JP4968772B2 - Method for producing antifreeze activator, antifreeze activator and frozen food containing the antifreeze activator - Google Patents

Method for producing antifreeze activator, antifreeze activator and frozen food containing the antifreeze activator Download PDF

Info

Publication number
JP4968772B2
JP4968772B2 JP2006204687A JP2006204687A JP4968772B2 JP 4968772 B2 JP4968772 B2 JP 4968772B2 JP 2006204687 A JP2006204687 A JP 2006204687A JP 2006204687 A JP2006204687 A JP 2006204687A JP 4968772 B2 JP4968772 B2 JP 4968772B2
Authority
JP
Japan
Prior art keywords
antifreeze
activator
molecular weight
producing
extract
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006204687A
Other languages
Japanese (ja)
Other versions
JP2008031250A (en
Inventor
優 市川
杏子 東
昌幸 中里
和彦 桑田
晁暎 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miyoshi Oil and Fat Co Ltd
Original Assignee
Miyoshi Oil and Fat Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miyoshi Oil and Fat Co Ltd filed Critical Miyoshi Oil and Fat Co Ltd
Priority to JP2006204687A priority Critical patent/JP4968772B2/en
Publication of JP2008031250A publication Critical patent/JP2008031250A/en
Application granted granted Critical
Publication of JP4968772B2 publication Critical patent/JP4968772B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Freezing, Cooling And Drying Of Foods (AREA)
  • Storage Of Fruits Or Vegetables (AREA)

Description

本発明は不凍活性剤の製造方法、不凍活性剤及びその不凍活性剤を含む冷凍食品に関する。   The present invention relates to a method for producing an antifreeze activator, an antifreeze activator, and a frozen food containing the antifreeze activator.

食肉類、野菜類、血液、臓器等を長期間保存する目的で冷凍保存が行われているが、凍結温度に冷却すると、細胞内において生成した氷核は結合しながら成長して凍結する。この際に成長した氷結晶が細胞内の組織を圧迫して分離濃縮する凍結濃縮が生じ、細胞組織が損傷を受けたり破壊される。そのため冷凍保存した食肉類や野菜類は、味が損なわれるという問題があった。凍結濃縮を防止する方法として北極や南極等に生息する魚類の体内に存在する不凍活性物質を用いることが有効であることが検討された。近年、北極や南極に生息する魚類以外にも、わかさぎや、野菜類のなかにも不凍活性物質が含まれることがわかり、種々の不凍活性物質が報告されている(特許文献1〜3等)。   Although frozen storage is performed for the purpose of storing meat, vegetables, blood, organs and the like for a long period of time, when cooled to a freezing temperature, ice nuclei generated in the cells grow and freeze while being bound. In this case, freeze-concentration in which the ice crystals grown at this time press the tissue in the cell to separate and concentrate occurs, and the cell tissue is damaged or destroyed. For this reason, the meat and vegetables stored frozen have a problem that the taste is impaired. As a method for preventing freeze concentration, it was examined that it is effective to use antifreeze active substances present in the body of fish inhabiting the Arctic and Antarctic. In recent years, in addition to fish that live in the Arctic and Antarctica, it has been found that anti-freezing active substances are contained in smelt and vegetables, and various anti-freezing active substances have been reported (Patent Documents 1 to 3). etc).

特開2003−250572号公報JP 2003-250572 A 特開2004−83546号公報JP 2004-83546 A 特開2001−245659号公報JP 2001-245659 A

しかしながら、従来から知られている魚類や野菜類由来の不凍活性物質は、熱に弱く加熱によって不凍活性が著しく低下するため、加熱処理を行うことが必須である食品等へ利用することはできなかった。本発明は上記従来の課題を解決でき、加熱処理工程を経ても不凍活性が低下しない優れた不凍活性剤を得ることのできる不凍活性剤の製造方法、不凍活性剤及びその不凍活性剤を含む冷凍食品を提供することを目的とする。   However, conventionally known antifreeze active substances derived from fish and vegetables are weak against heat and their antifreeze activity is significantly reduced by heating, so that they can be used for foods that require heat treatment. could not. The present invention can solve the above conventional problems, and can provide an antifreeze activator capable of obtaining an excellent antifreeze activator whose antifreeze activity does not decrease even after the heat treatment step, the antifreeze activator, and the antifreeze thereof. An object is to provide a frozen food containing an active agent.

