JP2003107061A - Method for identifying structure in organic matter - Google Patents

Method for identifying structure in organic matter

Info

Publication number
JP2003107061A
JP2003107061A JP2001300013A JP2001300013A JP2003107061A JP 2003107061 A JP2003107061 A JP 2003107061A JP 2001300013 A JP2001300013 A JP 2001300013A JP 2001300013 A JP2001300013 A JP 2001300013A JP 2003107061 A JP2003107061 A JP 2003107061A
Authority
JP
Japan
Prior art keywords
organic substance
thermal decomposition
temperature
reaction
heating chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001300013A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Sumiyama
芳行 住山
Koji Imaoka
孝治 今岡
Hataaki Yoshimoto
旗秋 吉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UBE KAGAKU BUNSEKI CENTER KK
UBE KAGAKU BUNSEKI CT KK
Original Assignee
UBE KAGAKU BUNSEKI CENTER KK
UBE KAGAKU BUNSEKI CT KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UBE KAGAKU BUNSEKI CENTER KK, UBE KAGAKU BUNSEKI CT KK filed Critical UBE KAGAKU BUNSEKI CENTER KK
Priority to JP2001300013A priority Critical patent/JP2003107061A/en
Publication of JP2003107061A publication Critical patent/JP2003107061A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To easily identify the structure of an organic matter with less amount of sample by utilizing chemical decomposition and derivative formation inline in a coloring matter with a high intermolecular aggregation energy density and does not gave vapor pressure, a coloring matter that has a metal ion and the like in a molecular structure and does not have vapor pressure, an organic matter that does not have vapor pressure as in a macromolecular compound and has high molar weight, a coloring matter having a functional group that can be easily eliminated due to thermal decomposition in the molecular structure, and the like by a thermal decomposition gas chromatograph-mass spectrograph. SOLUTION: In the structure identification method of an organic matter for identifying the structure of the organic matter by the thermal decomposition gas chromatograph-mass spectrograph, the organic matter is reacted with a reagent at a temperature without causing thermal decomposition reaction in the organic matter in a thermal decomposition apparatus under the presence of a carrier gas or under the circulation of a carrier gas to generate a reactant, the reactant is thermally decomposed to generate a pyrolysate at a temperature for thermally decomposing the reactant, the structure of the reactant is identified by the gas chromatograph-mass spectrograph, and the structure of the organic matter is identified from the structure of the pyrolysate in the method for identifying the structure of the organic matter.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、有機物の構造をガ
スクロマトグラフ質量分析計(以下、GC−MSと略
す)を用いて簡便に同定する方法に関するものである。
TECHNICAL FIELD The present invention relates to a method for easily identifying the structure of an organic substance using a gas chromatograph mass spectrometer (hereinafter abbreviated as GC-MS).

【0002】[0002]

【従来の技術】GC−MSは、少量の試料で、分離と構
造の同定を同時に行うことが出来るなどの様々な利点が
あるため、優れた有機物の構造同定方法として広く用い
られている。
2. Description of the Related Art GC-MS is widely used as an excellent structure identification method for organic substances because it has various advantages such as the ability to simultaneously perform separation and structure identification with a small amount of sample.

【0003】しかしながら、分子間凝集エネルギー密度
の高い蒸気圧のない有機物や分子量の高い有機物は気化
せず、GC−MSでは分析することができない。そのた
め、この様な有機物をGC−MSで分析するための方法
として、化学分解や誘導体化を利用したものがあり、H
andbook of Derivatives fo
r Chromatography(2nd edit
ion), John Wiley & Sons,L
td.(1993)に記載されている。
However, an organic substance having a high intermolecular cohesive energy density and no vapor pressure or an organic substance having a high molecular weight is not vaporized and cannot be analyzed by GC-MS. Therefore, as a method for analyzing such an organic substance by GC-MS, there is a method utilizing chemical decomposition or derivatization.
andbook of Derivatives fo
r Chromatography (2nd edit
Ion), John Wiley & Sons, L
td. (1993).

【0004】また有機物である種々の高分子化合物のう
ち熱で解重合を起こし易いビニル系の高分子の構造同定
では、熱分解ガスクロマトグラフ質量分析装置(以下P
y−GC−MSと略す)を用いて簡便に構造を同定する
方法が、「熱分解ガスクロマトグラフィー入門(199
4)技報堂出版」に記載されている。
Further, among the various polymer compounds which are organic substances, in the structure identification of a vinyl polymer which is easily depolymerized by heat, a pyrolysis gas chromatograph mass spectrometer (hereinafter referred to as P
A method for easily identifying a structure by using y-GC-MS is described in “Introduction to Pyrolysis Gas Chromatography (199
4) Gihodo Publishing ”.

【0005】ポリエステル、ポリアミド、ポリイミドな
どの重縮合により得られる高分子化合物では熱による分
解が起こりにくいためPy−GC−MSを用い簡便に構
造を同定することは難しい。そこで酸又はアルカリ触媒
存在下で加水分解を行い、溶媒抽出などにより分別精製
を行い、その後誘導体化した後GC−MSを用いて構造
を同定する方法が、「新版 高分子分析ハンドブック、
紀伊国屋書店(1995)」に記載されている。
In a polymer compound obtained by polycondensation of polyester, polyamide, polyimide, etc., it is difficult to easily identify the structure using Py-GC-MS because decomposition by heat is unlikely to occur. Therefore, the method of hydrolyzing in the presence of an acid or alkali catalyst, performing fractional purification by solvent extraction, etc., and then derivatizing and then identifying the structure using GC-MS is described in “New edition Polymer Analysis Handbook,
Kinokuniya Bookstore (1995) ”.

【0006】水酸化テトラメチルアンモニウムなどの反
応試薬を熱分解時に同伴させ、熱で分解しにくいポリエ
ステルなどをPy−GC−MSを用いて同定する方法
が、「熱分解ガスクロマトグラフィー入門(1994)
技報堂出版」に記載されている。
[0006] A method of accommodating a reaction reagent such as tetramethylammonium hydroxide during thermal decomposition to identify a polyester or the like that is difficult to decompose by heat using Py-GC-MS is described in "Introduction to Thermal Decomposition Gas Chromatography (1994).
"Gihodo Publishing".

【0007】[0007]

【発明が解決しようとする課題】分子間凝集エネルギー
密度が高く蒸気圧を持たない有機化合物をGC−MSに
て分析するために行う誘導体化は、操作が煩雑で、必要
な試料量も多くしかも適用範囲が限られる。例えば分子
量が数百以上あるような色素などは、このような誘導体
化を行っても蒸気圧をもたず、GC−MSにて分析する
ことが不可能である。
The derivatization performed for analyzing an organic compound having a high intermolecular cohesive energy density and no vapor pressure by GC-MS is complicated in operation and requires a large amount of sample. Limited scope of application. For example, a dye or the like having a molecular weight of several hundreds or more does not have a vapor pressure even if such derivatization is performed, and it is impossible to analyze it by GC-MS.

【0008】本発明の目的は、分子間凝集エネルギー密
度が高く、通常のGC−MS分析においておこなわれる
誘導体化をおこなっても蒸気圧を持たない、分子構造中
に−SO3X、−COOX(XはHまたはアルカリ金
属、金属等)などの官能基を有する色素、分子構造中に
Na+、K+などの金属イオンなどを有し蒸気圧を持た
ない色素、有機高分子化合物などの蒸気圧をもたない分
子量の大きい有機物などを、熱分解ガスクロマトグラフ
質量分析計(Py−GC−MS)を用いて、簡便な分析
操作で、短時間で、しかも少量の試料で行うことのでき
る構造同定方法を提供することである。また本発明の他
の目的は、分子構造中に−SO3X(XはHまたはアル
カリ金属、金属等)及び−NO2などの熱により脱離し
やすい官能基を有する有機物をPy−GC−MSを用い
て、簡便に少量で行うことのできる構造同定方法を提供
することである。
An object of the present invention is that the intermolecular cohesive energy density is high and vapor pressure is not present even if derivatization is carried out in the usual GC-MS analysis. In the molecular structure, -SO3X, -COOX (X is H or a dye having a functional group such as an alkali metal or metal), a dye having a metal ion such as Na + or K + in the molecular structure and having no vapor pressure, and no vapor pressure of an organic polymer compound Provided is a structure identification method capable of performing a high-molecular-weight organic substance or the like using a pyrolysis gas chromatograph mass spectrometer (Py-GC-MS) with a simple analytical operation in a short time and with a small amount of sample. That is. Another object of the present invention is to use Py-GC-MS to analyze an organic substance having a functional group such as -SO3X (X is H or an alkali metal, a metal, etc.) and -NO2 which are easily desorbed by heat in the molecular structure. Another object of the present invention is to provide a structure identification method that can be easily performed in a small amount.

【0009】[0009]

【課題を解決するための手段】本発明の有機物の構造同
定方法は、熱分解ガスクロマトグラフ質量分析計を用い
て有機物の構造を同定する有機物の構造同定方法であっ
て、キャリアーガス存在下又はキャリアーガス流通下の
熱分解装置内で、有機物と試薬とを、該有機物の熱分解
反応が生じない温度で反応させて反応物を生成し、該反
応物が熱分解する温度で、前記反応物を熱分解させて熱
分解物を生成し、該熱分解物の構造をガスクロマトグラ
フ質量分析計を用いて同定し、同定された前記熱分解物
の構造から前記有機物の構造を同定することを特徴とす
る。
The structure identifying method of an organic substance of the present invention is a structure identifying method of an organic substance for identifying the structure of an organic substance by using a pyrolysis gas chromatograph mass spectrometer, in the presence of a carrier gas or a carrier gas. In a thermal decomposition apparatus under gas flow, an organic substance and a reagent are reacted at a temperature at which the thermal decomposition reaction of the organic substance does not occur to generate a reaction product, and the reaction product is decomposed at a temperature at which the reaction product is thermally decomposed. Pyrolysis is performed to produce a pyrolyzate, the structure of the pyrolyzate is identified by using a gas chromatograph mass spectrometer, and the structure of the organic matter is identified from the structure of the identified pyrolyzate. To do.

【0010】さらに好ましくは、本発明の有機物の構造
同定方法は、前記熱分解ガスクロマトグラフ質量分析計
は、加熱されていない試料室と加熱されている加熱室を
有し、前記有機物と試薬との反応を前記加熱室で行い、
前記反応物の熱分解を、前記加熱室から前記反応物を前
記試料室に移した後、前記加熱室を前記反応物が熱分解
する温度に調整し、その後前記反応物を前記加熱室に移
して行う。
More preferably, in the method for identifying the structure of an organic substance according to the present invention, the pyrolysis gas chromatograph mass spectrometer has an unheated sample chamber and a heated heating chamber, and the organic substance and the reagent are combined. The reaction is carried out in the heating chamber,
The thermal decomposition of the reaction product is performed by moving the reaction product from the heating chamber to the sample chamber, adjusting the heating chamber to a temperature at which the reaction product thermally decomposes, and then transferring the reaction product to the heating chamber. Do it.

【0011】[0011]

【発明の実施の形態】図1(a)〜(d)は、熱分解装
置内で有機物と試薬とを反応させ反応物を生成し、該反
応物を熱分解させて熱分解物を生成し、該熱分解物の構
造を同定する工程の一実施態様の説明図である。本発明
は、これらの実施の形態のみに限定されるものではな
い。図1(a)〜(d)は、図1(a)、図1(b)、
図1(c)及び図1(d)の順序で行なわれる。図1
(a)〜(d)において、キャリアーガスは窒素、ヘリ
ウム、アルゴンなどの不活性ガスなどを用いることが出
来、キャリアーガスは、試料室6及び加熱室7を備えた
熱分解装置5内に流通していてもよく、充填されていて
もよい。加熱部4は、加熱室7を加熱するものであり、
有機物と試薬とを加熱することにより反応が起き反応物
を生成する温度、反応物を熱分解する温度に加熱できる
ものでよく、例えば50〜1000℃の範囲、で加熱で
き、温度を制御出来るものを用いることが出来る。加熱
部4は、熱分解装置5の内部又は外部のどちらにも設け
ることができ、電気炉などを用いることが出来る。加熱
室7は、加熱部4により、室温から1000℃の範囲で
温度を変化させることができる。
1 (a) to 1 (d), an organic substance and a reagent are reacted in a thermal decomposition apparatus to produce a reaction product, and the reaction product is thermally decomposed to produce a thermal decomposition product. FIG. 3 is an explanatory diagram of one embodiment of a step of identifying the structure of the thermal decomposition product. The present invention is not limited to only these embodiments. 1 (a) to 1 (d) are shown in FIG. 1 (a), FIG. 1 (b),
The steps are performed in the order of FIG. 1 (c) and FIG. 1 (d). Figure 1
In (a) to (d), an inert gas such as nitrogen, helium, or argon can be used as the carrier gas, and the carrier gas is circulated in the thermal decomposition apparatus 5 including the sample chamber 6 and the heating chamber 7. It may be filled or filled. The heating unit 4 heats the heating chamber 7,
What can be heated to a temperature at which a reaction occurs to generate a reaction product by heating an organic substance and a reagent and a temperature at which the reaction product is thermally decomposed, for example, a temperature that can be heated in a range of 50 to 1000 ° C. and the temperature can be controlled Can be used. The heating unit 4 can be provided inside or outside the thermal decomposition apparatus 5, and an electric furnace or the like can be used. The heating chamber 4 can change the temperature of the heating chamber 7 in the range of room temperature to 1000 ° C.

【0012】図1(a)は、熱分解装置5の試料室6
に、有機物と試薬とを含む白金カップ3をセットする説
明図である。このとき加熱室7は有機物および反応物の
熱分解反応が未だ生じない温度に調整される。図1
(a)において、有機物と試薬とを含む白金カップ3を
熱分解装置5の試料室6にセットする際には、加熱室7
を予め望ましい温度に調整しておいても良い。またセッ
トした後、加熱室7を望ましい温度に調整しても良い。
図1(a)において、加熱室7の温度は、有機物の試薬
による化学分解反応や誘導体化反応などの処理が最も効
率良く行われ、かつ有機物の熱分解反応が未だ生じない
温度であればよい。加熱室7は室温から1000℃の範
囲で温度を変化させることができる。加熱室7の温度
は、好ましくは50℃から220℃の範囲、さらに好ま
しくは55℃から220℃の範囲、より好ましくは60
℃から220℃の範囲、特に好ましくは65℃から22
0℃の範囲が好ましい。加熱室7は昇温又は降温などに
より温度を変化させることができる。
FIG. 1A shows a sample chamber 6 of the thermal decomposition apparatus 5.
It is explanatory drawing which sets the platinum cup 3 containing an organic substance and a reagent to FIG. At this time, the heating chamber 7 is adjusted to a temperature at which the thermal decomposition reaction of the organic substance and the reactant does not occur yet. Figure 1
In (a), when the platinum cup 3 containing an organic substance and a reagent is set in the sample chamber 6 of the thermal decomposition apparatus 5, the heating chamber 7
May be adjusted to a desired temperature in advance. After setting, the heating chamber 7 may be adjusted to a desired temperature.
In FIG. 1A, the temperature of the heating chamber 7 may be a temperature at which the chemical decomposition reaction or the derivatization reaction with the organic substance reagent is most efficiently performed and the thermal decomposition reaction of the organic substance does not occur yet. . The temperature of the heating chamber 7 can be changed within the range of room temperature to 1000 ° C. The temperature of the heating chamber 7 is preferably in the range of 50 ° C to 220 ° C, more preferably in the range of 55 ° C to 220 ° C, and more preferably 60.
C. to 220.degree. C., particularly preferably 65.degree. C. to 22.
The range of 0 ° C is preferred. The temperature of the heating chamber 7 can be changed by raising or lowering the temperature.

【0013】熱分解装置5は、キャリアーガス入口1、
試料室6、加熱室7、加熱部4及びキャリアーガス出口
2を有し、キャリアーガス出口2はガスクロマトグラフ
質量分析計に接続されている。熱分解装置5では、キャ
リアーガスはキャリアーガス入口1からキャリアーガス
出口2へ流すことが出来る。熱分解成分はキャリアーガ
スと共に、キャリアーガス出口2よりガスクロマトグラ
フ質量分析計に送ることが出来る。熱分解装置5は、縦
型でキャリアーガス出口2付近に加熱室7を有するも
の、さらに縦型でキャリアーガス出口2付近で熱分解装
置の下部に加熱部4を有するものを用いることが出来
る。
The pyrolyzer 5 comprises a carrier gas inlet 1,
It has a sample chamber 6, a heating chamber 7, a heating unit 4, and a carrier gas outlet 2, and the carrier gas outlet 2 is connected to a gas chromatograph mass spectrometer. In the thermal decomposition apparatus 5, the carrier gas can flow from the carrier gas inlet 1 to the carrier gas outlet 2. The thermal decomposition component can be sent to the gas chromatograph mass spectrometer from the carrier gas outlet 2 together with the carrier gas. As the thermal decomposition apparatus 5, a vertical type having a heating chamber 7 near the carrier gas outlet 2 and a vertical type having a heating unit 4 near the carrier gas outlet 2 below the thermal decomposition apparatus can be used.

【0014】熱分解装置5では、熱分解装置5内にセッ
トする白金カップ3は、熱分解装置5より外部に取り出
すことなく、加熱及び冷却などの操作を行うことが出
来、熱分解装置5内で、有機物と試薬とを加熱により化
学反応させることができる。熱分解装置5は試料の加熱
室7への挿入と取り出しを外部と遮断された状態で繰り
返し行える機構を有するものが望ましい。また試料の加
熱室7への挿入と取り出しを、外部雰囲気と遮断された
状態で繰り返し行える機構を有しかつ必要があれば、挿
入速度を再現性よく一定にできる機構、例えば自由落下
により試料を加熱室7へ導入できる機構を有するものが
望ましい。このような装置の例としてフロンティアラボ
社製のダブルショットパイロライザーが市販されてい
る。
In the thermal decomposition apparatus 5, the platinum cup 3 set in the thermal decomposition apparatus 5 can be operated such as heating and cooling without being taken out from the thermal decomposition apparatus 5, and the inside of the thermal decomposition apparatus 5 can be performed. Thus, the organic substance and the reagent can be chemically reacted by heating. It is preferable that the thermal decomposition apparatus 5 has a mechanism capable of repeatedly inserting and removing the sample into and from the heating chamber 7 in a state of being shielded from the outside. Further, it has a mechanism that can repeatedly insert and remove the sample into and from the heating chamber 7 in a state of being shielded from the external atmosphere, and if necessary, a mechanism that can make the insertion rate constant with good reproducibility, for example, free fall of the sample. It is desirable to have a mechanism that can be introduced into the heating chamber 7. As an example of such a device, a double shot pyrolyzer manufactured by Frontier Laboratories is commercially available.

【0015】白金カップ3は、カップの素材として白金
以外に、有機物及び試薬とその反応物に化学的影響を受
けず、また化学的影響を与えず、25℃〜1000℃の
温度範囲下、好ましくは25℃〜700℃の温度範囲
下、さらに25℃〜600℃の温度範囲下、で使用でき
る材料を用いることが出来る。白金カップ3は、有機物
を入れ熱分解装置5の試料室6にセットしその後試薬を
加えてもよく、また試薬を入れ熱分解装置5の試料室6
にセットしその後有機物を加えてもよく、有機物と試薬
とを入れ熱分解装置5の試料室6にセットしてもよい。
白金カップ3は、市販の白金カップを用いることが出
来、フロンティアラボ社製のダブルショット用白金カッ
プを用いてもよい。
In addition to platinum as a material of the cup, the platinum cup 3 is not chemically affected by organic substances, reagents and their reactants, and does not have a chemical influence, and is preferably in a temperature range of 25 ° C. to 1000 ° C. Can be used in the temperature range of 25 ° C. to 700 ° C., and further in the temperature range of 25 ° C. to 600 ° C. The platinum cup 3 may be set in the sample chamber 6 of the thermal decomposition apparatus 5 after containing an organic substance, and then a reagent may be added thereto.
Alternatively, the organic substance may be added thereto, or the organic substance and the reagent may be put and set in the sample chamber 6 of the thermal decomposition apparatus 5.
As the platinum cup 3, a commercially available platinum cup can be used, and a double-shot platinum cup manufactured by Frontier Laboratories may be used.

【0016】試料室6は、加熱部4を有しない空間であ
る。図1(a)の試料室6の温度は、有機物の試薬によ
る化学分解反応や誘導体化反応などの処理が効率良く行
われ、かつ有機物の熱分解反応が未だ生じない温度より
低い温度であればよい。
The sample chamber 6 is a space without the heating section 4. The temperature of the sample chamber 6 in FIG. 1A is lower than the temperature at which the chemical decomposition reaction or the derivatization reaction with the reagent of the organic substance is efficiently performed and the thermal decomposition reaction of the organic substance does not yet occur. Good.

【0017】図1(b)は、白金カップ3を試料室6か
ら有機物の熱分解反応が未だ生じない温度に調整されて
いる加熱室7に移し、有機物の熱分解反応が生じない状
態で白金カップ3の有機物と試薬とを反応させ、反応物
を生成させる説明図である。図1(b)において、加熱
室7の有機物と試薬との加熱温度と加熱時間は、有機物
の試薬による化学分解反応や誘導体化反応などの処理が
最も効率良く行われ、かつ有機物の熱分解反応が未だ生
じない温度と加熱時間であればよい。有機物と試薬との
加熱時間は、好ましくは1〜120分の範囲、更に好ま
しくは1〜90分の範囲、特に好ましくは1〜60分の
範囲が好ましい。有機物と試薬との加熱温度は、好まし
くは50℃から220℃の範囲、さらに好ましくは55
℃から220℃の範囲、より好ましくは60℃から22
0℃の範囲、特に好ましくは65℃から220℃の範囲
が好ましい。加熱室7は任意の温度に調整することがで
き、室温から1000℃の範囲で温度を変化させること
ができる。
In FIG. 1 (b), the platinum cup 3 is transferred from the sample chamber 6 to a heating chamber 7 which is adjusted to a temperature at which the thermal decomposition reaction of the organic substance does not yet occur, and the platinum cup 3 is moved in the state where the thermal decomposition reaction of the organic substance does not occur. It is explanatory drawing which reacts the organic substance of the cup 3, and a reagent, and produces | generates a reaction product. In FIG. 1B, the heating temperature and the heating time of the organic substance and the reagent in the heating chamber 7 are such that the chemical decomposition reaction and the derivatization reaction by the reagent of the organic substance are most efficiently performed, and the thermal decomposition reaction of the organic substance is performed. The temperature and heating time may be such that the temperature does not yet occur. The heating time of the organic substance and the reagent is preferably in the range of 1 to 120 minutes, more preferably 1 to 90 minutes, and particularly preferably 1 to 60 minutes. The heating temperature of the organic substance and the reagent is preferably in the range of 50 ° C to 220 ° C, more preferably 55 ° C.
℃ to 220 ℃ range, more preferably 60 ℃ to 22
A range of 0 ° C., particularly preferably a range of 65 ° C. to 220 ° C. is preferable. The heating chamber 7 can be adjusted to any temperature, and the temperature can be changed in the range of room temperature to 1000 ° C.

【0018】図1(c)は、有機物と試薬との反応物を
含む白金カップ3を加熱室7から試料室6に移し、その
後加熱室7を反応物の熱分解反応が生ずる温度に調整す
る説明図である。図1(c)の加熱室7の温度は、反応
物の熱分解を起こす温度であればよく、好ましくは反応
物の熱分解を起こす温度より5℃以上高い温度であれば
よく、更に好ましくは反応物の熱分解を起こす温度より
10℃以上高い温度であればよく、特に好ましくは反応
物の熱分解を起こす温度より15℃以上高い温度であれ
ばよく、例えば、225℃以上が好ましく、さらに好ま
しくは225〜600℃の範囲、より好ましくは230
〜550℃の範囲、特に好ましくは250〜500℃の
範囲が好ましい。この時の加熱室7の温度が600℃以
上であると分解が進み過ぎ、もとの構造を推定するのに
適した熱分解物が得られない場合があり好ましくない。
図1(c)の試料室6の温度は、有機物の試薬による化
学分解反応や誘導体化反応などの処理が最も効率良く行
われ、かつ有機物および反応物の熱分解反応が未だ生じ
ない温度より低い温度が好ましい。図1(b)におい
て、有機物と試薬とを化学分解反応や誘導体化反応など
の処理が最も効率良く行われ、かつ有機物および反応物
の熱分解反応が未だ生じない温度と加熱時間で加熱して
反応物を生成させた後、引き続き試料を加熱室7から取
り出すこと無く、加熱室7を有機物又は反応物の熱分解
反応を起こす温度まで昇温すると、昇温時に望ましくな
い反応が生じる可能性があるために好ましくない。
In FIG. 1 (c), a platinum cup 3 containing a reaction product of an organic substance and a reagent is transferred from a heating chamber 7 to a sample chamber 6, and then the heating chamber 7 is adjusted to a temperature at which a thermal decomposition reaction of the reaction product occurs. FIG. The temperature of the heating chamber 7 in FIG. 1 (c) may be any temperature as long as it causes thermal decomposition of the reaction product, preferably 5 ° C. or more higher than the temperature at which thermal decomposition of the reaction product occurs, and more preferably. The temperature may be 10 ° C. or more higher than the temperature causing thermal decomposition of the reaction product, and particularly preferably 15 ° C. or more higher than the temperature causing thermal decomposition of the reaction product, for example, 225 ° C. or more, and further Preferably in the range of 225 to 600 ° C., more preferably 230
To 550 ° C, particularly preferably 250 to 500 ° C. If the temperature of the heating chamber 7 at this time is 600 ° C. or higher, decomposition proceeds excessively, and a thermal decomposition product suitable for estimating the original structure may not be obtained, which is not preferable.
The temperature of the sample chamber 6 in FIG. 1C is lower than the temperature at which the chemical decomposition reaction or the derivatization reaction with the organic substance reagent is most efficiently performed and the thermal decomposition reaction of the organic substance and the reaction product does not occur yet. Temperature is preferred. In FIG. 1 (b), the organic substance and the reagent are heated at a temperature and a heating time at which the chemical decomposition reaction and the derivatization reaction are most efficiently performed and the thermal decomposition reaction of the organic substance and the reactant does not occur yet. After the reaction product is generated, if the heating chamber 7 is heated to a temperature at which a thermal decomposition reaction of an organic substance or a reactant is caused without continuously taking out the sample from the heating chamber 7, an undesired reaction may occur at the time of heating. It is not preferable because it exists.

【0019】図1(d)は、白金カップ3を再び試料室
6から反応物が熱分解する温度に調整された加熱室7に
移し、白金カップ3内の反応物の熱分解を行い、反応物
の熱分解成分をキャリアーガスと共にガスクロマトグラ
フ質量分析計に送る説明図である。加熱室7の温度は、
反応物の熱分解を起こす温度であればよく、好ましくは
反応物の熱分解を起こす温度より5℃以上高い温度であ
ればよく、更に好ましくは反応物の熱分解を起こす温度
より10℃以上高い温度であればよく、特に好ましくは
反応物の熱分解を起こす温度より15℃以上高い温度で
あればよく、例えば、225℃以上が好ましく、さらに
好ましくは225〜600℃の範囲、より好ましくは2
30〜550℃の範囲、特に好ましくは250〜500
℃の範囲が好ましい。その後、反応物の熱分解成分をガ
スクロマトグラフを用いて分離し、分離物の質量分析を
行うことにより、反応物の熱分解物それぞれの構造を同
定し、反応物および有機物の構造を推定又は同定するこ
とが出来る。
In FIG. 1 (d), the platinum cup 3 is again moved from the sample chamber 6 to a heating chamber 7 adjusted to a temperature at which the reaction product is thermally decomposed, and the reaction product in the platinum cup 3 is thermally decomposed to carry out the reaction. It is explanatory drawing which sends the thermal decomposition component of a substance to a gas chromatograph mass spectrometer with a carrier gas. The temperature of the heating chamber 7 is
It may be any temperature as long as it causes thermal decomposition of the reaction product, preferably 5 ° C. or more higher than the temperature at which thermal decomposition of the reaction product occurs, and more preferably 10 ° C. or more higher than temperature at which thermal decomposition of the reaction product occurs. The temperature may be any temperature, particularly preferably a temperature higher by 15 ° C. or more than the temperature at which thermal decomposition of the reaction product occurs, for example, 225 ° C. or higher, more preferably 225 to 600 ° C., and further preferably 2
Range of 30 to 550 ° C, particularly preferably 250 to 500
The range of ° C is preferred. Then, the thermally decomposed components of the reaction product are separated using a gas chromatograph, and the mass spectrometry of the separated product is performed to identify the structure of each of the thermally decomposed products of the reaction product, and to estimate or identify the structures of the reaction product and the organic material. You can do it.

【0020】本発明の有機物の構造同定方法では、有機
物と試薬との反応を、50〜220℃の加熱室で行うこ
とが好ましく、反応物の熱分解を、225℃以上の温度
に調整した加熱室で行うことが好ましい。
In the method for identifying the structure of an organic substance of the present invention, it is preferable that the reaction between the organic substance and the reagent is carried out in a heating chamber at 50 to 220 ° C., and the thermal decomposition of the reaction product is performed by heating at a temperature of 225 ° C. or higher. It is preferably performed in a room.

【0021】上記図1(b)に示す有機物と試薬とを、
加熱により化学反応させることにより、有機物の部分構
造の特徴を損なうことなく容易に熱分解をおこすような
変化を有機物に起こし、例えば、・有機物の分子間力を
低下させることができ、・有機物及び有機物と試薬との
反応物を熱分解させる際に、これらの再結合反応、転移
反応、異性化反応及び官能基脱離反応から選ばれる構造
同定に障害となる反応を抑制させることができる。
The organic substance and the reagent shown in FIG.
By causing a chemical reaction by heating, a change that easily causes thermal decomposition without impairing the characteristics of the partial structure of the organic substance is caused in the organic substance, and, for example, the intermolecular force of the organic substance can be reduced, When thermally decomposing a reaction product of an organic substance and a reagent, it is possible to suppress a reaction that hinders the structural identification selected from these recombination reaction, transfer reaction, isomerization reaction and functional group elimination reaction.

【0022】本発明の有機物の構造同定方法の操作法の
一例として、下に示す(1)から(11)の操作を挙げ
ることが出来る。 (1)熱分解装置として、加熱されていない試料室と加
熱部を有する熱分解装置を用い、(2)有機物と試薬と
を白金カップなどに入れ試料を調整し、(3)該試料を
キャリアーガス存在下又はキャリアーガス流通下で熱分
解装置の試料室に入れ、(4)該試料を熱分解装置の加
熱室で、化学分解反応や誘導体化反応などの処理が最も
効率良く行われ、かつ熱分解反応が未だ生じない温度、
例えば50℃〜220℃の範囲で所定時間加熱し、有機
物と試薬とを反応させ反応物を生成し、(5)該反応物
を含む試料を熱分解装置から取り出すことなく、加熱室
から試料室に移し、該反応物を含む試料の温度を下げ、
(6)加熱室を該反応物の熱分解が起こる温度、例えば
225℃以上に加熱し、(7)該反応物を含む試料を試
料室から加熱室に移し、(8)反応物の熱分解を行い熱
分解物を生成し、(9)該熱分解物をキャリアーガスと
共にガスクロマトグラフに送り、ガスクロマトグラフを
用いて分離し、(10)質量分析計を用いて、該反応物
及び/又は該熱分解物の分離成分の質量分析を行い該反
応物及び/又は該熱分解物の構造を同定し、(11)同
定された熱分解物から、反応物の構造を同定し、(1
2)反応物の構造より有機物の構造を同定又は推定す
る。
As an example of the operating method of the structure identifying method of the organic substance of the present invention, the following operations (1) to (11) can be mentioned. (1) As a thermal decomposition apparatus, a thermal decomposition apparatus having an unheated sample chamber and a heating unit is used, (2) an organic substance and a reagent are put in a platinum cup or the like to prepare a sample, and (3) the sample is a carrier. The sample is placed in the sample chamber of the thermal decomposition apparatus in the presence of gas or under carrier gas flow, and (4) the sample is most efficiently processed in the heating chamber of the thermal decomposition apparatus, such as chemical decomposition reaction or derivatization reaction, and The temperature at which the thermal decomposition reaction still does not occur,
For example, by heating in a range of 50 ° C. to 220 ° C. for a predetermined time, an organic substance and a reagent are reacted to generate a reaction product, and (5) the sample containing the reaction product is not taken out from the thermal decomposition apparatus, but is removed from the heating chamber to the sample chamber. And lowering the temperature of the sample containing the reaction,
(6) The heating chamber is heated to a temperature at which thermal decomposition of the reaction product occurs, for example, 225 ° C. or higher, (7) a sample containing the reaction product is transferred from the sample chamber to the heating chamber, and (8) thermal decomposition of the reaction product. To produce a thermal decomposition product, (9) the thermal decomposition product is sent to a gas chromatograph together with a carrier gas, and separated using a gas chromatograph, and (10) the reaction product and / or the reaction product is separated using a mass spectrometer. Mass analysis of the separated components of the thermal decomposition product is performed to identify the structure of the reaction product and / or the thermal decomposition product, and (11) the structure of the reaction product is identified from the identified thermal decomposition product.
2) Identify or presume the structure of the organic substance from the structure of the reaction product.

【0023】本発明の構造同定方法は、一般的なガスク
ロマトグラフ分析の前処理として用いられる分子間凝集
エネルギー密度を下げる処理を行っても蒸気圧を持たな
い有機物の構造同定を簡便にしかも少量で行うことがで
きる。また、本発明の構造同定方法は、分子間凝集エネ
ルギー密度が高く蒸気圧を持たずかつ分子量の高い有機
物、例えば、分子構造中に−SOX及び−COOX
(XはH、アルカリ金属、金属等)を有する色素、分子
構造中にNa、Kなどの金属イオンなどを有する難
揮発性の色素などの有機物の構造同定を簡便にしかも少
量で行うことができる。さらに本発明の構造同定方法
は、その構造を変化させることなく300℃で蒸気圧を
持たない有機物の構造同定を簡便にしかも少量で行うこ
とができる。さらに本発明の構造同定方法は、100℃
で蒸気圧1Pa以下、好ましくは0.5Pa以下、更に
好ましくは0.1Pa以下、より好ましくは0.05P
a以下、特に好ましくは0.01Pa以下の有機物の構
造同定を簡便にしかも少量で行うことができる。分子間
凝集エネルギー密度は、「化学大事典2(共立出版株式
会社発行、縮刷版第14版)」に記載されている。蒸気
圧を持たないとは、僅かな蒸気圧、例えば1Pa以下、
好ましくは0.5Pa以下、更に好ましくは0.1Pa
以下、より好ましくは0.05Pa以下、特に好ましく
は0.01Pa以下の蒸気圧を有することである。
The structure identification method of the present invention allows simple and small-scale structure identification of organic substances having no vapor pressure even if a treatment for lowering the intermolecular cohesive energy density used as a pretreatment for general gas chromatographic analysis is performed. It can be carried out. The structure identification method of the present invention, -SO 3 X and -COOX high intermolecular cohesive energy density is high and a molecular weight no vapor pressure organic substance, for example, in the molecular structure
(3) Structure identification of organic substances such as dyes having (X is H, alkali metal, metal, etc.) and hardly volatile dyes having metal ions such as Na + and K + in the molecular structure can be performed simply and in a small amount. You can Furthermore, the structure identification method of the present invention enables simple and small-scale structure identification of organic substances having no vapor pressure at 300 ° C. without changing the structure. Furthermore, the structure identification method of the present invention is performed at 100 ° C.
At a vapor pressure of 1 Pa or less, preferably 0.5 Pa or less, more preferably 0.1 Pa or less, more preferably 0.05 P.
The structure of an organic substance having a or less, and particularly preferably 0.01 Pa or less, can be identified easily and in a small amount. The intermolecular cohesive energy density is described in "Encyclopedia of Chemistry 2 (published by Kyoritsu Shuppan Co., Ltd., reduced edition 14th edition)". Having no vapor pressure means a slight vapor pressure, for example 1 Pa or less,
It is preferably 0.5 Pa or less, more preferably 0.1 Pa.
Below, it is more preferable to have a vapor pressure of 0.05 Pa or less, and particularly preferably 0.01 Pa or less.

【0024】特に、本発明の有機物の構造同定方法にお
いて、有機物の熱分解反応の生じない温度が、50〜2
20℃の範囲が好ましく、反応物の熱分解する温度が2
25℃以上であることが好ましい。
In particular, in the method for identifying the structure of an organic substance of the present invention, the temperature at which the thermal decomposition reaction of the organic substance does not occur is 50 to 2
The temperature is preferably in the range of 20 ° C, and the temperature at which the reaction product is thermally decomposed is 2
It is preferably 25 ° C. or higher.

【0025】以下に本発明により簡便にその構造を同定
できうる有機物の具体例として、以下の化合物をあげる
が、本発明の対象化合物はこれに限定されるものではな
い。C.I.Acid Yellow(7,17,2
3,42,59,99,121,155,176,20
7,241);C.I.Direct Yellow
(28,39,86,106);C.I.Reacti
ve Yellow(15,17,37);C.I.A
cid Red(52,183,198,211,21
5,256);C.I.Disperse Red 6
0;C.I.Acid Blue(90,279);
C.I.Direct Blue(71,98,19
9);C.I.Reactive Blue(15,3
8,41,71,77);C.I.Direct Gr
een(26,59,28);C.I.Reactiv
e Green 12;C.I,Acid Black
1;C.I.IJ Black 168;C.I.F
ood Black 2などの水溶性染料などの色素、
C.I.Pigment Red(1,2,3,4,
6,9,48,48:4,49,50,51,52,5
3)などの有機顔料、などを挙げることが出来る。
The following compounds are mentioned below as specific examples of the organic substance whose structure can be easily identified by the present invention, but the compound of the present invention is not limited thereto. C. I. Acid Yellow (7, 17, 2
3,42,59,99,121,155,176,20
7, 241); C.I. I. Direct Yellow
(28, 39, 86, 106); C.I. I. Reacti
ve Yellow (15, 17, 37); C.I. I. A
cid Red (52,183,198,211,21
5,256); C.I. I. Disperse Red 6
0; C.I. I. Acid Blue (90,279);
C. I. Direct Blue (71, 98, 19
9); C.I. I. Reactive Blue (15,3
8, 41, 71, 77); C.I. I. Direct Gr
een (26, 59, 28); C.I. I. Reactiv
e Green 12; C.I. I, Acid Black
1; C.I. I. IJ Black 168; C.I. I. F
pigments such as water-soluble dyes such as good black 2
C. I. Pigment Red (1, 2, 3, 4,
6,9,48,48: 4,49,50,51,52,5
Examples thereof include organic pigments such as 3).

【0026】本発明に用いることの出来る試薬は、
(a)該有機物と化学的に反応して有機物間の分子間力
を下げる作用を有するもの、(b)該有機物と化学的に
反応して有機物の脱離しやすい官能基を保護する作用を
有するもの、(c)該有機物と化学的に反応して有機物
の炭化を抑する作用を有するもの、(d)該有機物と化
学的に反応して有機物の再結合反応を抑する作用を有す
るもの、(e)該有機物と化学的に反応して有機物の転
移反応を抑する作用を有するもの、(f)該有機物と化
学的に反応して有機物の異性化反応を抑する作用を有す
るもの、(g)該有機物と化学的に反応して有機物に含
まれるアゾ結合などの熱切断の困難な結合を、熱切断の
容易な結合に変える作用を有するもの、などを挙げるこ
とが出来る。試薬は、上記(a)から(g)のうち1つ
以上の作用を有するものであれば、どのような試薬でも
用いることが出来る。
The reagents which can be used in the present invention are
(A) having an action of chemically reacting with the organic substance to reduce an intermolecular force between the organic substances, and (b) having an action of chemically reacting with the organic substance to protect a functional group from which the organic substance is easily released. (C) those having an action of chemically reacting with the organic substance to suppress carbonization of the organic substance, (d) having an action of chemically reacting with the organic substance to inhibit a recombination reaction of the organic substance, (E) those having the action of chemically reacting with the organic substance to suppress the transfer reaction of the organic substance, (f) those having the action of chemically reacting with the organic substance to suppress the isomerization reaction of the organic substance, ( g) those having a function of chemically reacting with the organic substance to convert a bond which is difficult to be thermally cleaved such as an azo bond contained in the organic substance into a bond which is easily thermally cleaved. As the reagent, any reagent can be used as long as it has one or more actions of the above (a) to (g).

【0027】上記(a)に説明される有機物又は有機物
間の分子間力を下げる作用の具体的な例として、有機物
の分子構造中に存在する−COOX、−SOX、−P
X(XはHまたはアルカリ金属、金属等)などをア
ルキル化剤などによりエステル化する反応などを挙げる
ことが出来る。
[0027] Specific examples of the action of lowering the intermolecular force between the organic or organic described above (a), -COOX present in the molecular structure of the organic matter, -SO 3 X, -P
Examples thereof include a reaction of esterifying O 3 X (X is H or an alkali metal, a metal or the like) with an alkylating agent or the like.

【0028】上記(c)に説明される化学的に反応して
有機物の炭化を抑する作用の具体的な例として、官能基
を除く主結合の分解反応、分子量を低下させるような結
合の切断などの分子量低下反応の促進、例えば、主鎖に
存在するエステル結合やアミド結合の加水分解などの分
解の促進、などを挙げることが出来る。
Specific examples of the action of suppressing the carbonization of an organic substance by chemically reacting as described in the above (c) include a decomposition reaction of a main bond excluding a functional group, and a cleavage of a bond which lowers the molecular weight. And the like, for example, promotion of decomposition such as hydrolysis of ester bond or amide bond existing in the main chain.

【0029】上記(b)に説明される有機物と化学的に
反応して有機物の脱離しやすい官能基を保護する作用の
具体的な例として、例えば脱離容易な官能基の保護、例
えば、−NOのアミンへの還元、−SOX(XはH
またはアルカリ金属、金属等)の−SHへの還元、など
を挙げることが出来る。
As a specific example of the action of chemically reacting with the organic substance described in (b) above to protect the functional group of the organic substance that is easily desorbed, for example, protection of the functional group that is easily desorbed, for example,- Reduction of NO 2 to amine, —SO 3 X (X is H
Alternatively, alkali metal, metal, etc.) can be reduced to —SH.

【0030】上記(g)に説明される有機物と化学的に
反応して有機物に含まれるアゾ結合などの熱切断の困難
な結合を、熱切断の容易な結合に変える作用の具体的な
例として、難熱分解結合を易熱分解結合へ変える、例え
ば、−C=C−、−N=N−などの不飽和結合の還元又
は不飽和結合への適当な付加反応を行うこと、などを挙
げることが出来る。
As a specific example of the action described in the above (g), which chemically reacts with an organic substance and converts a bond which is difficult to be thermally cleaved such as an azo bond contained in the organic substance into a bond which is easily thermally cleaved. , Converting a flame-retardant bond into an easily pyrolyzable bond, for example, reducing an unsaturated bond such as -C = C-, -N = N- or performing an appropriate addition reaction to the unsaturated bond. You can

【0031】本発明に用いることことのできる試薬の具
体例を以下に示す。しかしながら本発明に用いる試薬と
しては、本発明の方法により有機物と試薬とを、加熱に
より化学反応させることにより、有機物の部分構造の特
徴を損なうことなく容易に熱分解をおこすような変化を
有機物に起こすことが可能なものであればこれに限定さ
れない。具体的な例として、「分離分析のための誘導体
化ハンドブック(中村洋監訳、丸善株式会社発行)、H
ANDBOOK OF DERIVATIVES FO
RCHROMATOGRAPHY(Second Ed
ition KarlBlau・John Halke
t、MARUZEN&WILEY)」に記載の、有機物
を化学分解や誘導体に変性可能な、シリル化剤、アシル
化剤、エステル化剤、ヒドロシリル化剤、還元剤、酸化
剤、加水分解剤などが好ましく、これらは1種又は2種
以上組み合わせて用いることが出来る。
Specific examples of reagents that can be used in the present invention are shown below. However, as the reagent used in the present invention, an organic substance and a reagent are chemically reacted by heating according to the method of the present invention, so that the organic substance undergoes such a change as to easily cause thermal decomposition without impairing the characteristics of the partial structure of the organic substance. It is not limited to this as long as it can be caused. As a specific example, “Derivatization Handbook for Separation and Analysis (Translated by Hiroshi Nakamura, published by Maruzen Co., Ltd.), H
ANDBOOK OF DERIVATIVES FO
RCHROMATO GRAPHY (Second Ed
edition KarlBlau · John Halke
t, MARUZEN & WILEY) ”, which is preferably a silylating agent, an acylating agent, an esterifying agent, a hydrosilylating agent, a reducing agent, an oxidizing agent, a hydrolyzing agent, etc., which can chemically decompose or modify an organic substance into a derivative. Can be used alone or in combination of two or more.

【0032】シリル化剤として用いることの出来る試薬
として、Hexamethyldisilazane(HMDS)、Dimethyldich
lorosilane(DMCS)、Trimethylchlorosilane(TMC
S)、N-Trimethylsilylacetamide(TMSA)、N,O-Bis(tr
imethylsilyl)-acetamide(BSA)、N-Methyl-N-trimeth
ylsilyl-acetamide(MTMSA)、N-Methyl-N-trimethylsi
lyl-trifluoroacetamide(MSTFA)、N-Trimethylsilyld
imethylamine (TMSDMA)、N-Trimethylsilyldiethylam
ine(TMSDEA)、N,O-Bis(trimethylsilyl)trifluoroace
tamide(BSTFA)、N-Trimethylsilylimidazole(TMS
I)、Tetramethyldisilazane(TMDS)、tert-Butyldime
thylchlorosilane(tert-BDMCS)、N-Methyl-N-(tert-b
utyldimethylsilyl)-trifluoroacetamide(MTBSTFA)、
Dichloromethyltetramethyldisilazane(CMTMDS)、Chl
oromethyldimethylchlorosilane(CMDMCS)、Bromometh
yldimethylchlorosilane(BMDMCS)、Trimethylchloros
ilane-D9(TMCS-D9)、Hexamethyldisilazane-D18(HMD
S-D18)、N,O-Bis(trimethylsilyl-D9)acetamide(BSA-
D18)、N-Trimethylsilylimidazole-D9(TMSI-D9)、Fl
ophemesylamine、Flophemesylchloride、Flophemesyldi
ethylamineなどを用いることができる。またこれらをア
セトニトリル、ピリジンなどの適当な溶媒に溶解して用
いることも可能である。また数種類の化合物を混合して
用いることも可能である。
Hexamethyldisilazane (HMDS), Dimethyldich can be used as a silylating agent.
lorosilane (DMCS), Trimethylchlorosilane (TMC
S), N-Trimethylsilylacetamide (TMSA), N, O-Bis (tr
imethylsilyl) -acetamide (BSA), N-Methyl-N-trimeth
ylsilyl-acetamide (MTMSA), N-Methyl-N-trimethylsi
lyl-trifluoroacetamide (MSTFA), N-Trimethylsilyld
imethylamine (TMSDMA), N-Trimethylsilyldiethylam
ine (TMSDEA), N, O-Bis (trimethylsilyl) trifluoroace
tamide (BSTFA), N-Trimethylsilylimidazole (TMS
I), Tetramethyldisilazane (TMDS), tert-Butyldime
thylchlorosilane (tert-BDMCS), N-Methyl-N- (tert-b
utyldimethylsilyl) -trifluoroacetamide (MTBSTFA),
Dichloromethyltetramethyldisilazane (CMTMDS), Chl
oromethyldimethylchlorosilane (CMDMCS), Bromometh
yldimethylchlorosilane (BMDMCS), Trimethylchloros
ilane-D9 (TMCS-D9), Hexamethyldisilazane-D18 (HMD
S-D18), N, O-Bis (trimethylsilyl-D9) acetamide (BSA-
D18), N-Trimethylsilylimidazole-D9 (TMSI-D9), Fl
ophemesylamine, Flophemesylchloride, Flophemesyldi
Ethylamine or the like can be used. It is also possible to dissolve these in an appropriate solvent such as acetonitrile or pyridine before use. It is also possible to use a mixture of several kinds of compounds.

【0033】アシル化剤として用いることの出来る試薬
として、Trifluoroacetic anhydride(TFAA)、Heptafl
uorobutyric anhydride(HFBA)、Pentafluoropropioni
c anhydride(PFPA)、Trifuluoroacetyl Imidazole(T
FAI)、Heptafluorobutyryl Imidazole(HFBI)、Penta
fluoropropionyl Imidazole(PFPI)、N-Methyl bis(tr
ifluoroacetamide)(MBTFA)、PentafluorobenzylBromi
de(PFBB)などを用いることができる。またこれらを適
当な溶媒に溶解して用いることも可能である。また数種
類の化合物を混合して用いることも可能である。
As a reagent that can be used as an acylating agent, trifluoroacetic anhydride (TFAA), Heptafl
uorobutyric anhydride (HFBA), Pentafluoropropioni
c anhydride (PFPA), Trifuluoroacetyl Imidazole (T
FAI), Heptafluorobutyryl Imidazole (HFBI), Penta
fluoropropionyl Imidazole (PFPI), N-Methyl bis (tr
ifluoroacetamide) (MBTFA), PentafluorobenzylBromi
de (PFBB) or the like can be used. It is also possible to dissolve these in an appropriate solvent before use. It is also possible to use a mixture of several kinds of compounds.

【0034】エステル化剤として用いることの出来る試
薬として、Dimethylformamide dimethylacetal(DMF-DM
A)、Dimethylformamidediethylacetal(DMF-DEA)、Di
methylformamide di-n-propylacetal(DMF-DNPA)、Dim
ethylformamide di-n-butylacetal(DMF-DNBA)、Pheny
ltrimethylammonium Hydroxide(PTAH)、Tetramethyla
mmonium Hydroxide(TMAH)などを用いることができ
る。またこれらをメタノール、エタノール、n−プロパ
ノール、n−ブタノールなどの適当な溶媒に溶解して用
いることも可能である。また数種類の化合物を混合して
用いることも可能である。
As a reagent that can be used as an esterifying agent, dimethylformamide dimethylacetal (DMF-DM
A), Dimethylformamidediethylacetal (DMF-DEA), Di
methylformamide di-n-propylacetal (DMF-DNPA), Dim
ethylformamide di-n-butylacetal (DMF-DNBA), Pheny
ltrimethylammonium Hydroxide (PTAH), Tetramethyla
mmonium Hydroxide (TMAH) etc. can be used. It is also possible to dissolve these in an appropriate solvent such as methanol, ethanol, n-propanol, n-butanol and the like and use them. It is also possible to use a mixture of several kinds of compounds.

【0035】ヒドロシリル化剤として用いることの出来
る試薬として、トリクロロシラン、トリエチルシラン、
トリメチルシラン、ジフェニルシラン、フェニルシラ
ン、などを用いることができる。またこれらを適当な溶
媒に溶解して用いることも可能である。また数種類の化
合物を混合して用いることも可能である。
As a reagent which can be used as a hydrosilylation agent, trichlorosilane, triethylsilane,
Trimethylsilane, diphenylsilane, phenylsilane, or the like can be used. It is also possible to dissolve these in an appropriate solvent before use. It is also possible to use a mixture of several kinds of compounds.

【0036】還元剤として用いることの出来る試薬とし
て、アルカリ金属、アルカリ土類金属、亜鉛、トリクロ
ロシラン、トリエチルシラン、トリメチルシラン、ジフ
ェニルシラン、フェニルシラン、ポリメチルヒドロシロ
キサンなどのヒドロシラン類、水素化ほう素アルカリ
類、水素化ほう素アルカリ土類金属類などの金属水素錯
化合物、トリアルキルホスフィン、トリフェニルホスフ
ィンなどの3価のリン化合物、ヒドラジン等を用いるこ
とができる。これらはPd、Pt、などの触媒と共にもちい
ることができる。またこれらを適当な溶媒に溶解して用
いることも可能である。また数種類の化合物を混合して
用いることも可能である。
Reagents that can be used as the reducing agent include alkali metals, alkaline earth metals, zinc, trichlorosilane, triethylsilane, trimethylsilane, diphenylsilane, phenylsilane, hydrosilanes such as polymethylhydrosiloxane, and hydrogenated boron. It is possible to use metal hydrogen complex compounds such as alkaline earth metals, alkaline earth borohydride metals, trivalent phosphorus compounds such as trialkylphosphine and triphenylphosphine, and hydrazine. These can be used with catalysts such as Pd, Pt. It is also possible to dissolve these in an appropriate solvent before use. It is also possible to use a mixture of several kinds of compounds.

【0037】酸化剤として用いることの出来る試薬とし
て、過酸化水素水、有機過酸、ジメチルスルホキシドな
どをもちいることができる。またこれらを適当な溶媒に
溶解して用いることも可能である。また数種類の化合物
を混合して用いることも可能である。
As a reagent which can be used as an oxidizing agent, hydrogen peroxide solution, organic peracid, dimethylsulfoxide and the like can be used. It is also possible to dissolve these in an appropriate solvent before use. It is also possible to use a mixture of several kinds of compounds.

【0038】加水分解剤として用いることの出来る試薬
として、アルカリ金属の水酸化物、ナトリウムアルコキ
シド、カリウムアルコキシド、アミン化合物、第4アン
モニウム化合物の水酸化物、無機酸として硫酸、リン
酸、有機酸としてp−トルエンスルホン酸、、種々のカ
ルボン酸、金属酸化物などの固体酸触媒をもちいること
ができる。またこれらを適当な溶媒に溶解して用いるこ
とも可能である。また数種類の化合物を混合して用いる
ことも可能である。
As reagents that can be used as a hydrolyzing agent, alkali metal hydroxides, sodium alkoxides, potassium alkoxides, amine compounds, quaternary ammonium compound hydroxides, inorganic acids such as sulfuric acid, phosphoric acid, and organic acids can be used. Solid acid catalysts such as p-toluenesulfonic acid, various carboxylic acids, and metal oxides can be used. It is also possible to dissolve these in an appropriate solvent before use. It is also possible to use a mixture of several kinds of compounds.

【0039】熱分解装置内で有機物と試薬を反応させる
温度は、有機物と試薬との反応が効率よく進み、有機物
の原子間結合の結合の熱による切断が起こらない温度で
あれば良く、例えば220℃以下、さらに50〜220
℃の範囲が好ましい。 熱分解装置内で有機物と試薬を
反応をさせる時間は、有機物と試薬との反応が十分に行
える時間であればよく、1時間以内が好ましい。
The temperature at which the organic substance reacts with the reagent in the thermal decomposition apparatus may be a temperature at which the reaction between the organic substance and the reagent proceeds efficiently and the cleavage of the bond of the organic substance between atoms due to heat does not occur, for example, 220 ℃ or less, further 50-220
The range of ° C is preferred. The time for reacting the organic substance and the reagent in the thermal decomposition apparatus may be any time as long as the reaction between the organic substance and the reagent can be sufficiently performed, and is preferably within 1 hour.

【0040】熱分解ガスクロマトグラフ質量分析計とし
ては、有機物と試薬とが熱分解装置内で加熱できる熱分
解ガスクロマトグラフ質量分析計であればよく、加熱さ
れない試料室と加熱室を有する熱分解ガスクロマトグラ
フ質量分析計、加熱されない試料室と加熱室を有する熱
分解ガスクロマトグラフ質量分析計で試料を加熱されな
い試料室と加熱室とを外部雰囲気と遮断された状態で移
動させることができる機構を有するもの、加熱されない
試料室と縦型の加熱室とを有し、試料を加熱されない試
料室と縦型の加熱室を外部雰囲気と遮断された状態で移
動させることができる機構を有し、また必要があれば加
熱されない試料室から試料を自由落下により縦型の加熱
室に導入できる機構を有する熱分解ガスクロマトグラフ
質量分析計などを用いることが出来る。熱分解ガスクロ
マトグラフ質量分析計としては、フロンティアラボ社製
のダブルショットパイロザイザーを有する熱分解ガスク
ロマトグラフ質量分析計を用いることが出来る。ガスク
ロマトグラフ及び質量分析計としては、公知の分析用と
して用いられる機器、例えば市販されている機器を用い
ることが出来る。ガスクロマトグラフ用のカラムとして
は、公知の一般に分析用として用いられるガスクロマト
グラフ用カラムや市販のガスクロマトグラフ用カラムを
用いることが出来る。ガスクロマトグラフは、熱分解成
分を分離し、質量分析が可能となるものであればよく、
カラム及びカラム温度を適宜選択して行うことが出来
る。
The pyrolysis gas chromatograph mass spectrometer may be any pyrolysis gas chromatograph mass spectrometer capable of heating organic substances and reagents in the pyrolysis apparatus, and has a sample chamber and a heating chamber which are not heated. Mass spectrometer, a pyrolysis gas chromatograph having an unheated sample chamber and a heating chamber A mechanism having a mechanism capable of moving the sample chamber and the heating chamber that are not heated in a state of being blocked from the external atmosphere in a mass spectrometer, It has a sample chamber that is not heated and a vertical heating chamber, and has a mechanism that can move the sample in a state where the sample chamber that is not heated and the vertical heating chamber are isolated from the external atmosphere. For example, a pyrolysis gas chromatograph mass spectrometer with a mechanism that allows a sample to fall into a vertical heating chamber from a sample chamber that is not heated It is possible to have. As the pyrolysis gas chromatograph mass spectrometer, a pyrolysis gas chromatograph mass spectrometer having a double shot pyrozer manufactured by Frontier Lab can be used. As the gas chromatograph and the mass spectrometer, known instruments used for analysis, for example, commercially available instruments can be used. As the gas chromatograph column, a known gas chromatograph column generally used for analysis or a commercially available gas chromatograph column can be used. The gas chromatograph may be any as long as it can separate the pyrolyzed components and enables mass spectrometry,
The column and the column temperature can be appropriately selected.

【0041】[0041]

【実施例】以下に、実施例及び比較例を挙げて、本発明
についてさらに具体的に説明するが、本発明は、これら
の実施例のみに限定されるものではない。
EXAMPLES The present invention will be described in more detail below with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.

【0042】以下の実施例及び比較例では、熱分解ガス
クロマトグラフ質量分析計に、熱分解装置としてダブル
ショットパイロライザー(フロンティアラボ社製、Py
−2010D型)を設けた、ガスクロマトグラフ質量分
析計(日本電子製、JMS−AMII型)を用いた。 図
1に示す熱分解装置と同様のダブルショットパイロライ
ザー(フロンティアラボ社製、Py−2010D型)
は、上部に試料室を、下部に加熱室を有し、白金カップ
は試料室と加熱室の間を外部に取り出すことなくインラ
インで移動可能になっている。また必要があれば白金カ
ップを試料室から自由落下により加熱室に導入すること
が出来る。ガスクロマトグラフは、カラムとしてクロム
パック社製DB−5(0.25mmφ×30m)を用
い、カラム温度として50℃で5分間保持した後10℃
/分の昇温条件で300℃に昇温させる方法で、キャリ
アーガスとしてヘリウムを用い、の条件で行った。
In the following Examples and Comparative Examples, a pyrolysis gas chromatograph mass spectrometer was equipped with a double shot pyrolyzer as a pyrolysis device (Py, manufactured by Frontier Laboratories).
-2010D type) provided with a gas chromatograph mass spectrometer (JEOL, JMS-AMII type). Double shot pyrolyzer (Py-2010D type, manufactured by Frontier Lab) similar to the thermal decomposition device shown in FIG.
Has a sample chamber in the upper part and a heating chamber in the lower part, and the platinum cup can be moved inline without taking out between the sample chamber and the heating chamber to the outside. If necessary, the platinum cup can be introduced into the heating chamber by free fall from the sample chamber. In the gas chromatograph, DB-5 (0.25 mmφ × 30 m) manufactured by Chrompack was used as a column, and the column temperature was held at 50 ° C. for 5 minutes and then 10 ° C.
Helium was used as a carrier gas by a method of raising the temperature to 300 ° C. under a temperature rising condition of / min.

【0043】[実施例1](Symular Red3
045の構造同定) 式(1)に示す色素Symular Red3045
(大日本インキ化学社製)0.3mgとテトラメチルア
ンモニウムハイドロオキサイドの25wt%メタノール
溶液6μlとをダブルショット用白金カップに入れた。
白金カップを図1と同様の熱分解装置の試料室にセット
し、熱分解装置内をヘリウムガスで置換した。さらに、
白金カップを150℃に加熱した加熱室に移し、150
℃で10分間加熱を行った後、白金カップを熱分解装置
より取り出すことなく加熱室から試料室に移した。その
後、加熱室を350℃に加熱し、白金カップを試料室か
ら加熱室に自由落下によりに移し、350℃で反応物を
熱分解させた。350℃で生成した熱分解物をガスクロ
マトグラフを用いて分離し、さらに分離した成分を質量
分析計で質量分析を行った。ガスクロマトグラフのカラ
ム温度は、白金カップを試料室6から加熱室7に自由落
下によりに移すと同時に、50℃で5分間保持後、10
℃/分の昇温条件で300℃に昇温させ、その後300
℃に保持した。得られたパイログラムを図2及び図3に
示す。ガスクロマトグラフで分離した9つの成分(図2
及び図3に記載のa1〜a9)について、得られたマス
スペクトルを図4〜図12に示す。
[Embodiment 1] (Simular Red3)
Structural Identification of 045) Dye represented by Formula (1): Symbolal Red3045
0.3 mg (manufactured by Dainippon Ink and Chemicals, Inc.) and 6 μl of a 25 wt% methanol solution of tetramethylammonium hydroxide were placed in a double shot platinum cup.
The platinum cup was set in the sample chamber of the thermal decomposition apparatus similar to FIG. 1, and the inside of the thermal decomposition apparatus was replaced with helium gas. further,
Move the platinum cup to a heating chamber heated to 150 ℃,
After heating at 0 ° C. for 10 minutes, the platinum cup was transferred from the heating chamber to the sample chamber without taking it out from the pyrolyzer. Then, the heating chamber was heated to 350 ° C., the platinum cup was transferred from the sample chamber to the heating chamber by free fall, and the reaction product was thermally decomposed at 350 ° C. The thermal decomposition product generated at 350 ° C. was separated using a gas chromatograph, and the separated components were subjected to mass spectrometry with a mass spectrometer. The column temperature of the gas chromatograph was set to 10 after the platinum cup was moved from the sample chamber 6 to the heating chamber 7 by free fall and kept at 50 ° C. for 5 minutes.
The temperature was raised to 300 ° C. under the temperature rising condition of 300 ° C./minute, and then 300
Hold at ℃. The obtained pyrograms are shown in FIGS. 2 and 3. Nine components separated by gas chromatography (Fig. 2
And the obtained mass spectra of a1 to a9) shown in FIG. 3 are shown in FIGS.

【0044】図4〜図12をNISTのデータベースよ
り同定を行い、図4(図2の成分a1)は式(2)の化
合物、図5(図2の成分a2)は式(3)の化合物、図
6(図2の成分a3)は式(4)の化合物、図7(図2
の成分a4)は式(5)の化合物、図8(図2の成分a
5)は式(6)の化合物、図9(図2の成分a6)は式
(7)の化合物、図10(図2の成分a7)は式(8)
の化合物、図11(図2の成分a8)は式(9)の化合
物、図12(図2の成分a9)は式(10)の化合物、
であると同定できた。式(2)から式(10)より、式
(11)の化合物が推定できる。特に式(7)に示され
る化合物は式(11)の−SOXが芳香環のどの部分
に置換しているかを示唆する重要な分解物である。式
(11)に示す誘導体は、式(1)に示す色素Symu
lar Red3045(大日本インキ化学社製)をテ
トラメチルアンモニウムハイドロオキサイドとを加熱す
ることにより、各官能基が−SONaから−SO
へ、−OHから−OCHへ、−COOHから−C
OOCHへ、−N=N−から−NH−NH−をへて−
NH(CH)−NH(CH)−となり式(11)に
示す誘導体が生成したと考えられる。式(11)を推定
できることにより式(1)を容易に同定可能であった。
4 to 12 were identified from the NIST database, and FIG. 4 (component a1 in FIG. 2) is the compound of formula (2), and FIG. 5 (component a2 in FIG. 2) is the compound of formula (3). , FIG. 6 (component a3 in FIG. 2) is the compound of formula (4), and FIG.
Component a4) is a compound of formula (5), FIG.
5) is a compound of formula (6), FIG. 9 (component a6 of FIG. 2) is a compound of formula (7), and FIG. 10 (component a7 of FIG. 2) is a compound of formula (8).
11 (component a8 in FIG. 2) is the compound of formula (9), FIG. 12 (component a9 in FIG. 2) is the compound of formula (10),
Could be identified. From the formulas (2) to (10), the compound of the formula (11) can be estimated. In particular, the compound represented by the formula (7) is an important decomposition product suggesting to which part of the aromatic ring the —SO 3 X of the formula (11) is substituted. The derivative represented by the formula (11) is a dye Symu represented by the formula (1).
lar Red3045 by the (produced by Dainippon Ink and Chemicals, Inc.) for heating and tetramethylammonium hydroxide, -SO 3 C each functional group from -SO 3 Na
To H 3, from -OH to -OCH 3, -C from -COOH
To OOCH 3 , from -N = N- to -NH-NH-.
NH (CH 3) -NH (CH 3) - considered derivative shown next formula (11) was formed. Since the formula (11) can be estimated, the formula (1) could be easily identified.

【0045】[比較例1]式(1)に示す色素Symu
lar Red3045(大日本インキ化学社製)0.
3mgとテトラメチルアンモニウムハイドロオキサイド
の25wt%メタノール溶液6μlとをダブルショット
用白金カップに入れた。白金カップを図1と同様の熱分
解装置の試料室にセットし、熱分解装置内をヘリウムガ
スで置換した。加熱室を350℃に加熱し、白金カップ
を試料室から加熱室に自由落下により導入し、350℃
で生成した生成物及び分解物をガスクロマトグラフを用
いて分離を行い、さらに質量分析計で質量分析を行っ
た。得られたパイログラムを図13及び図14に示す。
ガスクロマトグラフで分離した7つの成分(図13及び
図14に記載のb1〜b7)について、質量分析計で分
析を行った。
[Comparative Example 1] Dye Symu represented by the formula (1)
lar Red 3045 (manufactured by Dainippon Ink and Chemicals, Inc.) 0.
3 mg and 6 μl of a 25 wt% methanol solution of tetramethylammonium hydroxide were placed in a double shot platinum cup. The platinum cup was set in the sample chamber of the thermal decomposition apparatus similar to FIG. 1, and the inside of the thermal decomposition apparatus was replaced with helium gas. The heating chamber is heated to 350 ° C, and the platinum cup is introduced from the sample chamber into the heating chamber by free fall to 350 ° C.
The product and the decomposition product generated in 1. were separated using a gas chromatograph, and further subjected to mass spectrometry with a mass spectrometer. The obtained pyrograms are shown in FIGS. 13 and 14.
The seven components (b1 to b7 described in FIGS. 13 and 14) separated by the gas chromatograph were analyzed by a mass spectrometer.

【0046】図13の成分b1の質量分析スペクトルは
図4のマススペクトルに類似し、図13の成分b2の質
量分析スペクトルは図5のマススペクトルに類似し、図
13の成分b3の質量分析スペクトルは図6のマススペ
クトルに類似し、図13の成分b4の質量分析スペクト
ルは図10のマススペクトルに類似し、図13の成分b
5の質量分析スペクトルは図11のマススペクトルに類
似し、図13の成分b6の質量分析スペクトルは図12
のマススペクトルに類似している。図14の成分b7す
なわち式(7)で示される化合物は、ほとんど観察され
なかった。この方法では、−SONaから−SO
への反応が充分に起こらなかったためと考えられ
る。このため、式(1)に示す色素Symular R
ed3045の構造が同定出来なかった。
The mass spectrum of the component b1 of FIG. 13 is similar to the mass spectrum of FIG. 4, the mass spectrum of the component b2 of FIG. 13 is similar to the mass spectrum of FIG. 5, and the mass spectrum of the component b3 of FIG. Is similar to the mass spectrum of FIG. 6, the mass spectrum of component b4 of FIG. 13 is similar to the mass spectrum of FIG. 10, and component b of FIG.
The mass spectrum of 5 is similar to that of FIG. 11, and the mass spectrum of component b6 of FIG. 13 is shown in FIG.
Is similar to the mass spectrum of. The component b7 in FIG. 14, that is, the compound represented by the formula (7) was hardly observed. In this way, -SO 3 C from -SO 3 Na
It is considered that the reaction to H 3 did not sufficiently occur. Therefore, the dye represented by the formula (1)
The structure of ed3045 could not be identified.

【0047】[比較例2]式(1)に示す色素Symu
lar Red3045(大日本インキ化学社製)0.
3mgをダブルショット用白金カップに入れた。白金カ
ップを図1と同様の熱分解装置の試料室にセットし、熱
分解装置内をヘリウムガスで置換した。加熱室を350
℃に加熱し、白金カップを試料室から加熱室に自由落下
により導入し、350℃で生成した生成物及び分解物を
ガスクロマトグラフを用いて分離を行い、さらに質量分
析計で質量分析を行った。得られたパイログラムを図1
5に示す。図15の成分c1の質量分析スペクトルは図
4のマススペクトルに類似している。その他には式(1
1)の部分構造を示唆するような化合物は観察されなか
った。上記結果より、式(1)に示す色素Symula
r Red3045の構造が推定出来なかった。
[Comparative Example 2] Dye Symu represented by the formula (1)
lar Red 3045 (manufactured by Dainippon Ink and Chemicals, Inc.) 0.
3 mg was placed in a double shot platinum cup. The platinum cup was set in the sample chamber of the thermal decomposition apparatus similar to FIG. 1, and the inside of the thermal decomposition apparatus was replaced with helium gas. 350 heating chamber
The mixture was heated to ℃, the platinum cup was introduced from the sample chamber into the heating chamber by free fall, the products and decomposed products produced at 350 ° C. were separated using a gas chromatograph, and mass spectrometry was further performed with a mass spectrometer. . Figure 1 shows the obtained pyrogram.
5 shows. The mass spectrum of component c1 in FIG. 15 is similar to the mass spectrum in FIG. In addition, the formula (1
No compound suggesting the partial structure of 1) was observed. From the above results, the dye Symula shown in formula (1)
The structure of r Red3045 could not be deduced.

【0048】[0048]

【化1】 [Chemical 1]

【0049】[0049]

【化2】 [Chemical 2]

【0050】[0050]

【化3】 [Chemical 3]

【0051】[0051]

【化4】 [Chemical 4]

【0052】[0052]

【化5】 [Chemical 5]

【0053】[0053]

【化6】 [Chemical 6]

【0054】[0054]

【化7】 [Chemical 7]

【0055】[0055]

【化8】 [Chemical 8]

【0056】[0056]

【化9】 [Chemical 9]

【0057】[0057]

【化10】 [Chemical 10]

【0058】[0058]

【化11】 [Chemical 11]

【0059】[0059]

【発明の効果】本発明は有機物の構造同定を、熱分解ガ
スクロマトグラフ質量分析計を用いて、簡便に少量の試
料で行うことが出来る方法を提供することが出来る。
INDUSTRIAL APPLICABILITY The present invention can provide a method capable of simply identifying the structure of an organic substance by using a pyrolysis gas chromatograph mass spectrometer with a small amount of sample.

【図面の簡単な説明】[Brief description of drawings]

【図1】 熱分解装置内で有機物と試薬とを加熱、冷
却、加熱を行う工程の一実施態様の説明図である。
FIG. 1 is an explanatory diagram of an embodiment of a process of heating, cooling, and heating an organic substance and a reagent in a thermal decomposition apparatus.

【図2】 実施例1に示す方法により色素Symula
r Red3045のPy−GC−MSによる分析を行
った結果得られたトータルイオンによるパイログラムで
ある。
FIG. 2 shows the dye Symula by the method shown in Example 1.
It is the pyrogram by the total ion obtained as a result of performing the Py-GC-MS analysis of rRed3045.

【図3】 実施例1に示す方法により色素Symula
r Red3045のPy−GC−MSによる分析を行
った結果得られたm/z=263のフラグメントイオン
によるパイログラムである。この表示方法では式(7)
に示す化合物が選択的に強く表示される。
FIG. 3 shows the dye Symula by the method shown in Example 1.
It is the pyrogram by the fragment ion of m / z = 263 obtained as a result of performing the Py-GC-MS analysis of rRed3045. In this display method, equation (7)
The compound shown in is selectively and strongly displayed.

【図4】 パイログラム図2記載のa1のマススペクト
ルである。
FIG. 4 is a mass spectrum of a1 shown in FIG.

【図5】 パイログラム図2記載のa2のマススペクト
ルである。
5 is a mass spectrum of a2 shown in FIG.

【図6】 パイログラム図2記載のa3のマススペクト
ルである。
FIG. 6 is a mass spectrum of a3 shown in FIG.

【図7】 パイログラム図2記載のa4のマススペクト
ルである。
FIG. 7 is a mass spectrum of a4 shown in FIG.

【図8】 パイログラム図2記載のa5のマススペクト
ルである。
FIG. 8 is a mass spectrum of a5 shown in FIG.

【図9】 パイログラム図2記載のa6のマススペクト
ルである。
9 is a mass spectrum of a6 shown in the pyrogram FIG.

【図10】 パイログラム図2記載のa7のマススペク
トルである。
FIG. 10 is a mass spectrum of a7 shown in FIG.

【図11】 パイログラム図2記載のa8のマススペク
トルである。
FIG. 11 is a mass spectrum of a8 shown in the pyrogram FIG.

【図12】 パイログラム図2記載のa9のマススペク
トルである。
FIG. 12 is a mass spectrum of a9 shown in FIG.

【図13】 比較例1に示す方法により色素Symul
ar Red3045のPy−GC−MSによる分析を
行った結果得られたトータルイオンによるパイログラム
である。
FIG. 13 shows the dye Symul according to the method shown in Comparative Example 1.
9 is a pyrogram of total ions obtained as a result of analyzing ar Red3045 by Py-GC-MS.

【図14】 比較例1に示す方法により色素Symul
ar Red3045のPy−GC−MSによる分析を
行った結果得られたm/z=263のフラグメントイオ
ンによるパイログラムである。この表示方法では式
(7)に示す化合物が選択的に強く表示される。
FIG. 14 shows the dye Symul according to the method shown in Comparative Example 1.
It is the pyrogram by the fragment ion of m / z = 263 obtained as a result of carrying out the analysis by Py-GC-MS of ar Red3045. In this display method, the compound represented by the formula (7) is selectively and strongly displayed.

【図15】 比較例2に示す方法により色素Symul
ar Red3045のPy−GC−MSによる分析を
行った結果得られたトータルイオンによるパイログラム
である。
FIG. 15 shows the dye Symul according to the method shown in Comparative Example 2.
9 is a pyrogram of total ions obtained as a result of analyzing ar Red3045 by Py-GC-MS.

【符号の説明】[Explanation of symbols]

1:キャリアーガス入口、 2:キャリアーガス出口、 3:白金カップ、 4:加熱部、 5:熱分解装置、 6:試料室、 7:加熱室。 1: Carrier gas inlet, 2: Carrier gas outlet, 3: Platinum cup, 4: heating part, 5: Pyrolysis device, 6: sample chamber, 7: heating chamber.

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G01N 30/72 G01N 30/72 A (72)発明者 吉本 旗秋 千葉県市原市五井南海岸8番の1 株式会 社ユービーイー科学分析センター内 Fターム(参考) 2G052 AB11 AD06 AD12 AD42 EB00 GA24 GA27 Front page continuation (51) Int.Cl. 7 Identification code FI theme code (reference) G01N 30/72 G01N 30/72 A (72) Inventor Hataaki Yoshimoto 8-1 Goi Minami Kaigan, Ichihara City, Chiba Stock Association U-Bee Science Analysis Center F-term (reference) 2G052 AB11 AD06 AD12 AD42 EB00 GA24 GA27

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】熱分解ガスクロマトグラフ質量分析計を用
いて有機物の構造を同定する有機物の構造同定方法であ
って、キャリアーガス存在下又はキャリアーガス流通下
の熱分解装置内で、有機物と試薬とを、該有機物の熱分
解反応が生じない温度で反応させて反応物を生成し、該
反応物が熱分解する温度で、前記反応物を熱分解させて
熱分解物を生成し、該熱分解物の構造をガスクロマトグ
ラフ質量分析計を用いて同定し、同定された前記熱分解
物の構造から前記有機物の構造を同定することを特徴と
する有機物の構造同定方法。
1. A method for identifying a structure of an organic substance for identifying the structure of the organic substance by using a pyrolysis gas chromatograph mass spectrometer, which comprises: Is reacted at a temperature at which a thermal decomposition reaction of the organic substance does not occur to generate a reaction product, and the reaction product is thermally decomposed to generate a thermal decomposition product at a temperature at which the reaction product thermally decomposes. A structure identification method for an organic substance, comprising: identifying the structure of the substance using a gas chromatograph mass spectrometer, and identifying the structure of the organic substance from the structure of the identified thermal decomposition product.
【請求項2】前記熱分解ガスクロマトグラフ質量分析計
は、加熱されていない試料室と加熱されている加熱室を
有し、前記有機物と試薬との反応を前記加熱室で行い、
前記反応物の熱分解を、前記加熱室から前記反応物を前
記試料室に移した後、前記加熱室を前記反応物が熱分解
する温度に調整し、その後前記反応物を前記加熱室に移
して行うことを特徴とする請求項1に記載の有機物の構
造同定方法。
2. The pyrolysis gas chromatograph mass spectrometer has a sample chamber which is not heated and a heating chamber which is heated, and the reaction between the organic substance and the reagent is carried out in the heating chamber.
The thermal decomposition of the reaction product is performed by transferring the reaction product from the heating chamber to the sample chamber, adjusting the heating chamber to a temperature at which the reaction product thermally decomposes, and then transferring the reaction product to the heating chamber. The organic substance structure identification method according to claim 1, wherein the organic substance structure identification method is performed.
【請求項3】前記有機物と試薬との反応を、50〜22
0℃の前記加熱室で行い、前記反応物の熱分解を、前記
加熱室から前記反応物を前記試料室に移した後、前記加
熱室を225℃以上の温度に調整し、その後前記反応物
を前記加熱室に移して行うことを特徴とする請求項1又
は請求項2に記載の有機物の構造同定方法。
3. The reaction between the organic substance and the reagent is carried out in the range of 50 to 22.
The reaction is performed in the heating chamber at 0 ° C., and the thermal decomposition of the reaction product is performed by transferring the reaction product from the heating chamber to the sample chamber, adjusting the heating chamber to a temperature of 225 ° C. or higher, and then the reaction product. The method for identifying a structure of an organic substance according to claim 1 or 2, wherein the method is carried out by transferring the structure to the heating chamber.
【請求項4】前記有機物の熱分解反応の生じない温度
が、50〜220℃であり、前記反応物の熱分解する温
度が225℃以上であることを特徴とする請求項1〜3
のいずれか1項に記載の有機物の構造同定方法。
4. The temperature at which the thermal decomposition reaction of the organic substance does not occur is 50 to 220 ° C., and the temperature at which the organic substance thermally decomposes is 225 ° C. or higher.
The method for identifying a structure of an organic substance according to any one of 1.
JP2001300013A 2001-09-28 2001-09-28 Method for identifying structure in organic matter Withdrawn JP2003107061A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001300013A JP2003107061A (en) 2001-09-28 2001-09-28 Method for identifying structure in organic matter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001300013A JP2003107061A (en) 2001-09-28 2001-09-28 Method for identifying structure in organic matter

Publications (1)

Publication Number Publication Date
JP2003107061A true JP2003107061A (en) 2003-04-09

Family

ID=19120662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001300013A Withdrawn JP2003107061A (en) 2001-09-28 2001-09-28 Method for identifying structure in organic matter

Country Status (1)

Country Link
JP (1) JP2003107061A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008304340A (en) * 2007-06-08 2008-12-18 Hitachi Ltd Sample analyzing method and sample analyzer
EP2040282A2 (en) 2007-09-19 2009-03-25 Hitachi Ltd. Micro sample heating probe and method of producing the same, and analyzer using the micro sample heating probe
CN102192959A (en) * 2010-03-11 2011-09-21 上海市计算技术研究所 Thermal cracker, thermal cracking gas chromatograph and thermal cracking analysis method
JP2011232109A (en) * 2010-04-26 2011-11-17 Ngk Insulators Ltd Evolved gas analyzer
JP2011232108A (en) * 2010-04-26 2011-11-17 Ngk Insulators Ltd Generated gas analyzing apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008304340A (en) * 2007-06-08 2008-12-18 Hitachi Ltd Sample analyzing method and sample analyzer
EP2040282A2 (en) 2007-09-19 2009-03-25 Hitachi Ltd. Micro sample heating probe and method of producing the same, and analyzer using the micro sample heating probe
US7772568B2 (en) 2007-09-19 2010-08-10 Hitachi, Ltd. Micro sample heating probe and method of producing the same, and analyzer using the micro sample heating probe
CN102192959A (en) * 2010-03-11 2011-09-21 上海市计算技术研究所 Thermal cracker, thermal cracking gas chromatograph and thermal cracking analysis method
CN102192959B (en) * 2010-03-11 2014-09-17 上海市计算技术研究所 Thermal cracker, thermal cracking gas chromatograph and thermal cracking analysis method
JP2011232109A (en) * 2010-04-26 2011-11-17 Ngk Insulators Ltd Evolved gas analyzer
JP2011232108A (en) * 2010-04-26 2011-11-17 Ngk Insulators Ltd Generated gas analyzing apparatus

Similar Documents

Publication Publication Date Title
Song et al. Atmospheric pressure ion/molecule reactions for the selective detection of nitroaromatic explosives using acetonitrile and air as reagents
Foschiera et al. FTIR thermal analysis on organofunctionalized silica gel
Hosseini et al. Fragmentation pathways and structural characterization of organophosphorus compounds related to the Chemical Weapons Convention by electron ionization and electrospray ionization tandem mass spectrometry
Leavens et al. Derivatization for liquid chromatography/electrospray mass spectrometry: synthesis of tris (trimethoxyphenyl) phosphonium compounds and their derivatives of amine and carboxylic acids
Ci et al. Photochemical dehydrofragmentation reactions: importance of donor and acceptor structure in determination of reactivity in radical ion pairs formed in electron transfer photoreactions
Giomi et al. (2-Pyridyl) phenyl methanol: a new reagent for metal-free reduction of nitro aromatic compounds
JP2003107061A (en) Method for identifying structure in organic matter
Malinowski et al. Mild Palladium‐Catalyzed Cyanation of Unprotected 2‐Iodoglycals in Aqueous Media as Versatile Tool to Access Diverse C2‐Glycoanalogues
Zupancic et al. Electron-transfer-initiated reactions of organic peroxides. Reaction of phthaloyl peroxide with olefins and other electron donors
Meadows et al. Mechanistic studies of a “Declick” reaction
Burlinson et al. Photochemical generation of the 2, 4, 6-trinitrobenzyl anion
Potapov et al. Regioselective reaction of tellurium tetrabromide with 1-hexene and methanol
Harpp et al. Organosulfur chemistry. 57. Generation of diatomic sulfur from organometallic precursors
Yadav et al. Indium trihalide mediated regioselective ring opening of aziridines: a facile synthesis of 2-haloamines
Guengerich et al. Formation and reactions of N 7-aminoguanosine and derivatives
Wimalasena et al. Autocatalytic Radical Ring Opening of N‐Cyclopropyl‐N‐phenylamines Under Aerobic Conditions− Exclusive Formation of the Unknown Oxygen Adducts, N‐(1, 2‐Dioxolan‐3‐yl)‐N‐phenylamines
Tanida et al. Solvolyses of 6-and 7-methoxybenzonorbornen-2-yl derivatives. Directing effects of a methoxy substituent for participation
de Meijere et al. Completely spirocyclopropanated macrocyclic oligodiacetylenes and their permethylated analogues: Preparation and properties
Weidkamp et al. Metal-free transfer hydrochlorination of internal C–C triple bonds with a bicyclo [3.1. 0] hexane-based surrogate releasing two molecules of hydrogen chloride
Song et al. Reactivity of acetonyl anion with nitroaromatics: an atmospheric pressure chemical ionization study
Wubbels et al. Hydrochloric acid-catalyzed photoreduction of 4-bromonitrobenzene as a concomitant of nucleophilic aromatic photosubstitution involving radical intermediates
Matera et al. Reactivity of (E)‐4‐hydroxy‐2‐nonenal with fluorinated phenylhydrazines: Towards the efficient derivatization of an elusive key biomarker of lipid peroxidation
Werner et al. Flame sampling photoionization mass spectrometry of dichloroethenol
Korfmacher et al. Chemical ionization mass spectrometry of doxylamine and related compounds
Bloomfield et al. 9, 10-Dihydronaphthalene and Cyclodecapentaene

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20081202