JP2013144269A - Method for treating slag-mixed soil - Google Patents

Method for treating slag-mixed soil Download PDF

Info

Publication number
JP2013144269A
JP2013144269A JP2012005125A JP2012005125A JP2013144269A JP 2013144269 A JP2013144269 A JP 2013144269A JP 2012005125 A JP2012005125 A JP 2012005125A JP 2012005125 A JP2012005125 A JP 2012005125A JP 2013144269 A JP2013144269 A JP 2013144269A
Authority
JP
Japan
Prior art keywords
slag
soil
cement
mixed
crushing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012005125A
Other languages
Japanese (ja)
Other versions
JP6113957B2 (en
Inventor
Kazuhisa Fukunaga
和久 福永
Toshihiko Takagi
敏彦 高木
Tadahiro Enokida
忠宏 榎田
Kenshi Hanada
賢師 花田
Ryusuke Kamimura
竜介 上村
Takanori Kimura
孝範 木村
Hidenobu Kuroyama
英伸 黒山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JDC Corp
Nippon Steel Corp
Nippon Steel Engineering Co Ltd
Original Assignee
JDC Corp
Nippon Steel and Sumitomo Metal Corp
Nippon Steel and Sumikin Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JDC Corp, Nippon Steel and Sumitomo Metal Corp, Nippon Steel and Sumikin Engineering Co Ltd filed Critical JDC Corp
Priority to JP2012005125A priority Critical patent/JP6113957B2/en
Publication of JP2013144269A publication Critical patent/JP2013144269A/en
Application granted granted Critical
Publication of JP6113957B2 publication Critical patent/JP6113957B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Road Paving Structures (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for treating a slag-mixed soil, capable of enhancing kneadability of a cement being an insolubilizer with the slag-mixed soil, and capable of reducing the addition amount of cement for satisfying the elution standard of fluorine as much as possible.SOLUTION: The method for treating the slag-mixed soil includes charging the slag-nixed soil M containing fluorine in a crushing/mixing unit 10 while adding cement as an insolubilizer to crush into fine particles, and mixing with cement. For details, a rotary crushing/mixing device is used in which the multistage impact chains 13 rotating inside a cylindrical casing 11 are arranged. The method includes charging the slag-mixed soil in the cylindrical casing while adding cement as the insolubilizer, crushing the soil to the level of a fine particle-mixed rudaceous sand in a soil classification by the striking force of multistage impact chains rotating in the cylindrical casing, and then mixing with cement.

Description

本発明は、主に製鉄所内で発生するスラグ混じり土の処理方法に関するものである。   The present invention relates to a method for treating soil mixed with slag generated mainly in steelworks.

製鉄所で発生するスラグをスラグヤードに保管している場合、スラグの混じった残土が発生する。この種のスラグ混じり残土にはフッ素が含有されており、そのまま路盤材に使用すると、フッ素が地中に溶出するおそれがあるので、セメント等と混ぜて不溶化処理を施している。   When slag generated at steel works is stored in a slag yard, residual soil mixed with slag is generated. This type of slag-mixed residual soil contains fluorine. If it is used as it is for roadbed materials, fluorine may elute into the ground, so it is mixed with cement and insolubilized.

例えば、特許文献1には、フッ素が含まれる土壌に水硬性結合材(セメント等の不溶化剤)を添加・混合して固化不溶化する技術が開示されている。固化不溶化とは、水和する過程において、不溶化剤が固化強度を発現することにより、有害元素(フッ素)の溶出量を低減(不溶化)することを言う。この方法では、土壌に必要量の水分がある場合は不溶化剤を粉体の状態で添加して混合し、土壌に必要量の水分がない場合は不溶化剤をスラリー状にして土壌に添加し混合するようにしている。その際、不溶化剤と土壌の混合は、通常の機械撹拌混合装置や高圧噴射混合装置、あるいはバックホウ等にて行うものとしている。   For example, Patent Document 1 discloses a technique for solidifying and insolubilizing by adding and mixing a hydraulic binder (insolubilizing agent such as cement) to soil containing fluorine. Solidification insolubilization means that the amount of harmful elements (fluorine) eluted is reduced (insolubilized) by the insolubilizing agent developing solidification strength during the hydration process. In this method, if there is a necessary amount of moisture in the soil, an insolubilizing agent is added in powder form and mixed. If there is no necessary amount of moisture in the soil, the insolubilizing agent is added to the soil in a slurry form and mixed. Like to do. At that time, the insolubilizing agent and the soil are mixed with a normal mechanical stirring and mixing device, a high-pressure jet mixing device, or a backhoe.

特開2004−89816号公報JP 2004-89816 A

ところで、上述の従来の土壌の処理方法では、土壌と不溶化剤を撹拌混合するだけであり、混練性が不均一となりやすいため、不溶化効果が発現しない部分が生じる可能性があった。そのため、不溶化剤(セメント等)を多く添加する必要があり、結果的にアルカリ性が強くなると共にランニングコストが増加するという問題があった。   By the way, in the above-mentioned conventional soil treatment method, the soil and the insolubilizing agent are merely stirred and mixed, and the kneadability is likely to be non-uniform, so that there may be a portion where the insolubilizing effect does not appear. Therefore, it is necessary to add a large amount of insolubilizing agent (cement or the like). As a result, there is a problem that the alkalinity becomes strong and the running cost increases.

本発明は、上記事情を考慮し、不溶化剤であるセメントとスラグ混じり土との混練性を高めることができて、フッ素の溶出基準を満たすためのセメントの添加量をできるだけ低減することのできるスラグ混じり土の処理方法を提供することを目的とする。   In consideration of the above circumstances, the present invention can improve the kneadability of cement as an insolubilizer and soil mixed with slag, and can reduce the amount of cement added to satisfy the elution standard of fluorine as much as possible. It aims at providing the processing method of mixed soil.

上記課題を解決するために、請求項1の発明のスラグ混じり土の処理方法は、フッ素を含有するスラグ混じり土を、不溶化剤としてセメントを添加しながら破砕混合装置に投入して、破砕し細粒化すると共に前記セメントと混合することを特徴とする。
この場合、スラグ混じり土を、セメントを添加しながら破砕混合装置に投入して、破砕により細粒化しつつ混合するので、細粒化による表面積の増加により、スラグ混じり土とセメントの混練性が高まる。
In order to solve the above-mentioned problem, the method for treating slag-mixed soil according to the first aspect of the present invention is such that slag-mixed soil containing fluorine is put into a crushing and mixing apparatus while adding cement as an insolubilizing agent, and then crushed and finely ground. It is characterized by being granulated and mixed with the cement.
In this case, the slag-mixed soil is added to the crushing and mixing apparatus while adding cement, and is mixed while being finely divided by crushing. Therefore, the kneadability of the slag-mixed soil and cement is increased by increasing the surface area due to the fine granulation. .

請求項2の発明は、請求項1に記載のスラグ混じり土の処理方法であって、前記破砕混合装置として、円筒ケーシングの内部に回転する多段のインパクトチェーンを配備した回転式破砕混合装置を使用し、前記スラグ混じり土を、不溶化剤としてセメントを添加しながら前記円筒ケーシング内に投入し、該円筒ケーシング内において回転する多段のインパクトチェーンの打撃力により、破砕すると共に前記セメントと混合することを特徴とする。
この場合、インパクトチェーンの打撃により、スラグ混じり土が短時間に粉砕されて微細化することとなり、同時に添加したセメントと効率よく混合される。
Invention of Claim 2 is a processing method of slag mixed soil of Claim 1, Comprising: As the crushing and mixing apparatus, a rotary crushing and mixing apparatus provided with a multistage impact chain rotating inside a cylindrical casing is used. The slag-mixed soil is put into the cylindrical casing while adding cement as an insolubilizing agent, and is crushed and mixed with the cement by the impact force of a multistage impact chain that rotates in the cylindrical casing. Features.
In this case, the slag-mixed soil is pulverized and refined in a short time by impact of the impact chain, and at the same time, it is efficiently mixed with the added cement.

請求項3の発明は、請求項2に記載のスラグ混じり土の処理方法であって、前記回転式破砕混合装置により、前記スラグ混じり土を、土質分類における細粒分質礫質砂のレベルまで細粒化して前記セメントと混合することを特徴とする。
この場合、礫分を多量に含むスラグ混じり土(細粒分混じり砂質礫)を砂分を多く含む土(細粒分質礫質砂)にして、混練を促進する。
Invention of Claim 3 is a processing method of the slag mixed soil of Claim 2, Comprising: By the said rotary crushing and mixing apparatus, the said slag mixed soil is made to the level of the fine-grained granular gravel sand in a soil classification. It is characterized by being finely divided and mixed with the cement.
In this case, kneading is promoted by converting soil containing a large amount of gravel into slag-mixed soil (fine-grained sandy gravel) to soil containing a large amount of sand (fine-grained gravelly sand).

請求項4の発明は、請求項2または3に記載のスラグ混じり土の処理方法であって、予め、前記フッ素の溶出基準を満たす前記セメントの添加量とスラグ混じり土の粒度との関係を求めておき、その関係に基づいて、前記回転式破砕混合装置による破砕のレベルと前記セメント添加量との組み合わせを決定して処理することを特徴とする。
この場合、セメントの添加量とスラグ混じり土の粒度の組み合わせを最適に設定することができ、それにより、経済性や効率性を高めながら、フッ素の溶出量を基準内に抑えることが可能である。
Invention of Claim 4 is a processing method of the slag mixed soil of Claim 2 or 3, Comprising: The relationship between the addition amount of the said cement and the particle size of slag mixed soil which satisfy | fill the said elution criteria of the fluorine previously is calculated | required. The combination of the level of crushing by the rotary crushing and mixing device and the amount of cement added is determined and processed based on the relationship.
In this case, it is possible to optimally set the combination of the amount of cement added and the particle size of the soil mixed with slag, thereby suppressing the elution amount of fluorine within the standard while improving the economy and efficiency. .

請求項1の発明によれば、スラグ混じり土の細粒化による表面積の増加により、スラグ混じり土とセメントの混練性を高めることができる。従って、フッ素の溶出基準を満たすために必要なセメントの添加量を減らすことができて、ランニングコストの低減に寄与することができると共に、フッ素の溶出を抑えることができることにより、路盤材としてのスラグ混じり土の再生利用を可能にすることができる。   According to invention of Claim 1, the kneadability of slag mixing soil and cement can be improved by the increase in the surface area by refinement | miniaturization of slag mixing soil. Therefore, it is possible to reduce the amount of cement required to meet the fluorine elution standard, contribute to the reduction of running cost, and suppress fluorine elution, thereby reducing the slag as roadbed material. It is possible to recycle mixed soil.

請求項2の発明によれば、インパクトチェーンの打撃により、スラグ混じり土を短時間に粉砕して微細化することができ、同時に添加したセメントと効率よく混合することができる。   According to the invention of claim 2, by impacting the impact chain, the soil mixed with slag can be pulverized and refined in a short time, and at the same time, it can be efficiently mixed with the added cement.

請求項3の発明によれば、礫分を多量に含むスラグ混じり土(細粒分混じり砂質礫)を砂分を多く含む土(細粒分質礫質砂)にして、混練を促進し、不溶化の条件を満たしながら、セメントの添加量を低減することができる。   According to the invention of claim 3, slag-mixed soil containing a large amount of gravel (fine-grained sandy gravel) is changed to soil-containing soil (fine-grained gravelly sand) to promote kneading. The amount of cement added can be reduced while satisfying the conditions for insolubilization.

請求項4の発明によれば、セメントの添加量とスラグ混じり土の粒度の組み合わせを最適に設定することができ、それにより、経済性や効率性を高めながら、フッ素の溶出量を基準内に抑えることができる。   According to the invention of claim 4, the combination of the amount of cement added and the particle size of the soil mixed with slag can be set optimally, thereby improving the economic efficiency and efficiency while keeping the elution amount of fluorine within the standard. Can be suppressed.

本発明の実施形態のスラグ混じり土の処理方法の説明図である。It is explanatory drawing of the processing method of the soil mixed with slag of embodiment of this invention. 土質のサイズによる分類を示す図である。It is a figure which shows the classification | category by the size of soil quality. 土質分類の中の礫質土の分類を示す図である。It is a figure which shows the classification of the gravel soil in the soil classification. 土質分類の中の砂質土の分類を示す図である。It is a figure which shows the classification of the sandy soil in the soil classification. 本発明の実施形態における使用材料の粒度を示す図である。It is a figure which shows the particle size of the material used in embodiment of this invention. 同使用材料の粒径加積曲線を示す図である。It is a figure which shows the particle size accumulation curve of the same use material. 実験をしたサンプルA、B、Cの仕様を示す図である。It is a figure which shows the specification of sample A, B, C which experimented. スラグ混じり土の土質(粒度範囲)とセメント添加率をパラメータとしてフッ素の溶出量を検査した結果を示す図である。It is a figure which shows the result of having test | inspected the elution amount of the fluorine using the soil quality (particle size range) and cement addition rate of slag mixing soil as a parameter. 図8で示すデータを基に、横軸にスラグ混じり土を粒度別に区分けしたときの最大粒径をまた縦軸にフッ素溶出量をそれぞれとって表した図である。FIG. 9 is a diagram in which the horizontal axis represents the maximum particle size when slag is mixed and the soil is classified by particle size, and the vertical axis represents the fluorine elution amount based on the data shown in FIG. 8. 図8で示すデータを基に、横軸にセメント添加率をまた縦軸にフッ素の溶出量をそれぞれとった図である。FIG. 9 is a diagram in which the horizontal axis represents the cement addition rate and the vertical axis represents the fluorine elution amount based on the data shown in FIG. 8.

以下、本発明の実施形態を図面を参照して説明する。
本実施形態の処理方法では、図1に示すように、製鉄所などで発生するフッ素を含有するスラグ混じり土Mをベルトコンベア1で搬送し、不溶化剤としてセメントCを粉体のままあるいはスラリー状にして添加しながら、回転式破砕混合装置(ツイスター混合装置)10に投入し、回転式破砕混合装置10によりスラグ混じり土Mを破砕し細粒化すると共に添加したセメントと混合し、路盤材として利用できる状態にする。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
In the treatment method of the present embodiment, as shown in FIG. 1, slag-mixed soil M containing fluorine generated at an ironworks or the like is conveyed by a belt conveyor 1, and cement C is used as an insolubilizer in a powder form or in a slurry form. While being added, it is put into a rotary crushing and mixing device (twister mixing device) 10, and the rotary crushing and mixing device 10 crushes and slags the soil M and mixes it with the added cement as a roadbed material. Make it available.

ここで使用する回転式破砕混合装置10は、円筒ケーシング11の中心部に図示しないモータによって高速回転させられる回転軸12を配置し、その回転軸12に多段にインパクトチェーン(ブレード)を取り付けたもので、スラグ混じり土Mを、セメントCを添加しながら円筒ケーシング11内に投入することにより、円筒ケーシング11内において回転する多段のインパクトチェーン13の打撃力によって、投入されたスラグ混じり土Mを破砕し細粒化してセメントCと混合する。ここで、インパクトチェーン13の回転数は可変であり、インパクトチェーン13の回転数を変化させることによって材料の破砕効果を調整する(粒度調整を行う)ことができるようになっている。ここで、インパクトチェーンとは、回転軸に取り付けられた鎖と、該鎖の先端側に端部を取り付けられた棒状のおもりとからなるものであり、円筒ケーシング11内において回転されて、鎖とおもりの打撃力によって、投入されたスラグ混じり土Mを破砕し細粒化してセメントCと混合するものである。   The rotary crushing and mixing apparatus 10 used here has a rotating shaft 12 that is rotated at a high speed by a motor (not shown) at the center of a cylindrical casing 11, and impact chains (blades) attached to the rotating shaft 12 in multiple stages. Then, the slag-mixed soil M is thrown into the cylindrical casing 11 while adding the cement C, so that the slag-mixed soil M is crushed by the striking force of the multistage impact chain 13 rotating in the cylindrical casing 11. Then, it is refined and mixed with cement C. Here, the rotation speed of the impact chain 13 is variable, and the crushing effect of the material can be adjusted (granularity adjustment is performed) by changing the rotation speed of the impact chain 13. Here, the impact chain is composed of a chain attached to the rotating shaft and a rod-like weight having an end attached to the tip end side of the chain, and is rotated in the cylindrical casing 11 to form a chain. The slag-mixed soil M is crushed and pulverized by the impact force of the weight and mixed with cement C.

本実施形態では、破砕前の土質分類レベルが細粒分まじり砂質礫であるスラグ混じり土Mを、回転式破砕混合装置10によって細粒分質礫質砂のレベルまで細粒化する。なお、土質のサイズによる分類は図2に示すようになっており、土質分類の中の礫質土の分類は図3、砂質土の分類は図4に示すようになっている。破砕前のスラグ混じり土は、図3の分類の中の細粒分まじり砂質礫(GS−F)であり、これを破砕することにより、図4の分類の中の細粒分質礫質砂のレベルまで細粒化する。   In the present embodiment, the slag-mixed soil M, whose soil classification level before crushing is fine-grained sandy gravel, is refined by the rotary crushing and mixing device 10 to the level of fine-grained gravelly sand. The classification according to the size of the soil is as shown in FIG. 2, the classification of the gravel soil in the soil classification is as shown in FIG. 3, and the classification of the sandy soil is as shown in FIG. The slag-mixed soil before crushing is fine-grained mixed sandy gravel (GS-F) in the classification of FIG. 3, and by crushing this, the fine-grained granular gravel in the classification of FIG. Refine to the level of sand.

その際のスラグ混じり土の破砕前と破砕後の粒度について調べたところ、図5に示すような結果が得られた。水砕スラグを添加する場合もあるので一緒に掲載した。破砕後のスラグ混じり土は、最大粒径も小さくなり、礫分が少なく砂分や細粒分が増えた。これらの使用材料の粒径加積曲線(粒径の対数を横軸に、粒径以下のものの重量を縦軸に全重量の百分率にとって表わした曲線)は、図6に示すようになった。水砕スラグは砂状のもので粒径が比較的そろっているが、スラグ混じり土は破砕前も破砕後も粒径が分散している。   When the particle sizes before and after crushing of the slag-mixed soil were examined, the results shown in FIG. 5 were obtained. Since granulated slag may be added, they are listed together. The slag-mixed soil after crushing also had a smaller maximum particle size, less gravel, and more sand and fine particles. The particle size accumulation curves of these materials used (the curve in which the logarithm of the particle size is plotted on the horizontal axis and the weight of those having a particle size below the vertical axis is expressed as a percentage of the total weight) are as shown in FIG. Granulated slag is sandy and has a relatively uniform particle size, but slag-mixed soil has a dispersed particle size before and after crushing.

次に実験例について説明する。
この実験で使用する破砕後のスラグ混じり土のフッ素溶出量およびpHを調べたところ、1.08mg/L、pH9.65であった。また、一緒に混ぜる水砕スラグのフッ素溶出量およびpHを調べたところ、0.17mg/L、pH7.4であった。実験で使用した回転式破砕混合装置10の仕様は次のものである。
・円筒ケーシング11の直径=1000mm
・インパクトチェーン13の回転数=750rpm
・インパクトチェーンの段数=3段
・インパクトチェーンの本数=12本(4本/段)
Next, experimental examples will be described.
When the fluorine elution amount and pH of the slag-mixed soil used in this experiment were examined, they were 1.08 mg / L and pH 9.65. Moreover, when the fluorine elution amount and pH of the granulated slag mixed together were investigated, they were 0.17 mg / L and pH 7.4. The specifications of the rotary crushing and mixing apparatus 10 used in the experiment are as follows.
-Diameter of cylindrical casing 11 = 1000 mm
-Number of revolutions of impact chain 13 = 750 rpm
-Number of stages of impact chain = 3 stages-Number of impact chains = 12 (4 / stage)

ここで実験したサンプルは、図7に示す3つの配合サンプルA、B、Cが本願発明例(回転式破砕混合装置10を用い、フッ素を含有するスラグ混じり土とセメントとを、破砕を伴いながら混合したもの)であり、Dが比較例(通常のミキサーを用い、フッ素を含有するスラグ混じり土とセメントとを、破砕を伴わず単に混合したもの)である。それらについて、フッ素溶出量およびpHについて調べたところ、同図に示すような結果が得られた。なお、フッ素の溶出試験は、環境省告示第46号に基づいて行った。サンプルA、Bは、スラグ混じり土100%で水砕スラグ0%のもの、サンプルCは、スラグ混じり土90%で水砕スラグ10%のものである。また、サンプルAはセメント添加率3%にした場合、サンプルB、Cはセメント添加率7.5%にした場合で、各々材齢7日と28日の場合を調べた。その結果、本願発明例のものは、いずれもフッ素の溶出量を土壌環境基準値0.8mg/L以下に抑制できた。一方、比較例のものは、フッ素の溶出量が土壌環境基準値0.8mg/Lを超えた。   The samples tested here are the three blended samples A, B, and C shown in FIG. 7, while the present invention example (rotary crushing and mixing device 10 is used, and the slag-mixed soil and cement containing fluorine are accompanied by crushing. D is a comparative example (using a normal mixer and simply mixing slag-mixed soil containing fluorine and cement without crushing). About these, when the fluorine elution amount and pH were investigated, the result as shown in the figure was obtained. The fluorine elution test was conducted based on Ministry of the Environment Notification No. 46. Samples A and B are 100% soil mixed with slag and 0% granulated slag, and sample C is 90% soil mixed with slag and 10% granulated slag. In addition, the sample A was set at a cement addition rate of 3%, the samples B and C were set at a cement addition rate of 7.5%, and the cases of ages 7 days and 28 days were examined. As a result, all of the invention examples of the present application were able to suppress the elution amount of fluorine to a soil environment standard value of 0.8 mg / L or less. On the other hand, in the comparative example, the fluorine elution amount exceeded the soil environmental standard value 0.8 mg / L.

この実験結果から分かるように、本願発明例のものは、セメント添加率が3%でも、フッ素の溶出量を環境基準以下にすることができる。また、水砕スラグを10%添加しても、フッ素の溶出量を環境基準以下にすることができる。従って、そのまま路盤材として有効利用することができることが明らかになった。なお、水砕スラグを添加したサンプルCについてフッ素の溶出量が低下したのは、ポゾラン活性のため不溶化が促進されたものと思われる。   As can be seen from the experimental results, the example of the present invention can keep the amount of fluorine eluted below the environmental standard even when the cement addition rate is 3%. Moreover, even if 10% of granulated slag is added, the elution amount of fluorine can be reduced below the environmental standard. Therefore, it became clear that it can be effectively used as it is as a roadbed material. In addition, it is thought that insolubilization was accelerated | stimulated because the pozzolanic activity reduced the elution amount of the fluorine about the sample C which added the granulated slag.

次にスラグ混じり土の細粒化の程度とセメント添加率をパラメータとしてフッ素の溶出量を検査した実験結果について考察する。
図8はその結果を示すデータ(材齢7日のもの)、図9は図8で示すデータを基に、横軸にスラグ混じり土を粒度別に区分けしたときの最大粒径をまた縦軸にフッ素溶出量をそれぞれとって表したグラフ、図10は図8で示すデータを基に、横軸にセメント添加率をまた縦軸にフッ素の溶出量をそれぞれとったグラフである。
Next, the experimental results of examining the elution amount of fluorine using the degree of grain refinement of slag-mixed soil and the cement addition rate as parameters are discussed.
FIG. 8 shows data (results of 7 days old) based on the results, and FIG. 9 shows the maximum particle size when slag is mixed on the horizontal axis and the soil is classified by particle size on the vertical axis. FIG. 10 is a graph with the horizontal axis representing the cement addition rate and the vertical axis representing the fluorine elution amount based on the data shown in FIG.

図9からわかるように、セメント添加率が2%程度であると、フッ素溶出量を0.8mg/L以下にするには、フッ素混じり土をたとえ細粒化したとしても難しいことがわかる。
また、図10に示すように、予め、フッ素の溶出基準を満たすセメントの添加量とスラグ混じり土の粒度との関係を求めておくことにより、その関係に基づいて、回転式破砕混合装置による破砕のレベルとセメント添加量との最適な組み合わせを決定することができ、それに基づいてスラグ混じり土を処理することにより、環境基準を満足しながら、経済性と効率性を両立させて路盤材に再生することができる。
例えば、フッ素の溶出量を0.8mg/Lに抑える場合、スラグ混じり土を細粒化したときの粒度範囲が0〜2mmあるいは2〜5mmであるときには、セメント添加率を2.3〜2.5%程度とすればよく、また、スラグ混じり土を細粒化したときの粒度範囲が5〜10mmであるときには、セメント添加率を3.4%程度まで増やさなければならず、さらに、スラグ混じり土を細粒化したときの粒度範囲が10〜30mmであるときには、セメント添加率を5.7%程度まで増やさなければならないことがわかる。
As can be seen from FIG. 9, when the cement addition rate is about 2%, it is difficult to reduce the fluorine elution amount to 0.8 mg / L or less even if the soil mixed with fluorine is made finer.
In addition, as shown in FIG. 10, by previously obtaining a relationship between the amount of cement that satisfies the fluorine elution standard and the particle size of the slag-mixed soil, crushing by a rotary crushing and mixing device based on the relationship. The optimum combination of the level of cement and the amount of cement added can be determined, and by treating soil mixed with slag based on this, it can be recycled into roadbed materials while satisfying environmental standards and at the same time achieving both economic efficiency and efficiency. can do.
For example, when the elution amount of fluorine is suppressed to 0.8 mg / L, when the particle size range when the slag-mixed soil is refined is 0 to 2 mm or 2 to 5 mm, the cement addition rate is 2.3 to 2. It should be about 5%, and when the particle size range when the slag-mixed soil is refined is 5 to 10 mm, the cement addition rate must be increased to about 3.4%, and further slag-mixed It can be seen that when the particle size range when the soil is refined is 10 to 30 mm, the cement addition rate must be increased to about 5.7%.

以上説明したように、本実施形態のような処理方法を実施することにより、細粒化による表面積の増加により、スラグ混じり土とセメントの混練性を高めることができ、フッ素の溶出基準を満たすために必要なセメント添加量を減らすことができて、ランニングコストの低減に寄与することができる。また、フッ素の溶出を抑えることができることにより、路盤材としてのスラグ混じり土の再生利用が可能となる。特にインパクトチェーン13の打撃により、スラグ混じり土を短時間に粉砕して微細化することができ、同時に添加したセメントと効率よく混合することができる。   As described above, by carrying out the treatment method as in the present embodiment, by increasing the surface area due to fine graining, the slag-mixed soil and cement can be improved in kneadability, and the fluorine elution standard is satisfied. It is possible to reduce the amount of cement necessary for the operation and contribute to the reduction of the running cost. Moreover, since the elution of fluorine can be suppressed, it becomes possible to recycle soil mixed with slag as a roadbed material. In particular, by hitting the impact chain 13, the soil mixed with slag can be pulverized and refined in a short time, and at the same time, it can be efficiently mixed with the added cement.

また、礫分を多量に含むスラグ混じり土(細粒分混じり砂質礫)を、砂分を多く含む土(細粒分質礫質砂)にまで破砕することで混練性をおおいに促進することができるので、不溶化の条件を満たしながら、セメントの添加量をより一層低減することができる。また、   In addition, slag-mixed soil containing a large amount of gravel (sand granule mixed with fine particles) is crushed into soil containing a large amount of sand (fine-grained gravel sand) to greatly promote kneadability. Therefore, the amount of cement added can be further reduced while satisfying the conditions for insolubilization. Also,

M スラグ混じり土
C セメント
10 回転式破砕混合装置
11 円筒ケーシング
13 インパクトチェーン
M Slag mixed soil C Cement 10 Rotary crushing and mixing device 11 Cylindrical casing 13 Impact chain

Claims (4)

フッ素を含有するスラグ混じり土を、不溶化剤としてセメントを添加しながら破砕混合装置に投入して、破砕し細粒化すると共に前記セメントと混合することを特徴とするスラグ混じり土の処理方法。   A method for treating slag-mixed soil, comprising adding fluorine-containing slag-mixed soil to a crushing and mixing apparatus while adding cement as an insolubilizing agent, crushing and pulverizing the mixture, and mixing with the cement. 前記破砕混合装置として、円筒ケーシングの内部に回転する多段のインパクトチェーンを配備した回転式破砕混合装置を使用し、前記スラグ混じり土を、不溶化剤としてセメントを添加しながら前記円筒ケーシング内に投入し、該円筒ケーシング内において回転する多段のインパクトチェーンの打撃力により、破砕すると共に前記セメントと混合することを特徴とする請求項1に記載のスラグ混じり土の処理方法。   As the crushing and mixing device, a rotary crushing and mixing device provided with a multistage impact chain rotating inside the cylindrical casing is used, and the slag mixed soil is put into the cylindrical casing while adding cement as an insolubilizing agent. The method for treating slag-mixed soil according to claim 1, wherein the slag-mixed soil is crushed and mixed with the cement by a striking force of a multistage impact chain rotating in the cylindrical casing. 前記回転式破砕混合装置により、前記スラグ混じり土を、土質分類における細粒分質礫質砂のレベルまで細粒化して前記セメントと混合することを特徴とする請求項2に記載のスラグ混じり土の処理方法。   3. The slag-mixed soil according to claim 2, wherein the slag-mixed soil is refined to the level of fine-grained gravels in the soil classification and mixed with the cement by the rotary crushing and mixing device. Processing method. 予め、前記フッ素の溶出基準を満たす前記セメントの添加量とスラグ混じり土の粒度との関係を求めておき、その関係に基づいて、前記回転式破砕混合装置による破砕のレベルと前記セメント添加量との組み合わせを決定して処理することを特徴とする請求項2または3に記載のスラグ混じり土の処理方法。   In advance, a relationship between the amount of cement that satisfies the fluorine elution standard and the particle size of the slag-mixed soil is determined, and based on the relationship, the level of crushing by the rotary crushing and mixing device and the amount of cement added 4. The method for treating soil mixed with slag according to claim 2, wherein the combination is determined and processed.
JP2012005125A 2012-01-13 2012-01-13 Treatment method of soil mixed with slag Active JP6113957B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012005125A JP6113957B2 (en) 2012-01-13 2012-01-13 Treatment method of soil mixed with slag

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012005125A JP6113957B2 (en) 2012-01-13 2012-01-13 Treatment method of soil mixed with slag

Publications (2)

Publication Number Publication Date
JP2013144269A true JP2013144269A (en) 2013-07-25
JP6113957B2 JP6113957B2 (en) 2017-04-12

Family

ID=49040407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012005125A Active JP6113957B2 (en) 2012-01-13 2012-01-13 Treatment method of soil mixed with slag

Country Status (1)

Country Link
JP (1) JP6113957B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108637002A (en) * 2018-04-08 2018-10-12 魏焰 A kind of automatic prosthetic appliance of soil for remediation contaminated soil
CN114632798A (en) * 2022-03-18 2022-06-17 上海市政工程设计研究总院(集团)有限公司 Multistage pretreatment system and method for engineering muck
CN115521113A (en) * 2022-10-14 2022-12-27 中国水利水电第五工程局有限公司 Method for treating waste muck of pipe jacking in sandstone stratum
CN115819058A (en) * 2022-11-02 2023-03-21 北京市首发天人生态景观有限公司 Brick making method by adopting alkaline shield muck
CN117484666A (en) * 2023-12-20 2024-02-02 重庆大学 Light equipment for pre-treatment of engineering dregs and manufacturing method of performance-adaptive product

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5439318A (en) * 1992-12-30 1995-08-08 Stark; J. Norman Cementitious encapsulation of waste materials and/or contaminated soils containing heavy metals to render them immobile
EP1447137A1 (en) * 2003-02-11 2004-08-18 Omanik, Stefan, Ing. A method of milling materials and an apparatus for carrying out this method
JP2005021888A (en) * 2003-06-10 2005-01-27 Jdc Corp Method and system for cleaning contaminated solid substance
JP2005162895A (en) * 2003-12-03 2005-06-23 Sumitomo Osaka Cement Co Ltd Material for hardening harmful substance
JP2008273770A (en) * 2007-04-26 2008-11-13 Nippon Steel Corp Method for suppressing elution of fluorine from slag
JP2010022945A (en) * 2008-07-22 2010-02-04 Jdc Corp Method for manufacturing fiber-containing soil material, method for refining fiber-containing soil material, and fiber-containing soil material
JP2010207698A (en) * 2009-03-10 2010-09-24 Sintokogio Ltd Waste treatment method in foundry
JP2010222227A (en) * 2009-03-25 2010-10-07 Nippon Steel Corp Method for suppressing fluorine elution from fluorine-containing electric furnace slag
EP2347835A1 (en) * 2008-10-10 2011-07-27 Institute of National Colleges of Technology, Japan Fluorine insolubilizing agent, gypsum with elution of fluorine contained therein being reduced, and method for treating soil contaminated with fluirine

