JP4967830B2 - Sample analysis method and apparatus - Google Patents

Sample analysis method and apparatus Download PDF

Info

Publication number
JP4967830B2
JP4967830B2 JP2007152232A JP2007152232A JP4967830B2 JP 4967830 B2 JP4967830 B2 JP 4967830B2 JP 2007152232 A JP2007152232 A JP 2007152232A JP 2007152232 A JP2007152232 A JP 2007152232A JP 4967830 B2 JP4967830 B2 JP 4967830B2
Authority
JP
Japan
Prior art keywords
probe
laser
minute object
tip
laser beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007152232A
Other languages
Japanese (ja)
Other versions
JP2008304340A (en
JP2008304340A5 (en
Inventor
直俊 赤松
和彦 堀越
俊明 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2007152232A priority Critical patent/JP4967830B2/en
Publication of JP2008304340A publication Critical patent/JP2008304340A/en
Publication of JP2008304340A5 publication Critical patent/JP2008304340A5/ja
Application granted granted Critical
Publication of JP4967830B2 publication Critical patent/JP4967830B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Sampling And Sample Adjustment (AREA)

Description

本発明は微小な分析試料に対し高感度な分析を可能とするための質量分析技術に関する。更に詳しくは、電子デバイス等の試料中に存在する10μm以下の微小異物の化学種を同定するための分析技術に関する。   The present invention relates to a mass spectrometry technique for enabling highly sensitive analysis of a minute analysis sample. More specifically, the present invention relates to an analysis technique for identifying chemical species of minute foreign matters having a size of 10 μm or less present in a sample such as an electronic device.

精密な電子デバイスの製造工程で発生する微小異物は製品不良の原因となり大きな問題となる。製品不良対策のためには、微小異物の同定が必須である。液晶ディスプレイ等の有機デバイスの発展、ハードディスクにおける軽量、小型化に伴う有機系材料の多様等により最近特に有機系の微小異物が大きな問題となりつつある。有機微小異物の分析/同定には、通常、顕微ラマンや顕微FT-IRといった分光手法が用いられる。これら分光法を用いると有機物の分子構造に関する多くの情報が得られ、未知の有機物の同定には非常に有用なツールとなる。しかしFT−IRは赤外光を用いるため空間分解能が10μm程度と大きく、数μm以下の微小異物には適用できない場合が多い。また、製造工程で200℃以上の熱履歴を経た高分子有機異物はレーザ照射により蛍光を発することが多く顕微ラマン分光法でも同定できない場合が多い。このような場合、質量分析法が未知の有機化合物の同定に有効である。質量分析法では試料を気化させてイオン化する必要があるが、高分子有機物のような難揮発性の試料は、通常、急速加熱により熱分解させる必要がある。こうして元の分子のフラグメントイオンのマススペクトルが得られ、未知試料の同定が可能となる。   The minute foreign matter generated in the manufacturing process of a precise electronic device causes a product defect and becomes a big problem. In order to prevent product defects, identification of minute foreign matter is essential. Due to the development of organic devices such as liquid crystal displays, the light weight of hard disks, and the variety of organic materials that accompany miniaturization, organic micro foreign matters have recently become a major problem. For analysis / identification of organic fine foreign substances, a spectroscopic technique such as microscopic Raman or microscopic FT-IR is usually used. By using these spectroscopic methods, a lot of information about the molecular structure of organic matter can be obtained, and it becomes a very useful tool for identification of unknown organic matter. However, since FT-IR uses infrared light, the spatial resolution is as large as about 10 μm, and in many cases, it cannot be applied to minute foreign matters of several μm or less. In addition, the organic polymer foreign matter that has undergone a thermal history of 200 ° C. or more in the manufacturing process often emits fluorescence by laser irradiation, and often cannot be identified by microscopic Raman spectroscopy. In such a case, mass spectrometry is effective for identifying an unknown organic compound. In mass spectrometry, a sample needs to be vaporized and ionized, but a hardly volatile sample such as a high molecular weight organic substance usually needs to be thermally decomposed by rapid heating. Thus, the mass spectrum of the fragment ion of the original molecule is obtained, and the unknown sample can be identified.

上記の顕微FT−IRや顕微ラマン法では、微小異物の付着した基板をそのまま分析装置にセットして分析が可能である。しかし、通常市販されている質量分析装置では、微小異物試料を採取、単離する必要がある。質量分析では、採取した試料全てが分析対象となるため、異物採取の際に目的以外の周辺部分が混入してしまうと周辺部からの情報のために目的異物のS/N(信号/ノイズ比)が低下してしまう。また、採取時または採取してから分析するまでに外部からのハイドロカーボン等のコンタミ(汚染)がS/N低下の原因となる場合がある。   In the above-described microscopic FT-IR or microscopic Raman method, the analysis can be performed by directly setting the substrate on which the minute foreign matter is adhered to the analyzer. However, it is necessary to collect and isolate a minute foreign material sample in a mass spectrometer that is usually commercially available. In mass spectrometry, since all collected samples are analyzed, if a peripheral part other than the target is mixed when collecting the foreign substance, the S / N (signal / noise ratio) of the target foreign substance is used for information from the peripheral part. ) Will decrease. In addition, contamination (contamination) such as hydrocarbons from the outside at the time of collection or before analysis after collection may cause a decrease in S / N.

従来の質量分析におけるサンプリング(質量分析装置への分析試料のセット)は、通常、針状のプローブ等を用いて固体微小異物を一旦針先に採取した後、分析用のサンプルホルダへ装着セットする。例えば、市販のガスクロマトグラフ質量分析装置に通常オプションとして用意されている直接導入プローブを用いる場合、φ1mm×深さ数mm程度の石英ガラスの容器内に微小サンプルを挿入することになる。   Sampling in conventional mass spectrometry (a set of analysis samples to a mass spectrometer) is usually performed by first collecting a solid micro foreign matter at the tip of a needle using a needle-like probe or the like and then mounting it on a sample holder for analysis. . For example, when using a direct introduction probe which is usually prepared as an option in a commercially available gas chromatograph mass spectrometer, a micro sample is inserted into a quartz glass container of about φ1 mm × depth of several mm.

またレーザと飛行時間質量分析計を組み合わせた方法も提案されている。集光したレーザを異物に照射し脱離した物質を飛行時間質量分析計により分析する方法である。   A method combining a laser and a time-of-flight mass spectrometer has also been proposed. This is a method of irradiating a condensed laser beam onto a foreign object and analyzing the desorbed substance with a time-of-flight mass spectrometer.

高分子有機物などの難揮発性物質の質量分析法として、特開2003−107061号公報に熱分解ガスクロマトグラフ質量分析法が開示されている。この中で、熱分解質量分析法として、Ptカップ中に試料をセットし加熱室に導入することにより、難揮発性有機化合物試料を質量分析する方法を開示している。しかし前記開示例では難揮発性材料を分析する方法についての記載はあるが、数μmといった微小物の分析法に関しての言及はない。   As a mass spectrometry method for hardly volatile substances such as high molecular organic substances, Japanese Patent Application Laid-Open No. 2003-107061 discloses a pyrolysis gas chromatograph mass spectrometry method. Among these, as a thermal decomposition mass spectrometry method, a method is disclosed in which a sample is set in a Pt cup and introduced into a heating chamber, whereby a hardly volatile organic compound sample is mass analyzed. However, in the above disclosed example, there is a description about a method for analyzing a hardly volatile material, but there is no mention about a method for analyzing a minute object of several μm.

また特開平8−148116号公報には微小異物の質量分析法として顕微レーザ飛行時間型質量分析の方法が開示されている。ここでは微小異物を分析法として、集光されたレーザ光を数μmの対象物に照射しながら質量分析を行う方法が開示されている。しかしながら集光された大きなエネルギー密度を持つレーザ光によるイオン化で、有機高分子化合物は結合がバラバラに切断されたフラグメントイオンとなる。またレーザ光による直接の脱離、イオン化のメカニズムは不明な点が多く、試料の状態に大きく依存するため、毎回安定したスペクトルを得ることが非常に難しく、測定するたびに異なるマススペクトルが得られる場合がある。このため未知試料を同定する手段として上記方法はふさわしくない。このように従来の質量分析では、未知の難揮発性高分子有機微小異物の同定手段としての工夫がなされていなかった。   Japanese Laid-Open Patent Publication No. 8-148116 discloses a microscopic laser time-of-flight mass spectrometry method as a mass analysis method for minute foreign matter. Here, a method of performing mass spectrometry while irradiating an object of several μm with a focused laser beam as an analysis method using minute foreign matters is disclosed. However, ionization by the focused laser beam having a large energy density causes the organic polymer compound to become fragment ions whose bonds are broken apart. In addition, the mechanism of direct desorption and ionization by laser light is unclear and depends greatly on the state of the sample, so it is very difficult to obtain a stable spectrum every time, and a different mass spectrum is obtained each time measurement is performed. There is a case. For this reason, the above method is not suitable as a means for identifying an unknown sample. Thus, the conventional mass spectrometry has not been devised as a means for identifying an unknown hardly volatile polymer organic fine foreign material.

特開2003−107061号公報JP 2003-107061 A 特開平8−148116号公報JP-A-8-148116

かかる課題を考慮してなされた本発明の第一の目的は、数μmの未知難揮発性高分子有機微小異物の同定を行うことにある。前記目的を達成するために本発明では、先端の鋭いプローブで微小異物をその先端に採取し、採取した微小異物をプローブごと質量分析計内に導入し、プローブ先端付近のできるだけ微小異物近傍にレーザ光を集光照射し、プローブ先端を加熱し、微小異物を熱分解脱離させ難揮発性高分子有機微小異物に対して良好なS/Nを持つマススペクトルデータを与える質量分析装置を提供するものである。   The first object of the present invention, which has been made in consideration of such problems, is to identify an unknown hardly volatile polymer organic fine foreign substance of several μm. In order to achieve the above object, in the present invention, a minute foreign matter is collected at the tip with a probe having a sharp tip, the collected fine foreign matter is introduced into the mass spectrometer together with the probe, and a laser is introduced as close to the minute foreign matter as possible near the probe tip. Provided is a mass spectrometer that collects and irradiates light, heats the tip of a probe, thermally decomposes and desorbs fine foreign matters, and gives mass spectrum data having good S / N to hardly volatile polymer organic fine foreign matters Is.

上記の課題を解決するため、微小異物採取用のプローブ及びプローブ先端加熱用のレーザ及びプローブ先端にレーザを照射するための光学系及びプローブ先端を観察するための顕微光学系を備え、採取した微小異物近傍のプローブ先端付近のみを的確に加熱できるようになっている。また分析部である質量分析計はプローブをそのまま装着でき、装着後プローブ先端を観察、レーザを照射し分析できるようになっている。   In order to solve the above problems, a probe for collecting a minute foreign matter, a laser for heating the probe tip, an optical system for irradiating the probe tip with a laser, and a microscopic optical system for observing the probe tip are provided. Only the vicinity of the probe tip near the foreign object can be heated accurately. In addition, the mass spectrometer, which is an analysis unit, can be mounted with a probe as it is, and can be analyzed by observing the tip of the probe and irradiating it with a laser.

課題解決のための発明のポイントとなるのは微小異物自体にレーザ光を照射して分析対象異物を直接加熱/脱離させるのではない点である。レーザ光は分析対象微小異物に照射されない。レーザ光は採取プローブ側に集光照射することが本発明の特徴である(図1)。これによりプローブの先端の領域のみを加熱高温状態とし、分析対象異物を熱脱離させ分析を行う。従ってレーザを使用するが、分析対象物からみれば加熱、脱離であり、前記従来技術(特許文献2)の装置で問題となったレーザ直接脱離に伴う問題点は回避できる。   The point of the invention for solving the problem is that the minute foreign matter itself is not irradiated with laser light to directly heat / desorb the foreign matter to be analyzed. Laser light is not irradiated to the minute foreign matter to be analyzed. It is a feature of the present invention that the laser beam is focused and irradiated on the sampling probe side (FIG. 1). As a result, only the region at the tip of the probe is heated to a high temperature state, and the analysis object foreign matter is thermally desorbed for analysis. Therefore, although a laser is used, it is heating and desorption from the viewpoint of an analysis object, and problems associated with direct laser desorption, which has been a problem with the apparatus of the conventional technique (Patent Document 2), can be avoided.

またレーザによるプローブ先端加熱なので、プローブ自体に特別な加熱機構を設ける必要がなく、プローブの材質、形状の自由度が高く、微小異物サンプリングに適したプローブを自由に作ることができる。これは課題の一つである微小異物のサンプリングを容易にすることを意味する。また原子間力顕微鏡(AFM)のプローブにも使用できるように採取プローブを加工すれば、原子間力顕微鏡で見つけた極微小異物をそのままサンプリングし分析することも可能である。   In addition, since the probe tip is heated by a laser, it is not necessary to provide a special heating mechanism for the probe itself, the degree of freedom of the probe material and shape is high, and a probe suitable for sampling fine foreign matter can be freely made. This means facilitating the sampling of minute foreign matters, which is one of the problems. If the sampling probe is processed so that it can also be used for an atomic force microscope (AFM) probe, it is possible to sample and analyze the very small foreign matter found with the atomic force microscope.

さらにレーザは1μm以下に容易に集光することができ、プローブのうち先端の限られた部分にのみ局所的に加熱できる。採取作業自体は通常大気雰囲気下で行われるので、プローブには各種有機物が付着している可能性があり、微小異物近傍の限られた部分のみ加熱することは、プローブ全体についている大量の有機物の脱離による分析への影響を最小化し、微小異物のS/N比高いマススペクトルを得る為に重要である。   Further, the laser can be easily focused to 1 μm or less, and can be locally heated only on a limited part of the tip of the probe. Since the sampling operation itself is usually performed in an air atmosphere, there is a possibility that various organic substances are attached to the probe. Heating only a limited part in the vicinity of a minute foreign object will cause a large amount of organic substances on the entire probe to be heated. This is important in order to minimize the influence of desorption on analysis and to obtain a mass spectrum with a high S / N ratio of minute foreign matter.

また本発明はガスクロマトグラフ質量分析計と組み合わせることもできる。キャピラリーカラムに試料気体を導入する前段に微小異物採取プローブを装着し、レーザ加熱によりプローブ先端を加熱することにより気化・熱分解された試料を、ヘリウム等のキャリアガスとともにキャピラリーカラムへ導入できる構造となっている。   The present invention can also be combined with a gas chromatograph mass spectrometer. A structure that allows a sample collected by vaporization and pyrolysis by heating the probe tip by laser heating to the capillary column before introducing the sample gas into the capillary column, together with a carrier gas such as helium, can be introduced into the capillary column. Yes.

本発明はデバイスの不良原因となる数μm以下の異物の質量分析を用いた分析法において、微小異物の採取を行うための採取プローブで採取した異物をレーザで加熱又は分解気化をさせ分析を行うことを可能とした。レーザ光を微小異物に直接照射し脱離させるのではなく、レーザ照射により加熱された採取プローブからの熱伝導により異物を気化、熱分解する手段を提供した。これにより、微小(微量)のサンプルに対し、コンタミレスでS/Nの良いマススペクトルデータを与えることが可能となった。   The present invention is an analysis method using mass spectrometry of foreign matter having a size of several μm or less, which causes a device defect. Made it possible. Instead of directly irradiating and detaching a laser beam with a minute foreign substance, a means for vaporizing and thermally decomposing the foreign substance by heat conduction from a sampling probe heated by laser irradiation was provided. As a result, it became possible to give mass spectrum data with good S / N and no contamination to minute (trace) samples.

(実施例1)
本発明の実施形態を図にしたがって説明する。
Example 1
Embodiments of the present invention will be described with reference to the drawings.

図2に本発明の系統図を示す。1は異物採取用プローブ、2は集光されたレーザ光、3はレーザ発振器、4はレーザ集光及び異物採取用プローブ1の先端観測用の対物レンズ、5は照明用のランプ、6は異物採取用プローブの像を観察するためのCCDカメラ、7はビームスプリッター、8は結像用のレンズ、9はイオン源、10は質量分析計、11は真空容器、12はビューポート、13は採取された異物、14は異物採取用プローブ1をイオン源にセットするためのアタッチメント、15はレーザ1が集光されたプローブ1上の場所である。分析の手順は電子デバイスから異物採取用プローブ1を用いて異物13を採取し先端に異物13が付着した状態で異物採取プローブ1をアタッチメント14にセットする。そしてCCDカメラ6によりプローブ先端の像を確認しながら、図1に示すように異物への直接照射をさけつつ極力異物に近いプローブ1先端部位15にレーザ光2を照射する。照射部位15は高温状態となり熱伝導により異物13が加熱され気化又は分解しイオン源9中へ放出され質量分析10で質量分析される。本実施例では異物採取用プローブ1はシリコン製のものを用いたが、たとえばタングテン等の金属材料も使用することも可能である。異物採取プローブ1はエッチング加工により作製し先端の曲率半径数nm程度である。異物採取プローブで1μmの異物の採取を試みたところ問題なく採取できた。本実施例はレーザ3としてYAGレーザの第二高調波を用いた。レーザのパルス幅は100nsとした。またレーザ集光部位と採取された異物13との距離は1μmとし、集光部位のレーザ集光径も約1μmとした。本実施例の構成で3μmポリスチレンビーズを測定した結果を図3に示す。典型的なポリスチレンのマスパターンを得ることができ、本方法で微小有機異物の同定が可能あることが立証された。
(実施例2)
図4、図5を使い実施例2の説明を行う。異物採取プローブとしてAFM用探針16を用いた。AFM探針によりデバイス17の表面の異物18を観測する。観測後異物18上にAFM探針16の先端を移動させ、AFMのピエゾスキャナーでAFM探針16先端を異物18に押し付け異物18をピックアップする。その後AFM探針16を図2のアタッチメント14にセット、実施例1での手順で分析を行う。本実施例はAFMプローブ16で観測した極小異物の分析が可能である。実際に本実施例の方法で測定した1μmポリスチレンビーズを測定した結果図6を示す。実施例1に比べS/N比は劣るがやはり典型的なポリスチレンの熱分解パターンを得ることができた。
(実施例3)
次に図7、図8を用いて、ガスクロマトグラフ質量分析計を用いた実施例について説明する。ここで19はキャリアガス供給ライン、20はガスクロマトグラフ、21は質量分析計、22はキャピラリーカラムである。キャピラリーカラムの片方の端23はポリイミド被覆せずレーザ光が透過できるようになっている。24は採取用プローブ1を支持する支持体である。キャピラリーカラム22の内径は0.25mm、長さ30mのものを用いた。またポリイミド被覆していない部分23の長さは約10mmとした。ここでポリイミドが被覆されていないカラムの先端23は、たとえば普通のガラスキャピラリーでも代用できる。この場合キャリアガスの滞留がないようカラムと接続する必要があること、ガラスキャピラリーからの気化した異物がすみやかにカラムに入りこむようにガラスキャピラリーの内径をキャピラリーカラム22の内径と同等とすることが望ましい。分析の手順は実施例1と同様電子デバイスから異物採取用プローブ1を用いて異物13を採取し先端に異物13が付着した状態で異物採取プローブ1をキャピラリーカラムの端23に差込み、支持体24で固定する。そしてCCDカメラ6によりプローブ先端の像を確認しながら、図1に示すように異物への直接照射をさけつつ極力異物に近いプローブ1先端部位15にレーザ光2を照射する。照射部位15は高温状態となり熱伝導により異物13が加熱され気化又は分解して生成した物質はキャリアガス供給ライン19から供給されたキャリアガスによりキャピラリーカラム22に導入され分析される。本構成で採取用プローブ1の先端に3μmのポリスチレンビーズ付着させ、分析を行い図9のようなポリスチレンの良好な熱分解ガスクロマトグラフを得ることができた。図中24はポリスチレンのモノマーによるピークである。なおガスクロマトグラフの測定は、スプリットレスで行い、カラム入口圧力100kPa、270℃迄10℃/分で昇温する条件で行った。
FIG. 2 shows a system diagram of the present invention. 1 is a probe for collecting foreign matter, 2 is a focused laser beam, 3 is a laser oscillator, 4 is an objective lens for laser focusing and observation of the tip of the probe 1 for collecting foreign matter, 5 is a lamp for illumination, and 6 is a foreign object. CCD camera for observing the image of the sampling probe, 7 is a beam splitter, 8 is an imaging lens, 9 is an ion source, 10 is a mass spectrometer, 11 is a vacuum vessel, 12 is a viewport, and 13 is sampling 14 is an attachment for setting the foreign substance collecting probe 1 to the ion source, and 15 is a place on the probe 1 where the laser 1 is focused. In the analysis procedure, the foreign material 13 is collected from the electronic device using the foreign material collection probe 1 and the foreign material collection probe 1 is set on the attachment 14 with the foreign material 13 attached to the tip. Then, while confirming the image of the probe tip with the CCD camera 6, as shown in FIG. The irradiated region 15 is in a high temperature state, and the foreign material 13 is heated and vaporized or decomposed by heat conduction, and is released into the ion source 9 for mass analysis by the mass spectrometer 10. In this embodiment, the foreign matter collecting probe 1 is made of silicon, but a metal material such as tongue ten can also be used. The foreign matter collecting probe 1 is manufactured by etching and has a radius of curvature of the order of several nanometers. Attempts to collect a 1 μm foreign object using a foreign object sampling probe showed no problem. In this embodiment, the second harmonic of a YAG laser is used as the laser 3. The laser pulse width was 100 ns. The distance between the laser condensing part and the collected foreign matter 13 was 1 μm, and the laser condensing diameter of the condensing part was also about 1 μm. The result of measuring 3 μm polystyrene beads with the configuration of this example is shown in FIG. A typical polystyrene mass pattern can be obtained, and it has been demonstrated that the present method can identify minute organic contaminants.
(Example 2)
The second embodiment will be described with reference to FIGS. An AFM probe 16 was used as a foreign matter collection probe. A foreign substance 18 on the surface of the device 17 is observed with an AFM probe. After the observation, the tip of the AFM probe 16 is moved onto the foreign substance 18, and the tip of the AFM probe 16 is pressed against the foreign substance 18 with an AFM piezo scanner to pick up the foreign substance 18. After that, the AFM probe 16 is set on the attachment 14 in FIG. 2 and analysis is performed according to the procedure in the first embodiment. In this embodiment, it is possible to analyze the minimal foreign matter observed with the AFM probe 16. FIG. 6 shows the result of actually measuring 1 μm polystyrene beads measured by the method of this example. Although the S / N ratio was inferior to that of Example 1, a typical thermal decomposition pattern of polystyrene could be obtained.
(Example 3)
Next, an embodiment using a gas chromatograph mass spectrometer will be described with reference to FIGS. Here, 19 is a carrier gas supply line, 20 is a gas chromatograph, 21 is a mass spectrometer, and 22 is a capillary column. One end 23 of the capillary column is not coated with polyimide so that laser light can pass therethrough. Reference numeral 24 denotes a support for supporting the sampling probe 1. The capillary column 22 had an inner diameter of 0.25 mm and a length of 30 m. The length of the portion 23 not coated with polyimide was about 10 mm. Here, the tip 23 of the column not coated with polyimide can be replaced with, for example, an ordinary glass capillary. In this case, it is necessary to connect to the column so that the carrier gas does not stay, and it is desirable that the inner diameter of the glass capillary is equal to the inner diameter of the capillary column 22 so that the vaporized foreign matter from the glass capillary can quickly enter the column. The analysis procedure is the same as in the first embodiment. The foreign substance 13 is collected from the electronic device using the foreign substance collecting probe 1 and the foreign substance collecting probe 1 is inserted into the end 23 of the capillary column with the foreign substance 13 attached to the tip. Fix it. Then, while confirming the image of the probe tip with the CCD camera 6, as shown in FIG. The irradiation site 15 becomes a high temperature state, and the substance generated by vaporizing or decomposing the foreign matter 13 is heated by heat conduction and introduced into the capillary column 22 by the carrier gas supplied from the carrier gas supply line 19 and analyzed. With this configuration, 3 μm polystyrene beads were attached to the tip of the sampling probe 1 and analyzed, and a good pyrolysis gas chromatograph of polystyrene as shown in FIG. 9 could be obtained. In the figure, 24 is a peak due to the monomer of polystyrene. The gas chromatograph was measured splitless and under conditions where the column inlet pressure was 100 kPa and the temperature was raised to 270 ° C. at 10 ° C./min.

本発明採取用プローブ先端部拡大図。FIG. 3 is an enlarged view of the distal end portion of the probe for collecting the present invention. 本発明実施例1の装置系統図。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 本発明の実施例1で得られたポリスチレンのマススペクトル。The mass spectrum of the polystyrene obtained in Example 1 of this invention. 本発明の実施例2におけるAFMプローブによる異物採取を説明した図。The figure explaining the foreign material extraction by the AFM probe in Example 2 of this invention. 本発明の実施例2におけるAFMプローブによる異物採取を説明した図。The figure explaining the foreign material extraction by the AFM probe in Example 2 of this invention. 本発明の実施例2で得られたポリスチレンのマススペクトル。The mass spectrum of the polystyrene obtained in Example 2 of this invention. 本発明の実施例3の装置系統図。The apparatus system | strain diagram of Example 3 of this invention. 本発明の実施例3におけるプローブ先端。The probe tip in Example 3 of this invention. 本発明の実施例で得られたポリスチレンのクロマトグラム。The chromatogram of the polystyrene obtained in the Example of this invention.

符号の説明Explanation of symbols

1…異物採取用プローブ、2…レーザ光、3…レーザ発振器、4…対物レンズ、5…照明用ランプ、6…CCDカメラ、7…ビームスプリッター、8…レンズ、9…イオン源、10…質量分析計、11…真空容器、12…ガラス窓、13…採取された異物、14…プローブアタッチメント用ジグ、15…レーザ照射部分、16…AFM用プローブ、17…電子デバイス表面、18…異物、19…キャリアガス供給ライン、20…ガスクロマトグラフ、21…質量分析計、22…キャピラリーカラム、23…キャピラリーカラム先端のポリイミド被覆されていない部分、24…採取用プローブ固定用支持体、25…ポリスチレンモノマー由来のピーク。   DESCRIPTION OF SYMBOLS 1 ... Foreign object collection probe, 2 ... Laser beam, 3 ... Laser oscillator, 4 ... Objective lens, 5 ... Illumination lamp, 6 ... CCD camera, 7 ... Beam splitter, 8 ... Lens, 9 ... Ion source, 10 ... Mass Analyzer: 11 ... Vacuum container, 12 ... Glass window, 13 ... Collected foreign material, 14 ... Probe attachment jig, 15 ... Laser irradiation part, 16 ... AFM probe, 17 ... Electronic device surface, 18 ... Foreign material, 19 DESCRIPTION OF SYMBOLS ... Carrier gas supply line, 20 ... Gas chromatograph, 21 ... Mass spectrometer, 22 ... Capillary column, 23 ... Part not covered with polyimide at the tip of capillary column, 24 ... Support for fixing probe for collection, 25 ... Peak derived from polystyrene monomer .

Claims (11)

微小物体を採取するプローブと、
前記プローブ上の微小物体を加熱気化または分解気化するためのレーザ光を発生させるレーザ発振器と、
気化した前記微小物体を分析する分析部を備える試料分析装置において、
前記レーザ光のレーザ集光径内に前記微小物体を入れずに、前記微小物体近傍へ前記レーザ光を照射することにより、前記レーザ光のエネルギーにより温度上昇したプローブ先端又は先端付近からの熱伝導により前記微小物体を加熱気化または熱分解気化し、気化した物質を分析することを特徴とする試料分析装置。
A probe for collecting minute objects;
A laser oscillator that generates a laser beam for heating and vaporizing or decomposing and vaporizing a minute object on the probe;
In a sample analyzer comprising an analysis unit for analyzing the vaporized minute object,
Heat conduction from the probe tip or the vicinity of the tip, which is heated by the energy of the laser beam, by irradiating the laser beam near the minute object without putting the minute object within the laser condensing diameter of the laser beam. The sample analysis apparatus characterized in that the micro object is heated and vaporized or pyrolyzed and vaporized, and the vaporized substance is analyzed.
請求項1において、
採取した前記微小物体を支持する前記プローブの先端又は先端付近に対物レンズ等で集光した前記レーザ光を照射し、気化した前記微小物体を前記分析部に導入し分析することを特徴とする試料分析装置。
In claim 1,
Collected the laser light condensed by the objective lens or the like to the distal end or tip vicinity of the probe supporting said minute object is irradiated, characterized by introducing the minute object has been turned into vapor to said analysis unit analyzes Sample analyzer.
請求項1または2において、前記プローブの曲率半径は前記微小物体よりも小さいことを特徴とする試料分析装置。 3. The sample analyzer according to claim 1, wherein a radius of curvature of the probe is smaller than that of the minute object . 請求項1〜3のいずれかにおいて、
前記プローブの材料をシリコンとすることを特徴とする試料分析装置。
In any one of Claims 1-3,
A sample analysis apparatus characterized in that the probe is made of silicon.
請求項1〜4のいずれかにおいて、
前記分析部に質量分析装置を用いることを特徴とする試料分析装置。
In any one of Claims 1-4,
A sample analyzer using a mass spectrometer for the analysis unit.
請求項5において、
前記質量分析装置のイオン源近傍まで前記プローブを導入できる機構と、
前記質量分析装置の外壁にレーザ照射用の窓を備え、
導入した前記プローブに前記窓を介して前記レーザ光を照射できることを特徴とする試料分析装置。
In claim 5,
A mechanism capable of introducing the probe to the vicinity of the ion source of the mass spectrometer;
A laser irradiation window is provided on the outer wall of the mass spectrometer,
A sample analyzer capable of irradiating the introduced probe with the laser beam through the window.
請求項1〜4のいずれかにおいて、
前記分析部にガスクロマトグラフ質量分析装置を使うことを特徴とする試料分析装置。
In any one of Claims 1-4,
A sample analyzer using a gas chromatograph mass spectrometer in the analysis section.
請求項7において、
ガスクロマトグラフ用カラムとしてキャピラリーカラムを備え、
キャピラリーカラム試料導入口に前記プローブを装着し、装着した前記プローブの先端に前記レーザ光を照射できるようにしたことを特徴とする試料分析装置。
In claim 7,
A capillary column is provided as a gas chromatograph column.
A sample analyzer, wherein the probe is attached to a capillary column sample inlet, and the tip of the attached probe can be irradiated with the laser beam.
請求項1〜8において、
前記プローブとして、AFMまたはSTMの探針を用いることを特徴とする試料分析装置。
In claims 1-8,
A sample analyzer using an AFM or STM probe as the probe.
請求項1〜9のいずれにおいて、
前記プローブ及び採取した前記微小物体を観察する為の観察機構を備えることを特徴とする試料分析装置。
In any one of Claims 1-9,
A sample analyzer comprising an observation mechanism for observing the probe and the collected minute object.
プローブに微小物体を採取する工程と、
レーザ光のレーザ集光径内に前記微小物体を入れずに、前記微小物体近傍へ前記レーザ光を照射し、採取した前記プローブ上の微小物体を前記レーザ光のエネルギーにより温度上昇したプローブ先端又は先端付近からの熱伝導により加熱気化または分解気化する工程と、
気化した前記微小物体を分析する工程とを含む試料分析方法。
Collecting a minute object on the probe;
Without putting the minute object in the laser focusing diameter of the laser beam, the irradiating the laser light to the microscopic object near the probe tip temperature has risen by the energy of the minute object on collected the probe the laser beam or A process of vaporization by heating or decomposition by heat conduction from the vicinity of the tip ;
Sample analysis how and a step of analyzing the vaporized the minute object.
JP2007152232A 2007-06-08 2007-06-08 Sample analysis method and apparatus Expired - Fee Related JP4967830B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007152232A JP4967830B2 (en) 2007-06-08 2007-06-08 Sample analysis method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007152232A JP4967830B2 (en) 2007-06-08 2007-06-08 Sample analysis method and apparatus

Publications (3)

Publication Number Publication Date
JP2008304340A JP2008304340A (en) 2008-12-18
JP2008304340A5 JP2008304340A5 (en) 2009-09-17
JP4967830B2 true JP4967830B2 (en) 2012-07-04

Family

ID=40233195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007152232A Expired - Fee Related JP4967830B2 (en) 2007-06-08 2007-06-08 Sample analysis method and apparatus

Country Status (1)

Country Link
JP (1) JP4967830B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5422350B2 (en) 2009-11-27 2014-02-19 株式会社日立製作所 Mass spectrometer and analysis method
CN102109434B (en) * 2009-12-24 2013-02-20 同方威视技术股份有限公司 Sampling part, sample introduction device and ion mobility spectrometer
JP2012021775A (en) * 2010-07-12 2012-02-02 Hitachi Ltd Minute sample analyzer and method

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0521561A (en) * 1991-07-12 1993-01-29 Hitachi Ltd Method and equipment for detecting foreign matter on mirror wafer and method and equipment for analyzing the foreign matter
JPH06194319A (en) * 1992-12-22 1994-07-15 Hitachi Ltd Method and equipment for analyzing sample
JP3319043B2 (en) * 1993-06-30 2002-08-26 カシオ計算機株式会社 Automatic performance device
JPH08148116A (en) * 1994-11-18 1996-06-07 Hitachi Ltd Micro-laser flight time type mass spectrometer
JPH09189680A (en) * 1996-01-08 1997-07-22 Hitachi Ltd Micromass spectrograph
JPH1164284A (en) * 1997-08-11 1999-03-05 Shimadzu Corp Gas chromatograph mass analyzer
JPH1194800A (en) * 1997-09-12 1999-04-09 Mitsubishi Heavy Ind Ltd Method and apparatus for analyzing generated gas
JPH11271036A (en) * 1998-03-23 1999-10-05 Advanced Display Inc Microsampling equipment
JP2002022625A (en) * 2000-07-11 2002-01-23 Konica Corp Micro sampling system and micro knife
JP2003107061A (en) * 2001-09-28 2003-04-09 Ube Kagaku Bunseki Center:Kk Method for identifying structure in organic matter
JP2003254886A (en) * 2002-02-28 2003-09-10 Toyota Motor Corp Gas chromatograph scanning probe microscope
JP2004212073A (en) * 2002-12-27 2004-07-29 Hitachi Ltd Dangerous material detector and dangerous material detecting method
JP2004264043A (en) * 2003-01-31 2004-09-24 National Institute Of Advanced Industrial & Technology Ionizing device, and micro-area analyzer
JP2004257973A (en) * 2003-02-27 2004-09-16 Jsr Corp Method and apparatus for analyzing shape/structure of small object
JP2005181098A (en) * 2003-12-19 2005-07-07 Hitachi Ltd Sample inlet system for hazardous article sensor
JP4485408B2 (en) * 2005-05-20 2010-06-23 株式会社日立製作所 Sampling sheet and method for producing the sampling sheet
JP2006329733A (en) * 2005-05-25 2006-12-07 Hitachi Displays Ltd Microsampling apparatus
WO2007020862A1 (en) * 2005-08-12 2007-02-22 Shimadzu Corporation Mass analyzer
JP2007057432A (en) * 2005-08-25 2007-03-08 Institute Of Physical & Chemical Research Extraction method of ions and extractor of ions
JP2008003016A (en) * 2006-06-26 2008-01-10 Hitachi Displays Ltd Sampling probe for microsample

Also Published As

Publication number Publication date
JP2008304340A (en) 2008-12-18

Similar Documents

Publication Publication Date Title
JP5034092B2 (en) Ionization method and apparatus using probe, and analysis method and apparatus
US9728388B2 (en) Measurement device, measurement apparatus, and method
JP2008003016A (en) Sampling probe for microsample
WO2010085897A1 (en) Soft ablative desorption method and system
WO2012008089A1 (en) Apparatus and method for analyzing minute sample
JP2010038560A (en) Element analyzer and element analysis method
JP4967830B2 (en) Sample analysis method and apparatus
JP2013190403A (en) Apparatus and method for analysing impurity
US20170189945A1 (en) Apparatus and method for contamination identification
JP6581786B2 (en) Drug detection device
US6414320B1 (en) Composition analysis by scanning femtosecond laser ultraprobing (CASFLU).
Teschmit et al. Characterizing and optimizing a laser-desorption molecular beam source
JP7164300B2 (en) Contamination identification device and method
US7772568B2 (en) Micro sample heating probe and method of producing the same, and analyzer using the micro sample heating probe
JP6180974B2 (en) Sputtering neutral particle mass spectrometer
JP2003254886A (en) Gas chromatograph scanning probe microscope
US6084237A (en) Method and apparatus for the analytical determination of traces
JP2008304340A5 (en)
JP5422350B2 (en) Mass spectrometer and analysis method
JPH08189917A (en) Mass spectrometry device
JP3866225B2 (en) Surface micro-area atomic emission spectrometer
JP2008309509A (en) Sampling sheet
JP2004257973A (en) Method and apparatus for analyzing shape/structure of small object
JP2010216934A (en) Sampling sheet
JPH07318552A (en) Gas chromatograph and gas chromatographic mass spectrometer

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090804

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120306

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120319

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150413

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150413

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees