JP4968834B2 - Discrimination device and discrimination method for fuel rod cladding tube material - Google Patents

Discrimination device and discrimination method for fuel rod cladding tube material Download PDF

Info

Publication number
JP4968834B2
JP4968834B2 JP2007076244A JP2007076244A JP4968834B2 JP 4968834 B2 JP4968834 B2 JP 4968834B2 JP 2007076244 A JP2007076244 A JP 2007076244A JP 2007076244 A JP2007076244 A JP 2007076244A JP 4968834 B2 JP4968834 B2 JP 4968834B2
Authority
JP
Japan
Prior art keywords
cladding tube
fuel rod
probe
conductivity
rod cladding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007076244A
Other languages
Japanese (ja)
Other versions
JP2008232985A (en
Inventor
徳興 阿保
哲也 塩田
利行 木村
秀明 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nuclear Fuel Industries Ltd
Original Assignee
Nuclear Fuel Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nuclear Fuel Industries Ltd filed Critical Nuclear Fuel Industries Ltd
Priority to JP2007076244A priority Critical patent/JP4968834B2/en
Publication of JP2008232985A publication Critical patent/JP2008232985A/en
Application granted granted Critical
Publication of JP4968834B2 publication Critical patent/JP4968834B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Description

本発明は燃料棒被覆管材料の判別装置および判別方法に関し、特に導電率を測定することにより、原子炉の燃料棒に使用されている被覆管がいずれのジルコニウム合金で製造されているかを判別する判別装置および判別方法に関する。   The present invention relates to an apparatus and a method for discriminating a fuel rod cladding tube, and in particular, to determine which zirconium alloy is used for a cladding tube used for a nuclear fuel rod by measuring conductivity. The present invention relates to a determination device and a determination method.

原子炉の燃料棒の被覆管(以下、原則として「燃料棒被覆管」あるいは「被覆管」と記す)の材料としては、従来からBWR(沸騰水型原子炉)ではジルカロイ2{Zrが基材(主材料、ベースとなっている材料)であり、Snが1.5%(重量%。以下、同じ)、Feが0.13%、Niが0.05%、Crが0.1%配合されている}が、PWR(加圧水型原子炉)ではジルカロイ4(Zrが基材であり、Snが1.5%、Feが0.21%、Crが0.1%配合されている)が用いられて来たが、近年PWRでは高燃焼度燃料用に若干組成を変えて耐食性を向上させたNb入りジルカロイも用いられる様になって来た(特許文献1)。
従って、PWR用の燃料棒の製造ラインでは、ジルカロイ4とNb入りジルカロイの被覆管が使用されていることとなる。
As a material for a reactor fuel rod cladding tube (hereinafter, referred to as “fuel rod cladding tube” or “cladding tube” in principle), ZWR is a base material of BWR (boiling water reactor). (Main material, base material), Sn 1.5% (weight%, the same applies hereinafter), Fe 0.13%, Ni 0.05%, Cr 0.1% In PWR (Pressurized Water Reactor), Zircaloy 4 (Zr is a base material, Sn is 1.5%, Fe is 0.21%, Cr is 0.1%) In recent years, Nb-containing Zircaloy with slightly improved composition and improved corrosion resistance has been used for high burnup fuel in PWR (Patent Document 1).
Therefore, in the production line of the fuel rod for PWR, the cladding tube of Zircaloy 4 and Nb-containing Zircaloy is used.

このため、燃料棒の製造現場では、被覆管に材料を識別する記号を刻印(刻字)して、形状、寸法、重量のみならず、材料組成がほとんど同じであるため色彩、光沢、手触り等が良く似た被覆管が、いずれの材料製であるかを判別している。
特許第3389018号公報
For this reason, at the fuel rod manufacturing site, a symbol identifying the material is engraved (engraved) on the cladding tube, so that not only the shape, size and weight but also the material composition is almost the same, so the color, gloss, texture, etc. It is discriminated which material is made of a similar cladding tube.
Japanese Patent No. 3389018

しかしながら、燃料棒の製造工程の進捗に伴い刻印箇所を切落としてしまえば、前記の理由で、被覆管がいずれの材料製の被覆管であるかを目視で識別することは困難となる。
切落とさない位置に刻印することも考えられるが、原子炉に使用する物であるだけに、刻印した場所が充分な耐食性を有していることの確認、例えばそのための評価試験が必要となる。
さらに、刻印に際しての過誤も全くないとは断言できない。
また、燃料棒の製造工程中の被覆管からサンプルを採取し、組成を分析して識別することは、手間と時間がかかり過ぎるため実用的ではない。
However, if the marking portion is cut off as the fuel rod manufacturing process progresses, it is difficult to visually identify which material the cladding tube is made of for the above reasons.
Although it is conceivable to stamp at a position where it is not cut off, it is necessary to confirm that the stamped place has sufficient corrosion resistance, for example, an evaluation test for that purpose because it is an object used in a nuclear reactor.
Furthermore, it cannot be stated that there is no error in engraving.
In addition, it is not practical to collect a sample from a cladding tube during the manufacturing process of a fuel rod and analyze and identify the composition because it takes too much time and time.

このため、燃料棒の製造中に、燃料棒の分析等の破壊試験が不必要であり、手間や時間をかけずに被覆管の材料を判別することが可能な技術の開発が望まれていた。   For this reason, a destructive test such as analysis of the fuel rod is unnecessary during the production of the fuel rod, and it is desired to develop a technology capable of discriminating the material of the cladding tube without taking time and effort. .

本願発明者は、以上の課題を解決することを目的として鋭意研究をした結果、原子炉用の材料は金属元素の組成比の許容誤差が他の技術分野の金属材料よりも厳しいため、材料元素の組成比がほぼ同じであっても、あるいは僅かにしか違わなくても、導電率を正確に測定すれば、いずれの材料製の被覆管であるかを判別することが可能であることを発見し、本発明を成し遂げたものである。また、正確な測定を行うために工夫を凝らしたものである。以下、各請求項の発明を説明する。   As a result of intensive research aimed at solving the above-mentioned problems, the inventors of the present application have found that materials for nuclear reactors have a stricter tolerance for the composition ratio of metal elements than metal materials in other technical fields. Even if the composition ratios are almost the same or only slightly different, it has been found that if the conductivity is accurately measured, it is possible to determine which material the cladding tube is made of The present invention has been accomplished. In addition, ingenuity has been devised for accurate measurement. The invention of each claim will be described below.

請求項1に記載の発明は、
導電率測定手段と、
導電率を測定する際に、測定箇所の温度を一定にする温度保持手段と、
を有している燃料棒被覆管材料の判別装置であって、
前記導電率測定手段は、
燃料棒被覆管が所定の位置に置かれる台と、
プローブと、
前記プローブを前記燃料棒被覆管に一定の条件で接触させる接触調整部と、
前記プローブの先端が前記接触調整部の作用の下で、前記台の所定の位置に置かれている燃料棒被覆管に一定の条件で接触している状態で、導電率を測定する導電率測定部を有し、
前記接触調整部は、
前記台に立設された測定用柱と、
前記プローブの外周に取付けられたゴムリングと、
前記測定用柱に取付けられ、前記ゴムリングを保持した状態で測定用柱を昇降することが可能な昇降腕を有し、
前記昇降腕が下降して、前記プローブの先端が前記燃料棒被覆管に接触することにより一定の条件で接触させ、
前記プローブは、
外周に前記ゴムリングが取付けられた固定部と、
一端を前記固定部に取付けられたバネと、
前記バネの他端に取付けられ、前記固定部に対して上下方向に移動可能なプローブ本体を有し、
前記ゴムリングは、前記プローブと前記昇降腕間に介在し、
前記プローブ先端の前記燃料棒被覆管への押圧は、前記プローブを前記ゴムリングと前記バネの2重の弾性構造を介して支持する前記昇降腕の自重により行うように構成され、
前記温度保持手段は、
前記台の所定の位置に置かれている前記燃料棒被覆管の前記プローブが接触する箇所に、ガスを吹付けて前記箇所の温度を20±5℃に制御するガス供給部を有していることを特徴とする燃料棒被覆管材料の判別装置である。
The invention described in claim 1
Conductivity measuring means ;
When measuring conductivity, temperature holding means for keeping the temperature of the measurement location constant,
A fuel rod cladding tube material discrimination device having
The conductivity measuring means includes
A stand on which the fuel rod cladding tube is put in place;
A probe,
A contact adjusting section for bringing the probe into contact with the fuel rod cladding tube under certain conditions;
Conductivity measurement for measuring conductivity while the tip of the probe is in contact with a fuel rod cladding tube placed at a predetermined position on the table under a certain condition under the action of the contact adjusting unit. Part
The contact adjusting unit is
A measuring column erected on the table;
A rubber ring attached to the outer periphery of the probe;
An elevating arm attached to the measuring column and capable of elevating the measuring column while holding the rubber ring;
The lifting arm is lowered, and the tip of the probe is brought into contact with the fuel rod cladding tube under certain conditions,
The probe is
A fixed part having the rubber ring attached to the outer periphery;
A spring having one end attached to the fixed part;
A probe body attached to the other end of the spring and movable in the vertical direction with respect to the fixed portion;
The rubber ring is interposed between the probe and the lifting arm,
The pressing of the probe tip to the fuel rod cladding tube is configured to be performed by the weight of the elevating arm that supports the probe via a double elastic structure of the rubber ring and the spring,
The temperature holding means is
The fuel rod cladding tube placed at a predetermined position on the table has a gas supply section that controls the temperature of the portion to 20 ± 5 ° C. by spraying gas to the portion where the probe contacts . This is an apparatus for discriminating a fuel rod cladding tube material.

本請求項の発明においては、材料が僅かに相違することによる導電率の僅かな相違を導電率測定手段が正確に検出し、その相違を基に燃料棒被覆管(前記のごとく、請求項の説明では「被覆管」と記す)の材料を判別することが可能となる。
また、燃料棒の製造中に、燃料棒の分析等の破壊試験等の手間や時間をかけることなく被覆管の材料を判別することが可能となる。
なお、導電率の測定は、例えば導電率測定用のプローブを被覆管に接触させ、プローブから発生する磁力線により被覆管内に誘起される渦電流の大小によってオリジナルの磁力線の受ける変形を増幅・弁別すること、即ちプローブのインピーダンスの変化を測定することによって行う。
In the invention of this claim, the conductivity measuring means accurately detects a slight difference in conductivity caused by slightly different materials, and based on the difference, the fuel rod cladding tube (as described above, In the description, it is possible to discriminate the material of “clad tube”.
In addition, during the production of the fuel rod, it is possible to determine the material of the cladding tube without taking time and effort such as a destructive test such as analysis of the fuel rod.
In the measurement of conductivity, for example, a probe for measuring conductivity is brought into contact with the cladding tube, and the deformation received by the original magnetic field line is amplified and discriminated by the magnitude of the eddy current induced in the cladding tube by the magnetic field line generated from the probe. That is, by measuring the change in impedance of the probe.

本請求項の発明においては、測定箇所の温度を一定にする温度保持手段を有しているため、材料が僅かに相違したことによる導電率の僅かな相違による判別が一層容易となる。
なお、測定箇所(測定装置および被覆管)の温度は、年間を通じて一定としておくことが好ましい。
In the invention of this claim, since the temperature holding means for keeping the temperature at the measurement location constant is provided, the discrimination based on the slight difference in the conductivity due to the slight difference in the material becomes easier.
In addition, it is preferable to keep the temperature of a measurement location (measuring device and cladding tube) constant throughout the year.

本請求項の発明においては、プローブが接触調整部の作用の下で被覆管の上部に一定の条件で接触し、被覆管は台の上に置かれるため、被覆管と検出端とが常に一定の条件、特に一定の押圧力、一定の接触面積で接触する事となり、材料の組成や金属組織が近いため、導電率の差が極僅かであっても、被覆管材料を的確に判別することが可能となる。   In the invention of this claim, since the probe contacts the upper part of the cladding tube under the action of the contact adjusting portion under a certain condition and the cladding tube is placed on the table, the cladding tube and the detection end are always constant. Since the contact is made with the same conditions, especially with a constant pressing force and a constant contact area, and the composition of the material and the metal structure are close, it is possible to accurately determine the cladding material even if the difference in conductivity is very small. Is possible.

本請求項の発明においては、昇降腕が下降して、プローブの先端が被覆管に接触することにより一定の条件で接触させることとなるため、被覆管とプローブの接触条件が常に一定となることが担保され、導電率の測定による材料の判別の信頼性が一層高くなる。   In the invention of this claim, since the raising / lowering arm descends and the tip of the probe comes into contact with the cladding tube, the contact condition between the cladding tube and the probe is always constant. Is ensured, and the reliability of the discrimination of the material by measuring the conductivity is further increased.

なお、「台に立設された測定用柱」は、台の所定の位置におかれた被覆管の一定の位置にプローブが接触するために設けたものであり、導電率を測定する時にゴムリングを介してプローブを保持する昇降腕が台上の一定の位置にあることを担保するという役割を担う限り、形状は棒状の柱に限定されず、昇降腕の周囲を囲って位置決めを行う枠等をも含む。
また、被覆管の端部(長さ方向の先端)に設けられても良いし、側部に設けられても良い。
また、「測定用柱に取付けられ」とは、導電率の測定時に位置が固定されると言う意味である。
また、「昇降する」とは、柱を上下することにとどまらず、測定時に前記昇降腕の周囲を囲う枠内に嵌め込まれる様なことをも含む。
The “measurement column erected on the table” is provided for the probe to come into contact with a certain position of the cladding tube at a predetermined position on the table. As long as the lifting arm that holds the probe via the ring plays a role of ensuring that it is in a certain position on the table, the shape is not limited to a rod-shaped column, and a frame that performs positioning around the lifting arm Etc. are also included.
Further, it may be provided at the end portion (tip in the length direction) of the cladding tube or may be provided at the side portion.
Further, “attached to the measuring column” means that the position is fixed when measuring the conductivity.
Further, “raising and lowering” includes not only moving up and down the pillar but also fitting into a frame surrounding the lifting arm during measurement.

また、ゴムリングは、測定時にプローブと被覆管に過度の押圧力がかかることを防止し、併せてプローブを昇降腕に弾力的に(柔軟に)保持することが可能であれば、形状は厳密なリング状に限定されず、複数の小片からなっていても良い。 The rubber ring prevents the probe and the cladding tube from being excessively pressed during measurement, and the shape of the rubber ring is strict if it can be held elastically (flexibly) by the lifting arm. It is not limited to a ring shape, and may consist of a plurality of small pieces.

本請求項の発明においては、プローブはゴムリングとバネの2重の弾性構造により支持されるため、測定者が昇降腕を手に持ってプローブを被覆管に押し当てて測定する際に、プローブと被覆管への接触条件、すなわち適切な押圧力による接触や接触面積の均一性が一層良好となり、精度よい測定、材料の判別が可能となる。 In the invention of this claim, since the probe is supported by a double elastic structure of a rubber ring and a spring, when the measurer holds the lifting arm in his hand and presses the probe against the cladding tube, the probe is measured. As a result, the contact condition with the cladding tube, that is, the contact with an appropriate pressing force and the uniformity of the contact area are further improved, and accurate measurement and material discrimination are possible.

本請求項の発明においては、被覆管にプローブが接触する箇所、即ち測定箇所の近辺にはガス供給部から温度が一定あるいはほぼ一定の、そして清浄なガスが供給されるため、常に温度一定かつ清浄に保持されることとなり、測定精度が向上する。
なお、「ガス」は、コストや安全性の面からアルゴン、窒素、作業室の空調用の清浄な空気、工場の制御用の圧縮空気等を流用すること等が好ましく、結露を防止して測定精度を少しでも向上させる面からは測定箇所の室温より多少高めの温度としていたり、水分を除去していたりすることが好ましく、温度修正が不必要となる面からはIACSにおける基準温度である20℃程度(±5℃以内)であるのが好ましい。
In the invention of this claim, since the temperature is constant or substantially constant and clean gas is supplied from the gas supply unit to the location where the probe contacts the cladding tube, that is, in the vicinity of the measurement location, the temperature is always constant and As a result, the measurement accuracy is improved.
In terms of cost and safety, “gas” is preferably diverted from argon, nitrogen, clean air for air conditioning in the work room, compressed air for factory control, etc., and prevents condensation. In order to improve the accuracy as much as possible, it is preferable that the temperature is slightly higher than the room temperature of the measurement location, or that moisture is removed, and from the aspect where temperature correction is unnecessary, the reference temperature in IACS is 20 ° C. It is preferable to be within a range (within ± 5 ° C).

請求項に記載の発明は、
請求項1に記載の燃料棒被覆管材料の判別装置を用いて判別する燃料棒被覆管材料の判別方法であって、
燃料棒被覆管の各材料の導電率を予め測定し、材料毎の導電率の測定値を記録しておく導電率測定記録ステップと、
燃料棒の製造中に燃料棒被覆管の材料の導電率を測定して、前記測定記録ステップにて記録している測定値と比較して燃料棒被覆管の材料を判別する判別ステップを、
有していることを特徴とする燃料棒被覆管材料の判別方法である。
The invention described in claim 2
A method for discriminating a fuel rod cladding tube material that is discriminated using the fuel rod cladding tube material discrimination device according to claim 1,
Conductivity measurement recording step of measuring the conductivity of each material of the fuel rod cladding tube in advance and recording the measured value of conductivity for each material;
A determination step of measuring the conductivity of the material of the fuel rod cladding tube during manufacture of the fuel rod and determining the material of the fuel rod cladding tube in comparison with the measured value recorded in the measurement recording step,
A method for discriminating a fuel rod cladding tube material characterized by comprising:

本請求項の発明は、物(装置)の発明である請求項1を、方法の発明として捉えたものである。   The invention of this claim is the invention of the object (apparatus), and is taken as the invention of the method.

請求項に記載の発明は、前記の燃料棒被覆管材料の判別方法であって、
前記導電率測定記録ステップと判別ステップにおいて、燃料棒被覆管の材料の導電率を測定する際に、測定温度と、導電率を測定する装置の検出端と燃料棒被覆管との接触状態の少なくとも1つの条件を同じにしておくことを特徴とする燃料棒被覆管材料の判別方法である。
The invention according to claim 3 is a method of discriminating the fuel rod cladding tube material,
In the conductivity measurement recording step and the discrimination step, when measuring the conductivity of the material of the fuel rod cladding tube, at least the measurement temperature and the contact state between the detection end of the device for measuring conductivity and the fuel rod cladding tube This is a method for discriminating a fuel rod cladding tube material, wherein one condition is the same.

本請求項の発明により、より正確な判別が可能となる。 According to the invention of this claim , more accurate discrimination becomes possible.

本発明においては、材料が僅かに相違したことによる導電率の僅かな相違を基に燃料棒被覆管の材料を判別するため、燃料棒の製造中に被覆管の材料を判別するために、手間や時間がかかる燃料棒の分析等の破壊試験を行なうことが不必要となる。   In the present invention, in order to discriminate the material of the fuel rod cladding tube based on the slight difference in conductivity due to the slight difference in material, it is troublesome to discriminate the material of the cladding tube during the production of the fuel rod. It is not necessary to perform destructive tests such as analysis of fuel rods that take a long time.

以下、本発明をその最良の実施の形態に基づいて説明する。なお、本発明は、以下の実施の形態に限定されるものではない。本発明と同一および均等の範囲内において、以下の実施の形態に対して種々の変更を加えることが可能である。   Hereinafter, the present invention will be described based on the best mode. Note that the present invention is not limited to the following embodiments. Various modifications can be made to the following embodiments within the same and equivalent scope as the present invention.

(第1の実施の形態)
本実施の形態は、測定装置全体に関する。
図1は、測定装置の全体構成を示す図である。図1において、10は被覆管であり、20は測定用のプローブ(探針)であり、30は被覆管を置く測定用の台であり、31は位置決めのための被覆管受けであり、32はプローブの外周に取付けられたゴムリングであり、33はゴムリング32を介してプローブ20を保持する昇降腕であり、34は測定時に昇降腕33が昇降する測定用柱であり、35は被覆管10の端部当てであり、40はガス供給管であり、50は導電率測定器であり、51はプローブ側の測定用電線であり、60はパソコンである。
(First embodiment)
The present embodiment relates to the entire measuring apparatus.
FIG. 1 is a diagram showing the overall configuration of the measuring apparatus. In FIG. 1, 10 is a cladding tube, 20 is a measurement probe (probe), 30 is a measurement table on which the cladding tube is placed, 31 is a cladding tube receiver for positioning, 32 Is a rubber ring attached to the outer periphery of the probe, 33 is an elevating arm for holding the probe 20 via the rubber ring 32, 34 is a measuring column for elevating the elevating arm 33 during measurement, and 35 is a covering Reference numeral 40 denotes an end portion of the tube 10, 40 is a gas supply pipe, 50 is a conductivity measuring device, 51 is a measuring wire on the probe side, and 60 is a personal computer.

図1に示す様に、測定用柱34は台30の端部に立設されており、さらに昇降腕33はゴムリング32を介してプローブ20を保持した状態で測定用柱34を昇降することが可能になっている。そして、被覆管10の導電率を測定する時には、昇降腕33を測定用柱34の上部に上げて、被覆管10をその端部を測定用台30の端部当て35に当てた状態で被覆管受け31の上に水平に置き、次いで昇降腕33を下ろし、昇降腕33に保持されているプローブ20の先端を被覆管10の最上部に接触させる。この際のプローブ20の動きを、太い両矢印で示す。   As shown in FIG. 1, the measurement column 34 is erected at the end of the base 30, and the lifting arm 33 moves the measurement column 34 up and down while holding the probe 20 via the rubber ring 32. Is possible. Then, when measuring the conductivity of the cladding tube 10, the elevating arm 33 is raised to the upper part of the measurement column 34, and the cladding tube 10 is covered with the end portion of the cladding tube 10 being in contact with the end pad 35 of the measuring table 30. It is placed horizontally on the tube receiver 31, and then the elevating arm 33 is lowered, and the tip of the probe 20 held by the elevating arm 33 is brought into contact with the uppermost portion of the cladding tube 10. The movement of the probe 20 at this time is indicated by a thick double arrow.

プローブ20からは所定の磁力線が発生しており、この磁力線により被覆管10材料内に渦電流が誘起され、さらにこの渦電流によりオリジナルの磁力線を弱くする方向の磁力線が発生し、ひいてはプローブ20の磁力線が変形し、さらにはインピーダンスが変化する。この際、被覆管10の材料が相違すれば、その導電率が相違するため、発生する渦電流の大きさも相違し、ひいてはプローブ20の磁力線の変形、さらにはインピーダンスの変化も相違する。
導電率測定器50が、その変化を増幅・弁別して被覆管10の材料の導電率を測定し、測定値をパソコン60に流す。
なお、台30の上部側表面と端部当て35は、被覆管10を傷付けず、また良好な絶縁性を保持する材料、たとえばテフロン(登録商標)を使用して製造している。
Predetermined magnetic field lines are generated from the probe 20, and eddy currents are induced in the material of the cladding tube 10 by the magnetic field lines. Further, magnetic field lines in a direction that weakens the original magnetic field lines are generated by the eddy currents. The lines of magnetic force are deformed and the impedance changes. At this time, if the material of the cladding tube 10 is different, the conductivity is different, so the magnitude of the generated eddy current is also different, and hence the deformation of the magnetic lines of force of the probe 20 and the change in impedance are also different.
The conductivity measuring device 50 amplifies and discriminates the change, measures the conductivity of the material of the cladding tube 10, and sends the measured value to the personal computer 60.
Note that the upper surface of the base 30 and the end pad 35 are manufactured using a material that does not damage the cladding tube 10 and maintains good insulation, such as Teflon (registered trademark).

なおこの際、被覆管受け31上面と被覆管10の上面は、ガス供給管40から細い矢印で示す様に、清浄かつ測定箇所の温度より少し高めかつ一定温度の窒素ガスが供給され、これにより被覆管10の測定箇所は結露等が無く、清浄かつ所定の温度に保持されている。
また、測定毎にプローブ20が被覆管10を押圧する力が相違すると、プローブ20、と被覆管10の接触箇所、及び被覆管10と被覆管受け31の接触箇所の面積が相違し、抵抗が変化するため測定が不正確になりかねない。そこで、測定の際のプローブ20先端の被覆管10への押圧は、ゴムリング32を介してプローブ20を保持した昇降腕33の自重で行う様にしている。即ち、プローブ20とゴムリング32と昇降腕33との重量で、プローブ20の先端が被覆管10を軽く押圧(自重による接触を)する様にしている。
At this time, as shown by thin arrows, the upper surface of the cladding tube receiver 31 and the upper surface of the cladding tube 10 are supplied with nitrogen gas that is clean and slightly higher than the temperature of the measurement location and at a constant temperature. The measurement location of the cladding tube 10 has no condensation and is kept clean and at a predetermined temperature.
Moreover, if the force with which the probe 20 presses the cladding tube 10 is different for each measurement, the areas of the probe 20 and the contact portion between the cladding tube 10 and the contact portion between the cladding tube 10 and the cladding tube receiver 31 are different, and resistance is reduced. Measurements can be inaccurate due to changes. Therefore, the tip of the probe 20 at the time of measurement is pressed against the cladding tube 10 by the weight of the elevating arm 33 holding the probe 20 via the rubber ring 32. That is, the tip of the probe 20 lightly presses the cladding tube 10 (contacts by its own weight) by the weight of the probe 20, the rubber ring 32, and the lifting arm 33.

このため、測定位置における昇降腕33と測定用柱34間にはラッチや歯車等の積極的な拘束手段は設けておらず、さらにプローブ20に接続されている測定用電線は、極力柔軟な物としている。
また、プローブ20と昇降腕33間に介在するゴムリング32の役割は、昇降腕33と測定用柱34間の摩擦や、歪み等の拘束条件の多少の相違を補償することにある。
Therefore, no positive restraining means such as a latch or a gear is provided between the lifting arm 33 and the measurement column 34 at the measurement position, and the measurement wire connected to the probe 20 is as flexible as possible. It is said.
The role of the rubber ring 32 interposed between the probe 20 and the lifting / lowering arm 33 is to compensate for some differences in restraint conditions such as friction and distortion between the lifting / lowering arm 33 and the measuring column 34.

なお、測定位置にある昇降腕33と測定用柱34間には、上下方向の動きを積極的に拘束する手段、例えばギヤー機構等、を設けていないため、使用される原子炉の燃料集合体の規格に対応して被覆管の直径が多少相違しても、昇降腕33は最下部、即ちプローブ20の先端が被覆管10の最上部に接触する位置まで下降することが問題なく可能となっている。
ただし、被覆管10を台30の上に置いたり、台30から取去ったりする時には、昇降腕33が邪魔にならないように測定用柱34の上部に保持しておく機構、例えばラッチ、は設けている。
In addition, since no means, such as a gear mechanism, for positively restraining the vertical movement is provided between the lifting arm 33 and the measurement column 34 at the measurement position, the fuel assembly of the reactor to be used is not provided. Even if the diameter of the cladding tube is slightly different according to the standard, it is possible without difficulty to lower the lifting arm 33 to the lowest position, that is, the position where the tip of the probe 20 contacts the uppermost portion of the cladding tube 10. ing.
However, when the cladding tube 10 is placed on the table 30 or removed from the table 30, a mechanism for holding the elevating arm 33 on the upper part of the measuring column 34 so as not to get in the way, such as a latch, is provided. ing.

パソコン60には、予め測定対象の被覆管10の肉厚等の寸法、被覆管10の肉厚等の寸法と材料に応じての導電率の閾値等の各種のデータが入力されており、この入力されている各種のデータと導電率測定器50が通知してきた導電率の測定値を比較して、被覆管10の材料を判別し、液晶ディスプレイに表示する他、後で説明する所定の処理を行う。   The personal computer 60 is previously input with various data such as the thickness of the cladding tube 10 to be measured, the thickness of the cladding tube 10 and the like, and the threshold value of conductivity according to the material. Various input data and the measured conductivity value notified by the conductivity measuring device 50 are compared to determine the material of the cladding tube 10 and display it on the liquid crystal display. I do.

なお、本実施の形態の導電率の測定は、プローブから発生する磁力線により材料内に誘起される渦電流の大小によってオリジナルの磁力線の受ける変形を増幅・弁別することにより行なうが、被覆管は無限厚さの平板ではない。このため、正確な導電率を測定しようとすれば、被覆管の板厚さ、曲率(直径)による渦電流の減衰を補償する必要がある。しかし、本発明の導電率の測定は、測定値と閾値を比較して、被覆管の材料を判定するために行なうものである。このため、閾値も同じ条件で測定し、作成されていれば、不都合は生じない。
これにより、PWRには17×17型(水平断面が正方形の燃料集合体に、17×17配置する型)、14×14型等の種々のタイプがあるが、これらの各タイプの被覆管毎に、導電率を測定したり、閾値を作成したりすることが容易となる。
In this embodiment, the conductivity is measured by amplifying and discriminating the deformation received by the original magnetic field lines depending on the magnitude of the eddy current induced in the material by the magnetic field lines generated from the probe. It is not a flat plate of thickness. For this reason, if an accurate conductivity is to be measured, it is necessary to compensate for the eddy current attenuation due to the thickness and curvature (diameter) of the cladding tube. However, the conductivity measurement of the present invention is performed in order to determine the material of the cladding tube by comparing the measured value with a threshold value. For this reason, if the threshold value is also measured and created under the same conditions, there is no inconvenience.
As a result, there are various types of PWR, such as 17 × 17 type (type in which a horizontal cross section is a square 17 × 17 arranged in a fuel assembly), 14 × 14 type, and so on. In addition, it is easy to measure the conductivity and create a threshold value.

なお、17×17型、14×14型等の何れのタイプの燃料棒用被覆管であるかの識別は、板厚さ、曲率等を測定することにより容易になされる。   Note that the type of fuel rod cladding tube, such as 17 × 17 type or 14 × 14 type, can be easily identified by measuring the plate thickness, curvature, and the like.

最後に、本実施の形態における閾値の決定、測定データの解析、各部の校正について説明する。
測定対象の被覆管毎に何本かのサンプルを取ってきて、プローブの接触の仕方、即ち自重による接触か多少の押圧による接触か、測定時の温度、測定に先立ってガス供給管から供給するガスの供給時間や温度等を変化させて、導電率を測定した。なお、サンプルの被覆管は、材料(ジルカロイ2、ジルカロイ4、Nb入りジルカロイ)のみならず、材料毎に寸法(外径と肉厚さ)も変えて採取し、信頼の置けるデータを取得し、その上で被覆管の種類と寸法毎に閾値を決定した。
Finally, determination of threshold values, analysis of measurement data, and calibration of each part in the present embodiment will be described.
Take several samples for each cladding tube to be measured and supply from the gas supply pipe prior to measurement, how to contact the probe, ie contact by its own weight or contact by some pressure, temperature at the time of measurement The conductivity was measured by changing the gas supply time, temperature, and the like. In addition, the sample cladding tube is collected not only for the material (Zircaloy 2, Zircaloy 4, Nb-containing Zircaloy) but also for each material by changing the dimensions (outer diameter and wall thickness) to obtain reliable data, Then, the threshold was determined for each type and size of the cladding tube.

具体的には、例えば直径9.5mm、肉厚0.6mmのPWR用の17×17型の被覆管では、導電率の測定値の平均値は材料がジルカロイ4の場合には、1.25%IACS(20℃での標準軟銅の値が100%)であり、Nb入りジルカロイの場合には同じく1.40%IACSであった。このため、被覆管の材料がジルカロイ4であるのか、Nb入りジルカロイであるのかの判別においては、導電率が1.35%IACS以下であればジルカロイ4と判定し、導電率が1.35%IACSより大きい場合にはNb入りジルカロイと判定する様にした。   Specifically, for example, in a 17 × 17 type cladding tube for PWR having a diameter of 9.5 mm and a wall thickness of 0.6 mm, the average value of measured conductivity is 1.25 when the material is Zircaloy 4. % IACS (the value of standard annealed copper at 20 ° C. is 100%), and in the case of Nb-containing Zircaloy, it was also 1.40% IACS. Therefore, in determining whether the material of the cladding tube is Zircaloy 4 or Nb-containing Zircaloy, if the conductivity is 1.35% IACS or less, it is determined as Zircaloy 4 and the conductivity is 1.35%. If it is larger than IACS, it is determined as Nb-containing Zircaloy.

これにより、PWR用の17×17型の被覆管に対して、測定した導電率を閾値と比較することにより、その材料がジルカロイ4であるかNb入りジルカロイであるかを、確実に判別することが可能となる。
なお、閾値で判定する場合には、閾値を1.30〜1.35%IACSの範囲内に設定することが好ましい。
Thus, for a 17 × 17 type cladding tube for PWR, by comparing the measured conductivity with a threshold value, it is possible to reliably determine whether the material is Zircaloy 4 or Nb-containing Zircaloy. Is possible.
In addition, when determining with a threshold value, it is preferable to set the threshold value within a range of 1.30 to 1.35% IACS.

同様に、PWR用の14×14型の被覆管では、導電率の測定値の平均値は材料がジルカロイ4の場合には、閾値は1.6%IACSとすることが好ましいことが判明した。
このため、被覆管の材料がジルカロイ4であるのか、Nb入りジルカロイであるのかの判別においては、導電率が1.6%IACS以下であればジルカロイ4と判定し、導電率が1.6%IACSを超えればNb入りジルカロイと判定する様にした。
Similarly, in the 14 × 14 type cladding tube for PWR, it has been found that the average value of the measured conductivity is preferably 1.6% IACS when the material is Zircaloy 4.
Therefore, in determining whether the material of the cladding tube is Zircaloy 4 or Nb-containing Zircaloy, if the conductivity is 1.6% IACS or less, it is determined as Zircaloy 4 and the conductivity is 1.6%. If IACS is exceeded, it will be judged as Nb-containing Zircaloy.

即ち、本実施の形態においては、前記導電率測定手段は、プローブから発生する磁力線により、材料内に誘起される渦電流の大小による、オリジナルの磁力線の受ける変形を増幅・弁別することにより、燃料棒被覆管の板厚さ、曲率(直径)を補償することなく導電率を測定するものであり、
同じ板厚さ、曲率の燃料棒被覆管毎に、材料に応じたかつ板厚さ、曲率を補償していない導電率の閾値を予め作成しておき、前記導電率測定手段が測定した導電率と前記閾値とを比較して、同じ板厚さ、曲率の燃料棒被覆管毎に、実際に測定した燃料棒被覆管の材料を判定する燃料棒被覆管材料の判別装置としている。
In other words, in the present embodiment, the conductivity measuring means amplifies and discriminates the deformation received by the original magnetic field lines due to the magnitude of the eddy currents induced in the material by the magnetic field lines generated from the probe. Conductivity is measured without compensating the thickness and curvature (diameter) of the rod cladding tube,
For each fuel rod cladding tube having the same plate thickness and curvature, a conductivity threshold corresponding to the material and not compensating for the plate thickness and curvature is prepared in advance, and the conductivity measured by the conductivity measuring means is measured. The fuel rod cladding tube material discriminating apparatus determines the material of the fuel rod cladding tube actually measured for each fuel rod cladding tube having the same thickness and curvature.

具体的には、PWRの17×17型燃料棒被覆管においては、前記導電率の閾値を1.30から1.35%IACSの間の何れかの値、例えば1.35%IACSとしている。   Specifically, in the PWR 17 × 17 type fuel rod cladding tube, the conductivity threshold is set to any value between 1.30 and 1.35% IACS, for example, 1.35% IACS.

同じく、PWRの14×14型燃料棒被覆管においては、前記導電率の閾値を1.6%IACSとしている。   Similarly, in the PWR 14 × 14 type fuel rod cladding tube, the conductivity threshold is set to 1.6% IACS.

即ち、本第1の実施の形態においては、
各板厚及び曲率の燃料棒被覆管について、板厚及び曲率を補償せずに各材料毎の導電率を予め測定し、測定値を記録し、閾値等を作成しておき、
燃料棒の製造中に、板厚及び曲率の燃料棒被覆管の材料の導電率を板厚及び曲率を補償せずに測定し、前記閾値等と比較して燃料棒被覆管の材料を判別したりしている。これにより、被覆管の材料を容易に判別可能となる。
That is, in the first embodiment,
For the fuel rod cladding tube of each plate thickness and curvature, measure the conductivity for each material in advance without compensating the plate thickness and curvature, record the measured value, create a threshold, etc.
During the production of fuel rods, the conductivity of the material of the fuel rod cladding tube with the plate thickness and curvature is measured without compensating the plate thickness and curvature, and the material of the fuel rod cladding tube is discriminated by comparing with the threshold value etc. It is. Thereby, the material of the cladding tube can be easily discriminated.

また、パソコンには、図示しない温度センサーから被覆管の測定箇所近辺の温度が入力され、これにより、各材料、各寸法の被覆管毎に、温度と導電率の関係を収集可能としており、将来のより正確な判別のための閾値を得るためのデータが作成される様にしている。
その他、別途測定室の気温もパソコンに入力され、両方の温度についてのデータから、ガス供給管40から噴出すガスの温度を測定室の温度より多少高めに調整し、測定箇所への結露を防止する様にしている。
In addition, the temperature in the vicinity of the measurement location of the cladding tube is input to the personal computer from a temperature sensor (not shown), which makes it possible to collect the relationship between temperature and conductivity for each material and cladding tube size. Data for obtaining a threshold value for more accurate discrimination is created.
In addition, the temperature of the measurement room is also input to the personal computer, and the temperature of the gas ejected from the gas supply pipe 40 is adjusted to be slightly higher than the temperature of the measurement room from the data for both temperatures to prevent condensation at the measurement location. I try to do it.

(第2の実施の形態)
本実施の形態は、測定用プローブに関する。
図2に、本実施の形態のプローブを示す。図2において、21はプローブ本体であり、22はプローブ外筒であり、23はスプリングである。図2の上の図は、側面を示し、その上部は内部を示す。図2の下の図は、上の図のA−A断面を示す。本実施の形態においては、プローブは、プローブ外筒22に嵌め込まれたプローブ本体21が、本来のプローブの役を担う。
(Second Embodiment)
The present embodiment relates to a measurement probe.
FIG. 2 shows the probe of this embodiment. In FIG. 2, 21 is a probe body, 22 is a probe outer cylinder, and 23 is a spring. The top view of FIG. 2 shows the side and the top shows the interior. The lower figure of FIG. 2 shows the AA cross section of the upper figure. In the present embodiment, the probe main body 21 fitted into the probe outer cylinder 22 plays the role of the original probe.

プローブ本体21は、伸縮自在のスプリング23を介してプローブ外筒22に嵌め込まれている。このため、プローブ本体21は、図2の上の図の両矢印に示す様に、小さな力でプローブ外筒22内を上下方向に移動可能である。このため、閾値を決定するためのデータを採集する等の何らかの理由で、自重接触後に若干の押圧が必要な場合においても、あるいは昇降腕33を把持している測定者が過誤により過度の押圧をなした場合においても、プローブ本体21は上方のプローブ外筒22内に入り込むため、被覆管10への過度の押圧がなされず、被覆管10が損傷する恐れがなくなる。   The probe main body 21 is fitted into the probe outer cylinder 22 via a retractable spring 23. Therefore, the probe main body 21 can move in the vertical direction within the probe outer cylinder 22 with a small force, as shown by the double arrows in the upper diagram of FIG. For this reason, even if a slight pressure is required after contact with its own weight for some reason, such as collecting data for determining the threshold, or the measurer holding the lifting arm 33 makes an excessive press due to an error. Even in this case, since the probe main body 21 enters the upper probe outer cylinder 22, excessive pressure is not applied to the cladding tube 10, and there is no possibility of damaging the cladding tube 10.

本発明に関わる導電率の測定装置の全体構成を示す図である。It is a figure which shows the whole structure of the conductivity measuring apparatus in connection with this invention. 本発明に関わる導電率の測定装置のプローブの構成を示す図である。It is a figure which shows the structure of the probe of the measuring device of the electric conductivity in connection with this invention.

10 被覆管
20 プローブ
21 プローブ本体
22 プローブ外筒
23 スプリング
30 台
31 被覆管受け
32 ゴムリング
33 昇降腕
34 測定用柱
35 端部当て
40 ガス供給管
50 導電率測定器
51 測定用電線
60 パソコン
DESCRIPTION OF SYMBOLS 10 Cladding tube 20 Probe 21 Probe main body 22 Probe outer cylinder 23 Spring 30 Stand 31 Cladding tube receiver 32 Rubber ring 33 Lifting arm 34 Measuring column 35 End pad 40 Gas supply tube 50 Conductivity measuring instrument 51 Measuring wire 60 Personal computer

Claims (3)

導電率測定手段と、
導電率を測定する際に、測定箇所の温度を一定にする温度保持手段と、
を有している燃料棒被覆管材料の判別装置であって、
前記導電率測定手段は、
燃料棒被覆管が所定の位置に置かれる台と、
プローブと、
前記プローブを前記燃料棒被覆管に一定の条件で接触させる接触調整部と、
前記プローブの先端が前記接触調整部の作用の下で、前記台の所定の位置に置かれている燃料棒被覆管に一定の条件で接触している状態で、導電率を測定する導電率測定部を有し、
前記接触調整部は、
前記台に立設された測定用柱と、
前記プローブの外周に取付けられたゴムリングと、
前記測定用柱に取付けられ、前記ゴムリングを保持した状態で測定用柱を昇降することが可能な昇降腕を有し、
前記昇降腕が下降して、前記プローブの先端が前記燃料棒被覆管に接触することにより一定の条件で接触させ、
前記プローブは、
外周に前記ゴムリングが取付けられた固定部と、
一端を前記固定部に取付けられたバネと、
前記バネの他端に取付けられ、前記固定部に対して上下方向に移動可能なプローブ本体を有し、
前記ゴムリングは、前記プローブと前記昇降腕間に介在し、
前記プローブ先端の前記燃料棒被覆管への押圧は、前記プローブを前記ゴムリングと前記バネの2重の弾性構造を介して支持する前記昇降腕の自重により行うように構成され、
前記温度保持手段は、
前記台の所定の位置に置かれている前記燃料棒被覆管の前記プローブが接触する箇所に、ガスを吹付けて前記箇所の温度を20±5℃に制御するガス供給部を有していることを特徴とする燃料棒被覆管材料の判別装置。
Conductivity measuring means ;
When measuring conductivity, temperature holding means for keeping the temperature of the measurement location constant,
A fuel rod cladding tube material discrimination device having
The conductivity measuring means includes
A stand on which the fuel rod cladding tube is put in place;
A probe,
A contact adjusting section for bringing the probe into contact with the fuel rod cladding tube under certain conditions;
Conductivity measurement for measuring conductivity while the tip of the probe is in contact with a fuel rod cladding tube placed at a predetermined position on the table under a certain condition under the action of the contact adjusting unit. Part
The contact adjusting unit is
A measuring column erected on the table;
A rubber ring attached to the outer periphery of the probe;
An elevating arm attached to the measuring column and capable of elevating the measuring column while holding the rubber ring;
The lifting arm is lowered, and the tip of the probe is brought into contact with the fuel rod cladding tube under certain conditions,
The probe is
A fixed part having the rubber ring attached to the outer periphery;
A spring having one end attached to the fixed part;
A probe body attached to the other end of the spring and movable in the vertical direction with respect to the fixed portion;
The rubber ring is interposed between the probe and the lifting arm,
The pressing of the probe tip to the fuel rod cladding tube is configured to be performed by the weight of the elevating arm that supports the probe via a double elastic structure of the rubber ring and the spring,
The temperature holding means is
The fuel rod cladding tube placed at a predetermined position on the table has a gas supply section that controls the temperature of the portion to 20 ± 5 ° C. by spraying gas to the portion where the probe contacts . An apparatus for discriminating a fuel rod cladding tube material.
請求項1に記載の燃料棒被覆管材料の判別装置を用いて判別する燃料棒被覆管材料の判別方法であって、
燃料棒被覆管の各材料の導電率を予め測定し、材料毎の導電率の測定値を記録しておく導電率測定記録ステップと、
燃料棒の製造中に燃料棒被覆管の材料の導電率を測定して、前記測定記録ステップにて記録している測定値と比較して燃料棒被覆管の材料を判別する判別ステップを、
有していることを特徴とする燃料棒被覆管材料の判別方法。
A method for discriminating a fuel rod cladding tube material that is discriminated using the fuel rod cladding tube material discrimination device according to claim 1,
Conductivity measurement recording step of measuring the conductivity of each material of the fuel rod cladding tube in advance and recording the measured value of conductivity for each material;
A determination step of measuring the conductivity of the material of the fuel rod cladding tube during manufacture of the fuel rod and determining the material of the fuel rod cladding tube in comparison with the measured value recorded in the measurement recording step,
A method for discriminating a fuel rod cladding material, comprising:
前記導電率測定記録ステップと判別ステップにおいて、燃料棒被覆管の材料の導電率を測定する際に、測定温度と、導電率を測定する装置の検出端と燃料棒被覆管との接触状態の少なくとも1つの条件を同じにしておくことを特徴とする請求項に記載の燃料棒被覆管材料の判別方法。 In the conductivity measurement recording step and the discrimination step, when measuring the conductivity of the material of the fuel rod cladding tube, at least the measurement temperature and the contact state between the detection end of the device for measuring conductivity and the fuel rod cladding tube 3. The method for discriminating a fuel rod cladding tube material according to claim 2 , wherein one condition is the same.
JP2007076244A 2007-03-23 2007-03-23 Discrimination device and discrimination method for fuel rod cladding tube material Active JP4968834B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007076244A JP4968834B2 (en) 2007-03-23 2007-03-23 Discrimination device and discrimination method for fuel rod cladding tube material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007076244A JP4968834B2 (en) 2007-03-23 2007-03-23 Discrimination device and discrimination method for fuel rod cladding tube material

Publications (2)

Publication Number Publication Date
JP2008232985A JP2008232985A (en) 2008-10-02
JP4968834B2 true JP4968834B2 (en) 2012-07-04

Family

ID=39905938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007076244A Active JP4968834B2 (en) 2007-03-23 2007-03-23 Discrimination device and discrimination method for fuel rod cladding tube material

Country Status (1)

Country Link
JP (1) JP4968834B2 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58202866A (en) * 1982-05-21 1983-11-26 Tanaka Kikinzoku Kogyo Kk Judging method of gold ingot
JPS5967406A (en) * 1982-10-12 1984-04-17 Nippon Atom Ind Group Co Ltd Method and device for measuring thickness of lining of high-performance fuel sheath pipe
JPH0641938B2 (en) * 1985-12-16 1994-06-01 株式会社日立製作所 Nondestructive measurement method for zirconium alloy materials
US5251765A (en) * 1990-11-13 1993-10-12 Westinghouse Electric Corp. Apparatus and method for segregating rods of undesirable alloy composition
US5418823A (en) * 1994-01-04 1995-05-23 General Electric Company Combined ultrasonic and eddy-current method and apparatus for non-destructive testing of tubular objects to determine thickness of metallic linings or coatings
JPH07218474A (en) * 1994-02-08 1995-08-18 Hitachi Ltd Underwater eddy current tester
JPH08159742A (en) * 1994-12-01 1996-06-21 Sumitomo Metal Ind Ltd Method for measuring thickness of liner of externally lined pipe
JP3378500B2 (en) * 1998-05-08 2003-02-17 株式会社日立製作所 Eddy current inspection system for fuel cladding tubes
US6369566B1 (en) * 1999-09-27 2002-04-09 Framatone Anp Inc. Method for measuring crud thickness on nuclear fuel rods

Also Published As

Publication number Publication date
JP2008232985A (en) 2008-10-02

Similar Documents

Publication Publication Date Title
US20200103322A1 (en) Test Fixtures for Evaluating Mechanical Properties of Asphalt Samples and Related Systems and Methods
CN103149252B (en) A kind of resistance-type steel bridge fatigue crack detection device
US4108719A (en) Method and apparatus for gauging the radial spacing between fuel and surrounding cladding of a fuel rod for nuclear reactors
CN105458340A (en) Locating and punching machine for measuring residual stress of nonmagnetic metal plate
CN102466448A (en) Towel paper thickness measuring device and towel paper thickness measuring method
JP4968834B2 (en) Discrimination device and discrimination method for fuel rod cladding tube material
CN201069428Y (en) Measuring device for groove erosion depth in the welding pipe welding slot area
CN108120403A (en) A kind of glacing flatness ruler verifying bench device and its application method
CN113030198A (en) Quality detection and analysis method for vertical graphene film material
US4107979A (en) Method and device for measurement of environmental stress cracking
CN210154458U (en) Checking fixture for rapidly detecting size of part
JP3917941B2 (en) Fuel rod inspection device
CN213874229U (en) Portable coating thickness gauge
CN206862804U (en) A kind of electronic type metal Rockwell apparatus
CN209878519U (en) Plate hardness detection device
CN112255091A (en) Hardness meter tray for detecting thin steel plate and detection method thereof
KR101941576B1 (en) Surface resistivity measuring device for wafer equipped with self weight raising and lowering means
CN111238391A (en) Creep strain direct measurement device
JPH11197744A (en) Method for measuring thickness of hot metal, and its measuring instrument
CN111043932A (en) Nuclear fuel plate spring position degree detection device and method
CN2469445Y (en) Measuring instrument for material heat conductivity coefficient
CN110118796A (en) A kind of contactless displacement extraction type shrinkage temperature measuring method and device
KR101295814B1 (en) Fracture mechanical COD gage in elevated temperature
CN211601843U (en) Backplate multiple spot detection device
CN219591132U (en) Nuclear fuel cladding high-temperature steam oxidation test device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120330

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120330

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150413

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4968834

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250