即ち本発明は、
(1)海棲軟体動物の内臓に緩衝液を加えて抽出処理を行った後、抽出液を分子量分画して分子量10000以上の画分を回収することを特徴とする不凍活性剤の製造方法、
(2)海棲軟体動物の内臓に緩衝液を加えて抽出処理を行った後、抽出液をアセトンまたはエタノールで処理し、処理後の沈殿物に緩衝液を加えて抽出処理して得た抽出液を分子量分画して分子量10000以上の画分を回収することを特徴とする不凍活性剤の製造方法
(3)海棲軟体動物の内臓を脱脂処理し、処理後の沈殿物に緩衝液を加えて抽出処理して得た抽出液を分子量分画して分子量10000以上の画分を回収することを特徴とする不凍活性剤の製造方法、
(4)海棲軟体動物の内臓がホタテ貝中腸腺である上記(1)〜(3)の不凍活性剤の製造方法、
(5)上記(1)〜(4)のいずれかの製造方法により得られた不凍活性剤、
(6)上記(5)の不凍活性剤を含む冷凍食品、
を要旨とするものである。
That is, the present invention
(1) Production of an antifreeze activator characterized in that a buffer solution is added to the viscera of a marine mollusc and an extraction treatment is performed, and then the extract is subjected to molecular weight fractionation to collect a fraction having a molecular weight of 10,000 or more. Method,
(2) Extraction obtained by adding a buffer solution to the viscera of marine mollusks and then treating the extract with acetone or ethanol and adding a buffer solution to the treated precipitate for extraction. A method for producing an antifreeze activator comprising molecular weight fractionation of a liquid and recovering a fraction having a molecular weight of 10,000 or more (3) Degreasing the viscera of a marine mollusk, and buffering the precipitate after the treatment A method for producing an antifreeze activator, characterized in that a fraction having a molecular weight of 10,000 or more is recovered by molecular weight fractionation of an extract obtained by subjecting the extract to extraction,
(4) The method for producing an antifreeze active agent according to the above (1) to (3), wherein the internal organs of the marine mollusc are scallop midgut glands,
(5) An antifreeze activator obtained by the production method of any one of (1) to (4) above,
(6) Frozen food containing the antifreeze active agent of (5) above,
Is a summary.

本発明方法によれば、食品の廃棄物である海棲軟体動物の内臓より、優れた不凍活性剤を安価に製造することができる。また、アセトン、エタノール等の溶剤を用いて処理した後、抽出、分画を行うことにより、効率良く不凍活性剤を効率良く得ることができ、工業化が容易となる。本発明の不凍活性剤は、優れた不凍活性を有し、食品、化粧品、医薬品、研究用試薬等の分野において広い利用が可能である。また本発明不凍活性剤は熱安定性に優れ、加熱によって不凍活性が低下することがないため、加熱処理を必須とする食品等に添加して用いても、不凍活性が損なわれることがない。本発明の不凍活性剤を含む冷凍食品は、冷凍保存時の氷結晶の粗大化が防止でき、食品の品質を劣化させないという効果を奏する。   According to the method of the present invention, an excellent antifreeze active agent can be produced at low cost from the viscera of marine mollusks, which are food wastes. Moreover, after processing using solvents, such as acetone and ethanol, by extracting and fractionating, an antifreeze activator can be obtained efficiently and industrialization becomes easy. The antifreeze activator of the present invention has an excellent antifreeze activity and can be widely used in the fields of food, cosmetics, pharmaceuticals, research reagents and the like. In addition, the antifreeze activator of the present invention is excellent in thermal stability, and the antifreeze activity is not reduced by heating, so that the antifreeze activity is impaired even when used by adding to foods that require heat treatment. There is no. The frozen food containing the antifreeze activator of the present invention can prevent the ice crystals from becoming coarse during frozen storage, and has the effect of not deteriorating the quality of the food.

本発明の不凍活性剤は、海棲軟体動物の内臓から得ることができる。海棲軟体動物の内臓としては、イカ、タコ等の頭足類、ホタテ貝、アワビ、トコブシ、サザエ、カキ、アサリ等の貝類の内臓が挙げられるが、ホタテ貝の中腸腺、イカの内臓部(ゴロ)が好ましく、特にホタテ貝中腸腺が好適である。またこれら海棲軟体動物は低温域で生息するものが好ましい。海棲軟体動物を低温で順化させたものを用いることも可能である。本発明において不凍活性とは、氷結晶の成長を抑制、氷の再結晶化の阻害、溶液の凍結温度を低下させる作用である。本発明の不凍活性剤により成長を抑制された氷結晶は、その形態が岩型となることで、不凍活性の効果が確認される。さらに、本発明の不凍活性剤は凍結保存中の氷の再結晶化を阻害する効果については、−9℃で30分保持した場合に氷結晶の平均直径を6μm以下に保つことができる。また、本発明の不凍活性剤は0.2℃以上の熱ヒステレシス活性を示し、80℃で1時間処理した後でも85%以上の活性を保持し、優れた溶液の凍結温度の低下作用を有する。   The antifreeze active agent of the present invention can be obtained from the viscera of marine mollusks. The internal organs of marine mollusks include craniopods such as squid and octopus, and internal organs of shellfish such as scallops, abalone, shrimp, turban shell, oysters and clams. Part (goro) is preferred, and scallop midgut gland is particularly preferred. These marine mollusks are preferably those that inhabit in a low temperature range. It is also possible to use a marine mollusk acclimatized at a low temperature. In the present invention, the antifreeze activity is an action of suppressing the growth of ice crystals, inhibiting the recrystallization of ice, and lowering the freezing temperature of the solution. The ice crystal whose growth is suppressed by the antifreeze activator of the present invention is confirmed to have an antifreeze activity effect due to its rock shape. Furthermore, the antifreeze activator of the present invention can keep the average diameter of ice crystals at 6 μm or less when held at −9 ° C. for 30 minutes for the effect of inhibiting recrystallization of ice during cryopreservation. Further, the antifreeze activator of the present invention exhibits a thermal hysteresis activity of 0.2 ° C. or higher, retains an activity of 85% or higher even after treatment at 80 ° C. for 1 hour, and has an excellent effect of lowering the freezing temperature of the solution. Have.

本発明の不凍活性剤はホタテ貝中腸腺等の海棲軟体動物の内臓抽出液を分子量分画して得ることが出来る。内臓は生のものをそのまま使用しても、煮沸、蒸煮等の加熱処理したものを使用しても構わない。内臓からの抽出処理を行うに際し、前処理として、内臓をフードプロセッサー等によりペースト状にして均質化する。抽出液としては、リン酸カリウム緩衝液、リン酸ナトリウム緩衝液、炭酸水素アンモニウム緩衝液、トリス−塩酸緩衝液等の緩衝液を用いることができる。緩衝液はpH=6〜9、塩濃度5〜100mモル/Lのものが好ましい。緩衝液は、ペースト量の1〜5倍量を添加し、攪拌して緩衝液中に不凍活性剤を抽出することが好ましい。   The antifreeze active agent of the present invention can be obtained by molecular weight fractionation of a visceral extract of a marine mollusc such as a scallop midgut gland. The internal organs may be raw or used after being heat-treated such as boiling or steaming. When performing the extraction process from the internal organs, the internal organs are pasted and homogenized by a food processor or the like as a pretreatment. As the extract, a buffer solution such as a potassium phosphate buffer solution, a sodium phosphate buffer solution, an ammonium hydrogen carbonate buffer solution, or a Tris-HCl buffer solution can be used. The buffer solution preferably has a pH of 6-9 and a salt concentration of 5-100 mmol / L. The buffer solution is preferably added in an amount of 1 to 5 times the amount of paste and stirred to extract the antifreeze active agent in the buffer solution.

抽出処理後、遠心分離等を行って上清液と沈殿物とを分離して上清液を回収する。上清液を分離した後に、沈殿物に更に緩衝液を加えて抽出を行い、上清液を回収する処理を複数回繰り返すと、不凍活性剤の回収率を上げることが出来る。この処理は2、3回程度繰り返すのが好ましい。さらに上記緩衝液抽出液に、アセトンまたはエタノールを添加して処理を行うことにより、不凍活性成分を濃縮することが出来る。また濃縮することにより、緩衝液量が少なくなり、その後の処理における操作が簡便となる。このようなアセトンやエタノールによる処理を行うことにより、内臓に含まれるプロテアーゼ等の酵素が失活し、不凍活性の高い活性剤を得ることが出来る。アセトンやエタノールは、抽出液量に対し、1〜5倍量を添加することが好ましく、添加撹拌した後、遠心し上清を除去して不凍活性剤を含む沈殿を回収し、この沈殿に再度緩衝液を添加して抽出処理を行い、上清を回収する。次いで回収した上清液を分子量分画し、分子量10000未満の成分を除去して、分子量10000以上の画分を回収することで、本発明の不凍活性剤を得ることができる。抽出液中の分子量10000未満の成分と10000以上の成分とを分子量分画するには、透析、限外濾過等を採用することができる。限外濾過は精度の高い分子量分画処理に向いており、透析は大容量の抽出液の分子量分画処理に向いている。抽出液の容量が少ない場合には限外濾過のみで分子量10000以上の成分を分画することができるが、抽出液の容量が多い場合には透析を行った後、限外濾過を行うことが好ましい。また透析や限外濾過を行うに先立って、精密濾過を行うことにより、透析膜や限外濾過膜の目詰まりを防止することができるため好ましい。上記分画に使用する膜としては、再生セルロース、酢酸セルロースなどのセルロース系、あるいはポリスルホンなどの合成高分子系の膜が使用され、分子量10000以上の成分を分離するためには限外濾過が好適である。また分子量10000以上の成分を分離する膜としては、セルロース膜やPVDF膜が好適である。   After the extraction treatment, the supernatant liquid and the precipitate are separated by centrifugation and the supernatant liquid is recovered. After separating the supernatant liquid, the buffer is further added to the precipitate for extraction, and the process of collecting the supernatant liquid is repeated a plurality of times to increase the recovery rate of the antifreeze active agent. This process is preferably repeated about 2 or 3 times. Further, the antifreeze active ingredient can be concentrated by adding acetone or ethanol to the buffer extract. Concentration also reduces the amount of buffer solution and simplifies the subsequent operations. By performing such treatment with acetone or ethanol, an enzyme such as protease contained in the viscera is inactivated, and an activator with high antifreeze activity can be obtained. Acetone or ethanol is preferably added in an amount of 1 to 5 times the amount of the extract. After addition and stirring, the supernatant is removed by centrifugation and the precipitate containing the antifreeze active agent is recovered. The buffer is added again, extraction is performed, and the supernatant is recovered. Next, the recovered supernatant is subjected to molecular weight fractionation, components having a molecular weight of less than 10,000 are removed, and fractions having a molecular weight of 10,000 or more are collected, whereby the antifreeze activator of the present invention can be obtained. In order to fractionate a component having a molecular weight of less than 10,000 and a component having a molecular weight of 10,000 or more in the extract, dialysis, ultrafiltration, or the like can be employed. Ultrafiltration is suitable for molecular weight fractionation processing with high accuracy, and dialysis is suitable for molecular weight fractionation treatment of a large-volume extract. When the volume of the extract is small, components having a molecular weight of 10,000 or more can be fractionated only by ultrafiltration. However, when the volume of the extract is large, ultrafiltration can be performed after dialysis. preferable. In addition, it is preferable to perform microfiltration prior to dialysis or ultrafiltration because clogging of the dialysis membrane or ultrafiltration membrane can be prevented. As the membrane used for the fractionation, a cellulose-based membrane such as regenerated cellulose or cellulose acetate, or a synthetic polymer-based membrane such as polysulfone is used, and ultrafiltration is suitable for separating components having a molecular weight of 10,000 or more. It is. Moreover, as a membrane for separating components having a molecular weight of 10,000 or more, a cellulose membrane or a PVDF membrane is suitable.

本発明方法において、海棲軟体動物の内臓に緩衝液を加えて抽出を行う前に、内臓に含まれる脂質の脱脂を行うと、得られる不凍活性剤の精製度が高められ、高い不凍活性を有する不凍活性剤を得ることができる。内臓に含まれる脂質の脱脂は、内臓の加熱処理、溶剤処理、あるいは加熱処理と溶剤処理の併用により行うことができる。脱脂に用いる溶剤は、クロロホルム、ヘキサン、エーテル、アセトン、エタノール、メタノール、ブタノール等を用いることができるが、アセトン、ヘキサン、ヘキサンとエタノールの併用が好ましく、ヘキサンとエタノールを併用する場合、ヘキサンによる処理とエタノールによる処理とを別々に行っても、ヘキサン−エタノール混合液を用いて同時に行っても良い。脱脂処理の前に必要に応じ凍結乾燥、加熱乾燥等による脱水処理を行うことが好ましいが、行わなくても良い。   In the method of the present invention, delipidation of lipids contained in the viscera before extraction by adding a buffer solution to the viscera of marine mollusks increases the degree of purification of the resulting antifreeze active agent, resulting in high antifreeze. An antifreeze activator having activity can be obtained. The fat contained in the internal organs can be degreased by heat treatment of the internal organs, solvent treatment, or a combination of heat treatment and solvent treatment. As the solvent used for degreasing, chloroform, hexane, ether, acetone, ethanol, methanol, butanol, etc. can be used, but acetone, hexane, hexane and ethanol are preferably used, and when hexane and ethanol are used in combination, treatment with hexane And the treatment with ethanol may be performed separately or simultaneously using a hexane-ethanol mixed solution. Prior to the degreasing treatment, it is preferable to carry out a dehydration treatment by freeze drying, heat drying or the like, if necessary, but it is not necessary to do so.

本発明の不凍活性剤を含む冷凍食品は、氷結晶の成長が阻害されることにより、解凍時のドリップが減少し、食品の食感を改善することができる。また、凍結中の氷の再結晶化が抑制されることにより、保存中の冷凍食品の品質を改善できる等があげられる。本発明の不凍活性剤の冷凍食品への添加量は10〜100ppm程度が好ましい。   In the frozen food containing the antifreeze activator of the present invention, the growth of ice crystals is inhibited, so that the drip at the time of thawing is reduced and the food texture of the food can be improved. Moreover, the quality of frozen food during storage can be improved by suppressing recrystallization of ice during freezing. The amount of the antifreeze activator of the present invention added to the frozen food is preferably about 10 to 100 ppm.

以下、実施例を挙げて本発明を更に詳細に説明する。
実施例1
ホタテ貝中腸腺100gをフードプロセッサーでペースト状とし、これにトリス−塩酸緩衝液(100mモル、pH=8.0)100mlを加え、氷水冷却下で攪拌した。次いで10000r.p.m.で15分間遠心処理を行い、上清液を沈殿から分離回収した。分離した沈殿に、同様の緩衝液100mlを加えて同様に氷水冷却下で攪拌した後、10000r.p.m.で15分間遠心処理して上清液を回収し、先の上清液と混合した。この上清液を精密濾過して精製した後、分子量カットオフ約10000のセロハンチューブで透析して脱塩し、更に分子量分画10000の限外濾過膜にて、分子量10000未満の成分を除去し、分子量10000以上の画分よりなる不凍活性剤を得た。
Hereinafter, the present invention will be described in more detail with reference to examples.
Example 1
100 g of scallop midgut gland was made into a paste using a food processor, 100 ml of Tris-HCl buffer (100 mmol, pH = 8.0) was added thereto, and the mixture was stirred while cooling with ice water. Then 10000 r. p. m. The supernatant was separated and recovered from the precipitate. To the separated precipitate, 100 ml of the same buffer was added, and the mixture was stirred in the same manner while cooling with ice water. p. m. The supernatant was recovered by centrifugation at 15 minutes and mixed with the previous supernatant. This supernatant is purified by microfiltration and then desalted by dialysis with a cellophane tube with a molecular weight cut-off of about 10,000, and further, components with a molecular weight of less than 10,000 are removed with an ultrafiltration membrane with a molecular weight fraction of 10,000. An antifreeze activator comprising a fraction having a molecular weight of 10,000 or more was obtained.

得られた不凍活性剤を加熱せずに用いた場合の氷結晶の成長抑制効果と、80℃で1時間加熱して用いた場合の氷結晶の成長抑制効果を試験した結果を表1に示す。また不凍活性剤による氷結晶の再結晶化阻害効果、熱ヒステリシス測定試験の結果を表1にあわせて示す。   Table 1 shows the results of testing the ice crystal growth inhibitory effect when the obtained antifreeze activator is used without heating and the ice crystal growth inhibitory effect when heated at 80 ° C. for 1 hour. Show. Table 1 also shows the effect of the antifreeze activator on the inhibition of recrystallization of ice crystals and the results of the thermal hysteresis measurement test.

氷結晶の成長抑制効果の試験
1mg/ml濃度のサンプル溶液を、80℃まで加熱した後、20℃まで冷却した加熱処理サンプルと、同様の溶液を加熱することなく20℃に調温した非加熱サンプルを、各々温度制御装置付き顕微鏡のステージ上に1μリットルセットし、100℃/分の速度で−50℃まで冷却し、次いで100℃/分の速度で−10℃まで昇温した後、5℃/分の速度で−2℃まで昇温して氷単結晶を形成させた。単結晶を1℃/分の速度で冷却し、氷結晶の形態の変化を観察した。一方、不凍活性剤の1mg/ml濃度のサンプルを、80℃で1時間加熱した後、同様の試験を行った。
Test of growth inhibition effect of ice crystals After heating a sample solution of 1 mg / ml concentration to 80 ° C. and then cooling to 20 ° C., the same solution was heated to 20 ° C. without heating. 1 μL of each sample was set on the stage of a microscope equipped with a temperature controller, cooled to −50 ° C. at a rate of 100 ° C./min, then heated to −10 ° C. at a rate of 100 ° C./min, then 5 The temperature was raised to -2 ° C at a rate of ° C / min to form an ice single crystal. The single crystal was cooled at a rate of 1 ° C./min, and changes in the morphology of ice crystals were observed. On the other hand, a 1 mg / ml concentration sample of the antifreeze activator was heated at 80 ° C. for 1 hour, and then the same test was performed.

再結晶阻害効果の試験
スクロース濃度が30%となるように不凍活性剤のサンプル溶液を調整し、これを80℃まで加熱した後、20℃まで冷却した加熱処理サンプルと、同様の溶液を加熱することなく20℃に調温した非加熱サンプルを、各々温度制御装置付き顕微鏡のステージ上に1μリットルをセットし、100℃/分の速度で−80℃まで冷却して急速凍結させ、次いで50℃/分の速度で−9℃まで昇温して温度を一定に保ち、30分後の氷結晶の数を測定し、不凍活性剤無添加品を1としたときの氷結晶の数の比で示す。また、結晶の最小と最大値を示す。
Test of recrystallization inhibition effect Prepare a sample solution of antifreeze activator so that the sucrose concentration is 30%, heat this to 80 ° C, then heat the same solution as the heat-treated sample cooled to 20 ° C. 1 μL of each non-heated sample adjusted to 20 ° C. without being heated is set on the stage of a microscope equipped with a temperature control device, cooled to −80 ° C. at a rate of 100 ° C./minute, and then rapidly frozen. The temperature was raised to −9 ° C. at a rate of ° C./minute, the temperature was kept constant, the number of ice crystals after 30 minutes was measured, and the number of ice crystals when the antifreeze activator-free product was set to 1 Shown as a ratio. In addition, the minimum and maximum values of the crystal are shown.

熱ヒステリシス測定試験
不凍活性剤の1mg/ml濃度のサンプル溶液を80℃まで加熱した後、20℃まで冷却した加熱処理サンプルと、同様の溶液を加熱することなく20℃に調温した非加熱サンプルとを、各々100℃/分の速度で−50℃まで冷却し、次いで100℃/分の速度で−10℃まで昇温した後、5℃/分の速度で−2℃まで昇温して氷単結晶を形成させた。この氷単結晶を1℃/分の速度で冷却し、氷結晶が成長し始めるまでの時間を測定して熱ヒステリシスを下記(1)式より算出した。80℃まで加熱した加熱処理サンプルの熱ヒステリシスと、非加熱サンプルの熱ヒステリシスからヒステリシスの残存率を下記(2)式より求めた。結果を表1に示す。
Thermal hysteresis measurement test After heating a sample solution of antifreeze activator at a concentration of 1 mg / ml to 80 ° C., the sample was heated to 20 ° C. and then heated to 20 ° C. without heating the same solution. Each sample was cooled to −50 ° C. at a rate of 100 ° C./min, then heated to −10 ° C. at a rate of 100 ° C./min, and then raised to −2 ° C. at a rate of 5 ° C./min. Ice single crystals were formed. The ice single crystal was cooled at a rate of 1 ° C./min, the time until the ice crystal began to grow was measured, and the thermal hysteresis was calculated from the following equation (1). From the thermal hysteresis of the heat-treated sample heated to 80 ° C. and the thermal hysteresis of the non-heated sample, the residual rate of hysteresis was determined from the following equation (2). The results are shown in Table 1.

(数1)
熱ヒステリシス:TH(℃)=60-1(℃/秒)×測定時間(秒) (1)
(Equation 1)
Thermal hysteresis: TH (° C) = 60 -1 (° C / sec) x measurement time (sec) (1)

(数2)
残存率=加熱熱ヒステリシス値/非加熱熱ヒステリシス値×100 (2)
(Equation 2)
Residual rate = heating heat hysteresis value / non-heating heat hysteresis value × 100 (2)

実施例2
ホタテ貝中腸腺100gをフードプロセッサーでペースト状とし、これにトリス−塩酸緩衝液(100mモル、pH=8.0)100mlを加え、氷水冷却下で攪拌した後、10000r.p.m.で15分間遠心処理を行い、上清液を沈殿から分離回収した。分離した沈殿に同様の緩衝液100mlを加えて同様に氷水冷却下で攪拌した後、10000r.p.m.で15分間遠心処理して上清液を回収し、先の上清液と混合した。回収した上清液に、3倍量のアセトンを加えて氷水冷却下で攪拌した後、4℃で一晩静置した。一晩静置後、12000r.p.m.で30分間遠心処理し、上清液を分離除去して沈殿を回収した。沈殿を風乾させた後、トリス−塩酸緩衝液(100mモル、pH=8.0)100mlを加えて攪拌した後、12000r.p.m.で60分間遠心処理して上清液を回収した。この上清液を0.2μmまでの精密濾過を行い精製した後、分子量カットオフ約10000のセロハンチューブで透析して脱塩し、更に分子量分画10000のセルロース限外濾過膜にて分子量10000未満の成分を除去し、分子量10000以上の画分よりなる不凍活性剤を得た。得られた不凍活性剤の、単結晶の成長抑制効果、再結晶阻害効果、熱ヒステリシス測定試験を実施例1と同様に行った。結果を表1に示す。
Example 2
100 g of scallop midgut gland was made into a paste using a food processor, 100 ml of Tris-HCl buffer (100 mmol, pH = 8.0) was added thereto, and the mixture was stirred with cooling with ice water, followed by 10,000 r.p. p. m. The supernatant was separated and recovered from the precipitate. 100 ml of the same buffer was added to the separated precipitate, and the mixture was stirred in the same manner while cooling with ice water. p. m. The supernatant was recovered by centrifugation at 15 minutes and mixed with the previous supernatant. Three times the amount of acetone was added to the collected supernatant and stirred under ice-water cooling, and then allowed to stand at 4 ° C. overnight. After standing overnight, 12000 r. p. m. Was centrifuged for 30 minutes, and the supernatant was separated and removed to recover the precipitate. After air-drying the precipitate, 100 ml of Tris-HCl buffer (100 mmol, pH = 8.0) was added and stirred, and then 12000 r. p. m. And centrifuged for 60 minutes to recover the supernatant. The supernatant was purified by microfiltration to 0.2 μm, dialyzed with a cellophane tube with a molecular weight cut-off of about 10,000, and desalted, and further with a molecular weight fraction of 10000 and a molecular weight of less than 10,000. The antifreeze activator comprising a fraction having a molecular weight of 10,000 or more was obtained. The obtained antifreeze activator was subjected to the same single crystal growth inhibitory effect, recrystallization inhibitory effect, and thermal hysteresis measurement test as in Example 1. The results are shown in Table 1.

実施例3
ホタテを貝ごと煮沸した後、貝を開いて取りだした中腸腺を用いた他は実施例2と同様にして抽出、分子量分画を行い、分子量10000以上の画分を含む不凍活性剤を得た。得られた不凍活性剤の、単結晶の成長抑制効果、再結晶阻害効果、熱ヒステリシス測定試験を実施例1と同様に行った。結果を表1に示す。
Example 3
After boiling the scallops together with the shellfish, extraction and molecular weight fractionation were performed in the same manner as in Example 2 except that the midgut gland extracted by opening the shellfish was used, and an antifreeze activator containing a fraction having a molecular weight of 10,000 or more Obtained. The obtained antifreeze activator was subjected to the same single crystal growth inhibitory effect, recrystallization inhibitory effect, and thermal hysteresis measurement test as in Example 1. The results are shown in Table 1.

実施例4
ホタテ貝中腸腺100gをフードプロセッサーでペースト状とした後、中腸腺量の10倍量のエタノールで2回洗浄した後、遠心分離して沈殿を回収し、この沈殿を更に沈殿量の10倍量のヘキサンで2回洗浄して脱脂処理した。脱脂処理後の中腸腺に、トリス−塩酸緩衝液(100mモル、pH=8.0)100mlを加え、氷水冷却下で攪拌した。次いで12000r.p.m.で60分間遠心処理して上清液を回収した。この上清液を0.2μmまでの精密濾過を行い精製し、次いで分子量カットオフ約10000のセロハンチューブで透析して脱塩した後、更に分子量分画10000のセルロース限外濾過膜にて分子量10000未満の成分を除去し、分子量10000以上の画分よりなる不凍活性剤を得た。得られた不凍活性剤の、単結晶の成長抑制効果、再結晶阻害効果、熱ヒステリシス測定試験を実施例1と同様に行った。結果を表1に示す。
Example 4
After making 100 g of scallop midgut gland into a paste using a food processor, it was washed twice with 10 times the amount of midgut gland and then centrifuged to collect the precipitate. It was degreased by washing twice with a double amount of hexane. To the midgut gland after the degreasing treatment, 100 ml of Tris-hydrochloric acid buffer (100 mmol, pH = 8.0) was added and stirred under cooling with ice water. Then 12000 r. p. m. And centrifuged for 60 minutes to recover the supernatant. This supernatant was purified by microfiltration to 0.2 μm, then desalted by dialysis using a cellophane tube with a molecular weight cut-off of about 10,000, and then further with a molecular weight fraction of 10,000 on a cellulose ultrafiltration membrane. Less than components were removed to obtain an antifreeze activator comprising a fraction having a molecular weight of 10,000 or more. The obtained antifreeze activator was subjected to the same single crystal growth inhibitory effect, recrystallization inhibitory effect, and thermal hysteresis measurement test as in Example 1. The results are shown in Table 1.

比較例1
わかさぎから得た不凍活性蛋白を用いた他は、実施例1と同様の試験を行った。単結晶の成長抑制効果、再結晶阻害効果、熱ヒステリシス測定試験の結果を表1に示す。
Comparative Example 1
The same test as in Example 1 was performed except that the antifreeze active protein obtained from Wakasagi was used. Table 1 shows the results of the single crystal growth suppression effect, the recrystallization inhibition effect, and the thermal hysteresis measurement test.

Figure 0004968772
Figure 0004968772

凍結濃縮試験
水50mlに赤インク1滴を滴下し、これに80℃で加熱処理した実施例2の不凍活性剤100ppmを加えて攪拌して試験液を調整した。同様にして比較例1の不凍活性剤を100ppm加え撹拌して試験液を調整した。これらの試験液を−20℃で一週間凍結保存したところ、比較例1の不凍活性剤を添加した試験液の場合は、赤インクが凍結濃縮を起こしていたのに対し、実施例2の不凍液を添加した試験液の場合には、赤インクは均一に分散したままだった。
Freeze concentration test One drop of red ink was dropped into 50 ml of water, and 100 ppm of the antifreeze activator of Example 2 heat-treated at 80 ° C. was added thereto and stirred to prepare a test solution. Similarly, 100 ppm of the antifreeze activator of Comparative Example 1 was added and stirred to prepare a test solution. When these test solutions were stored frozen at −20 ° C. for one week, in the case of the test solution to which the antifreeze activator of Comparative Example 1 was added, the red ink was freeze-concentrated, whereas that of Example 2 In the case of the test solution to which antifreeze was added, the red ink remained uniformly dispersed.

実施例5
水100gに対し、3gの寒天を加え、加熱して寒天が融けきったところで、実施例2の不凍活性剤を10ppm加えて撹拌して調製したサンプルをシャーレに流して固めた。固まった後、−20℃で一週間凍結保存し、その後解凍し、凍結融解時における、不凍活性剤の影響を調べた。同様の試験を不凍活性剤無添加のサンプルと、実施例2の不凍活性剤の代わりに比較例1の不凍活性剤を用いて調製したサンプルで行った。実施例2の不凍活性剤を用いた寒天では、解凍後、不凍活性剤無添加のサンプル、および比較例1の不凍活性剤を用いた場合に比べ、ドリップが減少していた。また、寒天を乾燥させると、寒天の縮みが抑えられており、組織破壊も少なかった。
Example 5
When 3 g of agar was added to 100 g of water and the agar had melted by heating, a sample prepared by adding 10 ppm of the antifreeze activator of Example 2 and stirring was poured into a petri dish and solidified. After solidifying, it was stored frozen at −20 ° C. for one week, then thawed, and the influence of the antifreeze active agent at the time of freezing and thawing was examined. A similar test was performed on a sample with no antifreeze activator added and a sample prepared using the antifreeze activator of Comparative Example 1 instead of the antifreeze activator of Example 2. In the agar using the antifreeze activator of Example 2, the drip was reduced after thawing as compared with the case of using the antifreeze activator-free sample and the antifreeze activator of Comparative Example 1. Moreover, when the agar was dried, the shrinkage of the agar was suppressed and the tissue destruction was small.

Claims (6)

海棲軟体動物の内臓に緩衝液を加えて抽出処理を行った後、抽出液を分子量分画して分子量10000以上の画分を回収することを特徴とする不凍活性剤の製造方法。 A method for producing an antifreeze active agent, comprising: adding a buffer solution to the viscera of a marine mollusk and performing an extraction treatment; 海棲軟体動物の内臓に緩衝液を加えて抽出処理を行った後、抽出液をアセトンまたはエタノールで処理し、処理後の沈殿物に緩衝液を加えて抽出処理して得た抽出液を分子量分画して分子量10000以上の画分を回収することを特徴とする不凍活性剤の製造方法。 Extraction was performed by adding a buffer solution to the viscera of marine mollusks, then treating the extract with acetone or ethanol, and adding the buffer solution to the precipitate after the treatment to extract the molecular weight of the extract. A method for producing an antifreeze activator comprising fractionating and collecting a fraction having a molecular weight of 10,000 or more. 海棲軟体動物の内臓を脱脂処理し、処理後の沈殿物に緩衝液を加えて抽出処理して得た抽出液を分子量分画して分子量10000以上の画分を回収することを特徴とする不凍活性剤の製造方法。 The internal organs of marine mollusks are degreased, and the extract obtained by adding a buffer solution to the precipitate after the treatment and extracting it is subjected to molecular weight fractionation to collect a fraction having a molecular weight of 10,000 or more. Method for producing antifreeze activator. 海棲軟体動物の内臓がホタテ貝中腸腺である請求項1〜3のいずれかに記載の不凍活性剤の製造方法。 The method for producing an antifreeze active agent according to any one of claims 1 to 3, wherein the viscera of the marine mollusk is a scallop midgut gland. 請求項1〜4のいずれかの製造方法により得られた不凍活性剤。 The antifreeze activator obtained by the manufacturing method in any one of Claims 1-4. 請求項5記載の不凍活性剤を含む冷凍食品。 A frozen food comprising the antifreeze activator according to claim 5.
JP2006204687A 2006-07-27 2006-07-27 Method for producing antifreeze activator, antifreeze activator and frozen food containing the antifreeze activator Expired - Fee Related JP4968772B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006204687A JP4968772B2 (en) 2006-07-27 2006-07-27 Method for producing antifreeze activator, antifreeze activator and frozen food containing the antifreeze activator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006204687A JP4968772B2 (en) 2006-07-27 2006-07-27 Method for producing antifreeze activator, antifreeze activator and frozen food containing the antifreeze activator

Publications (2)

Publication Number Publication Date
JP2008031250A JP2008031250A (en) 2008-02-14
JP4968772B2 true JP4968772B2 (en) 2012-07-04

Family

ID=39121032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006204687A Expired - Fee Related JP4968772B2 (en) 2006-07-27 2006-07-27 Method for producing antifreeze activator, antifreeze activator and frozen food containing the antifreeze activator

Country Status (1)

Country Link
JP (1) JP4968772B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62201566A (en) * 1986-02-28 1987-09-05 Hiyouon:Kk Novel freezing point depressing agent for food
JP2001245659A (en) * 2000-03-03 2001-09-11 Hitoshi Obata Vegetable-derived nonfreezable active substance
JP4228068B2 (en) * 2001-11-21 2009-02-25 独立行政法人産業技術総合研究所 Antifreeze protein derived from fish
JP2003250572A (en) * 2002-03-04 2003-09-09 National Institute Of Advanced Industrial & Technology Antifreeze protein derived from pond smelt, method for recovering the same and use thereof
JP2004285137A (en) * 2003-03-20 2004-10-14 Kanebo Ltd Freezing inhibitor
JP2005126533A (en) * 2003-10-22 2005-05-19 Nippon Shokubai Co Ltd Ice crystal growth suppressing agent, ice crystal growth onset temperature lowering agent, and water coagulation controlling agent
US20090136649A1 (en) * 2006-03-13 2009-05-28 Nippon Suisan Kaisha Ltd. Protein having ice nucleation activity

Also Published As

Publication number Publication date
JP2008031250A (en) 2008-02-14

Similar Documents

Publication Publication Date Title
ES2676925T3 (en) Procedure of fractionation of soluble pea fractions
JP3499789B2 (en) Method for producing fish gelatin
CN102409072B (en) Method for preparing composite blood pressure lowering peptide by using marine organism
JPH04501732A (en) Methods for producing astaxanthin and related carotenoids, astaxanthin esters, chitin, proteins and meat from plants, seaweeds, bacteria, krill, shrimp and other crayfish and crustaceans
CN101962634B (en) Methods for extracting papain and superoxide dismutase (SOD) crude enzyme from comman floweringquince fruit
CN113243514A (en) Garlic pretreatment substance, extract and seasoning, and preparation method and application thereof
KR20100061108A (en) Processing and packing method in which chlorellas cover and permeate marine products
CN107259293A (en) A kind of method that natural is prepared from clam worm
RU2432956C1 (en) Method of complex processing of echinus
CN102318658B (en) Frost-resisting fresh-water fish minced fillet and preparation method thereof
JP4968772B2 (en) Method for producing antifreeze activator, antifreeze activator and frozen food containing the antifreeze activator
CN109938088A (en) Method for producing high-activity minced fillet and anti-freezing agent product by enzymolysis of chub fish meat
CN107184612A (en) A kind of extracting method of earth-worm extractive as raw material
CN106188329A (en) The extracting method of a kind of scallop polysaccharide and goods
US20080175976A1 (en) Gelatin Production System
KR101462366B1 (en) Preparing method of low-salted anchovy
NO140164B (en) PROCEDURES WHEN WHITING MEAT OF FISH MEAT
JP2992737B2 (en) Extraction method of animal and plant extracts by disruption of frozen cell membrane
JPS6158557A (en) Preparation of oyster meat extract
KR101702632B1 (en) Method for Manufacturing Dried Sea Cucumber Containing Red Ginseng Saponin
CN106399271B (en) Method for extracting superoxide dismutase from pig blood and superoxide dismutase
CN108314726B (en) Giant salamander skin collagen extraction method and collagen product extracted by same
JPH10327796A (en) Production of seasoning
CN109503678A (en) The method of extraction purification trehalose, seaweed sugar product and its application from Cordyceps militaris
CN109929022A (en) A kind of preparation method of catfish protamine sulfate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120328

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120329

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150413

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees