JP4969136B2 - Actuator manufacturing method - Google Patents

Actuator manufacturing method Download PDF

Info

Publication number
JP4969136B2
JP4969136B2 JP2006110495A JP2006110495A JP4969136B2 JP 4969136 B2 JP4969136 B2 JP 4969136B2 JP 2006110495 A JP2006110495 A JP 2006110495A JP 2006110495 A JP2006110495 A JP 2006110495A JP 4969136 B2 JP4969136 B2 JP 4969136B2
Authority
JP
Japan
Prior art keywords
actuator
forming
semiconductor substrate
movable
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006110495A
Other languages
Japanese (ja)
Other versions
JP2007283413A (en
Inventor
洋貴 今西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Signal Co Ltd
Original Assignee
Nippon Signal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Signal Co Ltd filed Critical Nippon Signal Co Ltd
Priority to JP2006110495A priority Critical patent/JP4969136B2/en
Publication of JP2007283413A publication Critical patent/JP2007283413A/en
Application granted granted Critical
Publication of JP4969136B2 publication Critical patent/JP4969136B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、半導体基板で外枠部、梁部及び可動部を一体的に形成するアクチュエータの製造方法に関し、特に、直流(非共振)でも可動部を大きく揺動でき、また、光走査用アクチュエータに適用した時に光ビーム走査範囲の制約がないアクチュエータの製造方法に関する。 The present invention has an outer frame portion in a semiconductor substrate, relates to a manufacturing method of actuator integrally forming the beam portion and the movable portion, in particular, can greatly swung movable portion even DC (non-resonant), also for optical scanning actuator method for producing the actuator is no restriction of the light beam scanning range when applied to.

従来、半導体基板で外枠部、梁部及び可動部を一体形成するプレーナ型アクチュエータの製造方法としては、研磨等により可動部の駆動性等を考慮した所定厚さ(例えば約100μm)に形成したシリコン基板の表面を酸化し、駆動回路から可動部駆動用の電気信号が供給される電気配線部として駆動コイル(電磁駆動方式のアクチュエータの場合)を半導体基板の可動部形成部位に形成した後、半導体基板を異方性エッチングして貫通穴を形成し、外枠部、梁部及び可動部を形成する方法がある(例えば、特許文献1参照)。   Conventionally, as a manufacturing method of a planar type actuator in which an outer frame portion, a beam portion, and a movable portion are integrally formed on a semiconductor substrate, it is formed to a predetermined thickness (for example, about 100 μm) in consideration of driveability of the movable portion by polishing or the like. After oxidizing the surface of the silicon substrate and forming a drive coil (in the case of an electromagnetically driven actuator) as an electrical wiring part to which an electrical signal for driving the movable part is supplied from the drive circuit, in the movable part forming part of the semiconductor substrate, There is a method in which a semiconductor substrate is anisotropically etched to form a through hole, and an outer frame portion, a beam portion, and a movable portion are formed (see, for example, Patent Document 1).

また、研磨等により可動部の駆動性等を考慮した所定厚さ(例えば約100μm)に形成したシリコン基板の表面を酸化し、半導体基板の一方の面にガラス基板等の支持部材を接着或いは陽極接合し、半導体基板の支持部材取付け面と反対側の可動部形成部位に駆動コイルを形成した後、シリコン基板を異方性エッチングして貫通穴を形成し、外枠部、梁部及び可動部を形成する方法がある(例えば、特許文献2参照)。
特開2002−14297号公報 特開2005−88152号公報
Further, the surface of the silicon substrate formed to have a predetermined thickness (for example, about 100 μm) considering the driveability of the movable part by polishing or the like is oxidized, and a supporting member such as a glass substrate is bonded to one surface of the semiconductor substrate or the anode After joining and forming a drive coil in the movable part forming part opposite to the support member mounting surface of the semiconductor substrate, the silicon substrate is anisotropically etched to form a through hole, an outer frame part, a beam part and a movable part There is a method of forming (see, for example, Patent Document 2).
JP 2002-14297 A JP-A-2005-88152

しかしながら、前者の製造方法は、取り扱う半導体基板が薄いため駆動コイル形成工程等において汎用の製造装置を用いることができず、新たに特殊な製造装置が必要である。また、半導体基板が薄いため製造工程中や完成後のハンドリング性に難がある。   However, in the former manufacturing method, since a semiconductor substrate to be handled is thin, a general-purpose manufacturing apparatus cannot be used in a drive coil formation process or the like, and a new special manufacturing apparatus is required. In addition, since the semiconductor substrate is thin, it is difficult to handle during and after the manufacturing process.

一方、後者の製造方法は、駆動コイル形成工程の前に半導体基板に支持部材を接合して厚くすることで、汎用の製造装置の使用が可能であるが、半導体基板自体は薄いため、支持部材と接着させる際の半導体基板のハンドリング性に難がある。また、光走査用アクチュエータに適用する場合、可動部に反射ミラーを設けるが、可動部のコイル形成面と反対側で支持部材接合側に反射ミラーを形成した場合、支持部材の厚みにより光ビームの入射及び反射の角度が制約されて光ビーム走査範囲が狭くなるという問題がある。一方、反射ミラーをコイル形成面側に形成した場合、光ビーム走査範囲の制約はなくなるが、駆動コイル形成部分を避けて可動部中央部に反射ミラーを形成するので、半導体基板の支持部材取付け面側に形成する場合と比較して反射ミラーが小さくなってしまう。半導体基板の支持部材取付け面側に形成する場合と同じ反射ミラーサイズを確保しようとすれば、チップ外形が大きくなってしまう。   On the other hand, in the latter manufacturing method, a general-purpose manufacturing apparatus can be used by joining and thickening the support member to the semiconductor substrate before the drive coil forming step. However, since the semiconductor substrate itself is thin, the support member It is difficult to handle the semiconductor substrate when it is bonded. In addition, when applied to an optical scanning actuator, a reflective mirror is provided on the movable part. However, when a reflective mirror is formed on the support member joining side on the side opposite to the coil forming surface of the movable part, the thickness of the support member causes the light beam to be reflected. There is a problem that the angle of incidence and reflection is restricted and the light beam scanning range becomes narrow. On the other hand, when the reflecting mirror is formed on the coil forming surface side, there is no restriction on the light beam scanning range, but the reflecting mirror is formed at the center of the movable portion avoiding the drive coil forming portion, so the supporting member mounting surface of the semiconductor substrate Compared with the case where it forms in the side, a reflective mirror will become small. If an attempt is made to secure the same reflecting mirror size as that formed on the support member mounting surface side of the semiconductor substrate, the outer shape of the chip becomes large.

ところで、この種のプレーナ型アクチュエータは、可動部厚さが薄い程小さい力で可動部を駆動でき可動部の駆動性が向上するが、前述の両製造方法では、半導体基板の輸送や、製造工程や完成後のハンドリング性を考慮すると、可動部を極端に薄く(例えば約50μm以下)形成することが難しい。   By the way, this type of planar type actuator can drive the movable part with a smaller force as the movable part thickness is thinner, and the driveability of the movable part is improved. In view of handling properties after completion, it is difficult to form the movable part extremely thin (for example, about 50 μm or less).

尚、SOI(Silicon On Insulator)基板を用いれば、製造工程等におけるハンドリング性を確保でき、中間のSiO2層がエッチストップ層となるので、可動部の厚さを精密に管理でき可動部を極端に薄く(例えば約50μm以下)形成することは可能であるが、SOI基板が高価であるためアクチュエータの製造コストをアップさせる問題がある。 If an SOI (Silicon On Insulator) substrate is used, handling properties in the manufacturing process can be ensured, and the intermediate SiO 2 layer becomes an etch stop layer, so that the thickness of the movable part can be precisely controlled and the movable part is made extremely However, since the SOI substrate is expensive, there is a problem that the manufacturing cost of the actuator is increased.

本発明は上記問題点に着目してなされたもので、製造コストが安価で、可動部の駆動性を向上できると共に、光走査用アクチュエータに適用した場合に光ビーム走査範囲が制約されないアクチュエータを、SOI基板を使用することなく安価に製造できるアクチュエータの製造方法を提供することを目的とする。 The present invention has been made paying attention to the above-mentioned problems, manufacturing cost is low, can improve the driveability of the movable part, and when applied to an optical scanning actuator, an actuator whose light beam scanning range is not restricted , An object of the present invention is to provide an actuator manufacturing method that can be manufactured at low cost without using an SOI substrate.

このため、請求項1に記載の本発明のアクチュエータ製造方法は、半導体基板で一体形成された外枠部、梁部及び当該梁部を介して前記外枠部に回動可能に軸支される可動部を有すると共に可動部駆動用の電気信号が供給される電気配線部を有するアクチュエータ部を備えるアクチュエータの製造方法であって、製造工程中におけるハンドリングに支障のない厚さの半導体基板を準備し当該半導体基板の一方の面のアクチュエータ部形成部位に、前記電気配線部を形成する工程と、電気配線部形成後の半導体基板の電気配線部形成側と同じ面に、前記アクチュエータ部を支持する支持部形成用の支持部材を接合する工程と、前記支持部材接合後に前記支持部材接合面と反対側の半導体基板面を、前記アクチュエータ部に要求される所望の厚さまで研削する工程と、研削後の半導体基板のアクチュエータ部形成部位に、エッチングにより梁部及び可動部を形成する工程とを備えることを特徴とする。 For this reason, the actuator manufacturing method according to the first aspect of the present invention is pivotally supported by the outer frame portion through the outer frame portion, the beam portion, and the beam portion integrally formed with the semiconductor substrate. An actuator manufacturing method comprising an actuator unit having a movable part and an electric wiring part to which an electrical signal for driving the movable part is supplied, and a semiconductor substrate having a thickness that does not hinder handling during the manufacturing process is prepared. The step of forming the electric wiring portion on the actuator portion forming portion on one surface of the semiconductor substrate and the support for supporting the actuator portion on the same surface as the electric wiring portion forming side of the semiconductor substrate after the electric wiring portion is formed and bonding a supporting member for parts forming the supporting member and the supporting member joining surface opposite to the semiconductor substrate surface after bonding, a desired thickness required for the actuator unit A step of grinding in the actuator portion formation region of a semiconductor substrate after grinding, characterized in that it comprises a step of forming a beam portion and the movable portion by etching.

請求項のように、前記電気配線部形成工程は、前記可動部上に通電により磁界を発生する駆動コイルを形成するようにするとよい。
請求項のように、前記梁部及び可動部の形成工程の後に、前記可動部の電気配線部形成面と反対側の面に反射ミラーを形成する工程を設けるとよい。
According to a second aspect of the present invention, in the electric wiring portion forming step, a driving coil that generates a magnetic field by energization is preferably formed on the movable portion.
According to a third aspect of the present invention, a step of forming a reflection mirror on a surface of the movable portion opposite to the electric wiring portion forming surface may be provided after the beam portion and movable portion forming step.

本発明の製造方法によれば、製造工程中におけるハンドリングに支障のない厚さの半導体基板を準備して半導体基板の一方の面のアクチュエータ部形成部位に電気配線部を形成し、電気配線部形成面側に支持部材を接合した後、半導体基板を研削して任意の厚さにするので、従来と比較して厚い半導体基板を使用することができ、電気配線部形成工程も含めて製造工程におけるハンドリング性が良好になると共に、汎用の製造装置を使用することができる。また、支持部材を接合した状態で半導体基板の厚さを自由に調整できるので、支持部材を接合した状態で保管管理すれば多品種少量生産に対応できる利点がある。更に、支持部材によりハンドリングが良好な状態でアクチュエータ部の可動部相当部分を研削することで、可動部厚さが極めて薄いアクチュエータを形成でき、直流(非共振)でも可動部を大きく回動(大振幅駆動)できる駆動性に優れたアクチュエータの製造が可能となる。 According to the manufacturing method of the present invention, a semiconductor substrate having a thickness that does not hinder handling during the manufacturing process is prepared, and an electric wiring portion is formed at an actuator portion forming portion on one surface of the semiconductor substrate. After bonding the support member to the surface side, the semiconductor substrate is ground to an arbitrary thickness, so that a thicker semiconductor substrate can be used compared to the conventional one, and in the manufacturing process including the electric wiring part forming process The handling property is improved, and a general-purpose manufacturing apparatus can be used. Further, since the thickness of the semiconductor substrate can be freely adjusted with the support member joined, there is an advantage that it is possible to cope with high-mix low-volume production if stored and managed with the support member joined. Furthermore, by grinding the part corresponding to the movable part of the actuator part with good handling by the support member, an actuator with a very thin movable part can be formed, and the movable part can be rotated (large) even with direct current (non-resonant). An actuator having excellent drivability that can be (amplitude driven) can be manufactured.

以下、本発明の実施形態を図面に基づいて説明する。
図1は、本発明に係るアクチュエータ製造方法により製造したアクチュエータの構成例を示す分解斜視図である。尚、以下では、アクチュエータとして電磁駆動方式の光走査用アクチュエータである一次元ガルバノミラーを例に説明する。
図1に示すガルバノミラーは、アクチュエータ部1と、支持部10とを備えて構成する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is an exploded perspective view showing a configuration example of an actuator manufactured by the actuator manufacturing method according to the present invention. In the following description, a one-dimensional galvanometer mirror, which is an electromagnetically driven optical scanning actuator, will be described as an example.
The galvanometer mirror shown in FIG. 1 includes an actuator unit 1 and a support unit 10.

前記アクチュエータ部1は、外枠部2に一対の梁部3,3で可動部4が回動可能に軸支された構成を有している。そして、外枠部2、梁部3,3及び可動部4は共に同一の厚さからなり、後述するように半導体基板である例えばシリコン基板20(図4に示す)で一体的に形成される。   The actuator part 1 has a configuration in which a movable part 4 is pivotally supported by an outer frame part 2 by a pair of beam parts 3 and 3. The outer frame portion 2, the beam portions 3 and 3, and the movable portion 4 all have the same thickness, and are integrally formed with a semiconductor substrate such as a silicon substrate 20 (shown in FIG. 4) as will be described later. .

可動部4表面側の周縁部には、図示しない駆動回路から可動部駆動用の電気信号として駆動電流が供給される電気配線部である駆動コイル5が形成されている。この駆動コイル5は、梁部3,3を介して外枠部2側に引出されて一対の電極端子6,6に接続され、電極端子6,6を例えばワイヤボンディング等により駆動回路に接続する。梁部3,3の軸線に平行な可動部4の対辺側方で外枠部2の外側には、静磁界を発生する例えば一対の永久磁石7,7が配置される。そして、可動部4裏面側の全面には、例えばアルミニウム等で形成した反射ミラー8(図3(f)に示す)が形成されている。   A drive coil 5 that is an electric wiring portion to which a drive current is supplied as an electric signal for driving the movable portion from a drive circuit (not shown) is formed on the peripheral portion on the surface side of the movable portion 4. The drive coil 5 is pulled out to the outer frame portion 2 side through the beam portions 3 and 3 and connected to the pair of electrode terminals 6 and 6, and the electrode terminals 6 and 6 are connected to the drive circuit by, for example, wire bonding. . For example, a pair of permanent magnets 7 and 7 that generate a static magnetic field are disposed outside the outer frame portion 2 on the opposite side of the movable portion 4 parallel to the axis of the beam portions 3 and 3. A reflection mirror 8 (shown in FIG. 3F) formed of, for example, aluminum is formed on the entire back surface of the movable portion 4.

更に、アクチュエータ部1の駆動コイル5形成面と同じ側の外枠部2の面(図1では上面)に、アクチュエータ部1を支持する支持部10が接着剤或いは陽極接合等により接合される。この支持部10は、例えばガラス基板で形成され、アクチュエータ部1の可動部4及び梁部3,3に対応する部分に、可動部4の回動動作を妨げないように十分な深さを有する上に凹状の溝部11が形成されている。また、外枠部2の電極端子6,6に対応する部分に、貫通孔12,12が形成され、この貫通孔12,12を介して電極端子6,6と駆動回路とをワイヤボンディングで接続するようになっている。尚、前記溝部11ではなく貫通孔でもよい。   Further, a support portion 10 that supports the actuator portion 1 is joined to the surface of the outer frame portion 2 (upper surface in FIG. 1) on the same side as the drive coil 5 formation surface of the actuator portion 1 by an adhesive or anodic bonding. The support portion 10 is formed of, for example, a glass substrate, and has a sufficient depth at a portion corresponding to the movable portion 4 and the beam portions 3 and 3 of the actuator portion 1 so as not to hinder the rotation operation of the movable portion 4. A concave groove 11 is formed on the top. Further, through holes 12 and 12 are formed in portions corresponding to the electrode terminals 6 and 6 of the outer frame portion 2, and the electrode terminals 6 and 6 and the drive circuit are connected by wire bonding through the through holes 12 and 12. It is supposed to be. A through hole may be used instead of the groove 11.

この電磁駆動式ガルバノミラーの動作について簡単に説明する。
駆動回路から可動部4上の駆動コイル5に駆動電流を供給すると磁界が発生し、この磁界と永久磁石7,7による静磁界との相互作用によりローレンツ力が発生し、梁部3,3の軸方向と平行な可動部両対辺部に互いに逆方向の電磁力が発生し、梁部3,3を軸中心として可動部4が回動する。この回動動作に伴って梁部3,3が捩じられ梁部3,3にばね力が発生する。この梁部3,3のばね力と駆動電流の供給により発生した電磁力とが釣合う位置まで可動部4が回動する。
The operation of this electromagnetically driven galvanometer mirror will be briefly described.
When a drive current is supplied from the drive circuit to the drive coil 5 on the movable part 4, a magnetic field is generated. A Lorentz force is generated by the interaction between this magnetic field and the static magnetic field generated by the permanent magnets 7, 7. Electromagnetic forces in opposite directions are generated on opposite sides of the movable part parallel to the axial direction, and the movable part 4 rotates about the beam parts 3 and 3 as the axis center. With this rotation, the beam portions 3 and 3 are twisted and a spring force is generated in the beam portions 3 and 3. The movable portion 4 rotates to a position where the spring force of the beam portions 3 and 3 and the electromagnetic force generated by supplying the drive current are balanced.

駆動電流として駆動コイル5に直流電流を流せば電流量に応じた回動位置で可動部4は停止するので、電流量に応じて可動部4の回動角度を制御して光ビームを所望の方向に偏向可能な光偏向器を実現できる。駆動電流として駆動コイル5に正弦波等の交流電流を流せば可動部4が揺動するので、反射ミラー8により光ビームを走査することができる。交流電流の周波数を可動部4の揺動運動の共振周波数に設定すれば、一定周期で連続走査可能な光走査デバイスが実現できる。   If a direct current is applied to the drive coil 5 as a drive current, the movable part 4 stops at a rotation position corresponding to the amount of current. Therefore, the rotation angle of the movable part 4 is controlled in accordance with the amount of current to control the desired light beam. An optical deflector capable of deflecting in the direction can be realized. If an alternating current such as a sine wave is passed through the drive coil 5 as a drive current, the movable part 4 swings, so that the light beam can be scanned by the reflection mirror 8. If the frequency of the alternating current is set to the resonance frequency of the oscillating motion of the movable portion 4, an optical scanning device capable of continuous scanning at a constant period can be realized.

かかる構成のアクチュエータによれば、支持部10が駆動コイル形成面側にあるので、可動部4の駆動コイル形成面と反対側に反射ミラー8を形成することで、支持部10により光ビームの入射及び反射の角度が制約される心配がなく光ビーム走査範囲を広くできる。また、可動部4の全面に反射ミラー8を形成できるので、ミラーサイズを大きくできる。また、従来のように駆動コイル部分を避けて可動部中央部に反射ミラーを形成した場合と同じサイズの反射ミラーとするならば、アクチュエータ部1全体のチップ外形を小型化できる。   According to the actuator having such a configuration, since the support portion 10 is on the drive coil forming surface side, a light beam is incident on the support portion 10 by forming the reflection mirror 8 on the side opposite to the drive coil forming surface of the movable portion 4. In addition, the light beam scanning range can be widened without worrying that the angle of reflection is restricted. Further, since the reflecting mirror 8 can be formed on the entire surface of the movable portion 4, the mirror size can be increased. Further, if the reflection mirror having the same size as the case where the reflection mirror is formed in the central portion of the movable portion while avoiding the drive coil portion as in the prior art, the chip outline of the entire actuator portion 1 can be reduced in size.

次に、本発明のアクチュエータ製造方法を、図1のガルバノミラーの製造方法を例に、図2〜図4を参照して説明する。尚、図2及び図3は、図1におけるA−A線断面を示している。   Next, an actuator manufacturing method according to the present invention will be described with reference to FIGS. 2 to 4 by taking the galvanomirror manufacturing method of FIG. 1 as an example. 2 and 3 show a cross section taken along line AA in FIG.

図2の工程(a)において、駆動コイル形成工程等において汎用の製造装置を用いることが可能で、製造工程中におけるハンドリングに支障がない十分な厚さ(例えば250μm以上)のシリコン基板20を準備し、このシリコン基板20の上下面を熱酸化して1μm程度のSiO2絶縁層21を形成した後、駆動コイル形成面と反対のシリコン基板面側(図中下側)のSiO2絶縁層のみをウェットエッチングまたはドライエッチングにより除去する。尚、絶縁層は、熱酸化に限らず、CVD等既知の方法によりシリコン基板20の駆動コイル形成面側のみに形成するようにしてもよい。また、駆動コイル形成面と反対側のシリコン基板面(図中、下側)のSiO2絶縁層は本工程で除去せずに、後述する図3の工程(d)の研削時に同時に除去するようにしても良い。 In the step (a) of FIG. 2, a silicon substrate 20 having a sufficient thickness (for example, 250 μm or more) is prepared so that a general-purpose manufacturing apparatus can be used in the drive coil forming step and the like, and handling is not hindered during the manufacturing step. and, the upper and lower surfaces of the silicon substrate 20 after the formation of the SiO 2 insulating layer 21 of about 1μm is thermally oxidized, SiO 2 insulating layer of the driving coil forming surface opposite the silicon substrate surface side (lower side in the figure) only Are removed by wet etching or dry etching. The insulating layer is not limited to thermal oxidation, and may be formed only on the drive coil forming surface side of the silicon substrate 20 by a known method such as CVD. Further, the SiO 2 insulating layer on the silicon substrate surface opposite to the drive coil forming surface (lower side in the figure) is not removed in this step, but is removed at the time of grinding in step (d) of FIG. 3 to be described later. Anyway.

次に、工程(b)において、シリコン基板20のSiO2絶縁層21上に駆動コイル5を形成する。駆動コイル5の形成方法は、SiO2絶縁層21全面に例えば良電導性の金属としてアルミニウムの薄膜を1μm程度の厚みでスパッタリング等の既知の成膜技術により形成する。その後、その上にレジストを塗布し、駆動コイル5、引出線及び電極端子6,6からなる電気配線部のレジストを残して電気配線形状のレジストパターンを形成する。そして、これをマスクとしてアルミニウム薄膜をエッチングして駆動コイル5、引出線及び電極端子6,6を形成する。尚、エッチングはエッチング液を使用して行うウェットエッチング又は反応性ガスを使用して行うドライエッチングのいずれの方法で行ってもよい。次に、電気配線部の上に感光性ポリイミドの絶縁層を形成する。この場合、外部の駆動回路と電気的接続をとるための電極端子6,6(図1参照)に相当する部分を除いて、絶縁層がパターン形成される。具体的には、シリコン基板20側上面全面に感光性ポリイミドを塗布して形成する。塗布は、スピンコート法、スリットダイコート法、スプレー法、ロールコート法、ディップ法などの既知の方法を適用して行う。ここで、例えばポジ型の感光性ポリイミドを使用した場合には、電極端子6,6に相当する部分以外の所要部分をマスクして紫外線露光する。ポジ型の感光性ポリイミドの場合は、露光部分が現像液に溶解するため電極端子6,6に相当する部分が露光され、現像することにより当該相当部分の感光性ポリイミドが除去される。尚、電気配線部の上の絶縁層はポリイミドに限らず、CVD等既知の方法により形成することができるSiO2膜、SiN膜等でも良い。 Next, in step (b), the drive coil 5 is formed on the SiO 2 insulating layer 21 of the silicon substrate 20. The drive coil 5 is formed by forming a thin film of aluminum as a highly conductive metal, for example, with a thickness of about 1 μm on the entire surface of the SiO 2 insulating layer 21 by a known film formation technique such as sputtering. Thereafter, a resist is applied thereon, and a resist pattern having an electric wiring shape is formed while leaving a resist for the electric wiring portion including the drive coil 5, the lead line, and the electrode terminals 6 and 6. Then, using this as a mask, the aluminum thin film is etched to form the drive coil 5, lead lines and electrode terminals 6 and 6. Etching may be performed by either wet etching using an etching solution or dry etching using a reactive gas. Next, an insulating layer of photosensitive polyimide is formed on the electric wiring portion. In this case, the insulating layer is patterned except for portions corresponding to electrode terminals 6 and 6 (see FIG. 1) for electrical connection with an external drive circuit. Specifically, photosensitive polyimide is applied and formed on the entire upper surface of the silicon substrate 20 side. The coating is performed by applying a known method such as a spin coating method, a slit die coating method, a spray method, a roll coating method, or a dip method. Here, for example, when positive type photosensitive polyimide is used, a necessary portion other than the portions corresponding to the electrode terminals 6 and 6 is masked and exposed to ultraviolet rays. In the case of the positive type photosensitive polyimide, the exposed portion is dissolved in the developer, so that the portion corresponding to the electrode terminals 6 and 6 is exposed and developed to remove the corresponding portion of the photosensitive polyimide. The insulating layer on the electric wiring portion is not limited to polyimide, but may be a SiO 2 film, a SiN film, or the like that can be formed by a known method such as CVD.

次に、工程(c)において、シリコン基板20の駆動コイル5の形成面と同じ面に、支持部10形成用の支持部材30を接合する。支持部材30は、図4に示すように、シリコン基板20と同形状で例えば厚さが約350μm程度のガラス基板で、シリコン基板20の各アクチュエータ部形成部の可動部4及び梁部3,3相当部分に対応して複数の溝部31が形成されている。これら溝部31は、ドライエッチング等により形成することができる。シリコン基板20と支持部材30の接合は、図4に示すようにシリコン基板20及び支持部材30の各オリフラ20a,30aの位置を合わせて積層し、陽極接合或いは接着剤により接合する。また、シリコン基板20と支持部材30の位置合わせは、専用のアライメントマークをそれぞれ設けて行っても良い。尚、図2及図3は、シリコン基板20における1つのアクチュエータ部の形成工程を示してある。   Next, in the step (c), the support member 30 for forming the support portion 10 is bonded to the same surface as the formation surface of the drive coil 5 of the silicon substrate 20. As shown in FIG. 4, the support member 30 is a glass substrate having the same shape as the silicon substrate 20 and having a thickness of, for example, about 350 μm, and the movable portion 4 and the beam portions 3 and 3 of each actuator portion forming portion of the silicon substrate 20. A plurality of groove portions 31 are formed corresponding to the corresponding portions. These groove portions 31 can be formed by dry etching or the like. As shown in FIG. 4, the silicon substrate 20 and the support member 30 are laminated by aligning the positions of the orientation flats 20a and 30a of the silicon substrate 20 and the support member 30 and bonding them by anodic bonding or an adhesive. The alignment between the silicon substrate 20 and the support member 30 may be performed by providing dedicated alignment marks. 2 and 3 show a process of forming one actuator part in the silicon substrate 20. FIG.

次に、図3の工程(d)において、支持部材30の接合面と反対側のシリコン基板20面側を研削し、シリコン基板20をアクチュエータ部1の外枠部2、梁部3,3及び可動部4として要求される所望の厚さにする。   Next, in the step (d) of FIG. 3, the silicon substrate 20 surface side opposite to the bonding surface of the support member 30 is ground, and the silicon substrate 20 is removed from the outer frame portion 2 of the actuator portion 1, the beam portions 3, 3 and The desired thickness required for the movable part 4 is set.

次に、工程(e)において、シリコン基板20をエッチングしてアクチュエータ部1を形成する。シリコン基板20下面で図1の外枠部2、梁部3,3及び可動部4に対応する部分をレジストマスクで覆い、異方性エッチングによりシリコン基板を上下方向に貫通させる。これにより、シリコン基板20に、外枠部2に一対の梁部3,3で可動部4が軸支された状態の図1に示すアクチュエータ部1が形成される。   Next, in step (e), the silicon substrate 20 is etched to form the actuator unit 1. The portions corresponding to the outer frame portion 2, the beam portions 3, 3 and the movable portion 4 in FIG. 1 on the lower surface of the silicon substrate 20 are covered with a resist mask, and the silicon substrate is vertically penetrated by anisotropic etching. As a result, the actuator portion 1 shown in FIG. 1 is formed on the silicon substrate 20 in a state where the movable portion 4 is pivotally supported on the outer frame portion 2 by the pair of beam portions 3 and 3.

次に、工程(f)において、シリコン基板20に形成されたアクチュエータ部1の可動部4裏面側(図3(f)の下面側)に、アルミニウム等の反射ミラー8を蒸着等により形成する。その後、シリコン基板20の各アクチュエータ部1部分を互いに切断分離してガルバノミラーのチップを形成する。このチップを、基板上に装着し、梁部3,3の軸線に平行な可動部4の対辺側方で外枠部2の外側に可動部4を間にして一対の永久磁石7,7を図1に示すように対向配置することにより、図1に示すガルバノミラーが完成する。尚、前記チップを基板に装着する場合、反射ミラー8が基板側に位置するときには、反射ミラー8に対応する基板部分に開口部を形成することは言うまでもない。   Next, in step (f), a reflecting mirror 8 such as aluminum is formed on the back surface side of the movable portion 4 of the actuator portion 1 formed on the silicon substrate 20 (the lower surface side in FIG. 3F) by vapor deposition or the like. Thereafter, each actuator portion 1 portion of the silicon substrate 20 is cut and separated from each other to form a galvanometer mirror chip. This chip is mounted on a substrate, and a pair of permanent magnets 7 and 7 are attached to the outer side of the outer frame portion 2 on the opposite side of the movable portion 4 parallel to the axis of the beam portions 3 and 3. As shown in FIG. 1, the galvanometer mirror shown in FIG. 1 is completed by facing each other. In addition, when mounting the said chip | tip on a board | substrate, when the reflective mirror 8 is located in a board | substrate side, it cannot be overemphasized that an opening part is formed in the board | substrate part corresponding to the reflective mirror 8. FIG.

かかるアクチュエータ製造方法によれば、駆動コイル形成面側に支持部材30を接合した後、シリコン基板20を研削して任意の厚さにすることができるので、従来と比較して厚い(例えば約250μm以上)シリコン基板20を使用することができ、コイル形成工程も含めて製造工程におけるハンドリング性が良好であると共に、汎用の製造装置を使用することができる。また、支持部材30を接合した状態でシリコン基板20の厚さを自由に調整できるので、支持部材30を接合した状態で保管管理すれば多品種少量生産に対応できる利点がある。更に、支持部材30によりハンドリングが良好な状態でアクチュエータ部1の可動部4を研削して可動部4が極めて薄い(例えば約10μm以下)アクチュエータを形成できる。従って、小さいトルクで可動部4を駆動でき、直流(非共振)でも可動部4を大きく回動(大振幅駆動)できる駆動性に優れたアクチュエータの製造が可能である。   According to such an actuator manufacturing method, after the support member 30 is bonded to the drive coil forming surface side, the silicon substrate 20 can be ground to an arbitrary thickness, so that it is thicker than the conventional one (for example, about 250 μm). As described above, the silicon substrate 20 can be used, the handling property in the manufacturing process including the coil forming process is good, and a general-purpose manufacturing apparatus can be used. Further, since the thickness of the silicon substrate 20 can be freely adjusted with the support member 30 joined, there is an advantage that if the storage management is carried out with the support member 30 joined, it is possible to cope with high-mix low-volume production. Furthermore, the movable part 4 of the actuator part 1 can be ground by the support member 30 in a state where the handling is good, whereby an actuator having a very thin movable part 4 (for example, about 10 μm or less) can be formed. Therefore, the movable part 4 can be driven with a small torque, and an actuator excellent in drivability that can rotate the movable part 4 greatly (large amplitude drive) even with direct current (non-resonant) can be manufactured.

そして、本発明のアクチュエータ製造方法は、上述の電磁駆動式に限られず、静電駆動式、圧電駆動式等に適用できる。 The actuator Manufacturing method of the present invention is not limited to the electromagnetically driven above, can be applied electrostatically actuated, the piezoelectric driving type or the like.

本発明に係るアクチュエータ製造方法で製造したアクチュエータの構成例を示す斜視図The perspective view which shows the structural example of the actuator manufactured with the actuator manufacturing method which concerns on this invention 本発明に係るアクチュエータ製造方法を図1のアクチュエータに適用した場合の製造工程を示す説明図Explanatory drawing which shows the manufacturing process at the time of applying the actuator manufacturing method based on this invention to the actuator of FIG. 図2に続く製造工程を示す説明図Explanatory drawing which shows the manufacturing process following FIG. 半導体基板と支持部材の接合工程を説明するための斜視図The perspective view for demonstrating the joining process of a semiconductor substrate and a supporting member

符号の説明Explanation of symbols

1 アクチュエータ部
2 外枠部
3,3 梁部
4 可動部
5 駆動コイル
8 反射ミラー
10 支持部
20 シリコン基板
30 支持部材
DESCRIPTION OF SYMBOLS 1 Actuator part 2 Outer frame part 3, 3 Beam part 4 Movable part 5 Drive coil 8 Reflection mirror 10 Support part 20 Silicon substrate 30 Support member

Claims (3)

半導体基板で一体形成された外枠部、梁部及び当該梁部を介して前記外枠部に回動可能に軸支される可動部を有すると共に可動部駆動用の電気信号が供給される電気配線部を有するアクチュエータ部を備えるアクチュエータの製造方法であって、
製造工程中におけるハンドリングに支障のない厚さの半導体基板を準備し当該半導体基板の一方の面のアクチュエータ部形成部位に、前記電気配線部を形成する工程と、
電気配線部形成後の半導体基板の電気配線部形成側と同じ面に、前記アクチュエータ部を支持する支持部形成用の支持部材を接合する工程と、
前記支持部材接合後に前記支持部材接合面と反対側の半導体基板面を、前記アクチュエータ部に要求される所望の厚さまで研削する工程と、
研削後の半導体基板のアクチュエータ部形成部位に、エッチングにより梁部及び可動部を形成する工程と、
を備えることを特徴とするアクチュエータ製造方法。
Electricity which has an outer frame part integrally formed with a semiconductor substrate, a beam part, and a movable part pivotally supported on the outer frame part via the beam part, and is supplied with an electric signal for driving the movable part An actuator manufacturing method comprising an actuator unit having a wiring unit,
Preparing a semiconductor substrate having a thickness that does not hinder handling during the manufacturing process, and forming the electrical wiring portion on the actuator portion forming portion on one surface of the semiconductor substrate; and
Bonding a support member for forming a support part for supporting the actuator part to the same surface as the electrical wiring part forming side of the semiconductor substrate after the electrical wiring part is formed;
Grinding the semiconductor substrate surface opposite to the support member bonding surface after the support member bonding to a desired thickness required for the actuator unit;
Forming a beam portion and a movable portion by etching in the actuator portion forming portion of the semiconductor substrate after grinding;
An actuator manufacturing method comprising:
前記電気配線部形成工程は、前記可動部上に通電により磁界を発生する駆動コイルを形成することを特徴とする請求項1に記載のアクチュエータ製造方法。   2. The actuator manufacturing method according to claim 1, wherein in the electric wiring portion forming step, a drive coil that generates a magnetic field by energization is formed on the movable portion. 前記梁部及び可動部の形成工程の後に、前記可動部の電気配線部形成面と反対側の面に反射ミラーを形成する工程を設けることを特徴とする請求項1又は2に記載のアクチュエータ製造方法。   3. The actuator manufacturing according to claim 1, wherein a step of forming a reflection mirror on a surface of the movable portion opposite to the electric wiring portion forming surface is provided after the beam portion and the movable portion forming step. Method.
JP2006110495A 2006-04-13 2006-04-13 Actuator manufacturing method Expired - Fee Related JP4969136B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006110495A JP4969136B2 (en) 2006-04-13 2006-04-13 Actuator manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006110495A JP4969136B2 (en) 2006-04-13 2006-04-13 Actuator manufacturing method

Publications (2)

Publication Number Publication Date
JP2007283413A JP2007283413A (en) 2007-11-01
JP4969136B2 true JP4969136B2 (en) 2012-07-04

Family

ID=38755644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006110495A Expired - Fee Related JP4969136B2 (en) 2006-04-13 2006-04-13 Actuator manufacturing method

Country Status (1)

Country Link
JP (1) JP4969136B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010107016A1 (en) * 2009-03-16 2010-09-23 パナソニック電工株式会社 Mems device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2722314B2 (en) * 1993-12-20 1998-03-04 日本信号株式会社 Planar type galvanometer mirror and method of manufacturing the same
JP4111619B2 (en) * 1999-02-26 2008-07-02 日本信号株式会社 Mounting structure of planar optical scanning device
JP2002014297A (en) * 2000-06-29 2002-01-18 Miyota Kk Galvano mirror
JP4647240B2 (en) * 2004-05-19 2011-03-09 日本信号株式会社 Planar actuator

Also Published As

Publication number Publication date
JP2007283413A (en) 2007-11-01

Similar Documents

Publication Publication Date Title
KR100908120B1 (en) Electromagnetic micro actuator
JP5146204B2 (en) Optical device, optical scanner, and image forming apparatus
KR101017316B1 (en) Piezoelectric mirror device, optical device using the piezoelectric mirror device and method for manufacturing piezoelectric mirror device
KR19980025006A (en) Microelectromechanical apparatus comprising a rotating plate and related method
JP2005148459A (en) Two dimensional optical scanner and optical device
JP5383065B2 (en) Planar electromagnetic actuator and manufacturing method thereof
JP4260470B2 (en) Planar actuator
JP4536462B2 (en) Planar actuator and manufacturing method thereof
JP3910333B2 (en) Galvano micromirror and manufacturing method thereof
JP5922873B2 (en) Planar actuator and manufacturing method thereof
JP4969136B2 (en) Actuator manufacturing method
JP6180074B2 (en) Planar type electromagnetic actuator
JP3917445B2 (en) Planar actuator
JP5652336B2 (en) Optical scanning device
JP2002296517A (en) Planar galvano device and manufacturing method therefor
KR20080096090A (en) Resonantly scanning mems mirror operated by the electromagnetic force with low damping and high optical efficiency
JP2002048998A (en) Optical scanner
JP2001051224A (en) Actuator
KR100706319B1 (en) Method for manufacturing scanning micromirror
KR100931324B1 (en) Thin film 2-axis driving mirror for laser display and manufacturing method
JP2005081533A (en) Planar type actuator
JP2007121464A (en) Tilt mirror element and method of driving the same
KR100492772B1 (en) Scaning mirror with 2 degrees of freedom and manufacturing method thereof
JP2007034029A (en) Method of manufacturing movable mirror, and multiwavelength laser element and method of manufacturing the same
JP2001250914A (en) Galvano mirror chip and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120403

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150413

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4969136

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees