混入するクロムに由来する6価クロムが微量に含まれることがあるが、セメントが一旦コンクリートとして固化してしまえば、セメントからの6価クロム溶出のおそれは殆どない。ただし、中性化(劣化)が進んだコンクリートを細かく砕いた場合には、土壌環境基準を超える6価クロムの溶出の可能性が指摘されている。また、最近ではクロムなどの重金属による環境負荷をより軽減することが求められており、特に、路盤材や埋め戻し材は土壌との接触や透過水分の地下水への合流が考えられことから、クロムの溶出をより確実に押さえ込むことが好ましいと言える。
2. Description of the Related Art Conventionally, concrete waste generated as construction waste has been widely used as earthwork materials such as roadbed materials and backfill materials.
By the way, the cement may contain a small amount of hexavalent chromium derived from chromium mixed in the manufacturing process, but once the cement is solidified as concrete, there is a risk of elution of hexavalent chromium from the cement. Almost no. However, it has been pointed out that hexavalent chromium that exceeds soil environmental standards may be eluted when concrete that has been neutralized (deteriorated) is finely crushed. Recently, it has been demanded to further reduce the environmental burden caused by heavy metals such as chromium. In particular, roadbed materials and backfill materials are considered to come into contact with soil and permeate to the groundwater. It can be said that it is preferable to more reliably suppress elution of.

このような観点から、特許文献1には、路盤材用に破砕されたコンクリート廃材に高炉徐冷スラグの粉砕物を混合し、路盤材(コンクリート廃材)からの6価クロムの溶出を抑制するようにした方法が提案されている。
この方法は、高炉徐冷スラグがもつ還元能力に着目し、その粉砕物をコンクリート廃材と混合することにより、コンクリート廃材中の6価クロムを3価クロムに還元することを狙いとしている。
特開2005−240313号公報
From such a viewpoint, Patent Document 1 discloses that ground concrete of blast furnace chilled slag is mixed with concrete waste material crushed for roadbed material to suppress elution of hexavalent chromium from the roadbed material (concrete waste material). A proposed method has been proposed.
This method focuses on the reducing ability of blast furnace chilled slag and aims to reduce hexavalent chromium in the waste concrete to trivalent chromium by mixing the pulverized product with the concrete waste.
JP 2005-240313 A

しかし、本発明者らが検討したところによれば、上記従来技術では、高炉徐冷スラグを混合することによる効果は得られるものの、その効果は必ずしも期待通りの十分なものとは言えず、特に、近年厳しさを増しつつある環境基準に対して、十分に対応できなくなる可能性もある。
したがって本発明の目的は、以上のような従来技術の課題を解決し、コンクリート廃材からのクロム溶出が効果的に抑制される路盤材や土工材を製造することにある。
However, according to the study by the present inventors, in the above-mentioned conventional technology, although the effect by mixing the blast furnace slow cooling slag can be obtained, the effect is not necessarily sufficient as expected. However, there is a possibility that it will not be possible to sufficiently respond to environmental standards that are becoming increasingly severe in recent years.
Accordingly, an object of the present invention is to solve the above-described problems of the prior art and to manufacture roadbed materials and earthwork materials in which chromium elution from concrete waste is effectively suppressed.

本発明者らは、高炉徐冷スラグの還元能力を最大限に発現させる方法を見出すべく検討した結果、以下のような知見を得た。まず、従来技術などで使用していた高炉徐冷スラグは表面の還元能力が低下しているものが多く、このように還元能力が低下したスラグを再破砕して、その還元能力を評価した結果、内部は十分に還元能力が維持されていることが判った。これにより、(i)従来技術では、粉砕してからしばらく時間が経過した高炉徐冷スラグを、プラントなどでコンクリート廃材と混合することが多く、その場合、高炉徐冷スラグが粉砕されてからコンクリート廃材に混合されるまでの間に表面が酸化され、還元能力が低下すること、(ii)特に、粉砕によって高炉徐冷スラグの比表面積が大きくなるため、大気などとの接触により還元能力が劣化しやすいこと、(iii)したがって、高炉徐冷スラグの還元能力を最大限に発揮させるには、高炉徐冷スラグを破砕してからコンクリート廃材に混合するまでの時間を極力短くすること、特に好ましくは、破砕した直後のスラグをコンクリート廃材に接触させるのが有効であること、が判った。そして、これを実現する方法について検討した結果、コンクリート廃材を破砕して路盤材や土工材とする工程において、コンクリート廃材に高炉徐冷スラグを加え、そのまま高炉徐冷スラグとともに破砕すれば、破砕されて新しい破砕面が生じた直後の高炉徐冷スラグをコンクリート廃材と混合・接触させることができ、これにより高炉徐冷スラグの還元能力を最大限に発現させることができ、しかも、高炉徐冷スラグとコンクリート廃材との混合性も高まるために、効果のバラツキも小さくなることが判った。   The present inventors have studied to find out a method for maximizing the reducing ability of the blast furnace slow cooling slag, and as a result, have obtained the following knowledge. First, many of the blast furnace slow-cooled slags used in the prior art have reduced surface reducing ability. As a result of re-crushing slag with reduced reducing ability and evaluating its reducing ability. , It was found that the internal capacity was sufficiently maintained. As a result, (i) in the prior art, blast furnace slow-cooled slag, which has passed for a while after being ground, is often mixed with concrete waste materials in a plant or the like. The surface is oxidized until it is mixed with the waste material, and the reduction ability is reduced. (Ii) The reduction ability deteriorates due to contact with the atmosphere, especially because the specific surface area of the blast furnace chilled slag is increased by grinding. (Iii) Therefore, in order to maximize the reduction ability of the blast furnace slow-cooled slag, it is particularly preferable to shorten the time from crushing the blast furnace slow-cooled slag to mixing it with the concrete waste as much as possible. Found that it was effective to bring the slag immediately after crushing into contact with the waste concrete. And as a result of examining the method to realize this, in the process of crushing concrete waste material into roadbed material and earthwork material, if blast furnace slow cooling slag is added to the concrete waste material and it is crushed as it is with blast furnace slow cooling slag, it will be crushed The blast furnace slow-cooled slag immediately after a new crushed surface is produced can be mixed and brought into contact with the concrete waste material, thereby making it possible to maximize the reduction capacity of the blast furnace slow-cooled slag, It was also found that the dispersion of the effect was reduced because the mixing property with concrete waste was increased.

さらに、高炉徐冷スラグを水を含んだ状態で破砕することにより、この水分中にスラグの還元性硫黄が一部溶解し、コンクリート廃材との混合と同時に速やかに6価クロムの還元作用を及ぼすことができるため、初期における6価クロム溶出をより効果的に抑制できることも判明した。   Furthermore, by pulverizing the blast furnace slow-cooled slag containing water, a part of the reducing sulfur of the slag dissolves in this moisture, and immediately acts to reduce hexavalent chromium simultaneously with mixing with the concrete waste. Therefore, it was also found that elution of hexavalent chromium in the initial stage can be more effectively suppressed.

本発明はこのような知見に基づきなされたもので、以下を要旨とするものである。
[1]コンクリート廃材を破砕して路盤材及び/又は土工材とする工程において、コンクリート廃材に高炉徐冷スラグを加え、該高炉徐冷スラグを水を含ませた状態でコンクリート廃材とともに破砕することを特徴とする、コンクリート廃材からの路盤材等の製造方法。
[2]上記[1]の製造方法において、高炉徐冷スラグを、コンクリート廃材100質量部に対して2〜10質量部の割合でコンクリート廃材に加えることを特徴とする、コンクリート廃材からの路盤材等の製造方法。
The present invention has been made on the basis of such findings and has the following gist.
[1] In the process of crushing concrete waste material into roadbed material and / or earthwork material, adding blast furnace slow-cooled slag to the concrete waste material, and crushing the blast furnace slow-cooled slag together with the concrete waste material in a state of containing water A method for producing roadbed materials from concrete waste.
[2] In the manufacturing method of [1], the blast furnace slow-cooled slag is added to the concrete scrap at a ratio of 2 to 10 parts by mass with respect to 100 parts by mass of the concrete scrap. Etc. Manufacturing method.

[3]上記[1]又は[2]の製造方法において、粒径が40mm以下の路盤材を製造する際に、粒径が40mm超の高炉徐冷スラグをコンクリート廃材に加えることを特徴とする、コンクリート廃材からの路盤材等の製造方法。
[4]上記[1]〜[3]のいずれかの製造方法において、散水又は水中への浸漬により高炉徐冷スラグに水を含ませることを特徴とする、コンクリート廃材からの路盤材等の製造方法。
[3] In the manufacturing method of [1] or [2], when producing a roadbed material having a particle size of 40 mm or less, a blast furnace slow-cooled slag having a particle size of more than 40 mm is added to the concrete waste material. , A method for producing roadbed materials from concrete waste .
[4] In the manufacturing method according to any one of [1] to [3] above, manufacturing roadbed material or the like from waste concrete, characterized in that water is contained in the blast furnace slow-cooled slag by watering or immersion in water Method.

本発明によれば、コンクリート廃材とともに破砕された高炉徐冷スラグが還元能力を最大限に発揮できるので、コンクリート廃材中の6価クロムが効果的に還元され、コンクリート廃材からの6価クロムの溶出が高度に抑制された路盤材や土工材を製造することができる。
また、本発明によれば、初期におけるコンクリート廃材からの6価クロム溶出をより効果的に抑制することができる。
According to the present invention, since the blast furnace slow-cooled slag crushed together with the concrete waste material can maximize its reduction ability, hexavalent chromium in the concrete waste material is effectively reduced, and elution of hexavalent chromium from the concrete waste material. Can produce roadbed materials and earthwork materials that are highly suppressed.
Moreover, according to this invention , the hexavalent chromium elution from the concrete waste material in the initial stage can be suppressed more effectively.

本発明では、コンクリート廃材を破砕して路盤材及び/又は土工材とする工程において、コンクリート廃材に高炉徐冷スラグを加え、この高炉徐冷スラグとともに破砕するものである。なお、本発明及び以下の説明において使用するコンクリート廃材及び高炉徐冷スラグの粒径は、当該篩い目を有する篩いを用いて規定される粒径を意味する。篩いの寸法は、JIS Z 8801等に代表されるものが使用できる。
本発明の製造対象は、路盤材及び/又は土工材(以下、便宜上「路盤材等」という場合がある)である。土工材としては、例えば、埋め戻し材、炉床材、路盤材以外の敷設材などが挙げられるが、これらに限定されるものではない。
In the present invention, in the step of crushing the concrete waste material into the roadbed material and / or earthwork material, the blast furnace slow cooling slag is added to the concrete waste material, and the concrete crushed together with the blast furnace slow cooling slag. In addition, the particle size of the concrete waste material and blast furnace slow cooling slag used in the present invention and the following description means a particle size defined using a sieve having the sieve mesh. As the size of the sieve, those represented by JIS Z 8801 and the like can be used.
The manufacturing object of the present invention is a roadbed material and / or earthwork material (hereinafter sometimes referred to as “roadbed material or the like” for convenience). Examples of the earthwork material include, but are not limited to, a backfill material, a hearth material, a laying material other than a roadbed material, and the like.

本発明で用いるコンクリート廃材としては、建設廃材が最も代表的なものであるが、これに限定されるものではない。また、廃材という性質上、不可避的にコンクリート以外の廃材が混入することを妨げない。
高炉徐冷スラグは、高炉スラグ(溶融スラグ)を徐冷して得られる結晶質主体のスラグであり、生成した状態においては還元性硫黄を含んでいる。高炉徐冷スラグは、高炉水砕スラグが細粒状の形態で生成するのに対して、溶融スラグが塊状に固化して生成するものであり、このため粒径が数十mm以上或いは100mm以上の塊状スラグであっても容易に得ることができる。
As the concrete waste material used in the present invention, construction waste material is most representative, but it is not limited thereto. Moreover, it does not prevent that waste materials other than concrete are mixed inevitably on the property of waste materials.
Blast furnace slow-cooled slag is a crystalline-based slag obtained by slowly cooling blast furnace slag (molten slag), and contains reducing sulfur in the produced state. Blast furnace slow-cooled slag is produced by granulating blast furnace slag in a fine granular form, whereas molten slag is produced by solidifying into a lump, and for this reason, the particle size is several tens mm or more or 100 mm or more. Even massive slag can be easily obtained.

このような高炉徐冷スラグをコンクリート廃材と混合すると、スラグ中の還元性硫黄がコンクリート廃材に含まれる6価クロムを3価クロムに還元し、その結果、コンクリート廃材からの6価クロムの溶出を抑制する。しかし、さきに述べたように、粉砕してからしばらく時間が経過した高炉徐冷スラグをコンクリート廃材と混合した場合には、混合前に高炉徐冷スラグ表面が酸化され、還元能力が低下してしまう。生成したまま或いは粉砕したままの高炉徐冷スラグは透過水による硫黄流出のおそれがあるため、従来の高炉徐冷スラグの出荷形態では、大気中で相当期間(通常6ヶ月以上)安定化させてから出荷しており、このような高炉徐冷スラグでは十分な還元作用は得られない。   When such blast furnace slow-cooled slag is mixed with concrete waste, reducing sulfur in the slag reduces hexavalent chromium contained in the concrete waste to trivalent chromium, and as a result, elution of hexavalent chromium from the concrete waste Suppress. However, as mentioned earlier, when blast furnace chilled slag, which has been crushed for a while, is mixed with concrete waste, the blast furnace chilled slag surface is oxidized before mixing, reducing the reduction capacity. End up. Since the blast furnace slow-cooled slag that has been produced or pulverized may cause sulfur outflow from the permeated water, the conventional blast furnace slow-cooled slag is stabilized in the atmosphere for a considerable period (usually 6 months or more). Such a blast furnace slow cooling slag cannot provide a sufficient reducing action.

これに対して本発明では、コンクリート廃材に高炉徐冷スラグを加え、そのまま高炉徐冷スラグとともに破砕するので、破砕された直後の還元能力が高い破砕面(すなわち還元性硫黄が酸化されることなく潤沢に存在する破砕面)を有する高炉徐冷スラグをコンクリート廃材と混合・接触させることができ、これにより高炉徐冷スラグの6価クロムの還元能力を最大限に発現させることができる。さらに、本発明では、以下のような特有の効果が得られる。   On the other hand, in the present invention, the blast furnace chilled slag is added to the concrete waste material, and the blast furnace chilled slag is crushed as it is, so that the crushed surface (that is, the reducing sulfur is not oxidized) immediately after being crushed. The blast furnace slow-cooled slag having a crushing surface present in abundance can be mixed and brought into contact with the concrete waste material, whereby the hexavalent chromium reducing ability of the blast furnace slow-cooled slag can be maximized. Furthermore, in the present invention, the following specific effects can be obtained.