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5439318A (en) * 1992-12-30 1995-08-08 Stark; J. Norman Cementitious encapsulation of waste materials and/or contaminated soils containing heavy metals to render them immobile
EP1447137A1 (en) * 2003-02-11 2004-08-18 Omanik, Stefan, Ing. A method of milling materials and an apparatus for carrying out this method
JP2005021888A (en) * 2003-06-10 2005-01-27 Jdc Corp Method and system for cleaning contaminated solid substance
JP2005162895A (en) * 2003-12-03 2005-06-23 Sumitomo Osaka Cement Co Ltd Material for hardening harmful substance
JP2008273770A (en) * 2007-04-26 2008-11-13 Nippon Steel Corp Method for suppressing elution of fluorine from slag
JP2010022945A (en) * 2008-07-22 2010-02-04 Jdc Corp Method for manufacturing fiber-containing soil material, method for refining fiber-containing soil material, and fiber-containing soil material
EP2347835A1 (en) * 2008-10-10 2011-07-27 Institute of National Colleges of Technology, Japan Fluorine insolubilizing agent, gypsum with elution of fluorine contained therein being reduced, and method for treating soil contaminated with fluirine
JP2010207698A (en) * 2009-03-10 2010-09-24 Sintokogio Ltd Waste treatment method in foundry
JP2010222227A (en) * 2009-03-25 2010-10-07 Nippon Steel Corp Method for suppressing fluorine elution from fluorine-containing electric furnace slag

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108637002A (en) * 2018-04-08 2018-10-12 魏焰 A kind of automatic prosthetic appliance of soil for remediation contaminated soil
CN114632798A (en) * 2022-03-18 2022-06-17 上海市政工程设计研究总院(集团)有限公司 Multistage pretreatment system and method for engineering muck
CN114632798B (en) * 2022-03-18 2023-04-11 上海市政工程设计研究总院(集团)有限公司 Multistage pretreatment system and method for engineering muck
CN115521113A (en) * 2022-10-14 2022-12-27 中国水利水电第五工程局有限公司 Method for treating waste muck of pipe jacking in sandstone stratum
CN115819058A (en) * 2022-11-02 2023-03-21 北京市首发天人生态景观有限公司 Brick making method by adopting alkaline shield muck
CN117484666A (en) * 2023-12-20 2024-02-02 重庆大学 Light equipment for pre-treatment of engineering dregs and manufacturing method of performance-adaptive product

Also Published As

Publication number Publication date
JP6113957B2 (en) 2017-04-12

Similar Documents

Publication Publication Date Title
JP6113957B2 (en) Treatment method of soil mixed with slag
JP2012025631A (en) Regenerated concrete comprising reclaimed material from waste concrete as main material, and method for producing the same, and method for processing waste concrete for obtaining the reclaimed material
JP2012055804A (en) Plant and method for producing macadam and crushed sand
JPWO2015005218A1 (en) Method for producing granulated raw material for sintering
JP4965065B2 (en) Method for producing ground material and method for reusing ground material obtained thereby
JP6036295B2 (en) Pretreatment method of sintering raw materials
JP4109376B2 (en) Method for producing soil mortar using lime-treated soil and embankment method using the same
JP2006016212A (en) Concrete composition
JP2005054460A (en) Soil improving equipment
CN106694191A (en) Smashing device for cement machining
JP5894057B2 (en) Low strength concrete for pumping and manufacturing method of low strength concrete for pumping
JPWO2010113571A1 (en) Iron ore raw material grinding method
JP4847056B2 (en) Concrete containing crushed shell
JP6260038B2 (en) Granulation and solidification method of liquid mud
JP3831101B2 (en) Fluidization processing method and mixed crushing apparatus used therefor
CN102517443A (en) Method for preparing pellet binder by using fine-graded iron tailings
CN105347709A (en) Steel slag treatment process for preparing cement blending agent by using waste steel slag
JPWO2017094255A1 (en) Method for producing sintered ore
JP3619389B2 (en) Method for producing blast furnace slag fine aggregate
JP2000290049A (en) Fine aggregate for concrete and its production
CN111348855A (en) Method for producing machine-made sand by using ore-smelting slag
JP2002227237A (en) Method for improving soil generated by construction
JP5426070B2 (en) Method for producing aggregate composition for shotcrete and method for producing shotcrete
JP6372123B2 (en) Method for producing solidified concrete
JP5928731B2 (en) Manufacturing method and apparatus for granulating raw material for sintering

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150527

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160218

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20160314

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20160401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170316

R150 Certificate of patent or registration of utility model

Ref document number: 6113957

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250