JPH09189680A - Micromass spectrograph - Google Patents

Micromass spectrograph

Info

Publication number
JPH09189680A
JPH09189680A JP8000473A JP47396A JPH09189680A JP H09189680 A JPH09189680 A JP H09189680A JP 8000473 A JP8000473 A JP 8000473A JP 47396 A JP47396 A JP 47396A JP H09189680 A JPH09189680 A JP H09189680A
Authority
JP
Japan
Prior art keywords
sample
hollow tube
substance
mass
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8000473A
Other languages
Japanese (ja)
Inventor
Masashi Kuwabara
正史 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP8000473A priority Critical patent/JPH09189680A/en
Publication of JPH09189680A publication Critical patent/JPH09189680A/en
Pending legal-status Critical Current

Links

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Electron Tubes For Measurement (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable the mass of materials that desorb from a sample to be analyzed at each site of the sample by collecting the materials into a hollow tube through an opening, and guiding them into a mass spectrograph. SOLUTION: A voltage is applied between a hollow tube 4 composed of a conductor 5 and a sample 2 to bring the end of an opening in the hollow tube 4 close to the sample 2, and the distance between the sample 2 and a probe 6 attached to the opening in the hollow tube 4 is held between 1nm and several hundred nm by a current flowing between the probe 6 and the sample 2, and the surface configuration of the sample 2 is measured by tracing the surface of the sample 2 with the probe 6. At the same time, only materials that desorb from portions near immediately below the opening are guided into the hollow tube 4 and into a mass spectrograph 1. Thus the mass of the desorbed materials can be analyzed at each site of the sample 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、質量分析装置に関
する。
TECHNICAL FIELD The present invention relates to a mass spectrometer.

【0002】[0002]

【従来の技術】質量分析器は、物質の質量を測定する分
析器である。物質は種類により質量が異なるため、質量
分析器によって物質の種類が特定できる。物質の種類を
特定できるため、雰囲気の気体の同定,試料の組成の決
定,試料表面での化学反応の解明等に用いられている。
これを使った測定例として昇温脱離分光法(Thermal Di
sorption Spectroscopy:TDS)がある。これは、試料
温度を上げ、脱離してくる気体を質量分析器で測定しそ
の質量から気体を特定し、温度と脱離気体の関係を調べ
て試料表面上の吸着分子の状態,表面上での化学反応な
どを調べる方法である。しかし、TDSは試料全体を昇
温し、試料全体から放出される気体の質量を質量分析器
で観測するため、試料のどの場所からどのような気体が
放出されるかという位置分解能を持っていない。例え
ば、触媒反応は触媒表面の形状に依存するが、TDSで
は形状と触媒反応の相関は全く分からない。また、質量
分析器を使った二次イオン質量分析法(Secondary Ion M
ass Spectroscopy:SIMS)もTDSと同様に位置分解
能を持ち合わせてはいない。
A mass spectrometer is an analyzer for measuring the mass of a substance. Since the mass of a substance differs depending on the type, the type of substance can be identified by a mass spectrometer. Since it is possible to specify the type of substance, it is used to identify the gas in the atmosphere, determine the composition of the sample, and elucidate the chemical reaction on the sample surface.
As a measurement example using this, thermal desorption spectroscopy (Thermal Dilation
absorption spectroscopy (TDS). This is because the sample temperature is raised, the desorbing gas is measured with a mass spectrometer, the gas is specified from the mass, the relationship between the temperature and the desorbed gas is investigated, and the state of adsorbed molecules on the sample surface This is a method of examining the chemical reaction of. However, since TDS raises the temperature of the entire sample and observes the mass of the gas released from the entire sample with a mass spectrometer, it does not have the positional resolution as to which gas is released from which part of the sample. . For example, the catalytic reaction depends on the shape of the catalyst surface, but in TDS, the correlation between the shape and the catalytic reaction is completely unknown. In addition, the secondary ion mass spectrometry (Secondary Ion M
Ass Spectroscopy (SIMS) does not have position resolution like TDS.

【0003】走査型トンネル顕微鏡(Scanning Tunnelin
g Microscope:STM)及び原子間力顕微鏡(Atomic Fo
rce Microscope:AFM)は、試料表面の原子を直接観
測できる位置分解能を持った顕微鏡である。STMは、
鋭く尖った探針と試料とに電圧を印加しながら1nm程
度接近させると流れるトンネル電流を使い、試料表面の
形状を探針でなぞり試料表面形状を測定する装置であ
る。一方、AFMは、微小なてこの先端を試料に近づ
け、てこと試料との間に働く原子間力をてこのたわみに
より検出し、試料表面形状を測定する装置である。これ
らの技術を使って表面の物理,化学的性質を観測する試
料みが多くなされている。しかし、両方の装置とも試料
表面の構成物質を特定できない。このため、複雑な構成
を持つ試料についてはその表面形状を測定するのみに留
まっている。
Scanning Tunnelin
g Microscope: STM) and atomic force microscope (Atomic Fo
The rce microscope (AFM) is a microscope with a position resolution that allows direct observation of atoms on the sample surface. STM is
This is a device for measuring the sample surface shape by tracing the sample surface shape with the probe by using a tunnel current flowing when a sharp pointed probe and the sample are made to approach each other by about 1 nm while applying a voltage. On the other hand, the AFM is an apparatus for measuring the surface shape of a sample by bringing the tip of a minute lever close to the sample, detecting an atomic force acting between the lever and the sample by lever deflection. There are many samples that use these techniques to observe the physical and chemical properties of the surface. However, neither device can identify the constituent substance on the sample surface. Therefore, only the surface shape of a sample having a complicated structure is measured.

【0004】[0004]

【発明が解決しようとする課題】以上のように、既存の
質量分析方法では試料表面から脱離してくる物質を全て
観測してしまうため、試料の場所と脱離物質との相関を
知ることはできない。一方、STM及びAFMは、試料
表面の原子を観測できる程の位置分解能をもっている
が、物質を特定できないという欠点を持つ。このため測
定可能な試料は単純なものに限られる。
As described above, in the existing mass spectrometric method, since all the substances desorbed from the sample surface are observed, it is not possible to know the correlation between the sample location and the desorbed substance. Can not. On the other hand, the STM and the AFM have the positional resolution enough to observe the atoms on the surface of the sample, but have the drawback that the substance cannot be specified. Therefore, the measurable sample is limited to a simple sample.

【0005】本発明の目的は、STMやAFMの局所観
測技術と質量分析器の質量分析技術を組み合わせ、局所
的に質量分析を行って物質の種類を特定する方法とその
装置を提供することにある。
It is an object of the present invention to provide a method and apparatus for combining the local observation technology of STM or AFM with the mass analysis technology of a mass spectrometer to locally perform mass analysis to specify the type of substance. is there.

【0006】[0006]

【課題を解決するための手段】本発明は、質量を測定す
るための質量分析器と、試料から脱離してくる物質を質
量分析器まで導く先端に開口部を設けた中空管と、試料
表面をなぞるための中空管の先端に設けた微小な探針
と、中空管の先端と試料との距離を一定距離に保つ制御
機構と、中空管の先端で試料表面を走査する走査駆動機
構と、走査駆動機構を制御する制御装置と、試料から物
質を脱離させるための脱離機構と、脱離機構を制御する
制御装置と、中空管に取り込んだ物質を全て質量分析器
に導くため、中空管の内壁に物質が付着しないよう中空
管を熱する加熱機構と、中空管内を真空にするための排
気装置とを備えた微小部質量分析装置である。
The present invention is directed to a mass spectrometer for measuring mass, a hollow tube having an opening at its tip for guiding a substance desorbed from the sample to the mass spectrometer, and a sample. A small probe provided at the tip of the hollow tube to trace the surface, a control mechanism that keeps the distance between the tip of the hollow tube and the sample at a fixed distance, and a scan that scans the sample surface with the tip of the hollow tube A drive mechanism, a control device for controlling the scanning drive mechanism, a desorption mechanism for desorbing a substance from a sample, a control device for controlling the desorption mechanism, and a mass spectrometer for all the substances taken into the hollow tube. In order to introduce the above into the hollow tube, a heating mechanism for heating the hollow tube so that a substance does not adhere to the inner wall of the hollow tube, and an exhaust device for evacuating the hollow tube are provided.

【0007】また本発明は、試料と中空管の開口部に付
随している探針との間に流れる電流を用いて制御し、そ
の距離を1nmから数百nmとすることにより開口部直
下近辺から脱離してくる物質だけを質量分析できる微小
部質量分析装置である。
Further, according to the present invention, control is performed by using a current flowing between the sample and the probe attached to the opening of the hollow tube, and the distance is set to 1 nm to several hundreds of nm to directly under the opening. It is a micro-mass spectroscope that can perform mass spectrometric analysis only on substances that desorb from the vicinity.

【0008】また本発明は、中空管の開口部の先端を試
料に近づけ、開口部に付随している探針で試料表面をな
ぞることにより表面形状を測定し、同時に開口部直下近
辺から脱離してくる物質だけを質量分析できる微小部質
量分析装置である。
Further, according to the present invention, the tip of the opening of the hollow tube is brought close to the sample, and the surface shape is measured by tracing the surface of the sample with a probe attached to the opening, and at the same time, the surface shape is measured immediately below the opening. It is a micro-part mass spectroscope that can perform mass spectrometric analysis only on substances that are separated.

【0009】従来の質量分析器は位置分解能を持たず、
試料の全面から脱離してくる物質の質量を測定してい
た。そのため、試料のどの場所からどのような物質が脱
離してくるかは全く分からない。そこで中空管の開口先
端部を試料に近づけ、その開口先端部の直下より脱離し
てくる物質だけを中空管内に採取し、その中の物質だけ
を質量分析器に導けば、場所ごとの質量分析が可能とな
る。質量分析の位置分解能は、開口部と表面との距離や
開口部大きさによってきまるため、できるだけその距離
を短く開口部を小さくする必要がある。距離を短くする
ということに対して本発明では、開口部の先端に探針を
設け、探針と試料とに電圧を印加しながら近づけること
によって流れるトンネル電流を用いることにより、開口
部と試料との距離を1nmから数百nmに保つことが可
能である。このことにより開口部直下近辺から脱離して
くる物質だけを中空管内に導くことができる。また、中
空管の開口部に設けた探針の先端で試料表面をなぞるこ
とにより、脱離物質の質量を分析すると同時に表面形状
の観測が可能である。開口部の大きさは、近年の微細加
工技術により直径数十nmのものまで可能となってお
り、この技術を利用すれば本発明の微小部質量分析装置
の中空管の開口部の大きさは、直径数十nmのものが製
作可能であり、微小部質量分析装置の位置分解能は数十
nm程度となる。開口部と試料との距離の制御にトンネ
ル電流を用いた例をあげたが、本発明は開口部と試料と
の距離の制御にトンネル電流を用いることに限定されな
い。試料と探針との間に働く原子間力,クーロン力,エ
バレッセント光,蛍光などが開口部と試料との距離の制
御に使用することができる。
The conventional mass spectrometer has no position resolution,
The mass of the substance desorbed from the entire surface of the sample was measured. Therefore, it is completely unknown from which part of the sample what kind of substance is desorbed. Therefore, bring the open end of the hollow tube close to the sample, collect only the substances that desorb from directly below the open end into the hollow tube, and guide only the substances in it to the mass spectrometer. Analysis is possible. Since the position resolution of mass spectrometry depends on the distance between the opening and the surface and the size of the opening, it is necessary to make the distance as short as possible and make the opening small. In contrast to shortening the distance, in the present invention, a probe is provided at the tip of the opening, and a tunnel current that flows when the probe and the sample are brought close to each other while applying a voltage is used. It is possible to keep the distance of 1 nm to several hundreds of nm. As a result, only the substance desorbed from the area immediately below the opening can be introduced into the hollow tube. By tracing the sample surface with the tip of a probe provided at the opening of the hollow tube, it is possible to analyze the mass of the detached substance and simultaneously observe the surface shape. The size of the opening can be up to several tens of nm in diameter by recent microfabrication technology, and by using this technology, the size of the opening of the hollow tube of the micro-mass spectrometer of the present invention can be increased. Can be manufactured with a diameter of several tens of nm, and the position resolution of the minute part mass spectrometer is about several tens nm. Although the example in which the tunnel current is used to control the distance between the opening and the sample has been described, the present invention is not limited to using the tunnel current to control the distance between the opening and the sample. Atomic force, Coulomb force, evanescent light, fluorescence, etc. acting between the sample and the probe can be used to control the distance between the opening and the sample.

【0010】[0010]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

(実施例1)図1は本発明による微小部質量分析法
(a)と従来の質量分析法(b)とを比較した説明図で
ある。1は質量分析器、2は試料、3は試料より脱離す
る物質、4は中空管である。従来の質量分析法では、試
料全体から脱離する物質を全て測定していたが、中空管
の先端を試料に近づけることにより、中空管直下の試料
から脱離してくる物質だけを中空管内に導き、中空管内
の物質だけを質量分析器に導くことで場所ごとの質量分
析が可能となる。
(Embodiment 1) FIG. 1 is an explanatory diagram comparing a micro-part mass analysis method (a) according to the present invention with a conventional mass analysis method (b). 1 is a mass spectrometer, 2 is a sample, 3 is a substance desorbed from the sample, and 4 is a hollow tube. In the conventional mass spectrometry method, all the substances desorbed from the whole sample were measured, but by moving the tip of the hollow tube close to the sample, only the substance desorbed from the sample directly below the hollow tube is Then, only the substance in the hollow tube is guided to the mass spectrometer, which enables mass analysis for each place.

【0011】図2は中空管の先端部の拡大図である。先
端部は開口しており、ここから脱離物質を中空管内に取
り込む。また、中空管の先端部には探針を設けており、
この探針先端で試料表面をなぞり、表面形状を観察す
る。ここでは、中空管の先端に設けた探針と試料とに流
れる電流を制御することにより、中空管と試料との距離
を制御し、試料表面の形状観測を行うことを表した図で
ある。従って、探針と試料は導電体であることが要求さ
れる。5は導電体、6は探針である。電流を制御に使う
ため中空管自体を導電体で製作する例(a)と中空管が
絶縁体の場合に表面に導電体を付着させ導電性を持たせ
る例(b)の二つの異なる中空管を示してある。
FIG. 2 is an enlarged view of the tip of the hollow tube. The tip portion is open, and the desorbed substance is taken into the hollow tube from there. In addition, a probe is provided at the tip of the hollow tube,
Trace the sample surface with the tip of this probe to observe the surface shape. Here, by controlling the current flowing between the probe provided at the tip of the hollow tube and the sample, the distance between the hollow tube and the sample is controlled, and the shape of the sample surface is observed. is there. Therefore, the probe and the sample are required to be conductors. Reference numeral 5 is a conductor, and 6 is a probe. There are two different cases: an example in which the hollow tube itself is made of an electric conductor for use in controlling the electric current (a), and an example in which the hollow tube is an insulator and is made conductive by attaching an electric conductor to the surface. A hollow tube is shown.

【0012】図3は本発明による微小部質量分析装置で
ある。ここでは、昇温により試料より脱離してくる物質
を場所ごとに測定する装置をあげている。7は試料加熱
機構、8は試料加熱機構制御装置、9は電源および電流
検出部、10は中空管走査機構、11は中空管走査制御
装置、12は試料からの脱離物質が中空管内の内壁に付
着するのを防ぐための中空管加熱機構、13は中空管内
と質量分析器を真空に保つための排気装置、14は表面
形状と質量分析結果の表示部である。破線に囲まれた部
分が真空槽内におかれ、中空管内と同様、真空にひかれ
る。中空管内を真空にするため、専用の排気装置を設け
たのは、中空管の開口部の面積が小さいと中空管の外部
が真空であっても中空管内部が真空に引けないためであ
る。試料と中空管との距離を制御するために、ここでは
試料と中空管を流れる電流を用いている。
FIG. 3 shows a micro-mass spectrometer according to the present invention. Here, an apparatus for measuring the substance desorbed from the sample due to the temperature rise at each place is shown. Reference numeral 7 is a sample heating mechanism, 8 is a sample heating mechanism control device, 9 is a power source and current detection unit, 10 is a hollow tube scanning mechanism, 11 is a hollow tube scanning control device, and 12 is a substance desorbed from the sample in the hollow tube. A hollow tube heating mechanism for preventing adhesion to the inner wall of the device, 13 an evacuation device for keeping the inside of the hollow tube and the mass analyzer vacuum, and 14 a surface shape and a display part of the mass analysis result. The part surrounded by the broken line is placed in a vacuum chamber and is evacuated to a vacuum as in the hollow tube. In order to make the inside of the hollow tube vacuum, a dedicated exhaust device was installed because the inside of the hollow tube cannot be evacuated even if the outside of the hollow tube is vacuum if the area of the opening of the hollow tube is small. Is. In order to control the distance between the sample and the hollow tube, the current flowing through the sample and the hollow tube is used here.

【0013】(実施例2)図4は中空管と試料との距離
制御に電流を使わない方法を示した図である。15は原
子間力を検知するための微小てこである。その先端部に
は微小な探針と開口部を設けている。試料より脱離する
物質はこの開口部を通り、微小てこの裏面の開口部から
中空管内へと導かれる。実施例では微小てこと中空管先
端部をつないではいないが、これは微小てこは10-9
ュートンという力によってたわみ、このたわみを利用し
て試料の表面形状を観察するため、中空管と微小てこを
つないでは微小てこが中空管によってたわめられてしま
うからである。てこにたわみを与えない程度の柔軟な中
空管であれば、微小てこにつないでも問題はない。
(Embodiment 2) FIG. 4 is a view showing a method in which no current is used for controlling the distance between the hollow tube and the sample. Reference numeral 15 is a minute lever for detecting the interatomic force. A minute probe and an opening are provided at its tip. The substance released from the sample passes through this opening and is guided into the hollow tube through the opening on the back surface of the minute lever. Although the tip of the micro-lever and the hollow tube are not connected in the example, this is because the micro-lever bends by a force of 10 −9 Newton, and the surface shape of the sample is observed by utilizing this bending, so that This is because if you do not connect the micro lever, the micro lever will be bent by the hollow tube. As long as it is a flexible hollow tube that does not bend the lever, it does not matter even if it is connected to the small lever.

【0014】[0014]

【発明の効果】本発明によれば、試料より脱離してくる
物質の質量を試料の場所ごとに分析することが可能であ
る。また、質量分析より脱離物質の種類を特定すること
が可能である。
According to the present invention, it is possible to analyze the mass of the substance desorbed from the sample for each place of the sample. Further, it is possible to identify the type of desorbed substance by mass spectrometry.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施例の微小部質量分析装置の質
量分析器への脱離物質の進入過程を示した説明図。
FIG. 1 is an explanatory view showing a process in which a desorbed substance enters a mass spectrometer of a micro-mass spectrometer according to a first embodiment of the present invention.

【図2】本発明の第1実施例の微小部質量分析装置の説
明図。
FIG. 2 is an explanatory diagram of a minute portion mass spectrometer according to the first embodiment of the present invention.

【図3】本発明の第1実施例の微小部質量分析装置にお
ける試料から物質を脱離させる脱離装置などを備えた微
小部質量分析装置のブロック図。
FIG. 3 is a block diagram of a minute section mass spectrometer equipped with a desorption device for desorbing a substance from a sample in the minute section mass spectrometer of the first embodiment of the present invention.

【図4】本発明の第2実施例の微小部質量分析装置の説
明図。
FIG. 4 is an explanatory diagram of a minute portion mass spectrometer according to a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…質量分析器、2…試料、3…脱離物質、4…中空
管、5…導電体、6…探針、7…試料加熱機構、8…試
料加熱機構制御装置、9…電源および電流検出部、10
…中空管走査機構、11…中空管走査機構制御装置、1
2…中空管加熱機構、13…中空管内排気装置、14…
表面形状と質量分析結果表示部、15…微小てこ。
DESCRIPTION OF SYMBOLS 1 ... Mass spectrometer, 2 ... Sample, 3 ... Desorption substance, 4 ... Hollow tube, 5 ... Conductor, 6 ... Probe, 7 ... Sample heating mechanism, 8 ... Sample heating mechanism controller, 9 ... Power supply and Current detector, 10
... Hollow tube scanning mechanism, 11 ... Hollow tube scanning mechanism controller, 1
2 ... Hollow tube heating mechanism, 13 ... Hollow tube exhaust device, 14 ...
Surface shape and mass spectrometry result display area, 15 ... Micro leverage.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】物質を取り込む開口部先端に探針が設けら
れている中空管を有し、前記中空管を試料表面に近づ
け、前記試料より脱離してくる物質を開口部を通して前
記中空管内に採取し、採取した物質だけを質量分析器に
導くことにより物質の質量を測定することを特徴とする
質量分析装置。
1. A hollow tube having a probe at the tip of an opening for taking in a substance, wherein the hollow tube is brought close to a sample surface, and the substance desorbed from the sample is passed through the opening to the hollow tube. A mass spectrometer, which measures the mass of a substance by collecting the substance in a tube and guiding only the collected substance to a mass spectrometer.
【請求項2】導電体で構成される中空管または前記中空
管の外側表面を導電性物質で覆った前記中空管を使い、
試料とその伝導体間に電圧を印加し表面に近づけ、試料
と前記導電性物質間に流れる電流を利用し細管先端と試
料間との距離を1nm〜300nmに設定することによ
り、試料より脱離してくる物質を開口部を通して中空管
内に採取し採取した物質だけを質量分析器に導くことに
より、位置分解能がサブミクロンを達成することを特徴
とする質量分析装置。
2. A hollow tube made of a conductor or the hollow tube having an outer surface covered with a conductive substance is used.
Detach from the sample by applying a voltage between the sample and its conductor to bring it close to the surface, and using the current flowing between the sample and the conductive substance to set the distance between the tip of the capillary and the sample to 1 nm to 300 nm. A mass spectroscope characterized by achieving a submicron position resolution by introducing an incoming substance into a hollow tube through an opening and guiding only the extracted substance to a mass spectrometer.
【請求項3】請求項1または請求項2において、前記中
空管を走査駆動機構に取り付け、前記試料と前記中空管
の開口部先端に設けた探針との間を流れる電流を利用し
試料表面の形状を測定すると同時に、前記中空管内を通
ってくる脱離物質の質量を観測する質量分析装置。
3. The hollow tube according to claim 1 or 2, wherein the hollow tube is attached to a scanning drive mechanism, and an electric current flowing between the sample and a probe provided at a tip of an opening of the hollow tube is used. A mass spectrometer that measures the shape of the sample surface and at the same time observes the mass of the desorbed substance passing through the hollow tube.
【請求項4】請求項1または請求項2において、前記中
空管と質量分析器を真空に保つための真空排気装置を備
えた質量分析装置。
4. The mass spectrometer according to claim 1, further comprising a vacuum exhaust device for keeping the hollow tube and the mass analyzer vacuum.
JP8000473A 1996-01-08 1996-01-08 Micromass spectrograph Pending JPH09189680A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8000473A JPH09189680A (en) 1996-01-08 1996-01-08 Micromass spectrograph

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8000473A JPH09189680A (en) 1996-01-08 1996-01-08 Micromass spectrograph

Publications (1)

Publication Number Publication Date
JPH09189680A true JPH09189680A (en) 1997-07-22

Family

ID=11474764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8000473A Pending JPH09189680A (en) 1996-01-08 1996-01-08 Micromass spectrograph

Country Status (1)

Country Link
JP (1) JPH09189680A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002093615A1 (en) 2001-03-26 2002-11-21 Kanazawa Institute Of Technology Scanning atom probe and analysis method using scanning atom probe
JP2005538855A (en) * 2002-09-09 2005-12-22 ジェネラル ナノテクノロジー エルエルシー Fluid delivery of a scanning probe microscope
JP2008304340A (en) * 2007-06-08 2008-12-18 Hitachi Ltd Sample analyzing method and sample analyzer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002093615A1 (en) 2001-03-26 2002-11-21 Kanazawa Institute Of Technology Scanning atom probe and analysis method using scanning atom probe
US6875981B2 (en) 2001-03-26 2005-04-05 Kanazawa Institute Of Technology Scanning atom probe and analysis method utilizing scanning atom probe
JP2005538855A (en) * 2002-09-09 2005-12-22 ジェネラル ナノテクノロジー エルエルシー Fluid delivery of a scanning probe microscope
JP2008304340A (en) * 2007-06-08 2008-12-18 Hitachi Ltd Sample analyzing method and sample analyzer

Similar Documents

Publication Publication Date Title
US10056243B2 (en) Apparatus and method for rapid chemical analysis using differential desorption
US8536523B2 (en) Desorption and ionization method and device
US5317271A (en) High voltage spark excitation and ionization detector system with adjustable sample input for sensitivity control
CN108072690B (en) Ion mobility spectrometry and ion trap mass spectrometry combined device and analysis method
JP2009539115A (en) Flexible open tube collection system for use in surface ionization technology
JP2005519669A (en) Micro apparatus for biological tissue examination and analysis method
TWI488215B (en) Multi solid phase thermal desorption ionization device, mass spectrometer, and method for mass spectrometry
EP2435166A1 (en) Direct atmospheric pressure sample analyzing system
CN102928499A (en) Rapid analysis device and method for ambient air volatile organic compounds
CN104458698A (en) Method for detecting organic pollutants by virtue of combination of solid phase micro-extraction and surface enhancement Raman
WO2008148557A2 (en) Sample holder device for ionization chambers for mass spectometry
CN109473336A (en) Efficient ionization probe electrospray ionization mass spectrum ion source device and the probe suitable for the ion source device
JP2005534041A (en) A method for local high-resolution surface mass spectroscopic characterization using scanning probe technology
JP2007108025A (en) Sample injection device for gas chromatograph
Walles et al. Approaches for coupling solid-phase microextraction to nanospray
JP6581786B2 (en) Drug detection device
JP2008003016A (en) Sampling probe for microsample
US6855926B2 (en) Instrument and method for combined surface topography and spectroscopic analysis
CN109065436B (en) Heat-assisted carbon fiber ionization device and method for realizing ionization by using same
JPH09189680A (en) Micromass spectrograph
US6084237A (en) Method and apparatus for the analytical determination of traces
Girault et al. Quantitative measurement of 4‐hydroxy tamoxifen in human plasma and mammary tumours by combined gas chromatography/negative chemical ionization mass spectrometry
JP4967830B2 (en) Sample analysis method and apparatus
Ding et al. Development of laser assisted nanometric resolution scanning tunneling microscopy time-of-flight mass analyzer system
JP4845649B2 (en) Minute object surface evaluation apparatus and minute object surface evaluation method