(i)従来技術では、路盤材や土工材用の粒径に破砕されたコンクリート廃材(通常、粒径が数十mm以下)に高炉徐冷スラグの粉砕物(通常、粒径が数mm以下)を混合しているが、このように粒径が大きく異なるものどうしを均一に混合することは難しく、このためコンクリート廃材中の6価クロムに及ぼされる高炉徐冷スラグの還元作用にバラツキを生じやすい。このような還元作用のバラツキを抑えるには、高炉徐冷スラグの粉砕物を定量供給するための特別な設備が必要であり、設備的な負担が大きくなる。これに対して、本発明では、高炉徐冷スラグには粒径の小さいスラグ粒子も含まれる場合があるが、高炉徐冷スラグはコンクリート廃材とともに破砕処理されるため、コンクリート廃材と高炉徐冷スラグの粒径差が小さく、このため従来技術に較べてコンクリート廃材と高炉徐冷スラグを均一に混合することができる。また、高炉徐冷スラグとコンクリート廃材を同時に破砕することによっても、両者の混合性が高められる。これらの結果、コンクリート廃材中の6価クロムに及ぼされる高炉徐冷スラグの還元作用を均一化できる。 (I) In the prior art, crushed material of blast furnace chilled slag (usually the particle size is several mm or less) to concrete waste material (usually the particle size is several tens of mm or less) crushed to a particle size for roadbed materials or earthwork materials ), But it is difficult to mix evenly differing particles with different particle sizes, and this causes variations in the reduction effect of blast furnace chilled slag exerted on hexavalent chromium in concrete waste. Cheap. In order to suppress such a variation in the reducing action, special equipment for supplying a fixed amount of the ground blast furnace slag slag is necessary, which increases the equipment burden. In contrast, in the present invention, the blast furnace slow-cooled slag may contain slag particles having a small particle size, but since the blast furnace slow-cooled slag is crushed together with the concrete waste, the concrete waste and the blast furnace slow-cooled slag Therefore, compared with the prior art, waste concrete and blast furnace slag can be mixed uniformly. In addition, by simultaneously crushing the blast furnace slow-cooled slag and the concrete waste material, the mixing property between the two can be improved. As a result, the reducing action of the blast furnace slow-cooled slag exerted on the hexavalent chromium in the concrete waste can be made uniform.

(ii)従来技術で用いる高炉徐冷スラグの粉砕物は、比表面積が大きいため大気などとの接触により還元能力が劣化しやすく、このため、仮に粉砕した直後にコンクリート廃材と混合することで初期の還元作用が確保できたとしても、還元作用を長期間にわたって維持することが難しい。これに対して本発明では、高炉徐冷スラグをコンクリート廃材とともに破砕することにより、高炉徐冷スラグを高い還元能力を有する状態でコンクリート廃材と混合できるため、初期の還元作用が十分に得られるとともに、コンクリート廃材に相当するような粒径が大きい高炉徐冷スラグは、内部の還元性硫黄が維持されて還元能力が劣化しにくいため、還元作用を長期間にわたって維持することができる。 (Ii) Since the ground granulated blast furnace slag used in the prior art has a large specific surface area, its reducing ability is likely to deteriorate due to contact with the atmosphere. For this reason, it can be initially mixed with concrete waste immediately after grinding. Even if the reduction action is ensured, it is difficult to maintain the reduction action over a long period of time. On the other hand, in the present invention, the blast furnace slow-cooled slag is crushed together with the concrete waste material, so that the blast furnace slow-cooled slag can be mixed with the concrete waste material in a state having a high reducing ability, and thus the initial reduction action can be sufficiently obtained. The blast furnace slow-cooled slag having a large particle size corresponding to the concrete waste material can maintain the reducing action for a long time because the reducing sulfur inside is maintained and the reducing ability is not easily deteriorated.

(iii)高炉徐冷スラグの強度及び破砕前の元々の粒度分布からして、高炉徐冷スラグをコンクリート廃材とともに破砕した場合、コンクリート廃材よりも粒度分布が広くなり、初期の還元作用と長期間の還元作用の両方を適切に確保するのに有利な粒度分布となる。これは、コンクリート廃材とともに破砕された後の高炉徐冷スラグは、初期の還元作用に有効な小粒径のスラグ粒子と、長期の還元作用に有効な大粒径のスラグ粒子が混在した広い粒度分布となるからである。このため高炉徐冷スラグによる高い還元作用を、路盤材等の製造直後から長期間にわたり維持することができる。 (Iii) Based on the strength of the blast furnace slow-cooled slag and the original particle size distribution before crushing, when the blast furnace slow-cooled slag is crushed together with concrete waste, the particle size distribution becomes wider than the concrete waste and the initial reduction action and long-term Therefore, the particle size distribution is advantageous for appropriately ensuring both of the reduction effects of the above. This is because the blast furnace slow-cooled slag after being crushed together with the concrete waste material has a wide particle size in which small slag particles effective for the initial reduction action and large slag particles effective for the long-term reduction action are mixed. This is because it becomes a distribution. For this reason, the high reduction | restoration effect | action by blast furnace slow cooling slag can be maintained over a long period from immediately after manufacture of a roadbed material etc.

図1は、高炉で生成して4ヶ月経過した後、粒径19mm以下に破砕した直後の高炉徐冷スラグ(a)と、高炉で生成した後、粒径19mm以下に破砕し、その後4ヶ月経過した高炉徐冷スラグ(b)について、還元性硫黄量を調べた結果を示している。この試験では、高炉徐冷スラグ1質量部に対して水を15質量部添加し、6時間振とうした後に溶出した還元性硫黄量を評価した。
図1によれば、同じ破砕粒径であっても、破砕した直後の高炉徐冷スラグ(a)の溶出S量は、破砕して4ヶ月経過した高炉徐冷スラグ(b)の4倍近い値となっている。
FIG. 1 shows a blast furnace slow-cooled slag (a) immediately after being crushed to a particle size of 19 mm or less after being produced in a blast furnace, and crushed to a particle size of 19 mm or less after being produced in a blast furnace, and then 4 months The result of having investigated the amount of reducing sulfur about the blast furnace slow cooling slag (b) which has passed is shown. In this test, 15 parts by mass of water was added to 1 part by mass of the blast furnace gradually cooled slag, and the amount of reducing sulfur eluted after shaking for 6 hours was evaluated.
According to FIG. 1, even if the crushed particle size is the same, the amount of elution S of the blast furnace annealed slag (a) immediately after crushing is nearly four times that of the blast furnace annealed slag (b) that has been crushed for 4 months. It is a value.

図2は、コンクリート廃材100質量部に粒径40〜80mmの高炉徐冷スラグを所定量(3質量部、5質量部、7質量部)加え、これを破砕して製造された粒径40mm以下の路盤材(本発明例)と、粒径粒径40mm以下に破砕されたコンクリート廃材100質量部に、粉砕してから4ヶ月経過した粒径10mm以下の高炉徐冷スラグを所定量(3質量部、5質量部、7質量部)加えて製造された路盤材(比較例)について、環境庁告示46号溶出試験によるCr溶出量を調べた結果を示している。なお、各Cr溶出量はN=5の平均値である。
図2によれば、粉砕してから4ヶ月経過した高炉徐冷スラグを用いた比較例においてもある程度の効果は得られるものの、この比較例に較べて本発明例では格段に優れた効果(Crの溶出抑制効果)が得られている。
FIG. 2 shows a particle size of 40 mm or less produced by adding a predetermined amount (3 parts by mass, 5 parts by mass, 7 parts by mass) of a blast furnace slow-cooled slag having a particle size of 40 to 80 mm to 100 parts by mass of concrete waste, A certain amount (3 mass) of blast furnace slow-cooled slag having a particle diameter of 10 mm or less after 4 months of pulverization into 100 mass parts of the roadbed material (example of the present invention) and concrete waste material crushed to a particle diameter of 40 mm or less. 5 parts by mass, 7 parts by mass, and 7 parts by mass) of the roadbed material (comparative example) produced, the results of examining the Cr elution amount by the Environment Agency Notification No. 46 elution test are shown. Each Cr elution amount is an average value of N = 5.
According to FIG. 2, although a certain degree of effect is obtained even in the comparative example using the blast furnace slow cooling slag after 4 months from pulverization, the present invention example has a significantly superior effect (Cr Elution suppression effect).

本発明では、コンクリート廃材に対する高炉徐冷スラグの配合量は特に限定しないが、コンクリート廃材100質量部に対して2〜10質量部程度の割合で配合することが好ましい。コンクリート廃材100質量部に対する高炉徐冷スラグの割合が2質量部未満では、高炉徐冷スラグによる還元作用が不足するおそれがあり、一方、10質量部を超えても還元作用の面では問題はないが、コンクリート廃材からのCr溶出が少ない場合は、過剰な硫黄分によって溶出水がやや黄色を呈する可能性がある。
コンクリート廃材を高炉徐冷スラグとともに破砕する場合の破砕方式については、特に制限はなく、例えば、インパクトクラッシャー、コーンクラッシャー、ジョークラッシャー、モービルクラッシャー、ロールクラッシャーなどを用いることができる。
In this invention, although the compounding quantity of the blast furnace slow cooling slag with respect to concrete waste material is not specifically limited, It is preferable to mix | blend in the ratio of about 2-10 mass parts with respect to 100 mass parts of concrete waste materials. If the ratio of the blast furnace slow-cooled slag to 100 parts by weight of the concrete waste is less than 2 parts by weight, the reducing action by the blast furnace slow-cooled slag may be insufficient, while if it exceeds 10 parts by weight, there is no problem in terms of the reducing action. However, when there is little Cr elution from a concrete waste material, there exists a possibility that elution water may show a little yellow with an excessive sulfur content.
There is no particular limitation on the crushing method when crushing the concrete waste with the blast furnace slow cooling slag, and for example, an impact crusher, a cone crusher, a jaw crusher, a mobile crusher, a roll crusher, or the like can be used.

コンクリート廃材を高炉徐冷スラグとともに破砕する場合の粒径などにも特別な制限はないが、一般に、路盤用等のコンクリート廃材は粒径40mm以下に破砕されることから、このような粒径の路盤材等を製造するには、コンクリート廃材(当然、このコンクリート廃材には粒径40mm超のものが含まれる)に粒径40mm超の高炉徐冷スラグ(この高炉徐冷スラグは粒径40mm以下のスラグ粒子を含んでいてもよい)を加え、この高炉徐冷スラグとともに破砕する。すなわち、コンクリート廃材の破砕粒径(上限)に応じて、一部又は全部のスラグ粒子の粒径が当該破砕粒径を上回る粒度を有する高炉徐冷スラグを加え、破砕を行うものである。   There is no special restriction on the particle size when crushing concrete waste with blast furnace slow cooling slag, but generally, concrete waste for roadbed etc. is crushed to a particle size of 40 mm or less. In order to manufacture roadbed materials, etc., concrete waste (of course, this concrete waste includes those having a particle size of more than 40 mm) and blast furnace chilled slag having a particle size of more than 40 mm (the blast furnace chilled slag has a particle size of 40 mm or less). (Which may contain slag particles) and is crushed together with the blast furnace slow-cooled slag. That is, according to the crushed particle size (upper limit) of the concrete waste material, blast furnace slow-cooled slag having a particle size in which part or all of the slag particles exceed the crushed particle size is added for crushing.

本発明では、高炉徐冷スラグを水を含ませた状態で、コンクリート廃材とともに破砕することにより、その水分中にスラグの還元性硫黄が一部溶解し、コンクリート廃材との混合と同時に速やかに6価クロムの還元作用を及ぼすことができるため、初期における6価クロム溶出をより効果的に抑制できる。
高炉徐冷スラグに水を含ませた形態としては、高炉徐冷スラグを破砕した際に、その破砕面の還元性硫黄の少なくとも一部が水に溶解するような形態であればよく、したがって、スラグ粒やスラグ塊内に水が吸収された形態、スラグ粒やスラグ塊の表面に水が付着した形態(表面が水に濡れた状態)のいずれでもよいが、硫黄分の流出を防止するためには、水が流出しない程度に水を含ませた状態であることが望ましい。
高炉徐冷スラグに水を含ませるには、散水、水中への浸漬など適宜な方法を採ることができる。また、高炉徐冷スラグに水を含ませる時期などについても特別な制限はなく、コンクリート廃材に高炉徐冷スラグを加える前の段階、コンクリート廃材に高炉徐冷スラグを加えた後の段階、コンクリート廃材+高炉徐冷スラグの破砕処理中、など適宜なタイミングで水を含ませることができる。
In the present invention, the blast furnace slow-cooled slag containing water is crushed together with the concrete waste material, so that a part of the reducing sulfur of the slag is dissolved in the water, and immediately mixed with the concrete waste material. Since it can exert a reducing action of valent chromium, elution of hexavalent chrome in the initial stage can be more effectively suppressed.
The form in which water is contained in the blast furnace slow-cooled slag may be any form in which at least a part of the reducing sulfur on the crushed surface is dissolved in water when the blast furnace slow-cooled slag is crushed. Either slag grains or slag lump water is absorbed, or water is attached to the surface of slag grains or slag lump (the surface is wet with water), but to prevent the outflow of sulfur It is desirable that the water is in a state where water is contained to such an extent that the water does not flow out.
In order to include water in the blast furnace slow cooling slag, an appropriate method such as watering or immersion in water can be employed. Also, there is no special restriction on the timing of adding water to the blast furnace slow-cooled slag, the stage before adding the blast furnace slow-cooled slag to the concrete waste, the stage after adding the blast furnace slow-cooled slag to the concrete waste, the concrete scrap + Water can be included at an appropriate timing such as during the crushing treatment of the blast furnace chilled slag.

本発明では、1回の破砕処理だけでコンクリート廃材と高炉徐冷スラグを同時に破砕し、路盤材等を製造してもよいし、複数次の破砕処理を経て路盤材等を製造してもよい。また、後者の場合、例えば複数次の破砕処理においてそれぞれコンクリート廃材と高炉徐冷スラグを同時に破砕してもよいし、一次破砕処理ではコンクリート廃材のみを破砕し、二次破砕処理(最終破砕処理)ではコンクリート廃材と高炉徐冷スラグを同時に破砕するようにしてもよい。要は、少なくともいずれかの破砕工程において、コンクリート廃材と高炉徐冷スラグを同時に破砕できればよい。   In the present invention, the concrete waste material and the blast furnace annealing slag may be simultaneously crushed by only one crushing process, and a roadbed material or the like may be manufactured, or a roadbed material or the like may be manufactured through a plurality of crushing processes. . In the latter case, for example, concrete waste and blast furnace chilled slag may be simultaneously crushed in multiple crushing processes. In the primary crushing process, only the concrete waste material is crushed and the secondary crushing process (final crushing process) is performed. Then, you may make it crush a concrete waste material and blast furnace slow cooling slag simultaneously. In short, it is sufficient that at least one of the crushing steps can crush the concrete waste material and the blast furnace slow-cooled slag at the same time.

図3(a)及び(b)は、本発明の実施形態(処理フロー)を例示したものであり、粒径40mm以下の路盤材を得る場合を示している。
図3(a)の実施形態では、ホッパー1にコンクリート廃材と高炉徐冷スラグがそれぞれ装入され、このホッパー1から破砕機2にコンクリート廃材と高炉徐冷スラグが同時に投入され、破砕処理が行われる。この破砕物(コンクリート廃材+高炉徐冷スラグ)は篩い装置3で篩い分けされ、粒径40mm以下が製品とされ、粒径40mm超が破砕機2に再送され、破砕処理される。これにより、粒径40mm以下の路盤材が得られる。
FIGS. 3A and 3B illustrate an embodiment (processing flow) of the present invention, and show a case where a roadbed material having a particle size of 40 mm or less is obtained.
In the embodiment of FIG. 3 (a), concrete waste material and blast furnace slow cooling slag are respectively charged into the hopper 1, and the concrete waste material and blast furnace slow cooling slag are simultaneously fed from the hopper 1 to the crusher 2 for crushing treatment. Is called. This crushed material (concrete waste material + blast furnace slow cooling slag) is sieved by the sieving device 3, the particle size of 40 mm or less is made into a product, and the particle size of more than 40 mm is retransmitted to the crusher 2 and crushed. Thereby, a roadbed material with a particle size of 40 mm or less is obtained.

図3(b)の実施形態では、ホッパー4にコンクリート廃材が装入され、このホッパー4から一次破砕機5にコンクリート廃材が投入されて一次破砕処理が行われる。この一次破砕されたコンクリート廃材は、高炉徐冷スラグとともに篩い装置6に装入されて篩い分けされる。そして、粒径40mm以下が製品とされ、粒径40mm超のコンクリート廃材と高炉徐冷スラグが二次破砕機7に送られ、ここで破砕処理された後、篩い装置6に送られる。これにより、粒径40mm以下の路盤材が得られる。この図3(b)の実施形態では、高炉徐冷スラグに含まれる粒径40mm以下のスラグ粒子は、破砕されることなく製品の一部となる。   In the embodiment of FIG. 3 (b), the concrete waste material is charged into the hopper 4, and the concrete waste material is input from the hopper 4 to the primary crusher 5 to perform the primary crushing process. The primary crushed concrete waste material is inserted into the sieving device 6 together with the blast furnace slow cooling slag and sieved. Then, the particle size of 40 mm or less is regarded as a product, and the concrete waste having a particle size of more than 40 mm and the blast furnace chilled slag are sent to the secondary crusher 7, crushed here, and then sent to the sieving device 6. Thereby, a roadbed material with a particle size of 40 mm or less is obtained. In the embodiment of FIG. 3B, the slag particles having a particle size of 40 mm or less contained in the blast furnace slow cooling slag become a part of the product without being crushed.

以上述べた本発明の製造方法により製造される路盤材等は、コンクリート廃材を主体とし、且つ高炉徐冷スラグを含む路盤材等であって、コンクリート廃材を高炉徐冷スラグとともに破砕する工程を経て得られた路盤材等である。さきに述べたようにこの路盤材等は、コンクリート廃材中の6価クロムが効果的に還元され、コンクリート廃材からの6価クロムの溶出が高度に抑制される。   The roadbed material and the like produced by the production method of the present invention described above is a roadbed material or the like mainly containing concrete waste material and including blast furnace slow cooling slag, and is subjected to a step of crushing the concrete waste material together with the blast furnace slow cooling slag. It is the obtained roadbed material. As described above, in this roadbed material and the like, hexavalent chromium in the concrete waste material is effectively reduced, and elution of hexavalent chromium from the concrete waste material is highly suppressed.

高炉で生成して4ヶ月経過した後、粒径19mm以下に破砕した直後の高炉徐冷スラグ(a)と、高炉で生成した後、粒径19mm以下に破砕し、その後4ヶ月経過した高炉徐冷スラグ(b)について、還元性硫黄量を調べた結果を示すグラフAfter 4 months have passed since it was produced in the blast furnace, the blast furnace gradually cooled slag (a) immediately after being crushed to a particle size of 19 mm or less, and after being produced in the blast furnace, it was crushed to a particle size of 19 mm or less and then 4 months later. The graph which shows the result of having investigated the amount of reducing sulfur about cold slag (b) 本発明法で得られた路盤材と従来法で得られた路盤材について、環境庁告示46号溶出試験によりCr溶出量を調べた結果を示すグラフThe graph which shows the result of having investigated the amount of Cr elution by the environmental agency notification 46 elution test about the roadbed material obtained by this invention method, and the roadbed material obtained by the conventional method 本発明の実施形態(処理フロー)を示す説明図Explanatory drawing which shows embodiment (processing flow) of this invention

符号の説明Explanation of symbols

1,4 ホッパー
2 破砕機
3,6 篩い装置
5 一次破砕機
7 二次破砕機
1,4 Hopper 2 Crusher 3,6 Sieve device 5 Primary crusher 7 Secondary crusher

Claims (4)

コンクリート廃材を破砕して路盤材及び/又は土工材とする工程において、コンクリート廃材に高炉徐冷スラグを加え、該高炉徐冷スラグを水を含ませた状態でコンクリート廃材とともに破砕することを特徴とする、コンクリート廃材からの路盤材等の製造方法。 In the process of crushing concrete waste material into roadbed material and / or earthwork material, adding blast furnace slow cooling slag to concrete waste material, and crushing the blast furnace slow cooling slag together with concrete waste material in a state of containing water To manufacture roadbed materials from concrete waste. 高炉徐冷スラグを、コンクリート廃材100質量部に対して2〜10質量部の割合でコンクリート廃材に加えることを特徴とする、請求項1に記載のコンクリート廃材からの路盤材等の製造方法。   The method for producing a roadbed material or the like from concrete waste according to claim 1, wherein the blast furnace slow cooling slag is added to the concrete waste at a ratio of 2 to 10 parts by weight with respect to 100 parts by weight of the concrete waste. 粒径が40mm以下の路盤材を製造する際に、粒径が40mm超の高炉徐冷スラグをコンクリート廃材に加えることを特徴とする、請求項1又は2に記載のコンクリート廃材からの路盤材等の製造方法。   The roadbed material from the concrete waste material according to claim 1 or 2, characterized in that, when producing a roadbed material having a particle size of 40 mm or less, a blast furnace slow cooling slag having a particle size of more than 40 mm is added to the concrete waste material. Manufacturing method. 散水又は水中への浸漬により高炉徐冷スラグに水を含ませることを特徴とする、請求項1〜3のいずれかに記載のコンクリート廃材からの路盤材等の製造方法。The method for producing a roadbed material or the like from waste concrete material according to any one of claims 1 to 3, wherein water is contained in the blast furnace chilled slag by watering or immersion in water.
JP2006317881A 2006-11-26 2006-11-26 Method for producing roadbed materials from concrete waste Active JP4972242B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006317881A JP4972242B2 (en) 2006-11-26 2006-11-26 Method for producing roadbed materials from concrete waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006317881A JP4972242B2 (en) 2006-11-26 2006-11-26 Method for producing roadbed materials from concrete waste

Publications (2)

Publication Number Publication Date
JP2008127968A JP2008127968A (en) 2008-06-05
JP4972242B2 true JP4972242B2 (en) 2012-07-11

Family

ID=39554091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006317881A Active JP4972242B2 (en) 2006-11-26 2006-11-26 Method for producing roadbed materials from concrete waste

Country Status (1)

Country Link
JP (1) JP4972242B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5011259B2 (en) * 2008-06-05 2012-08-29 Jfeスチール株式会社 Civil engineering materials used as recycled sand or earthwork materials and methods for producing the same
EP4293160A1 (en) 2021-03-23 2023-12-20 Taiheiyo Cement Corporation Roadbed material production method
CN114717884B (en) * 2022-04-27 2023-11-24 湖南建工交通建设有限公司 Fully weathered granite sedimentary soil roadbed and construction method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02266003A (en) * 1989-04-04 1990-10-30 Nippon Steel Corp Hydraulic setting roardbed material
JP3652638B2 (en) * 2001-11-14 2005-05-25 川崎重工業株式会社 Slag reforming method and apparatus
JP4292953B2 (en) * 2003-11-10 2009-07-08 住友金属工業株式会社 Permeable roadbed material, manufacturing method thereof, and water permeable equipment
JP2005240313A (en) * 2004-02-24 2005-09-08 Jfe Steel Kk Method of using concrete waste as roadbed material, and the roadbed material

Also Published As

Publication number Publication date
JP2008127968A (en) 2008-06-05

Similar Documents

Publication Publication Date Title
JP5857996B2 (en) Method for manufacturing roadbed materials
EP2501832B1 (en) Ore fine agglomerate to be used in sintering process and production process of ore fines agglomerate
JP4972242B2 (en) Method for producing roadbed materials from concrete waste
JP2003129142A (en) Method for manufacturing agglomerated product of oxidized metal
TW200948980A (en) Producing method of reduced iron
JP2016169494A (en) Manufacturing method of recycled civil engineering material, and recycled civil engineering material
JP4972243B2 (en) Method for producing roadbed materials from concrete waste
JP2005089842A (en) Reduced metal raw material agglomerate and its producing method, and method for producing reduced metal
JP2013144269A (en) Method for treating slag-mixed soil
JP6842658B2 (en) Manufacturing method of ingots for steelmaking
JP5756065B2 (en) Slag for roadbed material and method for producing slag for roadbed material
JP5540832B2 (en) Method for producing agglomerated material or granulated material of granular raw material
US6918947B2 (en) Method for making reduced iron
JP2007268431A (en) Concrete reproduction material
JP2008137842A (en) Method of manufacturing artificial aggregate using construction waste
JPS5827917A (en) Treatment of converter slag or the like
JP2006305464A (en) Reduction agent and reduction method
JP4619091B2 (en) Granules made from papermaking sludge incineration ash, production method and production apparatus thereof
JP6849279B2 (en) How to make briquettes
JP5011259B2 (en) Civil engineering materials used as recycled sand or earthwork materials and methods for producing the same
JP6182929B2 (en) Manufacturing method of steelmaking slag roadbed material
JP6041006B2 (en) Reduction material for civil engineering materials
JP2009102210A (en) Method for preventing caking of slag
JP4413087B2 (en) Method for producing slag crushed stone
JP2014177795A (en) Roadbed material for asphalt pavement including granulation object of gypsum board waste

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090729

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120407

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150413

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4972242

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250